JP3716313B2 - Impurity concentration measurement method in silicon crystal - Google Patents

Impurity concentration measurement method in silicon crystal Download PDF

Info

Publication number
JP3716313B2
JP3716313B2 JP2003290682A JP2003290682A JP3716313B2 JP 3716313 B2 JP3716313 B2 JP 3716313B2 JP 2003290682 A JP2003290682 A JP 2003290682A JP 2003290682 A JP2003290682 A JP 2003290682A JP 3716313 B2 JP3716313 B2 JP 3716313B2
Authority
JP
Japan
Prior art keywords
silicon crystal
impurity concentration
measuring
nitrogen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003290682A
Other languages
Japanese (ja)
Other versions
JP2005061922A (en
Inventor
道夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2003290682A priority Critical patent/JP3716313B2/en
Publication of JP2005061922A publication Critical patent/JP2005061922A/en
Application granted granted Critical
Publication of JP3716313B2 publication Critical patent/JP3716313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、チョコラルスキー法などによって作製したシリコン結晶中における窒素不純物の濃度を測定する方法に関する。 The present invention relates to a method for measuring the concentration of nitrogen impurities in a silicon crystal produced by a chocolate lasky method or the like.

シリコン(Si)結晶中の窒素(N)不純物は欠陥の発生・成長を制御する働きがあり、シリコンデバイス作製にあたり、信頼性・歩留まりの向上に大きく寄与することが知られている。この効果により、窒素添加シリコンウェハは最も高品質なデバイス作製用ウェハとして、シリコンメーカー各社で製造され販売されている。   Nitrogen (N) impurities in silicon (Si) crystals have a function of controlling the generation and growth of defects, and are known to greatly contribute to the improvement of reliability and yield in the production of silicon devices. Due to this effect, nitrogen-added silicon wafers are manufactured and sold by silicon manufacturers as the highest quality device fabrication wafers.

このシリコンウェハの作製における最大の課題が、その定量分析の困難さである。現在、(社)電子情報技術産業協会(JEITA)シリコン技術委員会ウェハ測定標準専門委員会の窒素濃度測定ワーキンググループ(主査=井上直久大阪府立大教授)においては、赤外吸収法の測定法の規格化を進めており、米国SEMI(Semicomductor Equipment and Materials International),ASTM(American Society for Testing and Materials),ドイツDIN(Deutsche Industrie Normen)と共同で国際規格化も検討されている。   The biggest problem in the production of this silicon wafer is the difficulty of its quantitative analysis. Currently, the Japan Electronics and Information Technology Industries Association (JEITA) Silicon Technology Committee Wafer Measurement Standards Committee's Nitrogen Concentration Measurement Working Group (leader = Prof. Naohisa Inoue, Osaka Prefectural University Professor) Standardization is underway, and international standardization is being studied jointly with US SEMI (Semicomductor Equipment and Materials International), ASTM (American Society for Testing and Materials), and Germany DIN (Deutsche Industrie Normen).

高品質シリコンウェハを作製するのに必要な窒素濃度は5×1013/cm程度であるが、このような微量の窒素を検出することは容易ではない。一般には赤外吸収法が利用されているが、測定には2mm以上の厚い試料が必要で、検出感度は5×1014/cm程度である。そのため現状では、結晶成長時の窒素不純物の偏析現象を利用し、高濃度領域から切り出した厚い試料の赤外吸収測定より、その領域の窒素濃度を求め、他の領域の濃度は偏析係数を用いて推定しているにすぎない。 The nitrogen concentration necessary for producing a high-quality silicon wafer is about 5 × 10 13 / cm 3 , but it is not easy to detect such a small amount of nitrogen. In general, an infrared absorption method is used, but a thick sample of 2 mm or more is required for measurement, and the detection sensitivity is about 5 × 10 14 / cm 3 . Therefore, at present, the nitrogen impurity segregation phenomenon during crystal growth is used, the nitrogen concentration in that region is obtained from the infrared absorption measurement of a thick sample cut out from the high concentration region, and the segregation coefficient is used for the concentration in other regions. It is only an estimate.

このように、高品位の欠陥制御を行う場合には、窒素不純物濃度の精密測定が不可欠であり、とくにウェハ状態での測定は急務とされている。  Thus, when performing high-quality defect control, precise measurement of the nitrogen impurity concentration is indispensable, and in particular, measurement in the wafer state is urgent.

本発明は、シリコン結晶中における微量窒素不純物の濃度、特に実用に供するウエハ状態における微量窒素不純物濃度を正確に定量するための、新規な不純物測定法を提供することを目的とする。 An object of the present invention is to provide a novel impurity measurement method for accurately quantifying the concentration of a trace nitrogen impurity in a silicon crystal, particularly a trace nitrogen impurity concentration in a wafer state for practical use.

上記目的を達成すべく、本発明は、
微量の不純物を含むシリコン結晶において、前記不純物を光学的に活性な再結合センターに変換させ、フォトルミネッセンスを用いて前記再結合センターに起因した発光センターを検出し、そのスペクトル解析より前記シリコン結晶中における前記不純物の濃度を定量するものであって、前記不純物が窒素であることを特徴とする、シリコン結晶中の不純物濃度測定法に関する。
In order to achieve the above object, the present invention provides:
In a silicon crystal containing a small amount of impurities, the impurities are converted into optically active recombination centers, and a luminescence center due to the recombination centers is detected using photoluminescence, and from the spectral analysis, The present invention relates to a method for measuring an impurity concentration in a silicon crystal, characterized in that the concentration of the impurity in is quantified , wherein the impurity is nitrogen .

本発明によれば、シリコン結晶中における微量窒素不純物の定量において、前記窒素不純物に関する再結合センターを形成し、これに起因した発光センターのスペクトル解析を実行し、例えば所定の発光波長(エネルギー)におけるスペクトル強度を計測することにより、前記微量窒素不純物の定量を行うようにしている。再結合センターに起因する発光の強度は極めて大きいため、計測すべき不純物の濃度が極めて微量である場合においても、ある程度のスペクトル強度を呈するようになる。したがって、前記スペクトル強度を計測することにより、微量窒素不純物の測定を高精度に行うことができるようになる。 According to the present invention, in the determination of a small amount of nitrogen impurities in a silicon crystal, a recombination center relating to the nitrogen impurities is formed, and spectrum analysis of the emission center resulting from this is performed. The trace nitrogen impurities are quantified by measuring the spectral intensity. Since the intensity of light emission caused by the recombination center is extremely high, even when the concentration of the impurity to be measured is very small, a certain spectral intensity is exhibited. Therefore, by measuring the spectral intensity, it is possible to measure a trace nitrogen impurity with high accuracy.

また、本発明の測定法によれば、再結合センターに起因した発光センターのスペクトル解析に基づいて微量窒素不純物の濃度測定を行うので、前記シリコン結晶の形態とは無関係に、濃度測定を実行することができる。したがって、前記シリコン結晶がシリコンウエハとして存在する場合にも、前記シリコンウエハ中の窒素不純物濃度を高精度に測定することができる。 In addition, according to the measurement method of the present invention, since the concentration measurement of trace nitrogen impurities is performed based on the spectrum analysis of the emission center caused by the recombination center, the concentration measurement is performed regardless of the form of the silicon crystal. be able to. Therefore, even when the silicon crystal exists as a silicon wafer, the nitrogen impurity concentration in the silicon wafer can be measured with high accuracy.

以上説明したように、本発明によれば、シリコン結晶中における微量窒素不純物の濃度、特に実用に供するウエハ状態における微量窒素不純物濃度を正確に定量するための、新規な不純物測定法を提供することができる。 As described above, according to the present invention, there is provided a novel impurity measuring method for accurately quantifying the concentration of a trace nitrogen impurity in a silicon crystal, particularly a trace nitrogen impurity concentration in a wafer state for practical use. Can do.

本発明においては、シリコン結晶中に含まれる微量の不純物を、光学的に活性な再結合センターに起因したスペクトル解析に基づいて定量するが、再結合センターを形成することができれば如何なる不純物をも定量することができる。特に、シリコンウエハなどのシリコン結晶成長の際に、欠陥の発生や成長を抑制する作用のある微量の窒素不純物の定量に対して好ましく用いることができる。   In the present invention, a small amount of impurities contained in a silicon crystal is quantified based on spectral analysis caused by an optically active recombination center, but any impurity can be quantified as long as the recombination center can be formed. can do. In particular, when growing a silicon crystal such as a silicon wafer, it can be preferably used for the determination of a small amount of nitrogen impurities having an action of suppressing generation and growth of defects.

窒素不純物に関連した再結合センターを形成するためには、好ましくは前記シリコン結晶中にアルミニウムを配合させる。配合形態は如何なる態様でも良いが、シリコンウエハなどの完成品における窒素不純物などを定量するに際しては、前記完成品に対してアルミニウムを含有させる必要がある。したがって、好ましくはイオン注入法などを用いることによって、前記シリコン結晶中に前記アルミニウムをイオンの状態で配合する。   In order to form recombination centers associated with nitrogen impurities, aluminum is preferably incorporated into the silicon crystal. Although any form may be sufficient as a compounding form, when quantifying the nitrogen impurity etc. in finished products, such as a silicon wafer, it is necessary to contain aluminum with respect to the said finished product. Therefore, the aluminum is mixed in an ion state in the silicon crystal, preferably by using an ion implantation method or the like.

但し、イオン注入法以外の方法でアルミニウムを配合させることもでき、シリコン結晶の表面にアルミニウム層を形成した後、加熱処理を行うことにより、前記シリコン結晶中にアルミニウムを熱拡散させて配合することもできる。また、シリコン結晶の作製の段階で、窒素不純物に加えてアルミニウムを予め含有させておくこともできる。但し、上述したイオン注入法によれば、加速電圧や電流密度などを調節することにより、前記シリコン結晶中の、任意の位置に任意の濃度で簡易にアルミニウムを配合させることができる。   However, aluminum can also be blended by a method other than ion implantation, and after forming an aluminum layer on the surface of the silicon crystal, heat treatment is performed to thermally diffuse the aluminum into the silicon crystal and blend. You can also. In addition, in addition to the nitrogen impurities, aluminum can be previously contained at the stage of manufacturing the silicon crystal. However, according to the ion implantation method described above, aluminum can be easily blended at an arbitrary concentration in an arbitrary position in the silicon crystal by adjusting an acceleration voltage, a current density, or the like.

なお、アルミニウムの配合量は特に限定されるものではないが、1×1015/cm〜1×1019/cmであることが好ましい。これによって、前記シリコン結晶中における5×1013/cm程度以下の、シリコン結晶の欠陥抑制に効果のある微量の窒素不純物を簡易かつ高精度に定量することができる。 Although the amount of aluminum is not particularly limited, it is preferably 1 × 10 15 / cm 3 ~1 × 10 19 / cm 3. This makes it possible to easily and accurately quantify a small amount of nitrogen impurities having an effect of suppressing defects in the silicon crystal of about 5 × 10 13 / cm 3 or less in the silicon crystal.

また、上述したイオン注入法を用いてアルミニウムを配合させる場合、前記シリコン結晶に対するアルミニウムイオン照射量は1×1014/cm〜1×1015/cmとすることが好ましい。これによって、ウエハなどのシリコン結晶中で上述した配合量を簡易に実現することができ、微量の窒素不純物を簡易かつ高精度に定量することができる。 Also, in the case of blended aluminum by an ion implantation method mentioned above, the aluminum ion irradiation amount with respect to the silicon crystal is preferably set to 1 × 10 14 / cm 2 ~1 × 10 15 / cm 2. As a result, the above-described blending amount can be easily realized in a silicon crystal such as a wafer, and a small amount of nitrogen impurities can be quantified easily and with high accuracy.

上述のようにして、微量の窒素不純物を含有するシリコン結晶に対してアルミニウムを含有させると、前記窒素不純物と前記アルミニウムとは最近接位置でペアを形成し、アイソエレクトロニックトラップと呼ばれる強い発光再結合センターを形成するようになる。このアイソエレクトロニックトラップは、GaP発光ダイオードなどの緑色及び赤色の発光センターとして知られており、強力な発光を呈する。したがって、前記シリコン結晶中における前記窒素不純物量が極めて微量である場合についても、前記アイソエレクトロニックトラップに基づいた発光スペクトルは十分に大きくなり、前記微量の窒素不純物を高精度に定量することができるようになる。   As described above, when aluminum is contained in a silicon crystal containing a small amount of nitrogen impurities, the nitrogen impurities and the aluminum form a pair at the nearest position, and strong luminescence recombination called an isoelectronic trap. To form a center. This isoelectronic trap is known as a green and red light emission center such as a GaP light emitting diode and exhibits strong light emission. Therefore, even when the amount of nitrogen impurities in the silicon crystal is extremely small, the emission spectrum based on the isoelectronic trap is sufficiently large so that the minute amount of nitrogen impurities can be quantified with high accuracy. become.

具体的には、前記アイソエレクトロニックトラップに基づいた所定の発光スペクトルのスペクトル強度と、前記窒素不純物量との相関(検量線)を予め求めておくことにより、シリコン結晶中の、前記発光スペクトルに起因した前記スペクトル強度を測定するのみで、前記相関(検量線)より、前記シリコン結晶中の前記窒素不純物量を測定できるようになる。具体的には、前記発光スペクトルにおいて、1.1223eVの位置に出現するA−lineと呼ばれるアイソエレクトロニックトラップに起因した発光線を利用することができる。   Specifically, by obtaining a correlation (calibration curve) between the spectral intensity of a predetermined emission spectrum based on the isoelectronic trap and the nitrogen impurity amount in advance, it is caused by the emission spectrum in the silicon crystal. The amount of nitrogen impurities in the silicon crystal can be measured from the correlation (calibration curve) only by measuring the spectral intensity. Specifically, in the emission spectrum, an emission line caused by an isoelectronic trap called A-line that appears at a position of 1.1223 eV can be used.

なお、上述したA−lineの他に、1.1175eV(X1線)、1.1206eV(X2線)及び1.1403eV(X3線)の位置に出現する発光線を利用することもできる。但し、これらの発光線の起源は明確でない。しかしながら、これら発光線の強度とシリコン結晶中の窒素不純物濃度との間には明確な相関が存在する。   In addition to the above-described A-line, light emission lines appearing at positions of 1.1175 eV (X1 line), 1.1206 eV (X2 line), and 1.1403 eV (X3 line) can also be used. However, the origin of these emission lines is not clear. However, there is a clear correlation between the intensity of these emission lines and the nitrogen impurity concentration in the silicon crystal.

なお、窒素不純物とアルミニウムとによる前記アイソエレクトロニックトラップは、前記窒素不純物を含むシリコン結晶中に単にアルミニウムを配合させるのみでは形成できない場合がある。この場合は、前記シリコン結晶中にアルミニウムを配合させた後、前記シリコン結晶を400℃〜800℃でアニール処理することが好ましい。これによって、上述したアイソエレクトロニックトラップを簡易に形成できるようになる。   In some cases, the isoelectronic trap of nitrogen impurities and aluminum cannot be formed simply by adding aluminum to the silicon crystal containing nitrogen impurities. In this case, it is preferable to anneal the silicon crystal at 400 ° C. to 800 ° C. after aluminum is mixed in the silicon crystal. As a result, the above-described isoelectronic trap can be easily formed.

前記アニール処理は窒素ガスやアルゴンガスなどの不活性ガス雰囲気中で行うことができる。また、処理時間はアニール処理温度に依存し、アニール処理温度の上昇とともに短縮化することができる。例えば、アニール処理温度が400℃近傍の場合は10時間以上の処理時間を要するが、800℃近傍の場合は10分以下にまで短縮化することができる。   The annealing treatment can be performed in an inert gas atmosphere such as nitrogen gas or argon gas. The processing time depends on the annealing temperature, and can be shortened as the annealing temperature increases. For example, when the annealing temperature is around 400 ° C., a processing time of 10 hours or more is required, but when the annealing temperature is around 800 ° C., it can be shortened to 10 minutes or less.

なお、上述したアニール処理を行うことにより、1.1175eV、1.1206eV及び1.1403eVの位置における前記発光線も確実に出現するようになる。   Note that, by performing the above-described annealing treatment, the light emitting lines at the positions of 1.1175 eV, 1.1206 eV, and 1.1403 eV also appear reliably.

本発明の測定法は、如何なる方法で作製したシリコン結晶に対しても用いることができるが、現状においては、特にチョコラルスキー法(CZ法)で作製するシリコン結晶中に対する窒素添加技術の確立が求められており、したがって、前記チョコラルスキー法で作製したシリコン結晶中の窒素不純物の濃度測定に好適に用いることができる。   The measurement method of the present invention can be used for silicon crystals produced by any method, but at present, establishment of a nitrogen addition technique is particularly required for silicon crystals produced by the chocolate lasky method (CZ method). Therefore, it can be suitably used for measuring the concentration of nitrogen impurities in a silicon crystal produced by the above-mentioned Choral Ski method.

浮遊帯溶融法(FZ法)で作製したアルミニウム濃度1.8×1015/cmのシリコンウエハ(a)を準備するとともに、CZ法で作製した窒素濃度2.2×1014/cm及び3.2×1015/cmのシリコンウエハ(b)及び(c)を準備した。次いで、シリコンウエハ(a)〜(c)に対して1×1014/cmのアルミニウムイオンを注入した。次いで、シリコンウエハ(a)〜(c)に対して大気気中、450℃で100時間アニール処理を実施した。 A silicon wafer (a) having an aluminum concentration of 1.8 × 10 15 / cm 3 produced by the floating zone melting method (FZ method) was prepared, and a nitrogen concentration of 2.2 × 10 14 / cm 3 produced by the CZ method and 3.2 × 10 15 / cm 3 of silicon wafers (b) and (c) were prepared. Next, 1 × 10 14 / cm 2 of aluminum ions were implanted into the silicon wafers (a) to (c). Next, the silicon wafers (a) to (c) were subjected to annealing treatment at 450 ° C. for 100 hours in the air.

図1は、上述のような過程を経ることによって得たシリコンウエハの発光スペクトルを示すグラフである。図1から明らかなように、いずれの場合も、1.1223eVの位置に、A−lineと呼ばれるアイソエレクトロニックトラップに起因した発光線が存在することが確認された。   FIG. 1 is a graph showing an emission spectrum of a silicon wafer obtained through the above process. As is clear from FIG. 1, it was confirmed that in any case, an emission line caused by an isoelectronic trap called A-line was present at a position of 1.1223 eV.

次いで、図1に示すA−lineの発光線強度と、シリコン結晶中における窒素不純物量との相関を調べたところ、図2に示すような正の相関が存在することが確認された。したがって、図2に示す相関図を検量線として用いれば、シリコン結晶のA−lineに起因した発光線の強度を計測するのみで、前記シリコン結晶中の窒素不純物濃度が定量できることが判明した。   Next, when the correlation between the emission line intensity of A-line shown in FIG. 1 and the amount of nitrogen impurities in the silicon crystal was examined, it was confirmed that there was a positive correlation as shown in FIG. Accordingly, it has been found that if the correlation diagram shown in FIG. 2 is used as a calibration curve, the nitrogen impurity concentration in the silicon crystal can be quantified only by measuring the intensity of the emission line caused by the A-line of the silicon crystal.

図3は、シリコンウエハ(b)及び(c)の他の発光スペクトルを示すグラフである。図3から明らかなように、本例におけるシリコンウエハは、上述したA−lineの他に、1.1175eV(X1線)、1.1206eV(X2線)及び1.1403eV(X3線)の位置に発光線が出現していることが分かる。   FIG. 3 is a graph showing another emission spectrum of the silicon wafers (b) and (c). As is apparent from FIG. 3, the silicon wafer in this example is located at positions of 1.1175 eV (X1 line), 1.1206 eV (X2 line), and 1.1403 eV (X3 line) in addition to the above-described A-line. It can be seen that the emission line appears.

次いで、これら発光線の強度とシリコンウエハ中の窒素不純物の濃度との相関を調べたところ、図4に示すように正の相関が存在することが判明した。したがって、これらX1線などの発光線の強度を計測すれば、前記シリコン結晶中の窒素不純物濃度を定量できることが分かる。   Next, when the correlation between the intensity of these emission lines and the concentration of nitrogen impurities in the silicon wafer was examined, it was found that there was a positive correlation as shown in FIG. Therefore, it can be understood that the nitrogen impurity concentration in the silicon crystal can be quantified by measuring the intensity of the emission line such as the X1 line.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

シリコン結晶中における、窒素不純物とアルミニウムとのアイソエレクトロニックトラップに起因した発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum resulting from the isoelectronic trap of a nitrogen impurity and aluminum in a silicon crystal. シリコン結晶における、アイソエレクトロニックトラップに起因したA−lineの発光線強度と、窒素不純物量との相関を示すグラフである。It is a graph which shows the correlation with the emission line intensity | strength of A-line resulting from the isoelectronic trap in a silicon crystal, and the amount of nitrogen impurities. シリコン結晶中における、窒素不純物とアルミニウムとの相関に基づく他の発光スペクトルを示すグラフである。It is a graph which shows the other emission spectrum based on the correlation with a nitrogen impurity and aluminum in a silicon crystal. 図3に示す発光スペクトル中の、発光線の強度と窒素不純物との相関を示すグラフである。It is a graph which shows the correlation of the intensity | strength of a light emission line, and the nitrogen impurity in the emission spectrum shown in FIG.

Claims (14)

微量の不純物を含むシリコン結晶において、前記不純物を光学的に活性な再結合センターに変換させ、フォトルミネッセンスを用いて前記再結合センターに起因した発光センターを検出し、そのスペクトル解析より前記シリコン結晶中における前記不純物の濃度を定量するものであって、前記不純物が窒素であることを特徴とする、シリコン結晶中の不純物濃度測定法。 In a silicon crystal containing a small amount of impurities, the impurities are converted into optically active recombination centers, and a luminescence center due to the recombination centers is detected using photoluminescence. A method for measuring an impurity concentration in a silicon crystal, wherein the impurity concentration in silicon is quantified , and the impurity is nitrogen . 前記窒素の濃度が5×1013/cm以下であることを特徴とする、請求項に記載のシリコン結晶中の不純物濃度測定法。 2. The method for measuring an impurity concentration in a silicon crystal according to claim 1 , wherein the nitrogen concentration is 5 × 10 13 / cm 3 or less. 前記シリコン結晶中にアルミニウムを配合させ、前記窒素及び前記アルミニウム間で前記再結合センターを生成することを特徴とする、請求項1又は2に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to claim 1 or 2 , wherein aluminum is mixed in the silicon crystal to generate the recombination center between the nitrogen and the aluminum. 前記アルミニウムの配合割合が1×1015/cm〜1×1019/cmであることを特徴とする、請求項に記載のシリコン結晶中の不純物濃度測定法。 4. The method for measuring an impurity concentration in a silicon crystal according to claim 3 , wherein a mixing ratio of the aluminum is 1 × 10 15 / cm 3 to 1 × 10 19 / cm 3 . 前記アルミニウムはイオン状態で注入することを特徴とする、請求項3又は4に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to claim 3 or 4 , wherein the aluminum is implanted in an ion state. 前記アルミニウムの注入量が1×1014/cm〜1×1015/cmであることを特徴とする、請求項に記載のシリコン結晶中の不純物濃度測定法。 Wherein the injection amount of said aluminum is 1 × 10 14 / cm 2 ~1 × 10 15 / cm 2, the impurity concentration measurement of silicon crystal according to claim 5. 前記シリコン結晶を400℃〜800℃でアニール処理することを特徴とする、請求項に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to claim 6 , wherein the silicon crystal is annealed at 400 ° C to 800 ° C. 前記再結合センターはアイソエレクトロニックトラップであることを特徴とする、請求項3〜7のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to any one of claims 3 to 7 , wherein the recombination center is an isoelectronic trap. 前記窒素の濃度は、前記アイソエレクトロニックトラップに起因した発光の、1.1223eVにおける発光スペクトルの強度に基づいて測定することを特徴とする、請求項に記載のシリコン結晶中の不純物濃度測定法。 9. The method for measuring an impurity concentration in a silicon crystal according to claim 8 , wherein the nitrogen concentration is measured based on an intensity of an emission spectrum at 1.1223 eV of light emission caused by the isoelectronic trap. 前記窒素の濃度は、1.1175eVにおける発光スペクトルの強度に基づいて測定することを特徴とする、請求項3〜7のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to any one of claims 3 to 7 , wherein the concentration of nitrogen is measured based on an intensity of an emission spectrum at 1.1175 eV. 前記窒素の濃度は、1.1206eVにおける発光スペクトルの強度に基づいて測定することを特徴とする、請求項3〜7のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to claim 3 , wherein the nitrogen concentration is measured based on an intensity of an emission spectrum at 1.1206 eV. 前記窒素の濃度は、1.1403eVにおける発光スペクトルの強度に基づいて測定することを特徴とする、請求項3〜7のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to claim 3 , wherein the nitrogen concentration is measured based on an intensity of an emission spectrum at 1.1403 eV. 前記シリコン結晶は、チョコラルスキー法によって作製したことを特徴とする、請求項1〜12のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The method for measuring an impurity concentration in a silicon crystal according to any one of claims 1 to 12 , wherein the silicon crystal is produced by a chocolate skiing method. 前記シリコン結晶は、シリコンウエハであることを特徴とする、請求項1〜13のいずれか一に記載のシリコン結晶中の不純物濃度測定法。 The silicon crystal is characterized by a silicon wafer, an impurity concentration measuring method of the silicon crystal according to any one of claims 1 to 13.
JP2003290682A 2003-08-08 2003-08-08 Impurity concentration measurement method in silicon crystal Expired - Lifetime JP3716313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290682A JP3716313B2 (en) 2003-08-08 2003-08-08 Impurity concentration measurement method in silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290682A JP3716313B2 (en) 2003-08-08 2003-08-08 Impurity concentration measurement method in silicon crystal

Publications (2)

Publication Number Publication Date
JP2005061922A JP2005061922A (en) 2005-03-10
JP3716313B2 true JP3716313B2 (en) 2005-11-16

Family

ID=34368641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290682A Expired - Lifetime JP3716313B2 (en) 2003-08-08 2003-08-08 Impurity concentration measurement method in silicon crystal

Country Status (1)

Country Link
JP (1) JP3716313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101824048B1 (en) * 2013-09-04 2018-01-31 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Semiconductor element, method for manufacturing same, and semiconductor integrated circuit

Also Published As

Publication number Publication date
JP2005061922A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
KR100768378B1 (en) Silicon wafer and silicon wafer surface defect evaluation method
US20070000427A1 (en) Silicon wafer for IGBT and method for producing same
JP2005033217A (en) Manufacturing method of silicon semiconductor wafer
KR102017957B1 (en) Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method
EP2952883B1 (en) Calibration curve formation method, impurity concentration measurement method, and semiconductor wafer manufacturing method
TW201812941A (en) Evaluating method of carbon concentration of silicon sample, evaluating method of wafer fabrication steps, fabrication method of silicon wafer, fabrication method of single-crystalline silicon ingot, single-crystalline silicon ingot and silicon wafer
KR20160040622A (en) Method for locating a wafer in the ingot of same
TW201435984A (en) Saturation voltage estimation method and silicon epitaxial wafer manufacturing method
TW200845257A (en) Evaluation method of silicon wafer
CN1191608C (en) Silicon semiconductor base-plate and its making method
JP3716313B2 (en) Impurity concentration measurement method in silicon crystal
CN111033708B (en) Method for measuring carbon concentration
JP2018163951A (en) Crystal defect detection method of semiconductor single crystal substrate
JP7006517B2 (en) How to control the defect density in a silicon single crystal substrate
JP4346628B2 (en) Conversion coefficient determination method for calculating nitrogen concentration in silicon crystal, nitrogen concentration measuring method, silicon wafer manufacturing method, and semiconductor device manufacturing method
JPH09283584A (en) Method of measuring carbon concn. measuring method in silicon crystal
JP4346629B2 (en) Method for measuring nitrogen concentration in silicon crystal, method for determining conversion coefficient for calculating nitrogen concentration in silicon crystal, method for manufacturing silicon wafer, and method for manufacturing semiconductor device
JP7115456B2 (en) Method for measuring nitrogen concentration in silicon single crystal wafer
JP2002334886A (en) Method for evaluating oxygen deposit density in silicon wafer, and the silicon wafer manufactured based on the evaluation method
JP2006216825A (en) Evaluation method of dopant contamination of member or fixture used in heat treatment process of semiconductor wafer
JP7103314B2 (en) Carbon concentration evaluation method in silicon single crystal substrate
JP2003152043A (en) Method for evaluating silicon crystal and method for manufacturing semiconductor device
JP7218733B2 (en) Oxygen concentration evaluation method for silicon samples
JP3994139B2 (en) Evaluation method of grow-in defect density of silicon wafer
JPH0982768A (en) Evaluating method for semiconductor wafer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

R150 Certificate of patent or registration of utility model

Ref document number: 3716313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term