JP3717151B2 - Method for producing quartz glass crucible for pulling silicon single crystal - Google Patents

Method for producing quartz glass crucible for pulling silicon single crystal Download PDF

Info

Publication number
JP3717151B2
JP3717151B2 JP2000306491A JP2000306491A JP3717151B2 JP 3717151 B2 JP3717151 B2 JP 3717151B2 JP 2000306491 A JP2000306491 A JP 2000306491A JP 2000306491 A JP2000306491 A JP 2000306491A JP 3717151 B2 JP3717151 B2 JP 3717151B2
Authority
JP
Japan
Prior art keywords
crucible
quartz glass
single crystal
silicon single
glass crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000306491A
Other languages
Japanese (ja)
Other versions
JP2001328831A (en
Inventor
洋 木島
敦朗 宮尾
浩三 北野
直之 小畑
総樹 木村
広美 舟山
博幸 山口
章郎 石黒
功 前田
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP2000306491A priority Critical patent/JP3717151B2/en
Publication of JP2001328831A publication Critical patent/JP2001328831A/en
Application granted granted Critical
Publication of JP3717151B2 publication Critical patent/JP3717151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶引上げ用石英ガラスルツボの製造方法に係わり、特に石英ガラスルツボの内表面を無気泡化したシリコン単結晶引上げ用石英ガラスルツボの製造方法に関する。
【0002】
【従来の技術】
半導体デバイスの基板に用いられるシリコン単結晶は、一般にチョクラルスキー法(CZ法)で製造されており、このCZ法は石英ガラスルツボ内に多結晶シリコン原料を装填し、装填したシリコン原料を周囲から加熱して溶融し、上方から吊り下げた種結晶をシリコン融液に接触して引上げるものである。
【0003】
従来の石英ガラスルツボは減圧溶融等の方法で形成されているが、シリコン単結晶の引上げ時、石英ガラスルツボが高温になると透明層に気泡が発生し、石英ガラスルツボが変形するとともに、シリコン融液によってその表面から侵食されるが、侵食によって、石英ガラスルツボの透明層(内層)中の気泡が、シリコン融液との界面に露出した状態になり、単結晶化が不安定になって、結果、単結晶化歩留が低下するという問題があった。透明層に発生する気泡は酸素が主体であり、不純物や構造水の多い部分が気泡の核となり、形成された気泡に周囲の酸素が拡散し、成長するものである。
【0004】
そこで、近年石英ガラスルツボの透明層を無気泡化する製造方法が種々検討されているが、完全に無気泡化されるまでには至っていないのが現状であり、また、例え従来の石英ガラスルツボに比べ、透明層の気泡を格段に低減したとしても、高品質が要求されているシリコン単結晶の単結晶化歩留が決して十分に満足される程度に向上されていなかった。
【0005】
従来一般に、減圧下で型内の石英原料粉を溶融して石英ガラスルツボの内側に透明層を形成する石英ガラスルツボの製造方法が行われているが、この製造方法では、内表面近傍の透明層中に気泡が残存する。このような製造方法で製造された石英ガラスルツボを用いてシリコン単結晶引上げを行うと、透明層中に気泡が膨れ、内面側の透明層の溶解とともに気泡がシリコン融液中に混入し、引上げられるシリコン単結晶中に気泡が取込まれ、結晶転位による有転位化(結晶欠陥)の原因となって、単結晶化率を低下させる要因となり問題があった。
【0006】
さらに、石英ガラスルツボの透明層を無気泡化する製造方法が種々検討されている。
【0007】
例えば、特開平1―157427号公報には、型に通気性を持たせた型内に石英原料粉を供給し、ルツボ形状成形体を形成した後減圧し、水素ガス、ヘリウムガスあるいはこれらの混合ガスを溶融開始から供給して石英ガラスルツボを製造する方法が記載されている。この製造方法によれば、水素ガス、ヘリウムガスが石英ガラスルツボの透明層に拡散して、このガス以外のガスは拡散できず、加熱溶融中に生成した気泡内のガスは、石英ガラス中から外部に拡散することによって消失させるものであるが、ヘリウムガスを溶融開始から終了まで供給して石英ガラスルツボを製造する場合には、上記に記載の製造方法と同様の問題点があり、水素ガスまたは水素ガスとヘリウムガスの混合ガスを溶融開始から終了まで供給して石英ガラスルツボを製造する場合には、シリコン単結晶引上げ中の気泡の膨れを抑制できるが、透明層の表層には約1mmの微細な泡の層が残留し、気泡数を限りなくゼロに近づけることは困難であり、石英ガラス小片の剥離が生じ、単結晶化率の低下を招いたり、また、石英ガラスルツボ中のOH濃度が高くなり、石英ガラスの粘性が低下して、シリコン単結晶引上げ中に石英ガラスルツボが変形するおそれがある。
【0008】
そこで、本発明者らは、気泡数を限りなくゼロに近づけることができ、CZ法において高い単結晶化率が得られる石英ガラスルツボの製造方法について鋭意検討を行った。その結果、究極的にはアーク溶融によって形成された石英ガラスルツボ内表面に不回避的に混入してしまう気泡を次工程で除去することが、有効であるとの結論に達した。
【0009】
これに関連する従来技術として特開平2―188489号公報に石英ガラスルツボの再生方法が提案されている。この再生方法は、不良とされた石英ガラスルツボの内表面に存在する突起物、内表層に含まれるガラス状シリカ以外の異物を機械研削またはエッチングした後、この研削跡または食刻跡の周縁部を熱処理して滑らかにする石英ガラスルツボの再生方法である。しかし、この再生方法を上述した気泡の除去に適用すると、多数個所において存在する気泡集中部を各々部分的に、例えば機械的研削を行い、この研削跡の周縁部を酸水素バーナにより熱処理して滑らかにしても、少なからずルツボ内表面に凹凸が残存し、これによって、シリコン融液の対流が部分的に乱れ、単結晶化率の低下を招いたり、また、上記機械的研削を粗いダイヤモンドツールを用いた場合には、この研削時に生じ、かなりの深さまで達したマイクロクラックダメージを全て除去することはできず、シリコン融液によるルツボ内表面の侵食が進み、これに達すると、この部分からの選択的侵食が加速し、耐用寿命が短くなってしまうといった問題が生じることが確認された。
【0010】
また、上記再生方法においては、研削後の熱処理として、酸水素バーナでの加熱処理のほかにアーク炎による加熱処理があげられているが、この場合、加熱処理後のルツボ内表面にAl、Ca等の不純物が点在してしまうことが確認された。この理由は明らかではないが、アーク炎での加熱処理は酸水素バーナでの加熱処理に比べかなり高い雰囲気温度となり、加熱時に表面のSiOを蒸発させてしまう。この際、SiOより蒸気圧の低いAl、Ca等の不純物が濃縮された状態で残存してしまうものと推測される。
【0011】
【発明が解決しようとする課題】
そこで、シリコン単結晶引上げを行っても、引上げられる単結晶中に気泡の取込みがなく、有転位化が発生せず、高単結晶化率が得られるシリコン単結晶引上げ用石英ガラスルツボの製造方法が要望されている。
【0012】
本発明は上述した事情を考慮してなされたもので、シリコン単結晶引上げを行っても、引上げられる単結晶中に気泡の取込みがなく、有転位化が発生せず、高単結晶化率が得られるシリコン単結晶引上げ用石英ガラスルツボの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、回転する型内に石英原料粉を供給しルツボ形状体を形成してこれをアーク溶融した溶融ルツボの内表面全体を研磨処理し、この研磨面を酸水素バーナにより加熱処理するシリコン単結晶引上げ用石英ガラスルツボの製造方法であって、上記研磨処理前に、溶融ルツボの内表面全体をRaで3μm以下に研削することを特徴とするシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0017】
本願請求項の発明では、上記研削は、ダイヤモンド粒子の粒径が80メッシュ以上細かいダイヤモンド砥石を用いて行うことを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0018】
本願請求項の発明では、上記研削は、粒径が90メッシュ以上細かい砥粒を用いてサンドブラストにより行うことを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0019】
本願請求項の発明では、上記研削後に、ダイヤモンド粒子の粒径が200メッシュ以上細かいダイヤモンド砥石を用いて再研削を行うことを特徴とする請求項またはに記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0020】
本願請求項の発明では、上記研磨処理が800メッシュ以上の細かい研磨布または4000メッシュ以上細かいダイヤモンド砥石により行うことを特徴とする請求項1ないしのいずれか1項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0021】
本願請求項の発明では、上記アーク溶融が上記ルツボ形状成形体の外周面側から減圧しながら行われ、かつこのアーク溶融終了前に上記ルツボ形状成形体の中空部に水素ガスを供給し、アーク溶融がなされることを特徴とする請求項1ないしのいずれか1項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0022】
本願請求項の発明では、上記水素ガスの供給開始前に上記減圧を低減するか、もしくは停止することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法であることを要旨としている。
【0023】
【発明の実施の形態】
以下、本発明に係わるシリコン単結晶引上げ用石英ガラスルツボの製造方法について添付図面に基づき説明する。
【0024】
本発明に係わるシリコン単結晶引上げ用石英ガラスルツボは、図1に示すように、石英原料粉から溶融ルツボを製造する溶融ルツボ製造工程と、この溶融ルツボの内表面を研磨する研磨工程と、この研磨された内表面を加熱処理する加熱処理工程とで構成されている。また、透明層の表層には約1mmの微細な泡の層が残留する場合には、この泡の層を研削(粗削り)除去する研削工程を溶融ルツボ製造工程と研磨工程の間に介在させることが好ましい。
【0025】
はじめに、上記溶融ルツボ製造工程は、例えば、図2に示すような石英ガラスルツボ製造装置を用いて行われる。
【0026】
石英ガラスルツボ製造装置1のルツボ成形用型2は、例えば複数の貫通孔を穿設した金型、もしくは高純化処理した多孔質カーボン型などのガス透過性部材で構成されている内側部材3と、その外周に通気部4を設けて、内側部材3を保持する保持体5とから構成されている。また、保持体5の下部には、図示しない回転手段と連結されている回転軸6が固着されていて、ルツボ成形用型2を回転可能なようにして支持している。通気部4は、保持体5の下部に設けられた開口部7を介して、回転軸6の中央に設けられた排気口8と連結されており、この通気部4は、減圧機構9と連結されている。
【0027】
内側部材3に対向する上部にはアーク放電用のアーク電極10と、原料供給ノズル11と、不活性ガス供給管12および水素ガス供給管13が設けられている。
【0028】
従って、石英ガラスルツボ製造装置1を用いて溶融ルツボの製造を行うには、回転駆動源(図示せず)を稼働させて回転軸6を矢印の方向に回転させることによってルツボ成形用型2を所定の速度で回転させる。ルツボ成形用型2内に、原料供給ノズル11で、上部から高純度のシリカ粉末を供給する。供給されたシリカ粉末は、遠心力によってルツボ成形用型2の内面部材3側に押圧されルツボ形状の成形体Rとして形成される。
【0029】
次に、図3に示すような製造工程図に沿って、減圧機構9の作動により内側部材3内を減圧し、さらに、不活性ガス供給管12からヘリウムガスまたはアルゴンガス、例えばヘリウムガスを一定量の割合、例えば80リットル/分で成形体Rの中空部R1iに供給する。ヘリウムガスの供給5分後、アーク電極10に通電、継続し、成形体Rの内側から加熱し、成形体Rの内表面R1Sに溶融層を形成する。
【0030】
所定時間経過後、石英ガラスルツボの外側に気泡を多数含む不透明層を適切に形成するために、減圧機構9を調整もしくは停止してルツボ成形用型2内の減圧を調整もしくは停止させる。減圧を低減もしくは停止した状態でさらに全アーク溶融時間T分間アークを継続し、アーク溶融開始から、一定時間経過後にヘリウムガスの供給を停止し、ヘリウムガスの供給を停止後、例えば停止と同時に水素ガス供給管13から一定量の割合、例えば100リットル/分で水素ガスを成形体Rの中空部R1iに供給する。水素ガスの供給開始は、遅くともアーク溶融停止の5分前、例えば10分前に行われ、かつ全アーク溶融時間T分の40%に相当する時間t分経過以降に行われる(t>0.4T)。アーク溶融開始から所定時間T分経過後、アーク通電を停止し、水素ガスの供給を止めて溶融ルツボ製造工程は終了する。
【0031】
上述した溶融ルツボ製造工程において、ヘリウムガスの供給によって、図4に示すように、溶融当初に石英ガラスルツボRに形成されるシード層(内表面)と外側の不透明層に含まれる気泡量を適切に低減でき、さらに、ヘリウムガスの供給および製造工程の後半における水素ガスを供給することにより、著しく透明層の気泡量の低減が図れる。また、透明層中に残存する気泡および不透明層中の気泡がシリコン単結晶引上げ中に膨張するのを防止できる。
【0032】
さらに、減圧溶融を行うことにより、透明層中に残存する気泡量を低減することができ、また、シード層が一種の通気壁の作用をし、減圧度合の調整によって、不透明層中の気泡量および気泡径を制御することができる。この減圧溶融は、前者の効果を得るために、上記アーク溶融の開始前もしくは同時に、あるいは上記ルツボ形状成形体の内表面が、アーク溶融によって、例えば100μm溶融された後に開始するのが好ましい。また、アーク溶融中に減圧を低減もしくは停止させることにより、不透明層中の気泡量をより適切に制御できる。
【0033】
さらに、水素ガスの供給開始が、アーク溶融停止の5分前であるため、水素供給の効果が十分得られ、ルツボ内側の透明層に残存する気泡量の低減、および外側不透明層の気泡が膨れるのを防止できる。
【0034】
また、水素ガスの供給開始が、全アーク溶融時間Tの40%に相当する時間t経過以降に行われるので、溶融ルツボの石英ガラスの高温粘性を低下させることがなく、長時間の使用に耐えられる石英ガラスルツボが得られる。
【0035】
なお、図5に示すように、減圧を行いながら溶融ルツボRの中空部R1iに水素ガスを流すと、水素ガスが中空部R1iから上方を通って溶融ルツボRの未溶融層部Rに回り込んで侵入し、その内側の不透明層のOH基濃度を高めてしまい、結果、石英ガラスルツボ全体の粘度を低下させ易いことから、水素ガスを流す際には、上記のように減圧を停止もしくは低減するのが好ましい。
【0036】
次に、図1に示すような工程に従い、上記のようにして製造された溶融ルツボを研削工程において研削する。
【0037】
この研削工程は、図6の上段に示すような工程と、図7に示すようなハンディタイプの研削装置(ベルトサンダー)21を用いて、粗研削工程、再研削工程の2段階で行われる。
【0038】
この研削装置21はエアコンプレッサ(図示せず)に連通された高圧エアパイプ22から送られてくる高圧空気により回転されるベーン型回転機構23と、このベーン型回転機構23により回転駆動される駆動回転ローラ24と、この駆動回転ローラ24の回転に従動する従動回転ローラ25と、両回転ローラ24、25間に回転自在に設けられた研削ベルト26と、湿式研削を行うため、研削ベルト26と被研磨物間に給水する給水パイプ27に接続された給水ノズル28とを有している。
【0039】
研削ベルト26は、ダイヤモンド砥石(ベルト)であり、粗研削工程におけるダイヤモンド粒径は80メッシュ(#)以上に細かくする。
【0040】
この研削ベルト26を溶融ルツボRの内表面Rに当て、高圧エアパイプ22からベーン型回転機構23に送り、このベーン型回転機構23を回転させて、駆動回転ローラ24を回転させ、研削ベルト26を回動させて、内表面Rを研磨する。このとき、給水パイプ27、給水ノズル28を介して研削ベルト26と内表面R間に給水するので、湿式研磨となり、迅速かつ高平坦に研削される。
【0041】
再研削工程では、研削ベルト26のダイヤモンド粒径を200メッシュ以上に細かくし、好ましくは3000メッシュとし、再研削工程後の内表面の算術平均粗さ(Ra)(JIS B0601−1994)を3μm以下に平坦化する。
【0042】
このように、Raを3μm以下の粗さにすることによって、次工程でのより迅速な研磨処理が可能となり、さらに、研削工程で発生するマイクロクラックダメージを確実、かつ、より短時間で除去できるようになる。
【0043】
さらに、図1に示すような工程に従い、この溶融ルツボの研削された内表面を研磨工程において研磨する。
【0044】
例えば、図8に示すように、研磨工程はハンディタイプの研磨装置31を用いて行われる。この研磨装置31はエアコンプレッサ(図示せず)に連通された高圧エアパイプ32から送られてくる高圧空気により回転されるベーン型回転機構33と、このベーン型回転機構33により回転駆動される駆動回転ローラ34と、この駆動回転ローラ34に設けられた研磨布35と、湿式研磨を行うため、研磨布35と被研磨物間に研磨剤を供給する供給パイプ36に接続された供給ノズル37とを有している。
【0045】
この研磨布35を溶融ルツボRの内表面Rに当て、高圧エアパイプ32からベーン型回転機構33に送り、このベーン型回転機構33を回転させて、駆動回転ローラ34を回転させ、研磨布35を回転させて、内表面Rを研磨する。このとき、供給パイプ36、供給ノズル37を介して研磨布35と内表面R間に研磨剤を供給するので、湿式研磨となり、高平坦に研磨される。
【0046】
上記のようにして研磨された内表面RはRaで1μm以下、表面粗さのバラツキを内表面全体で±0.1μmの範囲内にすることができる。研磨布35のダイヤモンド粒径が800メッシュ以上と細かいので、内表面の有害となるマイクロクラックダメージをより確実に除去することができ、さらに、より均一性を高く、かつより確実にRaを1μmより小さくすることができる。さらに、内表面の状態は、より好ましくは、最高高さ(Ry)(JIS B0601−1994)が5μmであり、この場合、内表面のより高い均一性が得られる。
【0047】
上記のようにRaを1μm以下にすると、次工程の加熱処理を行うことにより、内表面Rsに目視できるような凹凸を残すことがなく、また、引上げられるシリコン単結晶に悪影響を与えることもなく、さらに、マイクロクラックダメージを残さないようにすることができる。Raが1μmを超える場合には、次工程の加熱処理を行っても、ルツボ内表面Rに目視できる程度の凹凸が残ってしまい、引上げられるシリコン単結晶に悪影響を与え易い。
【0048】
また、内表面Rsの部分的なRaのバラツキが、内表面全体で±0.1μmの範囲内であると、加熱処理によって形成されるガラス層の厚さの均一性を保つことができる。Raのバラツキが±0.1μmを超えると、この粗さ状態の違いに伴い加熱処理によって形成されるガラス層の厚さの均一性が損なわれてしまう。
【0049】
研磨された後の内表面Rsは、Raで0.1μm以下でかつRaのバラツキが±0.03μmとすることによって、上記効果の信頼性をより高める事ができる。
【0050】
なお、研削工程は、図6の上段に示すようなダイヤモンド砥石による研削に限らず、図6の下段に示すように、一般的に用いられる湿式サンドブラストで、例えば、粒径が90メッシュ以上、好ましくは180メッシュ以上細かいSiCの砥粒を体積換算濃度で10〜40%の水溶液で吹き付けて行う。さらに、上記同様に研磨布35を用いて研磨し、内表面RはRaで1μm以下にする。
【0051】
サンドブラスト研削は、ダイヤモンド砥石研削に比べて研削時間を25%程短縮できるが、サンドブラスト研削は、SiC砥粒を用いるため、研削面に金属不純物や砥粒の付着が生じ易く、このままでは、研磨処理に移行できにくく、1000メッシュ以上の細かいダイヤモンド砥石を用いて再研削を行った後、同様の研磨を行い、内表面RをRaで1μm以下にするようにするのが好ましい。さらに、サンドブラストは湿式に限らず、乾式であってもよい。サンドブラストを用いることによっても、迅速かつ高平坦な研削が行える。
【0052】
また、研磨工程は、上記のように研磨布を用いず、4000メッシュ以上細かいダイヤモンド砥石を用いてもよく、この場合にも、研磨面をRaで1μm以下にすることができる。
【0053】
次に、図1に示すような工程に従い、この溶融ルツボの研磨された内表面を加熱処理工程により熱処理する。
【0054】
この加熱処理工程(図示せず)は酸水素バーナを用いて、内表面全体を加熱することによって行われる。溶融ルツボの内表面の一部にのみ微小気泡が存在する場合にも、内表面全体を研削工程、研磨工程で、研削、研磨し、酸水素バーナを用いて内表面全体を高温加熱することにより、SiOのベーパライズが発生せず、部分的に結晶化も生じず、シリコン単結晶引上げ時に内表面の剥離も生じない。
【0055】
アーク炎での加熱処理は、酸水素バーナでの加熱処理に比べかなり高い雰囲気温度となり、加熱時に表面のSiOを蒸発させ、このSiOより蒸気圧の低いAl、Ca等の不純物が内表面に濃縮された状態で残存し、熱処理後のルツボ内表面にAl、Ca等の不純物が点在してしまう。
【0056】
また、局部的に突起物や異物が存在し、これを局部的研削により除去した後、この除去部分を局部的加熱してガラス化した場合には、例え酸水素バーナであっても除去部分に比べ外周部は比較的低温状態になり、この外周部においてSiOのベーパライズが生じ、凝固して内表面に付着し、ザラザラが残る。このザラザラな部分がシリコン単結晶引上げ時に結晶化して、剥離し、単結晶化率の低下を招くおそれがある。
【0057】
上述のように石英ガラスルツボの製造方法は、型内に形成させた石英原料粉のルツボ形状体をアーク溶融により溶融ルツボを製造し、必要に応じてこの溶融ルツボの内表面全体を研削し、さらに、内表面全体を研磨処理し、この研磨した内表面を酸水素バーナにより加熱処理する方法であり、石英ガラスルツボの内表面の無気泡化、内表面の純度向上が図れ、この石英ガラスルツボを用いてシリコン単結晶の引上げを行うことにより、引上げ歩留を向上させることができる石英ガラスルツボの製造方法を提供することができる。
【0058】
【実施例】
試験1:本発明に係わる石英ガラスルツボの製造方法を用いて製造した直径22インチの石英ガラスルツボ(実施例1)および通常の減圧溶融による従来の製造方法により製造した石英ガラスルツボ(従来例1)から、各々試料を切出し、内表面の気泡の状態について光学顕微鏡を用いて測定し、また、原子吸光分光法(フレームレス法)によって純度を測定した。さらに、各々の石英ガラスルツボを用いて、8インチP型シリコン単結晶の引上げを行った。
【0059】
結果:実施例1:内表面に微小な気泡も存在せず、純度も従来例1に比べて向上していることが確認された。また、上記引上げ時の単結晶化率は100%であり、使用後の石英ガラスルツボの内表面付近には、気泡が存在しないことが確認された。
【0060】
従来例1:内表面近傍に微小気泡が残存し、純度も実施例1に比べて劣ることが確認された。また、上記引上げ時の単結晶化率は85%であり、使用後の石英ガラスルツボの内表面付近には、凹凸部が多数確認された。
【0061】
【発明の効果】
本発明に係わるシリコン単結晶引上げ用石英ガラスルツボの製造方法によれば、シリコン単結晶引上げを行っても、引上げられる単結晶中に気泡の取込みがなく、有転位化が発生せず、高単結晶化率が得られるシリコン単結晶引上げ用石英ガラスルツボの製造方法を提供することができる。
【0062】
すなわち、回転する型内に石英原料粉を供給しルツボ形状体を形成してこれをアーク溶融した溶融ルツボの内表面全体を研磨処理し、この研磨面を酸水素バーナにより加熱処理する石英ガラスルツボの製造方法であるので、石英ガラスルツボの内表面の無気泡化、内表面の純度向上が図れ、シリコン単結晶引上げ歩留を向上できる石英ガラスルツボの製造方法を提供することができる。
【0063】
また、研磨面の表面粗さを算術平均粗さ(Ra)で1μm以下に調整するので、次工程の加熱処理を行うことにより、ルツボ内表面に目視できるような凹凸を残すことがなく、また、引上げられるシリコン単結晶に悪影響を与えることがなく、さらに、マイクロクラックダメージを残すことがない。
【0064】
また、研磨面のバラツキが溶融ルツボの内表面全体中、Raで±0.1の範囲内であるので、加熱処理によって形成されるガラス層の厚さの均一性を保つことができる。
【0065】
また、研磨処理前に、溶融ルツボの内表面全体をRaで3μm以下に研削するので、次研磨工程において、より迅速な研磨処理が可能となり、さらに、研削工程で発生するマイクロクラックダメージを確実、かつ、より短時間で除去できる。
【0066】
また、研削は、ダイヤモンド粒子の粒径が80メッシュ以上細かいダイヤモンド砥石を用いて行うので、迅速かつ高平坦な研削が行える。
【0067】
また、研削は、粒径が90メッシュ以上細かい砥粒を用いてサンドブラストにより行うので、迅速かつ高平坦な研削が行える。
【0068】
また、研削後に、ダイヤモンド粒子の粒径が200メッシュ以上細かいダイヤモンド砥石を用いて再研削を行うので、迅速にRaを3μm以下の粗さにすることができ、さらに、粗研削工程で発生するマイクロクラックダメージを確実、かつ、より短時間で除去できる。
【0069】
また、研磨処理が800メッシュ以上の細かい研磨布または4000メッシュ以上細かいダイヤモンド砥石により行うので、内表面の有害となるマイクロクラックダメージをより確実に除去することができ、さらに、より均一性を高く、かつより確実にRaを1μmより小さくすることができる。
【0070】
また、アーク溶融がルツボ形状成形体の外周面側から減圧しながら行われ、かつこのアーク溶融終了前にルツボ形状成形体の中空部に水素ガスを供給し、アーク溶融がなされる石英ガラスルツボの製造方法であるので、水素供給の効果が十分得られ、ルツボ内側の透明層に残存する気泡量の低減、および外側不透明層の気泡が膨れるのを防止できる。
【0071】
また、水素ガスの供給開始前に減圧を低減するか、もしくは停止する石英ガラスルツボの製造方法であるので、石英ガラスルツボの高温粘性を低下させることがなく、長時間の使用に耐えられる石英ガラスルツボが得られる。
【図面の簡単な説明】
【図1】本発明に係わるシリコン単結晶引上げ用石英ガラスルツボの製造方法の工程図。
【図2】本発明に係わるシリコン単結晶引上げ用石英ガラスルツボの製造方法に用いられる石英ガラスルツボ製造装置の概念図。
【図3】本発明に係わる石英ガラスルツボの製造方法の溶融ルツボ製造工程の説明図。
【図4】本発明に係わる石英ガラスルツボの製造方法の溶融ルツボ製造工程において製造される石英ガラスルツボの説明図。
【図5】本発明に係わる石英ガラスルツボの製造方法の溶融ルツボ製造工程における石英ガラスルツボの状態の説明図。
【図6】本発明に係わる石英ガラスルツボの製造方法における研削工程および研磨工程のフロー図。
【図7】本発明に係わる石英ガラスルツボの製造方法の研削工程に使用される研削装置の説明図。
【図8】本発明に係わる石英ガラスルツボの製造方法の研磨工程に使用される研磨装置の説明図。
【符号の説明】
1 石英ガラスルツボ製造装置
2 ルツボ成形用型
3 内側部材
4 通気部
5 保持体
6 回転軸
7 開口部
8 排気口
9 減圧機構
10 アーク電極
11 原料供給ノズル
12 不活性ガス供給管
13 水素ガス供給管
21 研削装置(ベルトサンダー)
22 高圧エアパイプ
23 ベーン型回転機構
24 駆動回転ローラ
25 従動回転ローラ
26 研削ベルト
27 給水パイプ
28 給水ノズル
31 研磨装置
32 高圧エアパイプ
33 ベーン型回転機構
34 駆動回転ローラ
35 研磨布
36 供給パイプ
37 供給ノズル
R 溶融ルツボ(石英ガラスルツボ)
成形体
1i 中空部
Rs 内表面
未溶融層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a quartz glass crucible for pulling up a silicon single crystal, and more particularly to a method for producing a quartz glass crucible for pulling up a silicon single crystal in which the inner surface of the quartz glass crucible is made bubble-free.
[0002]
[Prior art]
A silicon single crystal used for a substrate of a semiconductor device is generally manufactured by the Czochralski method (CZ method). In this CZ method, a polycrystalline silicon raw material is loaded into a quartz glass crucible, and the loaded silicon raw material is surrounded by The seed crystal which is heated and melted from above and suspended from above is brought into contact with the silicon melt and pulled up.
[0003]
Conventional quartz glass crucibles are formed by methods such as vacuum melting, but when the silicon single crystal is pulled up, if the quartz glass crucible becomes hot, bubbles are generated in the transparent layer, the quartz glass crucible deforms, The liquid is eroded from the surface, but due to the erosion, the bubbles in the transparent layer (inner layer) of the silica glass crucible are exposed at the interface with the silicon melt, and the single crystallization becomes unstable. As a result, there was a problem that the yield of single crystallization decreased. Bubbles generated in the transparent layer are mainly composed of oxygen, and a portion with a large amount of impurities and structural water serves as the core of the bubble, and the surrounding oxygen diffuses into the formed bubble and grows.
[0004]
Therefore, in recent years, various production methods for making the transparent layer of the quartz glass crucible be made bubble-free have been studied, but the present situation is that the bubble-free crucible has not yet been completely bubble-free. In contrast, even if the bubbles in the transparent layer were significantly reduced, the single crystal yield of silicon single crystals, which required high quality, was never improved to a degree that was sufficiently satisfied.
[0005]
Conventionally, a method for producing a quartz glass crucible in which a quartz raw material powder in a mold is melted under reduced pressure to form a transparent layer inside the quartz glass crucible has been performed. Bubbles remain in the layer. When a silicon single crystal is pulled using a quartz glass crucible manufactured by such a manufacturing method, bubbles are expanded in the transparent layer, and bubbles are mixed into the silicon melt as the transparent layer on the inner surface side is dissolved. There is a problem that bubbles are taken into the silicon single crystal and cause dislocation (crystal defects) due to crystal dislocation, which causes a decrease in the single crystallization rate.
[0006]
Furthermore, various manufacturing methods for making the transparent layer of the quartz glass crucible air-free have been studied.
[0007]
For example, in Japanese Patent Laid-Open No. 1-157427, quartz raw material powder is supplied into a mold having air permeability, a crucible-shaped molded body is formed, and then decompressed, and hydrogen gas, helium gas, or a mixture thereof A method for producing a quartz glass crucible by supplying gas from the start of melting is described. According to this manufacturing method, hydrogen gas and helium gas are diffused in the transparent layer of the quartz glass crucible, and gases other than this gas cannot be diffused. When the quartz glass crucible is manufactured by supplying helium gas from the start to the end of melting, there is a problem similar to the manufacturing method described above, and hydrogen gas is lost. Alternatively, when a quartz glass crucible is manufactured by supplying a mixed gas of hydrogen gas and helium gas from the start to the end of melting, the expansion of bubbles during pulling of the silicon single crystal can be suppressed, but the surface layer of the transparent layer is about 1 mm. It is difficult to make the number of bubbles as close to zero as possible, resulting in the separation of small pieces of quartz glass, leading to a decrease in single crystallization rate, and quartz glass. OH concentration in the pot increases, decreases the viscosity of the quartz glass, there is a possibility that the quartz glass crucible is deformed in the silicon single crystal pulling.
[0008]
Therefore, the present inventors diligently studied a method for producing a quartz glass crucible that can bring the number of bubbles as close to zero as possible and can obtain a high single crystallization rate in the CZ method. As a result, it has been concluded that it is effective to remove bubbles that are inevitably mixed into the inner surface of the quartz glass crucible formed by arc melting in the next step.
[0009]
As a related art related to this, a method for regenerating a quartz glass crucible is proposed in Japanese Patent Laid-Open No. 2-188489. This reclaiming method consists of mechanically grinding or etching foreign matter other than glassy silica contained in the inner surface layer of protrusions present on the inner surface of the quartz glass crucible that has been determined to be defective, and then the peripheral portion of this grinding mark or etching mark. Is a method for regenerating a quartz glass crucible that is smoothened by heat treatment. However, when this regeneration method is applied to the above-described removal of bubbles, the bubble concentration portions existing at a number of locations are each partially subjected to, for example, mechanical grinding, and the peripheral portion of the grinding trace is heat-treated with an oxyhydrogen burner. Even if it is smooth, there will be at least some irregularities on the inner surface of the crucible, which may partially disturb the convection of the silicon melt, leading to a decrease in the single crystallization rate, and roughing the mechanical grinding. When this is used, it is not possible to remove all microcrack damage that has occurred to this depth during grinding, and the inner surface of the crucible is eroded by the silicon melt. It was confirmed that the selective erosion of the steel accelerated and the service life was shortened.
[0010]
In addition, in the above regeneration method, as the heat treatment after grinding, in addition to the heat treatment with an oxyhydrogen burner, the heat treatment with an arc flame is mentioned. In this case, the inner surface of the crucible after the heat treatment has Al, Ca. It was confirmed that impurities such as The reason for this is not clear, but the heat treatment with the arc flame has a considerably higher atmospheric temperature than the heat treatment with the oxyhydrogen burner, and the surface SiO 2 is heated during 2 Will evaporate. At this time, SiO 2 It is presumed that impurities such as Al and Ca having a lower vapor pressure remain in a concentrated state.
[0011]
[Problems to be solved by the invention]
Therefore, a method for producing a quartz glass crucible for pulling up a silicon single crystal, in which even if the silicon single crystal is pulled, bubbles are not taken into the pulled single crystal, dislocations do not occur, and a high single crystallization rate can be obtained. Is desired.
[0012]
The present invention has been made in consideration of the above-described circumstances, and even when a silicon single crystal is pulled, bubbles are not taken into the pulled single crystal, dislocations do not occur, and a high single crystallization rate is achieved. It aims at providing the manufacturing method of the quartz glass crucible for silicon single crystal pulling obtained.
[0013]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention of claim 1 of the present application is to polish the entire inner surface of a molten crucible in which a quartz raw material powder is supplied into a rotating mold to form a crucible-shaped body and arc-melted. , Manufacturing method of quartz glass crucible for pulling silicon single crystal by heat treatment of polished surface with oxyhydrogen burner Then, before the polishing treatment, the entire inner surface of the melting crucible is ground to 3 μm or less with Ra. The gist of the present invention is a method for producing a quartz glass crucible for pulling a silicon single crystal.
[0017]
Claim of this application 2 In the invention, the grinding is performed using a diamond grindstone having a diamond particle diameter of 80 mesh or more. 1 The manufacturing method of the silica glass crucible for pulling up a silicon single crystal described in 1) is summarized.
[0018]
Claim of this application 3 In the invention, the grinding is performed by sandblasting using fine abrasive grains having a grain size of 90 mesh or more. 1 The manufacturing method of the silica glass crucible for pulling up a silicon single crystal described in 1) is summarized.
[0019]
Claim of this application 4 According to the invention, after the grinding, re-grinding is performed using a diamond grindstone having a diamond particle size of 200 mesh or more. 2 Or 3 The manufacturing method of the silica glass crucible for pulling up a silicon single crystal described in 1) is summarized.
[0020]
Claim of this application 5 In the invention, the polishing treatment is performed with a fine polishing cloth of 800 mesh or more or a diamond grindstone of 4000 mesh or more. 4 The gist of the method is a method for producing a quartz glass crucible for pulling a silicon single crystal according to any one of the above.
[0021]
Claim of this application 6 In this invention, the arc melting is performed while reducing the pressure from the outer peripheral surface side of the crucible-shaped molded body, and before the end of the arc melting, hydrogen gas is supplied to the hollow portion of the crucible-shaped molded body to perform the arc melting. Claims 1 to characterized in that 5 The gist of the method is a method for producing a quartz glass crucible for pulling a silicon single crystal according to any one of the above.
[0022]
Claim of this application 7 According to the invention, the decompression is reduced or stopped before the supply of the hydrogen gas is started. 6 The manufacturing method of the silica glass crucible for pulling up a silicon single crystal described in 1) is summarized.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for producing a quartz glass crucible for pulling a silicon single crystal according to the present invention will be described with reference to the accompanying drawings.
[0024]
As shown in FIG. 1, a quartz glass crucible for pulling a silicon single crystal according to the present invention includes a melting crucible manufacturing process for manufacturing a melting crucible from a quartz raw material powder, a polishing process for polishing the inner surface of the melting crucible, And a heat treatment process for heat-treating the polished inner surface. In addition, when a fine foam layer of about 1 mm remains on the surface layer of the transparent layer, a grinding process for grinding (roughing) removing the foam layer is interposed between the melting crucible manufacturing process and the polishing process. Is preferred.
[0025]
First, the molten crucible manufacturing process is performed using, for example, a quartz glass crucible manufacturing apparatus as shown in FIG.
[0026]
The crucible molding die 2 of the quartz glass crucible manufacturing apparatus 1 includes an inner member 3 made of a gas permeable member such as a die having a plurality of through holes or a highly purified porous carbon die. The holding member 5 is provided with a ventilation portion 4 on the outer periphery thereof and holding the inner member 3. A rotating shaft 6 connected to a rotating means (not shown) is fixed to the lower portion of the holding body 5, and supports the crucible forming die 2 so as to be rotatable. The ventilation part 4 is connected to an exhaust port 8 provided in the center of the rotary shaft 6 through an opening 7 provided in the lower part of the holding body 5, and the ventilation part 4 is connected to a decompression mechanism 9. Has been.
[0027]
An arc electrode 10 for arc discharge, a raw material supply nozzle 11, an inert gas supply pipe 12 and a hydrogen gas supply pipe 13 are provided on the upper part facing the inner member 3.
[0028]
Therefore, in order to manufacture a melting crucible using the quartz glass crucible manufacturing apparatus 1, the crucible molding die 2 is moved by operating a rotary drive source (not shown) and rotating the rotary shaft 6 in the direction of the arrow. Rotate at a predetermined speed. In the crucible molding die 2, high-purity silica powder is supplied from above by a raw material supply nozzle 11. The supplied silica powder is pressed against the inner surface member 3 side of the crucible molding die 2 by centrifugal force and is formed into a crucible-shaped molded body R. 1 Formed as.
[0029]
Next, along the manufacturing process diagram as shown in FIG. 3, the inside member 3 is depressurized by the operation of the depressurization mechanism 9, and further helium gas or argon gas, for example, helium gas is fixed from the inert gas supply pipe 12. Molded body R at a rate of quantity, for example 80 l / min 1 Hollow part R 1i To supply. 5 minutes after supplying the helium gas, the arc electrode 10 was energized and continued, and the compact R 1 Heated from the inside of the molded body R 1 Inner surface R 1S A molten layer is formed.
[0030]
After a predetermined time has elapsed, in order to appropriately form an opaque layer containing many bubbles on the outside of the quartz glass crucible, the decompression mechanism 9 is adjusted or stopped to adjust or stop the decompression in the crucible molding die 2. The arc is continued for a total arc melting time of T minutes with the reduced pressure reduced or stopped, the helium gas supply is stopped after a certain time has elapsed from the start of arc melting, and the helium gas supply is stopped. Forming the hydrogen gas from the gas supply pipe 13 at a constant rate, for example, 100 liters / minute, R 1 Hollow part R 1i To supply. The supply of hydrogen gas is started at least 5 minutes before, for example, 10 minutes before the end of arc melting, and after the elapse of time t corresponding to 40% of the total arc melting time T (t> 0. 4T). After a predetermined time T has elapsed from the start of arc melting, the arc energization is stopped, the supply of hydrogen gas is stopped, and the melting crucible manufacturing process ends.
[0031]
In the melting crucible manufacturing process described above, by supplying helium gas, as shown in FIG. 4, the amount of bubbles contained in the seed layer (inner surface) formed in the quartz glass crucible R at the beginning of melting and the outer opaque layer is appropriately set. Furthermore, by supplying helium gas and hydrogen gas in the latter half of the manufacturing process, the amount of bubbles in the transparent layer can be significantly reduced. Further, it is possible to prevent bubbles remaining in the transparent layer and bubbles in the opaque layer from expanding during pulling of the silicon single crystal.
[0032]
Furthermore, the amount of bubbles remaining in the transparent layer can be reduced by melting under reduced pressure, and the seed layer acts as a kind of ventilation wall, and the amount of bubbles in the opaque layer can be adjusted by adjusting the degree of pressure reduction. And the bubble diameter can be controlled. In order to obtain the former effect, the decompression melting is preferably started before or simultaneously with the start of the arc melting or after the inner surface of the crucible-shaped formed body is melted by arc melting, for example, 100 μm. Further, the amount of bubbles in the opaque layer can be controlled more appropriately by reducing or stopping the decompression during arc melting.
[0033]
Furthermore, since the supply of hydrogen gas starts 5 minutes before the arc melting is stopped, the effect of hydrogen supply is sufficiently obtained, the amount of bubbles remaining in the transparent layer inside the crucible is reduced, and the bubbles in the outer opaque layer are expanded. Can be prevented.
[0034]
In addition, since the supply of hydrogen gas is performed after a time t corresponding to 40% of the total arc melting time T, the high temperature viscosity of the fused crucible quartz glass is not lowered, and it can be used for a long time. A quartz glass crucible is obtained.
[0035]
As shown in FIG. 5, the hollow portion R of the melting crucible R while reducing the pressure. 1i When hydrogen gas is allowed to flow through the 1i From above to the unmelted layer R of the melting crucible R u As the result, the viscosity of the entire quartz glass crucible is likely to be lowered. It is preferably stopped or reduced.
[0036]
Next, according to the process as shown in FIG. 1, the molten crucible manufactured as described above is ground in the grinding process.
[0037]
This grinding process is performed in two stages, a rough grinding process and a regrinding process, using a process as shown in the upper part of FIG. 6 and a handy type grinding apparatus (belt sander) 21 as shown in FIG.
[0038]
The grinding device 21 includes a vane-type rotating mechanism 23 that is rotated by high-pressure air sent from a high-pressure air pipe 22 that is communicated with an air compressor (not shown), and a drive rotation that is rotated by the vane-type rotating mechanism 23. A roller 24, a driven rotary roller 25 driven by the rotation of the drive rotary roller 24, a grinding belt 26 rotatably provided between the rotary rollers 24, 25, and the grinding belt 26 and the driven belt for performing wet grinding. A water supply nozzle 28 connected to a water supply pipe 27 for supplying water between the polished objects is provided.
[0039]
The grinding belt 26 is a diamond grindstone (belt), and the diamond particle size in the rough grinding process is made finer than 80 mesh (#).
[0040]
This grinding belt 26 is used as the inner surface R of the melting crucible R. S The high pressure air pipe 22 is sent to the vane type rotating mechanism 23, the vane type rotating mechanism 23 is rotated, the drive rotating roller 24 is rotated, the grinding belt 26 is rotated, and the inner surface R S To polish. At this time, the grinding belt 26 and the inner surface R through the water supply pipe 27 and the water supply nozzle 28. S Since water is supplied in between, it becomes wet polishing, and it is ground quickly and highly flatly.
[0041]
In the regrinding process, the diamond particle diameter of the grinding belt 26 is made finer than 200 mesh, preferably 3000 mesh, and the arithmetic average roughness (Ra) (JIS B0601-1994) of the inner surface after the regrinding process is 3 μm or less. To flatten.
[0042]
In this way, by making the roughness of Ra 3 μm or less, it becomes possible to perform a quicker polishing process in the next process, and it is possible to reliably remove microcrack damage generated in the grinding process in a shorter time. It becomes like this.
[0043]
Further, according to the process shown in FIG. 1, the ground inner surface of the melting crucible is polished in the polishing process.
[0044]
For example, as shown in FIG. 8, the polishing process is performed using a handy type polishing apparatus 31. The polishing apparatus 31 includes a vane-type rotating mechanism 33 that is rotated by high-pressure air sent from a high-pressure air pipe 32 that is communicated with an air compressor (not shown), and a driving rotation that is rotated by the vane-type rotating mechanism 33. A roller 34, a polishing cloth 35 provided on the driving rotary roller 34, and a supply nozzle 37 connected to a supply pipe 36 for supplying an abrasive between the polishing cloth 35 and an object to be polished for wet polishing. Have.
[0045]
This polishing cloth 35 is used as the inner surface R of the melting crucible R. S The high pressure air pipe 32 is sent to the vane type rotating mechanism 33, the vane type rotating mechanism 33 is rotated, the drive rotating roller 34 is rotated, the polishing cloth 35 is rotated, and the inner surface R is rotated. S To polish. At this time, the polishing pad 35 and the inner surface R through the supply pipe 36 and the supply nozzle 37. S Since an abrasive is supplied between them, wet polishing is performed, and polishing is performed with high flatness.
[0046]
Inner surface R polished as described above S Ra can be 1 μm or less, and the variation in surface roughness can be within the range of ± 0.1 μm over the entire inner surface. Since the abrasive cloth 35 has a fine diamond particle size of 800 mesh or more, microcrack damage that is harmful to the inner surface can be more reliably removed, and the uniformity is higher and Ra is more surely less than 1 μm. Can be small. Furthermore, the state of the inner surface is more preferably a maximum height (Ry) (JIS B0601-1994) of 5 μm. In this case, higher uniformity of the inner surface is obtained.
[0047]
When Ra is set to 1 μm or less as described above, the heat treatment in the next process does not leave visible irregularities on the inner surface Rs and does not adversely affect the pulled silicon single crystal. Furthermore, it is possible to avoid leaving microcrack damage. If Ra exceeds 1 μm, the inner surface R of the crucible R even if the next heat treatment is performed. S As a result, undulations that are visible to the eye remain, and it is easy to adversely affect the pulled silicon single crystal.
[0048]
Further, when the partial Ra variation of the inner surface Rs is within a range of ± 0.1 μm over the entire inner surface, the uniformity of the thickness of the glass layer formed by the heat treatment can be maintained. When the variation of Ra exceeds ± 0.1 μm, the uniformity of the thickness of the glass layer formed by the heat treatment is impaired due to the difference in the roughness state.
[0049]
When the polished inner surface Rs is 0.1 μm or less in Ra and the variation in Ra is ± 0.03 μm, the reliability of the above effect can be further improved.
[0050]
The grinding process is not limited to grinding with a diamond grindstone as shown in the upper part of FIG. 6, but is generally used wet sand blasting as shown in the lower part of FIG. Is performed by spraying fine SiC abrasive grains of 180 mesh or more with an aqueous solution having a volume conversion concentration of 10 to 40%. Further, the inner surface R is polished using the polishing cloth 35 in the same manner as described above. S Ra is 1 μm or less.
[0051]
Sand blast grinding can reduce the grinding time by about 25% compared to diamond grinding. However, since sand blast grinding uses SiC abrasive grains, metal impurities and abrasive grains are likely to adhere to the grinding surface. After re-grinding using a fine diamond grindstone of 1000 mesh or more, similar polishing is performed, and the inner surface R S Is preferably set to 1 μm or less in terms of Ra. Further, the sand blasting is not limited to wet, and may be dry. By using sand blasting, quick and highly flat grinding can be performed.
[0052]
Further, in the polishing step, a diamond grindstone having a fineness of 4000 mesh or more may be used without using a polishing cloth as described above, and in this case, the polished surface can be made 1 μm or less in Ra.
[0053]
Next, according to a process as shown in FIG. 1, the polished inner surface of the molten crucible is heat-treated by a heat treatment process.
[0054]
This heat treatment step (not shown) is performed by heating the entire inner surface using an oxyhydrogen burner. Even when microbubbles exist only on a part of the inner surface of the melting crucible, the entire inner surface is ground and polished in the grinding process and polishing process, and the entire inner surface is heated at high temperature using an oxyhydrogen burner. , SiO 2 Vaporization does not occur, crystallization does not occur partially, and peeling of the inner surface does not occur when the silicon single crystal is pulled.
[0055]
The heat treatment with an arc flame has a considerably higher atmospheric temperature than the heat treatment with an oxyhydrogen burner. 2 Evaporate this SiO 2 2 Impurities such as Al and Ca having a lower vapor pressure remain concentrated on the inner surface, and impurities such as Al and Ca are scattered on the inner surface of the crucible after the heat treatment.
[0056]
Also, if there are local protrusions and foreign matter, and these are removed by local grinding and then this removed part is heated locally to become vitrified, even if it is an oxyhydrogen burner, In comparison, the outer peripheral portion is in a relatively low temperature state, and in this outer peripheral portion, SiO 2 Vaporization occurs, solidifies and adheres to the inner surface, leaving a rough surface. This rough portion may be crystallized and peeled when the silicon single crystal is pulled, leading to a decrease in the single crystallization rate.
[0057]
As described above, the method for producing a quartz glass crucible is to produce a melting crucible by arc melting a crucible-shaped body of quartz raw material powder formed in a mold, and if necessary, grind the entire inner surface of this melting crucible, Further, the entire inner surface is polished, and the polished inner surface is heat-treated with an oxyhydrogen burner. The silica glass crucible can be made bubble-free and the purity of the inner surface can be improved. A method for producing a silica glass crucible that can improve the pulling yield can be provided by pulling up the silicon single crystal using.
[0058]
【Example】
Test 1: A quartz glass crucible having a diameter of 22 inches manufactured using the method for manufacturing a silica glass crucible according to the present invention (Example 1) and a quartz glass crucible manufactured by a conventional manufacturing method by ordinary vacuum melting (Conventional Example 1) ), Each sample was cut out, the state of bubbles on the inner surface was measured using an optical microscope, and the purity was measured by atomic absorption spectroscopy (frameless method). Further, using each quartz glass crucible, an 8-inch P-type silicon single crystal was pulled up.
[0059]
Results: Example 1: It was confirmed that no fine bubbles were present on the inner surface and the purity was improved as compared with Conventional Example 1. The single crystallization rate at the time of pulling was 100%, and it was confirmed that there were no bubbles near the inner surface of the quartz glass crucible after use.
[0060]
Conventional Example 1: Microbubbles remained in the vicinity of the inner surface, and it was confirmed that the purity was inferior to that of Example 1. The single crystallization rate at the time of pulling was 85%, and many irregularities were observed near the inner surface of the quartz glass crucible after use.
[0061]
【The invention's effect】
According to the method for producing a silica glass crucible for pulling a silicon single crystal according to the present invention, even if the silicon single crystal is pulled, no bubbles are taken in the pulled single crystal, no dislocation occurs, It is possible to provide a method for producing a quartz glass crucible for pulling a silicon single crystal that can obtain a crystallization rate.
[0062]
That is, a quartz glass crucible in which quartz raw material powder is supplied into a rotating mold to form a crucible-shaped body and the entire inner surface of a molten crucible obtained by arc melting is polished, and the polished surface is heated by an oxyhydrogen burner. Therefore, it is possible to provide a method for producing a silica glass crucible that can eliminate the bubbles on the inner surface of the quartz glass crucible, improve the purity of the inner surface, and improve the yield of pulling up the silicon single crystal.
[0063]
In addition, since the surface roughness of the polished surface is adjusted to 1 μm or less by arithmetic mean roughness (Ra), by performing the heat treatment in the next step, there is no visible unevenness on the inner surface of the crucible, The silicon single crystal to be pulled is not adversely affected, and further, no microcrack damage is left.
[0064]
In addition, since the variation of the polished surface is within the range of ± 0.1 for Ra in the entire inner surface of the melting crucible, the uniformity of the thickness of the glass layer formed by the heat treatment can be maintained.
[0065]
In addition, since the entire inner surface of the melting crucible is ground to 3 μm or less with Ra before the polishing process, it becomes possible to perform a quicker polishing process in the next polishing process, and moreover, the microcrack damage that occurs in the grinding process is ensured. And it can be removed in a shorter time.
[0066]
Further, since the grinding is performed using a diamond grindstone having a diamond particle diameter of 80 mesh or more, grinding can be performed quickly and highly flatly.
[0067]
In addition, since the grinding is performed by sandblasting using abrasive grains having a particle diameter of 90 mesh or more, quick and highly flat grinding can be performed.
[0068]
In addition, after grinding, re-grinding is performed using a diamond grindstone with a diamond particle size of 200 mesh or more, so that Ra can be quickly reduced to a roughness of 3 μm or less, and further, the micro-particles generated in the rough grinding process can be reduced. Crack damage can be removed reliably and in a shorter time.
[0069]
In addition, since the polishing process is performed with a fine polishing cloth of 800 mesh or more or a diamond grindstone of 4000 mesh or more, the microcrack damage that is harmful to the inner surface can be more reliably removed, and the uniformity is further improved. And Ra can be made smaller than 1 μm more reliably.
[0070]
In addition, a quartz glass crucible in which arc melting is performed while reducing the pressure from the outer peripheral surface side of the crucible-shaped molded body, and hydrogen gas is supplied to the hollow portion of the crucible-shaped molded body before the end of the arc melting to perform arc melting. Since it is a manufacturing method, the effect of hydrogen supply can be sufficiently obtained, the amount of bubbles remaining in the transparent layer inside the crucible can be reduced, and the bubbles in the outer opaque layer can be prevented from expanding.
[0071]
In addition, since the quartz glass crucible is produced by reducing or stopping the decompression before the supply of hydrogen gas is started, the quartz glass can withstand long-term use without reducing the high temperature viscosity of the quartz glass crucible. A crucible is obtained.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for producing a quartz glass crucible for pulling a silicon single crystal according to the present invention.
FIG. 2 is a conceptual diagram of a quartz glass crucible manufacturing apparatus used in a method for manufacturing a quartz glass crucible for pulling a silicon single crystal according to the present invention.
FIG. 3 is an explanatory diagram of a melting crucible manufacturing process of a method for manufacturing a quartz glass crucible according to the present invention.
FIG. 4 is an explanatory view of a quartz glass crucible manufactured in a melting crucible manufacturing process of a manufacturing method of a silica glass crucible according to the present invention.
FIG. 5 is an explanatory view of the state of the quartz glass crucible in the melting crucible manufacturing process of the method for manufacturing the silica glass crucible according to the present invention.
FIG. 6 is a flowchart of a grinding process and a polishing process in the method for producing a quartz glass crucible according to the present invention.
FIG. 7 is an explanatory view of a grinding apparatus used in a grinding process of a method for producing a quartz glass crucible according to the present invention.
FIG. 8 is an explanatory view of a polishing apparatus used in the polishing step of the method for manufacturing a quartz glass crucible according to the present invention.
[Explanation of symbols]
1 Quartz glass crucible production equipment
2 Mold for crucible molding
3 Inner member
4 Ventilation part
5 Holder
6 Rotating shaft
7 opening
8 Exhaust vent
9 Pressure reducing mechanism
10 Arc electrode
11 Raw material supply nozzle
12 Inert gas supply pipe
13 Hydrogen gas supply pipe
21 Grinding device (belt sander)
22 High pressure air pipe
23 Vane type rotating mechanism
24 Drive rotation roller
25 driven rotating roller
26 Grinding belt
27 Water supply pipe
28 Water supply nozzle
31 Polishing equipment
32 High pressure air pipe
33 Vane type rotating mechanism
34 Drive rotation roller
35 Abrasive cloth
36 Supply pipe
37 Supply nozzle
R Molten crucible (quartz glass crucible)
R 1 Compact
R 1i Hollow part
Rs inner surface
R u Unmelted layer

Claims (7)

回転する型内に石英原料粉を供給しルツボ形状体を形成してこれをアーク溶融した溶融ルツボの内表面全体を研磨処理し、この研磨面を酸水素バーナにより加熱処理するシリコン単結晶引上げ用石英ガラスルツボの製造方法であって、上記研磨処理前に、溶融ルツボの内表面全体をRaで3μm以下に研削することを特徴とするシリコン単結晶引上げ用石英ガラスルツボの製造方法。For pulling a silicon single crystal by supplying quartz raw material powder into a rotating mold to form a crucible-shaped body and polishing the entire inner surface of the melted crucible, and then heat-treating this polished surface with an oxyhydrogen burner A method for producing a quartz glass crucible for pulling a silicon single crystal, wherein the entire inner surface of a molten crucible is ground to 3 μm or less with Ra before the polishing treatment . 上記研削は、ダイヤモンド粒子の粒径が80メッシュ以上細かいダイヤモンド砥石を用いて行うことを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。2. The method for producing a quartz glass crucible for pulling a silicon single crystal according to claim 1 , wherein the grinding is performed using a diamond grindstone having a diamond particle size of 80 mesh or more. 上記研削は、粒径が90メッシュ以上細かい砥粒を用いてサンドブラストにより行うことを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。The method for producing a quartz glass crucible for pulling a silicon single crystal according to claim 1 , wherein the grinding is performed by sandblasting using abrasive grains having a grain size of 90 mesh or more. 上記研削後に、ダイヤモンド粒子の粒径が200メッシュ以上細かいダイヤモンド砥石を用いて再研削を行うことを特徴とする請求項またはに記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。After the grinding, the method for manufacturing a silicon single crystal for pulling up the quartz glass crucible according to claim 2 or 3 the particle size of the diamond particles and performs the re-grinding with a fine diamond wheel 200 meshes or more. 上記研磨処理が800メッシュ以上の細かい研磨布または4000メッシュ以上細かいダイヤモンド砥石により行うことを特徴とする請求項1ないしのいずれか1項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。The method for producing a quartz glass crucible for pulling a silicon single crystal according to any one of claims 1 to 4 , wherein the polishing treatment is performed with a fine polishing cloth of 800 mesh or more or a diamond grindstone of 4000 mesh or more. 上記アーク溶融が上記ルツボ形状成形体の外周面側から減圧しながら行われ、かつこのアーク溶融終了前に上記ルツボ形状成形体の中空部に水素ガスを供給し、アーク溶融がなされることを特徴とする請求項1ないしのいずれか1項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。The arc melting is performed while reducing the pressure from the outer peripheral surface side of the crucible-shaped formed body, and before the end of the arc melting, hydrogen gas is supplied to the hollow portion of the crucible-shaped formed body to perform the arc melting. A method for producing a quartz glass crucible for pulling a silicon single crystal according to any one of claims 1 to 5 . 上記水素ガスの供給開始前に上記減圧を低減するか、もしくは停止することを特徴とする請求項に記載のシリコン単結晶引上げ用石英ガラスルツボの製造方法。The method for producing a quartz glass crucible for pulling a silicon single crystal according to claim 6 , wherein the reduced pressure is reduced or stopped before the supply of the hydrogen gas is started.
JP2000306491A 2000-03-13 2000-10-05 Method for producing quartz glass crucible for pulling silicon single crystal Expired - Fee Related JP3717151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306491A JP3717151B2 (en) 2000-03-13 2000-10-05 Method for producing quartz glass crucible for pulling silicon single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000069081 2000-03-13
JP2000-69081 2000-03-13
JP2000306491A JP3717151B2 (en) 2000-03-13 2000-10-05 Method for producing quartz glass crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JP2001328831A JP2001328831A (en) 2001-11-27
JP3717151B2 true JP3717151B2 (en) 2005-11-16

Family

ID=26587344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306491A Expired - Fee Related JP3717151B2 (en) 2000-03-13 2000-10-05 Method for producing quartz glass crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP3717151B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243433A (en) * 2003-02-12 2004-09-02 Shinetsu Quartz Prod Co Ltd Inner surface polishing method of tubular brittle material and tubular brittle material obtained by the polishing method
JP4330363B2 (en) 2003-03-28 2009-09-16 ジャパンスーパークォーツ株式会社 Quartz glass crucible
JP4396930B2 (en) * 2004-03-31 2010-01-13 コバレントマテリアル株式会社 Silica glass container molded body molding apparatus and molding method, and silica glass container manufacturing method
US8163083B2 (en) 2008-07-09 2012-04-24 Japan Super Quartz Corporation Silica glass crucible and method for pulling up silicon single crystal using the same
ATE553235T1 (en) * 2008-07-10 2012-04-15 Japan Super Quartz Corp METHOD FOR RAISING SILICON CRYSTALS USING QUARTZ GLASS CRUCBLES.
JP5377930B2 (en) 2008-10-31 2013-12-25 株式会社Sumco Method for producing quartz glass crucible for pulling silicon single crystal
US8272234B2 (en) 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
JP5043048B2 (en) * 2009-01-21 2012-10-10 株式会社Sumco Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
EP2476786B1 (en) 2009-09-10 2014-02-19 Japan Super Quartz Corporation Silica glass crucible for pulling silicon single crystal and method for producing same
US9003832B2 (en) 2009-11-20 2015-04-14 Heraeus Shin-Etsu America, Inc. Method of making a silica crucible in a controlled atmosphere
JP5500688B2 (en) 2010-12-03 2014-05-21 株式会社Sumco Method for producing silica glass crucible
DE102011113130B3 (en) * 2011-09-14 2013-01-24 Heraeus Quarzglas Gmbh & Co. Kg Solar radiation receiver with a quartz glass entrance window
JP5941384B2 (en) * 2012-09-25 2016-06-29 クアーズテック株式会社 Method for producing silica glass crucible for pulling silicon single crystal
WO2016129700A1 (en) * 2015-02-15 2016-08-18 弘明 城戸 Polishing method for concave surface in hard object to be polished
CN111673625A (en) * 2020-07-24 2020-09-18 四川永祥硅材料有限公司 Silicon material cleaning process
CN115110145B (en) * 2022-06-23 2023-09-29 宁夏盾源聚芯半导体科技股份有限公司 Oxygen increasing quartz crucible for crystal silicon lifting and preparation equipment and method thereof

Also Published As

Publication number Publication date
JP2001328831A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP3717151B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP3765368B2 (en) Quartz glass crucible and method for producing the same
JP5462423B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
KR101023457B1 (en) Production of quartz glass crucible for pulling up silicon single crystal
JP4279015B2 (en) Quartz glass crucible and method for producing quartz glass crucible
WO2013088617A1 (en) Silica container for pulling up single crystal silicon, and method for manufacturing same
JPH0920586A (en) Production of quartz glass crucible for pulling silicon single crystal
JP3672460B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4076416B2 (en) Quartz crucible and its manufacturing method
JP5308594B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP5497247B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP4437368B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP5595615B2 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP4248804B2 (en) Semiconductor wafer and method for manufacturing semiconductor wafer
JP2002326889A (en) Crucible of quartz glass for pulling silicon single crystal
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH0255285A (en) Method and appartus for producing quartz crucible
JP6812176B2 (en) Quartz glass crucible
JP6713382B2 (en) Quartz glass crucible manufacturing method and quartz glass crucible
JP5608258B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP2022101901A (en) Quartz glass crucible and manufacturing method of the same
CN113493925A (en) Quartz glass crucible and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees