JP2007042447A - Lithium/iron disulphide primary cell - Google Patents

Lithium/iron disulphide primary cell Download PDF

Info

Publication number
JP2007042447A
JP2007042447A JP2005225579A JP2005225579A JP2007042447A JP 2007042447 A JP2007042447 A JP 2007042447A JP 2005225579 A JP2005225579 A JP 2005225579A JP 2005225579 A JP2005225579 A JP 2005225579A JP 2007042447 A JP2007042447 A JP 2007042447A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
iron disulfide
battery
imide salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225579A
Other languages
Japanese (ja)
Inventor
Naoko Yamakawa
直子 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005225579A priority Critical patent/JP2007042447A/en
Publication of JP2007042447A publication Critical patent/JP2007042447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium/iron sulphide primary cell capable of reducing discharge characteristics, suppressing boost of open-circuit voltage at the time of preservation and having high quality. <P>SOLUTION: The lithium/iron sulphide primary cell is equipped with a cathode 2 having iron sulphide (FeS<SB>2</SB>) as a cathode active material, an anode 3 having lithium as an anode active material and electrolyte solution. Chain imide salt (LiN(C<SB>n</SB>F<SB>2n+1</SB>SO<SB>2</SB>)(C<SB>m</SB>F<SB>2m+1</SB>SO<SB>2</SB>)) is contained in the electrolyte solution. With this, drop of discharge characteristics is reduced, and boost of an open-circuit voltage can be suppressed at the time of preservation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、二硫化鉄を正極活物質とする正極と、リチウムを負極活物質とする負極と、有機溶媒の電解液とを備えるリチウム/二硫化鉄一次電池に関する。   The present invention relates to a lithium / iron disulfide primary battery including a positive electrode using iron disulfide as a positive electrode active material, a negative electrode using lithium as a negative electrode active material, and an electrolyte solution of an organic solvent.

現在、市販されている1.5V級一次電池には、水溶液を電解液に用いるマンガン電池、アルカリマンガン電池、酸化銀電池、空気電池、ニッケル/亜鉛電池、および有機溶媒を電解液に用いるリチウム/二硫化鉄一次電池等がある。   Currently available 1.5V class primary batteries include manganese batteries, alkaline manganese batteries, silver oxide batteries, air batteries, nickel / zinc batteries, and lithium / organic solvents that use organic solvents as electrolytes. There are iron disulfide primary batteries.

リチウム/二硫化鉄一次電池は、正極活物質の二硫化鉄が約894mAh/g、負極活物質のリチウムが約3863mAh/gと、非常に高い理論容量を示す正・負極材料から構成されており、高容量かつ軽量、負荷特性、低温特性といった電池特性の面からも、極めて優れた電池である。   The lithium / iron disulfide primary battery is composed of positive and negative electrode materials that have a very high theoretical capacity of about 894 mAh / g for the positive electrode active material iron disulfide and about 3863 mAh / g for the negative electrode active material lithium. The battery is extremely excellent in terms of battery characteristics such as high capacity and light weight, load characteristics, and low temperature characteristics.

さらに、リチウム/二硫化鉄一次電池は、初期の開回路電圧(OCV)が1.7〜1.8V、平均放電電圧が1.3〜1.6V付近であり、他の1.5V級一次電池、例えば水溶液を電解液に用いるマンガン電池、アルカリマンガン電池、酸化銀電池、空気電池、ニッケル/亜鉛電池と互換性を有する点からもその実用価値は高い。   Furthermore, the lithium / iron disulfide primary battery has an initial open circuit voltage (OCV) of 1.7 to 1.8 V, an average discharge voltage of 1.3 to 1.6 V, and other 1.5 V class primarys. The practical value is also high in terms of compatibility with batteries, for example, manganese batteries, alkaline manganese batteries, silver oxide batteries, air batteries, and nickel / zinc batteries using an aqueous solution as an electrolyte.

しかしながら、この電池系は、製造直後に、開回路電圧が実用電圧よりも高い電位まで上昇してしまうという問題がある。そこで、製造後に予備放電を行うことによって、開回路電圧を実用電圧まで低下させる手法がとられるが、長期間保管している間に再び開回路電圧が上昇し、場合によっては2Vを超えるという特徴を有している。   However, this battery system has a problem that the open circuit voltage rises to a potential higher than the practical voltage immediately after manufacture. Therefore, a method of reducing the open circuit voltage to a practical voltage by performing preliminary discharge after manufacture is taken, but the open circuit voltage rises again during long-term storage, and in some cases exceeds 2 V. have.

開回路電圧が上昇した状態にあるリチウム/二硫化鉄一次電池を機器に使用した場合には、使用機器側の保護回路が作動してしまうために、電源が入らず使用不可能となる。つまり他の1.5V級一次電池との互換性が失われる問題が生じてしまう。   When a lithium / iron disulfide primary battery in which the open circuit voltage is increased is used in a device, the protection circuit on the device side is activated, so that the power is not turned on and the device cannot be used. That is, the problem that compatibility with other 1.5V class primary batteries is lost arises.

開回路電圧の上昇の一因としては、導電剤に吸着されている酸素の影響が考えられる。この影響を抑制するために、例えば下記特許文献1には、電解液中に添加したインサキゾール誘導体、正極中に添加した還元剤によって、導電剤中の活性種を還元除去する方法が記載されている。   One possible cause of the increase in the open circuit voltage is the influence of oxygen adsorbed on the conductive agent. In order to suppress this influence, for example, the following Patent Document 1 describes a method for reducing and removing active species in a conductive agent by using an insaxol derivative added in an electrolytic solution and a reducing agent added in a positive electrode. .

特開昭59−181464号公報JP 59-181464 A

また、開回路電圧の上昇の他の原因としては、外部からの水分進入とそれに伴う電池構成成分との反応が影響と考えられる。この影響を抑制するため、例えば下記特許文献2には、進入水分を、電解液中に添加したフェノールまたはヒドロキノン誘導体と優先的に反応させる方法が記載されている。   Another cause of the increase in the open circuit voltage is considered to be the influence of moisture ingress from outside and the reaction between the battery constituent components accompanying it. In order to suppress this influence, for example, Patent Document 2 described below describes a method of preferentially reacting ingress water with a phenol or hydroquinone derivative added to an electrolytic solution.

特開平8−153521号公報JP-A-8-153521

特許文献1に記載の方法は、イソキサゾール誘導体が、開回路電圧の上昇の一因である活性種と反応してこれを除去することで、開回路電圧の上昇を抑制できるものである。一方で、この発明では、電解質塩としてイミド塩を使用することにより、長期保存時の開回路電圧上昇を抑制するものである。電解質として含まれているイミド塩は電解液中でN含有アニオンとして存在するが、そのアニオン種は吸着活性種と反応する以外にも正極活物質であるFeS2上に安定な有機被膜形成するなどして開回路電圧上昇を抑制するものと考えられる。 In the method described in Patent Document 1, an isoxazole derivative can react with an active species that contributes to an increase in the open circuit voltage and removes it, thereby suppressing an increase in the open circuit voltage. On the other hand, in this invention, an imide salt is used as the electrolyte salt, thereby suppressing an increase in open circuit voltage during long-term storage. Although the imide salt contained as an electrolyte exists as an N-containing anion in the electrolyte, the anion species forms a stable organic film on the positive electrode active material FeS 2 in addition to reacting with the adsorption active species. Thus, it is considered that the rise in open circuit voltage is suppressed.

また、特許文献1,2に記載の方法等での添加剤を使用する方法では、放電特性の低下が懸念される。一方で、この発明では、特許文献1,2に記載の方法等での添加剤使用と異なり、塩として添加することで、イオン伝導度の上昇にもつながることが考えられ、放電特性を損なうことなく、開回路電圧上昇を抑制できると考えられる。   In addition, in the method using an additive in the methods described in Patent Documents 1 and 2, there is a concern about a decrease in discharge characteristics. On the other hand, in the present invention, unlike the use of additives in the methods described in Patent Documents 1 and 2, adding as a salt is considered to lead to an increase in ionic conductivity, thereby impairing discharge characteristics. Therefore, it is considered that the open circuit voltage rise can be suppressed.

したがって、この発明の目的は、放電特性の低下が少なく、かつ保存時における開回路電圧の上昇を抑制でき、高品質なリチウム/二硫化鉄一次電池を提供することにある。   Accordingly, an object of the present invention is to provide a high-quality lithium / iron disulfide primary battery in which the deterioration of discharge characteristics is small and an increase in open circuit voltage during storage can be suppressed.

上述した課題を解決するために、この発明は、
二硫化鉄を正極活物質とする正極と、
リチウムを負極活物質とする負極と、
電解液とを備えたリチウム/二硫化鉄一次電池であって、
電解液は、下記化学式で表される鎖状イミド塩を含有するものであることを特徴とするリチウム/二硫化鉄一次電池である。

Figure 2007042447
(式中R1はCn2n+1を表す、式中R2はCm2m+1を表す) In order to solve the above-described problems, the present invention provides:
A positive electrode using iron disulfide as a positive electrode active material;
A negative electrode using lithium as a negative electrode active material;
A lithium / iron disulfide primary battery comprising an electrolyte solution,
The electrolytic solution is a lithium / iron disulfide primary battery characterized by containing a chain imide salt represented by the following chemical formula.
Figure 2007042447
(Wherein R1 represents C n F 2n + 1 and R2 represents C m F 2m + 1 )

この発明によれば、放電特性の低下が少なく、かつ保存時における開回路電圧上昇を抑制できる。   According to the present invention, there is little deterioration in discharge characteristics, and an increase in open circuit voltage during storage can be suppressed.

以下、この発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の一実施形態によるリチウム/二硫化鉄一次電池を示す。図1に示す電池は、いわゆる円筒型と呼ばれるものであり、ほぼ中空円柱状の電池缶1の内部に、渦巻型電極体を有している。渦巻型電極体は、正極活物質を有する帯状の正極2と、負極活物質を有する帯状の負極3とが、イオン透過性を有するセパレータ4を介して多数回巻回されてなる。   FIG. 1 shows a lithium / iron disulfide primary battery according to an embodiment of the present invention. The battery shown in FIG. 1 is a so-called cylindrical type, and has a spiral electrode body inside a substantially hollow cylindrical battery can 1. The spiral electrode body is formed by winding a strip-shaped positive electrode 2 having a positive electrode active material and a strip-shaped negative electrode 3 having a negative electrode active material through a separator 4 having ion permeability many times.

電池缶1は、例えばニッケルメッキが施された鉄により、構成されており、一端部が閉鎖され、他端部が開放されている。電池缶1の内部には、渦巻型電極体を挟み込むように、周面に対して垂直に一対の絶縁板5および絶縁板6がそれぞれ配置されている。   The battery can 1 is made of, for example, iron plated with nickel, and has one end closed and the other end open. Inside the battery can 1, a pair of insulating plates 5 and 6 are arranged perpendicular to the peripheral surface so as to sandwich the spiral electrode body.

電池缶1の開放端部には、電池蓋7と、この電池蓋7の内側に設けられた安全弁8及び熱感抵抗素子(Positive Temperature Coefficient;PTC素子)9とが、封口ガスケット10を介してかしめられることにより取り付けられており、電池缶1の内部は、密閉されている。   At the open end of the battery can 1, a battery lid 7, a safety valve 8 and a heat sensitive resistance element (Positive Temperature Coefficient; PTC element) 9 provided inside the battery lid 7 are provided via a sealing gasket 10. It is attached by caulking and the inside of the battery can 1 is sealed.

電池蓋7は、例えば電池缶1と同様の材料により構成されている。安全弁8は、熱感抵抗素子9を介して電池蓋7と電気的に接続されており、内部短絡又は外部からの加熱等により電池の内圧が一定以上となった場合に電池蓋7と渦巻型電極体との電気的接続を切断する、いわゆる電流遮断機構を備えている。   The battery lid 7 is made of, for example, the same material as the battery can 1. The safety valve 8 is electrically connected to the battery lid 7 via the heat sensitive resistance element 9, and when the internal pressure of the battery becomes a certain level or more due to internal short circuit or external heating, the safety valve 8 and the spiral lid A so-called current interrupting mechanism for disconnecting the electrical connection with the electrode body is provided.

熱感抵抗素子9は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものであり、例えば、チタン酸バリウム系半導体セラミックスにより構成されている。封口ガスケット10は、例えば絶縁材料により構成されており、表面には、例えばアスファルトが塗布されている。   When the temperature rises, the heat-sensitive resistance element 9 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current, and is made of, for example, barium titanate semiconductor ceramics. The sealing gasket 10 is made of, for example, an insulating material, and the surface is coated with, for example, asphalt.

渦巻型電極体の正極2には、アルミニウム等よりなる正極リード11が接続されており、負極3には、ニッケル等よりなる負極リード12が接続されている。正極リード11は、安全弁8に溶接されることにより電池蓋7と電気的に接続されている。負極リード12は、電池缶1に溶接され電気的に接続されている。   A positive electrode lead 11 made of aluminum or the like is connected to the positive electrode 2 of the spiral electrode body, and a negative electrode lead 12 made of nickel or the like is connected to the negative electrode 3. The positive electrode lead 11 is electrically connected to the battery lid 7 by being welded to the safety valve 8. The negative electrode lead 12 is welded and electrically connected to the battery can 1.

また、正極2と負極3との間のセパレータ4には、非水電解質として、例えば非水電解液が含浸されている。セパレータ4は、正極2と負極3との間に配されることにより、正極2と負極3の物理的接触を防ぐ機能を有する。さらに、セパレータ4は、非水電解液を吸収することにより、孔中に非水電解液を保持し、放電時にリチウムイオンが通過できるものである。   Further, the separator 4 between the positive electrode 2 and the negative electrode 3 is impregnated with, for example, a nonaqueous electrolyte as a nonaqueous electrolyte. The separator 4 has a function of preventing physical contact between the positive electrode 2 and the negative electrode 3 by being disposed between the positive electrode 2 and the negative electrode 3. Further, the separator 4 absorbs the non-aqueous electrolyte so as to hold the non-aqueous electrolyte in the holes and allow lithium ions to pass during discharge.

[正極2]
正極2は、帯状の形状を有する正極集電体と、この正極集電体の両面に形成された正極合剤層とからなる。正極集電体は、例えばアルミニウム(Al)箔、ニッケル(Ni)箔、ステンレス(SUS)箔等の金属箔である。
[Positive electrode 2]
The positive electrode 2 is composed of a positive electrode current collector having a strip shape and a positive electrode mixture layer formed on both surfaces of the positive electrode current collector. The positive electrode current collector is a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, a stainless steel (SUS) foil, or the like.

正極合剤層は、例えば、正極活物質である二硫化鉄(FeS2)と、導電剤と、結着剤とからなる。正極活物質である二硫化鉄は、主に自然界に存在する黄鉄鉱(pyrite)を粉砕したものが用いられるが、化学合成、例えば、塩化第一鉄(FeCl2)を硫化水素(H2S)中にて焼成して得られる二硫化鉄なども使用可能である。 The positive electrode mixture layer includes, for example, iron disulfide (FeS 2 ) that is a positive electrode active material, a conductive agent, and a binder. As the positive electrode active material, iron disulfide, which is obtained by pulverizing pyrite that exists mainly in nature, is used, but chemical synthesis, for example, ferrous chloride (FeCl 2 ) is converted to hydrogen sulfide (H 2 S). Iron disulfide obtained by firing inside can also be used.

導電剤としては、正極活物質に適量混合して導電性を付与できるものであれば特に制限はされず、例えば、グラファイト、カーボンブラックなどの炭素粉末を用いることができる。結着剤としては、公知の結着剤を用いることができ、例えばポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレンなどのフッ素系樹脂を用いることができる。   The conductive agent is not particularly limited as long as an appropriate amount can be mixed with the positive electrode active material to impart conductivity, and for example, carbon powder such as graphite and carbon black can be used. As the binder, a known binder can be used. For example, a fluorine resin such as polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytetrafluoroethylene, or the like can be used.

[負極3]
負極3は、帯状の形状を有する金属箔からなる。この負極活物質でもある金属箔の材料としては、リチウム金属またはリチウムにアルミなどの合金元素を添加したリチウム合金などが挙げられる。
[Negative electrode 3]
The negative electrode 3 is made of a metal foil having a strip shape. Examples of the metal foil material that is also the negative electrode active material include lithium metal or lithium alloy obtained by adding an alloy element such as aluminum to lithium.

[電解液]
電解液としては、電解質を有機溶媒に溶解させた電解液が用いられる。ここで有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、スルホラン、アセトニトリル、ジメチルカーボネート、ジプロピルカーボネート等の、単独もしくは二種類以上の混合溶媒を用いることができる。
[Electrolyte]
As the electrolytic solution, an electrolytic solution in which an electrolyte is dissolved in an organic solvent is used. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, acetonitrile, dimethyl carbonate, dipropyl carbonate, and the like. These may be used alone or in combination of two or more.

電解質としては、下記化学式に示す鎖状イミド塩を単独で用いることができる。さらに、電解質としては、下記化学式に示す鎖状イミド塩と他のリチウム塩とを混合した混合塩を用いることができる。具体的には、電解質としては、例えば、下記化学式において、R1およびR2がCF3、C25、C37、C49のいずれかであるものを用いることができる。なお、化1と化2は、同一の化学式であるので、以下の記載では、単に化1と記載する。 As the electrolyte, a chain imide salt represented by the following chemical formula can be used alone. Furthermore, as the electrolyte, a mixed salt obtained by mixing a chain imide salt represented by the following chemical formula and another lithium salt can be used. Specifically, as the electrolyte, for example, those in which R1 and R2 are any of CF 3 , C 2 F 5 , C 3 F 7 , and C 4 F 9 in the following chemical formula can be used. In addition, since chemical formula 1 and chemical formula 2 are the same chemical formula, in the following description, they are simply described as chemical formula 1.

Figure 2007042447
(式中R1はCn2n+1を表す、式中R2はCm2m+1を表す)
Figure 2007042447
(Wherein R1 represents C n F 2n + 1 and R2 represents C m F 2m + 1 )

他のリチウム塩としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ヨウ化リチウム(LiI)等を用いることができる。 Examples of other lithium salts include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and lithium trifluoromethanesulfonate (LiCF 3 SO 3). ), Lithium iodide (LiI), or the like can be used.

一実施形態では、電解液中に電解質である化1に示す鎖状イミド塩を含有することで、放電特性の低下が少なく、かつ開回路電圧の上昇を抑制できる。すなわち、電解質として含まれる化1に示す鎖状イミド塩は、電解液中でN含有アニオンとして存在し、このN含有アニオンが正極活物質である二硫化鉄上に安定な有機被膜を形成するあるいは吸着活性種と反応して開回路電圧の上昇を抑制できると考えられる。さらに、塩として添加することで、イオン伝導度の上昇にもつながることが考えられ、放電特性を損なうことなく、開回路電圧上昇を抑制できると考えられる。   In one embodiment, by containing the chain imide salt shown in Chemical Formula 1 as an electrolyte in the electrolytic solution, there is little decrease in discharge characteristics and an increase in open circuit voltage can be suppressed. That is, the chain imide salt shown in Chemical Formula 1 contained as an electrolyte exists as an N-containing anion in the electrolyte, and this N-containing anion forms a stable organic film on iron disulfide that is a positive electrode active material. It is considered that the increase in open circuit voltage can be suppressed by reacting with the active species. Furthermore, adding as a salt may lead to an increase in ionic conductivity, and it is considered that an increase in open circuit voltage can be suppressed without impairing discharge characteristics.

化1に示す鎖状イミド塩は、電解液において、1.5mol/kgを超えると開回路電圧の上昇を抑制する効果が飽和する。したがって、化1に示す鎖状イミド塩は、その添加量に応じた開回路電圧上昇の抑制効果を得る事ができる範囲の点から、0.1mol/kg〜1.5mol/kg電解液中に含まれることが好ましい。   When the chain imide salt represented by Chemical Formula 1 exceeds 1.5 mol / kg in the electrolytic solution, the effect of suppressing an increase in open circuit voltage is saturated. Therefore, the chain imide salt shown in Chemical formula 1 is in the range of 0.1 mol / kg to 1.5 mol / kg electrolyte from the point of obtaining the effect of suppressing the increase in open circuit voltage according to the amount of addition. It is preferably included.

[セパレータ]
セパレータとしては、例えば、ポリプロピレン、ポリエチレンといったポリオレフィン系の微多孔性フィルム等が使用可能である。
[Separator]
As the separator, for example, a polyolefin-based microporous film such as polypropylene or polyethylene can be used.

次に、この発明の一実施形態によるリチウム/二硫化鉄一次電池の製造方法について説明する。   Next, a method for manufacturing a lithium / iron disulfide primary battery according to an embodiment of the present invention will be described.

まず、例えば、正極活物質、結着剤および導電剤を混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドン(NMP)などの溶剤に分散してペースト状の正極合剤スラリーとする。この正極合剤スラリーを正極集電体上に塗布して乾燥させた後、ローラプレス機などにより圧縮成型して正極合剤層を形成する。これにより、正極2が作製される。   First, for example, a positive electrode active material, a binder, and a conductive agent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste A positive electrode mixture slurry is obtained. The positive electrode mixture slurry is applied onto a positive electrode current collector and dried, and then compression molded by a roller press or the like to form a positive electrode mixture layer. Thereby, the positive electrode 2 is produced.

次に、上述のようにして得られた帯状の正極2と、帯状の形状を有する負極3と、帯状の形状を有するセパレータ3とを、例えば正極2、セパレータ4、負極3、セパレータ4の順に積層し、長手方向に多数回巻回して、渦巻型電極体を作製する。   Next, the strip-shaped positive electrode 2 obtained as described above, the negative electrode 3 having the strip shape, and the separator 3 having the strip shape are, for example, in the order of the positive electrode 2, the separator 4, the negative electrode 3, and the separator 4. Laminated and wound many times in the longitudinal direction to produce a spiral electrode body.

次に、底部に絶縁板5が予め挿入され、内側に例えばニッケルメッキが予め施された電池缶1に、渦巻型電極体を収納する。そして、渦巻型電極体の上面に絶縁板6を配設する。その後、負極3の集電をとるために、例えばニッケルからなる負極リード12の一端を負極3に取り付け、他端を電池缶1に溶接する。   Next, the spiral electrode body is accommodated in the battery can 1 in which the insulating plate 5 is inserted in advance at the bottom and nickel plating is applied in advance on the inside. Then, the insulating plate 6 is disposed on the upper surface of the spiral electrode body. Thereafter, in order to collect current of the negative electrode 3, one end of the negative electrode lead 12 made of, for example, nickel is attached to the negative electrode 3 and the other end is welded to the battery can 1.

これにより、電池缶1は負極3と導通をもつことになり、外部負極となる。また、正極2の集電をとるために、例えばアルミニウムからなる正極リード11の一端を正極2に取り付け、他端を安全弁8を介して電池蓋7と電気的に接続する。これにより、電池蓋7は正極2と導通をもつこととなり、外部正極となる。   As a result, the battery can 1 is electrically connected to the negative electrode 3 and becomes an external negative electrode. In order to collect the positive electrode 2, one end of the positive electrode lead 11 made of, for example, aluminum is attached to the positive electrode 2, and the other end is electrically connected to the battery lid 7 via the safety valve 8. As a result, the battery lid 7 is electrically connected to the positive electrode 2 and becomes an external positive electrode.

そして、この電池缶1の中に、電解質である化1に示す鎖状イミド塩を単独または他のリチウム塩と混合で有機溶媒に溶解させて調製した電解液を注入した後に、アスファルトを塗布した封口ガスケット10を介して電池缶1をかしめる。これにより、電池蓋7が固定された円筒型のリチウム/二硫化鉄一次電池が作製される。   Then, an electrolyte prepared by dissolving the chain imide salt shown in Chemical Formula 1 as an electrolyte in an organic solvent alone or mixed with another lithium salt was injected into the battery can 1, and then asphalt was applied. The battery can 1 is caulked through the sealing gasket 10. Thereby, a cylindrical lithium / iron disulfide primary battery with the battery lid 7 fixed thereto is manufactured.

以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.

<実施例1>
まず、正極活物質としての二硫化鉄95重量%と、導電剤としての炭素粉末1.0重量%と、結着剤としてのポリフッ化ビニリデン4重量%とを混合し、溶剤であるN−メチル−2−ピロリドンに十分に分散させて正極合剤スラリーとした。
<Example 1>
First, 95% by weight of iron disulfide as a positive electrode active material, 1.0% by weight of carbon powder as a conductive agent, and 4% by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl as a solvent is mixed. A positive electrode mixture slurry was obtained by sufficiently dispersing in 2-pyrrolidone.

次に、正極合剤スラリーを正極集電体の両面に塗布し、温度120℃で2時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、一定圧力で圧縮成型して帯状の正極2を作製した。なお、正極集電体としては、厚さ20μmの帯状のアルミニウム箔を用いた。   Next, the positive electrode mixture slurry was applied to both sides of the positive electrode current collector, dried at a temperature of 120 ° C. for 2 hours to volatilize N-methyl-2-pyrrolidone, and then compression-molded at a constant pressure to form a belt-like positive electrode 2 was produced. As the positive electrode current collector, a band-shaped aluminum foil having a thickness of 20 μm was used.

次に、以上のようにして作製された帯状の正極2と、厚さ150μmの金属リチウム負極3とを、正極2、セパレータ4、負極3、セパレータ4の順に積層してから多数回巻回し、外径9mmの渦巻型電極体を作製した。   Next, the belt-like positive electrode 2 produced as described above and the lithium metal negative electrode 3 having a thickness of 150 μm are laminated in the order of the positive electrode 2, the separator 4, the negative electrode 3, and the separator 4, and then wound many times. A spiral electrode body having an outer diameter of 9 mm was produced.

以上のようにして得られた渦巻型電極体をニッケルメッキを施した鉄製電池缶1に収納した。そして、渦巻型電極体の上下両面に絶縁板5と絶縁板6を配設し、アルミニウム製の正極リード11を正極集電体から導出して電池蓋7に、ニッケル製の負極リード12を負極集電体から導出して電池缶1に溶接した。   The spiral electrode body obtained as described above was stored in a nickel-plated iron battery can 1. The insulating plate 5 and the insulating plate 6 are arranged on the upper and lower surfaces of the spiral electrode body, the aluminum positive electrode lead 11 is led out from the positive electrode current collector, and the nickel negative electrode lead 12 is connected to the negative electrode. Derived from the current collector and welded to the battery can 1.

次に、1、3−ジオキシラン(DOL)と、1、2−ジメトキシエタン(DME)が体積比で2:1の混合溶媒に対して、ヨウ化リチウム1.0mol/kgおよび化1において、R1=CF3、R2=CF3である鎖状イミド塩0.05mol/kgを添加し、溶解させて調製した電解液を、電池缶1に注入した。 Next, with respect to a mixed solvent of 1,3-dioxirane (DOL) and 1,2-dimethoxyethane (DME) in a volume ratio of 2: 1, 1.0 mol / kg of lithium iodide and R1 An electrolytic solution prepared by adding and dissolving 0.05 mol / kg of a chain imide salt in which = CF 3 and R 2 = CF 3 was poured into the battery can 1.

次に、アスファルトが表面に塗布された絶縁封口ガスケット10を介して電池缶1をかしめることにより、電流遮断機構を有する安全弁8、熱感抵抗素子9および電池蓋7を固定して電池内の気密性を保持させた。以上により、直径約10mm、高さ約44mmの円筒型のリチウム/二硫化鉄一次電池を作製した。   Next, the battery can 1 is caulked through an insulating sealing gasket 10 coated with asphalt to fix the safety valve 8 having a current interrupting mechanism, the heat sensitive resistance element 9 and the battery lid 7 to fix the inside of the battery. Airtightness was maintained. Thus, a cylindrical lithium / iron disulfide primary battery having a diameter of about 10 mm and a height of about 44 mm was produced.

<実施例2〜実施例10>
化1において、R1=CF3、R2=CF3である鎖状イミド塩の添加量を表1に示す量としたこと以外は、実施例1と同様にして、リチウム/二硫化鉄一次電池を作製した。
<Example 2 to Example 10>
A lithium / iron disulfide primary battery was prepared in the same manner as in Example 1 except that the addition amount of the chain imide salt in which R1 = CF 3 and R2 = CF 3 was changed to the amount shown in Table 1. Produced.

<実施例11〜実施例20>
化1において、R1=C25、R2=C25である鎖状イミド塩を表1に示す添加量で添加したこと以外は、実施例1と同様にして、実施例11〜実施例20のリチウム/二硫化鉄一次電池を作製した。
<Example 11 to Example 20>
In the same manner as in Example 1 except that a chain imide salt having R1 = C 2 F 5 and R2 = C 2 F 5 was added in the addition amount shown in Table 1, Example 11 to Example 1 The lithium / iron disulfide primary battery of Example 20 was fabricated.

<実施例21〜実施例24>
化1において、R1=CF3、R2=C25である鎖状イミド塩を表1に示す量で添加したこと以外は、実施例1と同様にして、実施例21〜実施例24のリチウム/二硫化鉄一次電池を作製した。
<Example 21 to Example 24>
In the chemical formula 1, in the same manner as in Example 1 except that the chain imide salt in which R1 = CF 3 and R2 = C 2 F 5 are added in the amounts shown in Table 1, Examples 21 to 24 A lithium / iron disulfide primary battery was prepared.

<実施例25〜実施例28>
化1において、R1=C37、R2=C37である鎖状イミド塩を表1に示す量で添加したこと以外は、実施例1と同様にして、実施例25〜実施例28のリチウム/二硫化鉄一次電池を作製した。
<Example 25 to Example 28>
In Example 1, Example 25 to Example were carried out in the same manner as Example 1 except that chain imide salts of R1 = C 3 F 7 and R2 = C 3 F 7 were added in the amounts shown in Table 1. 28 lithium / iron disulfide primary batteries were prepared.

<実施例29〜実施例32>
化1において、R1=C49、R2=C49である鎖状イミド塩を表1に示す量で添加したこと以外は、実施例1と同様にして、実施例29〜実施例32のリチウム/二硫化鉄一次電池を作製した。
<Example 29 to Example 32>
In Example 1, Example 29 to Example were carried out in the same manner as Example 1 except that chain imide salts with R1 = C 4 F 9 and R2 = C 4 F 9 were added in the amounts shown in Table 1. Thirty-two lithium / iron disulfide primary batteries were produced.

<実施例33>
LiIを添加せず、化1において、R1=CF3、R2=CF3である鎖状イミド塩のみを表1に示す量で添加したこと以外は、実施例1と同様にして、実施例33のリチウム/二硫化鉄一次電池を作製した。
<Example 33>
Example 33 was carried out in the same manner as in Example 1 except that LiI was not added and only the chain imide salt in which R1 = CF 3 and R2 = CF 3 were added in the amounts shown in Table 1 in Chemical Formula 1. A lithium / iron disulfide primary battery was prepared.

<実施例34>
LiIを添加せず、化1において、R1=C25、R2=C25である鎖状イミド塩のみを表1に示す量で添加したこと以外は、実施例1と同様にして、実施例34のリチウム/二硫化鉄一次電池を作製した。
<Example 34>
In the same manner as in Example 1 except that LiI was not added and only the chain imide salt in which R1 = C 2 F 5 and R2 = C 2 F 5 were added in the amounts shown in Table 1 in Chemical Formula 1 A lithium / iron disulfide primary battery of Example 34 was produced.

<実施例35>
LiIを添加せず、化1において、R1=CF3、R2=C25である鎖状イミド塩のみを表1に示す量で添加したこと以外は、実施例1と同様にして、実施例35のリチウム/二硫化鉄一次電池を作製した。
<Example 35>
In the same manner as in Example 1 except that LiI was not added and only the chain imide salt in which R1 = CF 3 and R2 = C 2 F 5 were added in the amounts shown in Table 1 in Chemical Formula 1 The lithium / iron disulfide primary battery of Example 35 was produced.

<実施例36>
LiIを添加せず、化1において、R1=C37、R2=C37である鎖状イミド塩のみを表1に示す量で添加したこと以外は、実施例1と同様にして、実施例36のリチウム/二硫化鉄一次電池を作製した。
<Example 36>
In the same manner as in Example 1 except that LiI was not added and only the chain imide salt in which R1 = C 3 F 7 and R 2 = C 3 F 7 were added in the amounts shown in Table 1 in Chemical Formula 1 A lithium / iron disulfide primary battery of Example 36 was produced.

<実施例37>
LiIを添加せず、化1において、R1=C49、R2=C49である鎖状イミド塩のみを表1に示す量で添加したこと以外は、実施例1と同様にして、実施例37のリチウム/二硫化鉄一次電池を作製した。
<Example 37>
In the same manner as in Example 1 except that LiI was not added and only the chain imide salt in which R1 = C 4 F 9 and R2 = C 4 F 9 were added in the amounts shown in Table 1 in Chemical Formula 1 Then, a lithium / iron disulfide primary battery of Example 37 was produced.

<比較例1>
鎖状イミド塩を添加せず、LiIのみを表1に示す量で添加したこと以外は、実施例1と同様にして、比較例1のリチウム/二硫化鉄一次電池を作製した。
<Comparative Example 1>
A lithium / iron disulfide primary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that no chain imide salt was added and only LiI was added in the amount shown in Table 1.

次に、化1に示す鎖状イミド塩と、LiSO3CF4とを混合した混合塩を電解液中に含む場合の開回路電圧上昇の抑制効果を確認すべく、LiSO3CF3に、化1に示す鎖状イミド塩を追加添加した実施例38〜実施例45および比較例2のリチウム/二硫化鉄一次電池を作製した。 Next, LiSO 3 CF 3 was converted to LiSO 3 CF 3 in order to confirm the effect of suppressing an increase in open circuit voltage when a mixed salt obtained by mixing the chain imide salt shown in Chemical Formula 1 and LiSO 3 CF 4 is included in the electrolyte. The lithium / iron disulfide primary batteries of Examples 38 to 45 and Comparative Example 2 to which the chain imide salt shown in 1 was additionally added were prepared.

<実施例38>
LiIの代わりにLiSO3CF4を1mol/kgと、化1において、R1=CF3、R2=CF3である鎖状イミド塩0.05mol/kgとを添加した電解液を調製したこと以外は、実施例1と同様にして、実施例38のリチウム/二硫化鉄一次電池を作製した。
<Example 38>
Except that LiSO 3 CF 4 was replaced by 1 mol / kg instead of LiI and an electrolytic solution in which a chain imide salt 0.05 mol / kg in which R1 = CF 3 and R2 = CF 3 were added in Chemical Formula 1 was prepared The lithium / iron disulfide primary battery of Example 38 was made in the same manner as Example 1.

<実施例39〜実施例41>
化1において、R1=CF3、R2=CF3である鎖状イミド塩を表2に示す量で添加したこと以外は、実施例38と同様にして、実施例39〜実施例45のリチウム/二硫化鉄一次電池を作製した。
<Example 39 to Example 41>
In the chemical formula 1, in the same manner as in Example 38, except that the chain imide salt in which R1 = CF 3 and R2 = CF 3 were added in the amounts shown in Table 2, the lithium / ion of Examples 39 to 45 was used. An iron disulfide primary battery was produced.

<実施例42〜実施例45>
化1において、R1=C25、R2=C25である鎖状イミド塩を表2に示す量で添加したこと以外は、実施例38と同様にして、実施例42〜実施例45のリチウム/二硫化鉄一次電池を作製した。
<Example 42 to Example 45>
In Example 1, Example 42 to Example were carried out in the same manner as Example 38, except that chain imide salts with R1 = C 2 F 5 and R2 = C 2 F 5 were added in the amounts shown in Table 2. Forty-five lithium / iron disulfide primary batteries were fabricated.

<比較例2>
鎖状イミド塩を添加せず、LiSO3CF4のみを表2に示す量で添加したこと以外は、実施例1と同様にして、比較例2のリチウム/二硫化鉄一次電池を作製した。
<Comparative example 2>
A lithium / iron disulfide primary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that no chain imide salt was added and only LiSO 3 CF 4 was added in the amount shown in Table 2.

次に、鎖状イミド塩と、LiClO4とを混合した混合塩を電解液中に含む場合の開回路電圧上昇の抑制効果を確認すべく、LiClO4に、化1に示す鎖状イミド塩を追加添加した実施例46〜実施例53および比較例3のリチウム/二硫化鉄一次電池を作製した。 Next, in order to confirm the effect of suppressing an increase in open circuit voltage when a mixed salt obtained by mixing a chain imide salt and LiClO 4 is included in the electrolyte, a chain imide salt represented by Chemical Formula 1 is added to LiClO 4. The lithium / iron disulfide primary batteries of Example 46 to Example 53 and Comparative Example 3 which were additionally added were produced.

<実施例46>
LiIの代わりにLiClO41mol/kgと、化1において、R1=CF3、R2=CF3である鎖状イミド塩0.05mol/kgとを添加した電解液を調製したこと以外は、実施例1と同様にして、実施例46のリチウム/二硫化鉄一次電池を作製した。
<Example 46>
Example 1 except that LiClO 4 1 mol / kg instead of LiI and a chain imide salt 0.05 mol / kg in which R1 = CF 3 and R2 = CF 3 in Chemical Formula 1 were added were prepared In the same manner as in Example 1, a lithium / iron disulfide primary battery of Example 46 was produced.

<実施例47〜実施例49>
化1において、R1=CF3、R2=CF3である鎖状イミド塩を表3に示す量で添加したこと以外は、実施例46と同様にして、実施例47〜実施例49のリチウム/二硫化鉄一次電池を作製した。
<Example 47 to Example 49>
In the same manner as in Example 46 except that the chain imide salt in which R1 = CF 3 and R2 = CF 3 are added in the amounts shown in Table 3, the lithium / lithium of Examples 47 to 49 is used. An iron disulfide primary battery was produced.

<実施例50〜実施例53>
化1において、R1=C25、R2=C25である鎖状イミド塩を表2に示す量で添加したこと以外は、実施例46と同様にして、実施例50〜実施例53のリチウム/二硫化鉄一次電池を作製した。
<Example 50 to Example 53>
In the chemical formula 1, Example 50 to Example were carried out in the same manner as in Example 46, except that chain imide salts with R1 = C 2 F 5 and R2 = C 2 F 5 were added in the amounts shown in Table 2. 53 lithium / iron disulfide primary batteries were prepared.

<比較例3>
鎖状イミド塩を添加せず、LiClO4のみを表3に示す量で添加したこと以外は、実施例1と同様にして、比較例3のリチウム/二硫化鉄一次電池を作製した。
<Comparative Example 3>
A lithium / iron disulfide primary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that no chain imide salt was added and only LiClO 4 was added in the amount shown in Table 3.

開回路電圧の測定
作製した実施例1〜実施例53および比較例1〜比較例3のリチウム/二硫化鉄一次電池を、電池容量の10%程度を予備放電させた後、室温(20℃)で1000時間保存し、この保存後の電池の開回路電圧を測定した。表1、表2、表3に測定結果を示す。
Measurement of open circuit voltage The lithium / iron disulfide primary batteries of Examples 1 to 53 and Comparative Examples 1 to 3 prepared were predischarged about 10% of the battery capacity, and then room temperature (20 ° C.). Was stored for 1000 hours, and the open circuit voltage of the battery after the storage was measured. Tables 1, 2 and 3 show the measurement results.

Figure 2007042447
Figure 2007042447

Figure 2007042447
Figure 2007042447

Figure 2007042447
Figure 2007042447

評価1
表1に示すように、実施例1〜実施例37の電池の開回路電圧は、比較例1に対して低い。したがって、電解液中に化1に示す鎖状イミド塩を含むことによって、保存時の開回路電圧の上昇を抑制できることがわかった。なお、その抑制効果は、添加量が1.5mol/kgで飽和するため、鎖状イミド塩の添加量は、その添加量に応じた開回路電圧上昇の抑制効果を得ることができる範囲の点から、0.1mol/kg〜1.5mol/kgがこの好ましいことがわかった。
Evaluation 1
As shown in Table 1, the open circuit voltages of the batteries of Examples 1 to 37 are lower than those of Comparative Example 1. Therefore, it was found that the increase in the open circuit voltage during storage can be suppressed by including the chain imide salt shown in Chemical Formula 1 in the electrolytic solution. In addition, since the suppression effect is saturated at an addition amount of 1.5 mol / kg, the addition amount of the chain imide salt is within a range where the suppression effect of an increase in open circuit voltage according to the addition amount can be obtained. Therefore, it was found that 0.1 mol / kg to 1.5 mol / kg is preferable.

また、実施例1〜実施例32の電池は、電解質であるLiIと、化1に示す鎖状イミド塩を有機溶媒に溶解させて調製した電解液を用いたものであり、開回路電圧の上昇が抑制されている。さらに、実施例33〜実施例37の電池は、鎖状イミド塩のみを電解質塩として用いたものであり、開回路電圧の上昇が抑制されている。   The batteries of Examples 1 to 32 use LiI as an electrolyte and an electrolyte prepared by dissolving the chain imide salt shown in Chemical Formula 1 in an organic solvent, and increase in open circuit voltage. Is suppressed. Furthermore, the batteries of Examples 33 to 37 use only a chain imide salt as an electrolyte salt, and an increase in open circuit voltage is suppressed.

したがって、化1に示す鎖状イミド塩のみを含有する電解液を用いたリチウム/二硫化鉄一次電池、および鎖状イミド塩と他の塩とを含有する電解液を用いたリチウム/二硫化鉄一次電池は、保存時の開回路電圧の上昇を抑制できることがわかった。   Accordingly, a lithium / iron disulfide primary battery using an electrolytic solution containing only the chain imide salt shown in Chemical Formula 1 and a lithium / iron disulfide using an electrolytic solution containing the chain imide salt and another salt It was found that the primary battery can suppress an increase in open circuit voltage during storage.

評価2
表2に示すように、実施例38〜実施例45の電池の開回路電圧は、比較例2に対して低い。したがって、化1に示す鎖状イミド塩と、LiSO3CF3とを含有する電解液を用いたリチウム/二硫化鉄一次電池は、保存時の開回路電圧の上昇を抑制できることがわかった。すなわち、化1に示す鎖状イミド塩と、他の電解質塩とを含有する電解液を用いたリチウム/二硫化鉄一次電池は、保存時の開回路電圧の上昇を抑制できることがわかった。
Evaluation 2
As shown in Table 2, the open circuit voltages of the batteries of Examples 38 to 45 are lower than those of Comparative Example 2. Therefore, it was found that the lithium / iron disulfide primary battery using the electrolytic solution containing the chain imide salt shown in Chemical Formula 1 and LiSO 3 CF 3 can suppress an increase in open circuit voltage during storage. That is, it was found that the lithium / iron disulfide primary battery using the electrolytic solution containing the chain imide salt shown in Chemical Formula 1 and another electrolyte salt can suppress an increase in open circuit voltage during storage.

評価3
表3に示すように、実施例46〜実施例53の電池の開回路電圧は、比較例2に対して低い。したがって、化1に示す鎖状イミド塩と、LiClO4とを含有する電解液を用いたリチウム/二硫化鉄一次電池は、保存時の開回路電圧の上昇を抑制できることがわかった。すなわち、化1に示す鎖状イミド塩と、他の電解質塩とを含有する電解液を用いた電解液は、保存時の開回路電圧の上昇を抑制できることがわかった。
Evaluation 3
As shown in Table 3, the open circuit voltages of the batteries of Examples 46 to 53 are lower than those of Comparative Example 2. Therefore, it was found that the lithium / iron disulfide primary battery using the electrolytic solution containing the chain imide salt shown in Chemical Formula 1 and LiClO 4 can suppress an increase in open circuit voltage during storage. That is, it was found that an electrolytic solution using an electrolytic solution containing the chain imide salt shown in Chemical Formula 1 and another electrolyte salt can suppress an increase in open circuit voltage during storage.

この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention.

例えば、実施例には、単4形のリチウム/二硫化鉄一次電池を用いたが、この発明は、正極活物質として、酸化二銅、硫化鉄、鉄複合酸化物、三酸化ビスマス等を用い、負極としては、リチウムに加え、ナトリウム等のアルカリ金属やそれらの金属を用いた場合も適用可能である。また、電池形状も筒型に加え、ボタン型、コイン型、角型などにも適用可能である。   For example, in the examples, AAA type lithium / iron disulfide primary batteries were used, but this invention uses dicopper oxide, iron sulfide, iron composite oxide, bismuth trioxide, etc. as the positive electrode active material. As the negative electrode, in addition to lithium, alkali metals such as sodium and those metals are also applicable. In addition to the cylindrical shape, the battery shape is applicable to a button shape, a coin shape, a square shape, and the like.

この発明の一実施形態によるリチウム/二硫化鉄一次電池の構造を示す断面側面図である。1 is a cross-sectional side view showing a structure of a lithium / iron disulfide primary battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

1・・・電池缶
2・・・正極
3・・・負極
4・・・セパレータ
5・・・絶縁板
6・・・絶縁板
7・・・電池蓋
8・・・安全弁
9・・・熱感抵抗素子
10・・・封口ガスケット
11・・・正極リード
12・・・負極リード
DESCRIPTION OF SYMBOLS 1 ... Battery can 2 ... Positive electrode 3 ... Negative electrode 4 ... Separator 5 ... Insulating plate 6 ... Insulating plate 7 ... Battery cover 8 ... Safety valve 9 ... Hot feeling Resistance element 10 ... Sealing gasket 11 ... Positive electrode lead 12 ... Negative electrode lead

Claims (3)

二硫化鉄を正極活物質とする正極と、
リチウムを負極活物質とする負極と、
電解液とを備えたリチウム/二硫化鉄一次電池であって、
上記電解液は、下記化学式で表される鎖状イミド塩を含有するものであることを特徴とするリチウム/二硫化鉄一次電池。
Figure 2007042447
(式中R1はCn2n+1を表す、式中R2はCm2m+1を表す)
A positive electrode using iron disulfide as a positive electrode active material;
A negative electrode using lithium as a negative electrode active material;
A lithium / iron disulfide primary battery comprising an electrolyte solution,
The lithium / iron disulfide primary battery, wherein the electrolytic solution contains a chain imide salt represented by the following chemical formula.
Figure 2007042447
(Wherein R1 represents C n F 2n + 1 and R2 represents C m F 2m + 1 )
請求項1において、
上記化1における上記R1および上記R2は、CF3、C25、C37、C49のいずれかから選ばれることを特徴とするリチウム/二硫化鉄一次電池。
In claim 1,
The lithium / iron disulfide primary battery in which R1 and R2 in Chemical Formula 1 are selected from CF 3 , C 2 F 5 , C 3 F 7 , and C 4 F 9 .
請求項1において、
上記鎖状イミド塩は、上記電解液中に0.1mol/kg〜1.5mol/kg含まれることを特徴とするリチウム/二硫化鉄一次電池。
In claim 1,
The lithium / iron disulfide primary battery, wherein the chain imide salt is contained in the electrolytic solution in an amount of 0.1 mol / kg to 1.5 mol / kg.
JP2005225579A 2005-08-03 2005-08-03 Lithium/iron disulphide primary cell Pending JP2007042447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225579A JP2007042447A (en) 2005-08-03 2005-08-03 Lithium/iron disulphide primary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225579A JP2007042447A (en) 2005-08-03 2005-08-03 Lithium/iron disulphide primary cell

Publications (1)

Publication Number Publication Date
JP2007042447A true JP2007042447A (en) 2007-02-15

Family

ID=37800241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225579A Pending JP2007042447A (en) 2005-08-03 2005-08-03 Lithium/iron disulphide primary cell

Country Status (1)

Country Link
JP (1) JP2007042447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119286B2 (en) 2009-11-24 2012-02-21 The Gillette Company Electrochemical cells with improved separator and electrolyte
US8349493B2 (en) 2009-11-24 2013-01-08 The Gillette Company Electrochemical cells with improved separator and electrolyte
US8920969B2 (en) 2012-12-05 2014-12-30 The Gillette Company Alkaline electrochemical cells with separator and electrolyte combination
US10008748B2 (en) 2012-12-05 2018-06-26 Duracell U.S. Operations, Inc. Alkaline electrochemical cells with separator and electrolyte combination
US11081721B2 (en) 2009-11-24 2021-08-03 Duracell U.S. Operations, Inc. Secondary electrochemical cells with separator and electrolyte combination

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119286B2 (en) 2009-11-24 2012-02-21 The Gillette Company Electrochemical cells with improved separator and electrolyte
US8349493B2 (en) 2009-11-24 2013-01-08 The Gillette Company Electrochemical cells with improved separator and electrolyte
US11081721B2 (en) 2009-11-24 2021-08-03 Duracell U.S. Operations, Inc. Secondary electrochemical cells with separator and electrolyte combination
US11817545B2 (en) 2009-11-24 2023-11-14 Duracell U.S. Operations, Inc. Secondary electrochemical cells with separator and electrolyte combination
US8920969B2 (en) 2012-12-05 2014-12-30 The Gillette Company Alkaline electrochemical cells with separator and electrolyte combination
US10008748B2 (en) 2012-12-05 2018-06-26 Duracell U.S. Operations, Inc. Alkaline electrochemical cells with separator and electrolyte combination

Similar Documents

Publication Publication Date Title
JP4539584B2 (en) Lithium / iron disulfide primary battery
JP4325112B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4022889B2 (en) Electrolyte and battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
US20050095508A1 (en) Lithium-iron disulfide primary battery
JP5313543B2 (en) Lithium battery
JP2009211822A (en) Nonaqueous electrolyte secondary battery
JP2011060655A (en) Lithium battery
JP4894313B2 (en) Nonaqueous electrolyte secondary battery
JP2006100164A (en) Lithium/iron disulfide primary battery
JP2007042447A (en) Lithium/iron disulphide primary cell
WO2020026525A1 (en) Lithium primary battery
JP2008140683A (en) Battery
JP2007048545A (en) Lithium/iron disulfide primary battery
JP2008300313A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using it
JP2007109526A (en) Lithium/iron sulfide primary battery
JP2007066826A (en) Lithium-iron disulfide primary battery
JP2006004878A (en) Battery
JP2008091219A (en) Positive electrode material for lithium/iron disulfide primary battery, and manufacturing method therefor, and the lithium/iron disulfide primary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7182108B2 (en) Cylindrical secondary battery
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JP2007066616A (en) Non-aqueous electrolytic liquid battery
JP2005141997A (en) Lithium / iron disulfide primary battery, and manufacturing method
JP2006216450A (en) Battery