JP3712621B2 - Refractory structure of melting furnace - Google Patents

Refractory structure of melting furnace Download PDF

Info

Publication number
JP3712621B2
JP3712621B2 JP2001012970A JP2001012970A JP3712621B2 JP 3712621 B2 JP3712621 B2 JP 3712621B2 JP 2001012970 A JP2001012970 A JP 2001012970A JP 2001012970 A JP2001012970 A JP 2001012970A JP 3712621 B2 JP3712621 B2 JP 3712621B2
Authority
JP
Japan
Prior art keywords
refractory
slag
sic
furnace
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001012970A
Other languages
Japanese (ja)
Other versions
JP2002213878A (en
Inventor
健太郎 佐伯
直行 伊藤
敬太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001012970A priority Critical patent/JP3712621B2/en
Publication of JP2002213878A publication Critical patent/JP2002213878A/en
Application granted granted Critical
Publication of JP3712621B2 publication Critical patent/JP3712621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥、都市ごみ及び産業廃棄物等の焼却灰及び事業用火力発電プラント等の焼却炉から排出される焼却灰を溶融する溶融炉の耐火構造に関するものである。
【0002】
【従来の技術】
従来から、下水汚泥、都市ごみ及び産業廃棄物等の焼却灰は、その資源化、減容化及び無害化を図るために、灰溶融炉によって溶融され、溶融スラグ及び溶融メタルとして取り出されている。
すなわち、このような溶融炉を使用して炉本体内で焼却灰を溶融するには、例えば、ごみ焼却炉から排出された焼却灰を各種搬送手段及び供給手段等を経て炉本体内に投入し、投入された焼却灰を高温プラズマで溶融する。溶融炉内で生成された溶融スラグ及び溶融メタルは、出滓口から出滓樋を通って排出され、コンベヤを介してスラグピット及びメタルピットに導かれ、種々の利用に供されることになる。
【0003】
ところで、上記溶融炉の炉本体の内周壁は、高温に晒されることから耐火構造となっており、溶融スラグとガス雰囲気との境界線であるスラグラインの位置には、煉瓦の耐火物が配置されている。また、煉瓦の上部であって、ガス雰囲気中でも、気相部煉瓦の耐火物が配置されている。
このようなスラグライン位置煉瓦及びガス雰囲気に位置する煉瓦としては、比較的少ない量のSiCを含む素材を酸化雰囲気で焼成したものが用いられている。なお、炉本体の外周部は、スタンプ及び鉄皮を介して設けられた水冷ジャケットにより覆われ、この水冷ジャケットの内部を流通する冷却水によって炉本体の外周部を冷却している。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の溶融炉の耐火構造では、スラグ部耐火物においてSiC量の少ない耐火物中に元々存在していたSiO及び焼成中にSiCが酸化して生成したSiOが溶融スラグと反応して大きな侵食を受けていた。また、スラグ部耐火物中のSiC量が少ないと、熱伝導性が低く、冷却効果が十分でないので、侵食を助長していた。
一方、従来の気相部耐火物としてはSiC量の多いものを用いると、排ガスによる酸化がスラグ部耐火物の侵食よりも高速で進行するため、その下のスラグ部耐火物が上方及び横方向から二面加熱を受け、耐火物温度が上昇して侵食が加速することが予想された。
【0005】
本発明はこのような実状に鑑みてなされたものであり、その目的は、SiC量の多い耐火物の使用により熱伝導率が向上し、冷却効果の高まりによって寿命が延び、溶融スラグなどに対する炉本体の耐食性向上を図ることが可能な溶融炉の耐火構造を提供することにある。
【0006】
【課題を解決するための手段】
上記従来技術の有する課題を達成するために、本発明においては、炭化ケイ素骨材に金属Siと炭素を混合して成形し、かつ酸化防止剤としてSi、Al、Fe、Cのいずれか或いはすべてを含み、非酸化雰囲気で焼成されたSiC90wt%以上含む自己焼結型の耐火物を、溶融スラグとガス雰囲気との境界線付近に位置する炉本体の内周壁に配置し、前記耐火物の上部であって、ガス雰囲気中の炉本体の内周壁に酸化物系耐火物を配置し、前記耐火物と前記酸化物系耐火物との間にSiC90wt%以上の目地材を充填している。
【0008】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて詳細に説明する。ここで、図1は本発明の実施形態に係る耐火構造が適用された溶融炉を示す概略断面図である。本実施形態のプラズマ灰溶融炉1は、図1に示す如く、有底円筒状に形成された耐火構造の炉本体2を有しており、該炉本体2の下部側面には、溶融スラグ3、溶融メタル4及び排ガス5を排出する出滓口6と下り傾斜の出滓樋7が設けられている。溶融スラグ3は、溶融炉1の炉本体2から出滓口6を経て溢れ出るオーバフロー方式で排出されるようになっている。
また、炉本体2の上下部中央には、図示しない直流電源装置に接続される主電極8及び炉底電極9が配設され、主電極8には図示しない窒素ガス発生装置から窒素ガスが送給されるように構成されており、投入された焼却灰を高温プラズマ10で加熱することによって溶融するようになっている。このため、炉本体2の出滓口6と反対側の上部側面には、廃棄物などの焼却灰を炉本体2内に投入する灰投入口等(図示せず)が設けられている。
【0009】
上記炉本体2の内周壁は、溶融スラグ3とガス雰囲気11との境界線であるスラグラインLの高さ位置付近に設けられるスラグ部煉瓦12や、該スラグ部煉瓦12の上部に設置される気相部煉瓦13などの耐火物を周方向に沿って隙間なく多数個配置し、かつ積み重ねることによって構成されており、上下及び周方向の隣接する煉瓦同士間には目地材(モルタル)14が充填されている。そして、炉本体2の外周部は、充填材のスタンプ15及び鉄皮を介して設けられた水冷ジャケット16によって覆われており、この水冷ジャケット16の内部を流通する冷却水によって炉本体2の外周部が冷却されている。
【0010】
上記スラグ部煉瓦12は、高温(1400〜1600゜C)の溶融スラグ3と接触する箇所に設けられている。そのため、スラグ部煉瓦12としては、SiC90wt%以上、好ましくはSiC95wt%が含まれ、かつ非酸化雰囲気で焼成された自己結合型(セルフボンディング)、或いは窒化ケイ素結合型の耐火物が用いられている。SiC量が90wt%以下であると、溶融スラグ3に対する耐食性が十分でなく、炉本体2の冷却効果も不十分となる。
【0011】
窒化ケイ素結合型は、炭化ケイ素骨材に金属Siを混合して成形すると共に、窒素雰囲気中で加熱し、Siを形成して結合材とする方法である。自己焼結型は、炭化ケイ素骨材に金属Siと炭素を混合して成形すると共に、非酸化雰囲気中(カーボンブリーズと一緒に耐火物を焼成する場合も含む)で加熱し、SiCを形成する方法である。
しかも、スラグ部煉瓦12間の目地材14は、SiC90wt%以上のモルタルで形成されている。なお、酸化防止剤として、Si,Al,Fe,Cのいずれか、或いはすべてを含む。
【0012】
また、上記気相部煉瓦13は、ガス雰囲気11中の排ガス5と接触する箇所にクロムなどを含む酸化物系耐火物が用いられている。本実施形態のプラズマ溶融炉1では、灰がスラグ内を流れる電流のジュール発熱によって溶融するため、スラグは灰の溶融温度である1250℃以上(1400〜1600℃程度)であり、耐火物表面温度は1000〜1100℃程度であったことになる。また、炉内は還元雰囲気で、雰囲気温度はスラグ温度よりも低い1000〜1300℃程度であった。スラグはオーバフローで出滓されるため、出滓状況によって数十mm程度上下することもあるが、液面は基本的には一定である。
【0013】
本発明の実施形態に係る溶融炉1の耐火構造では、炉本体2の内周壁を構成する耐火物のうち、溶融スラグ3の高温に晒されるスラグラインL付近に、SiC90wt%以上を含み、非酸化雰囲気で焼成した自己結合型或いは窒化結合型のスラグ部煉瓦12が配置され、スラグ部煉瓦12の上部で排ガス5の影響を受けるガス雰囲気11中に酸化物系耐火物の気相部煉瓦13が配置されているため、溶融スラグ3及び排ガス5に対する耐食性を向上させることができる。
この結果は、図2及び3で示されている。図2は、スラグ部煉瓦12についてSiC含有量が増大した場合の侵食グラフを示したものであり、試験温度が1250℃、1300℃、1400℃及び1500℃のいずれの場合も、SiC含有量が90wt%以上であると、侵食量が低減していることが分かる。また、図3は、気相部についてSiCとCrを比較した侵食データを示したものであり、SiC系耐火物よりもクロムなどを含む酸化物系耐火物の方が侵食量は小さく、気相部煉瓦13としては、後者のクロムなどを含む酸化物系耐火物を用いた方が良いことが分かる。
しかも、本実施形態の耐火構造では、スラグ部煉瓦12の存在により溶融スラグ3に対する濡れ性が悪くなり、溶融スラグ3の浸透を抑制すると共に高硬度であるため、高硬度が増してスラグ流動に対する耐磨耗性を高く、炉本体2の耐久性向上を図ることができる。
また、本実施形態の耐火構造では、SiC量の多い耐火物を用いているため、熱伝導性の向上に伴い冷却効果を高めることができると共に、炉本体2の寿命を延ばすことができる。しかも、スラグ部煉瓦12間には、SiC90wt%以上の目地材14が充填されているため、目地材14の損傷によって溶融スラグ3がこれら煉瓦の間に侵入するのを防ぎ、炉本体2の耐久性をより一層向上させることができる。
【0014】
以上、本発明の実施形態につき述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、既述の実施形態では、プラズマ灰溶融炉1の炉本体2に適用したが、本発明の耐火構造は、プラズマ灰溶融炉以外の抵抗溶融炉、アーク式溶融炉などの溶融炉に適用しても良い。
【0015】
【発明の効果】
上述の如く、本発明に係る溶融炉の耐火構造は、炭化ケイ素骨材に金属Siと炭素を混合して成形し、かつ酸化防止剤としてSi、Al、Fe、Cのいずれか或いはすべてを含み、非酸化雰囲気で焼成されたSiC90wt%以上含む自己焼結型の耐火物を、溶融スラグとガス雰囲気との境界線付近に位置する炉本体の内周壁に配置し、前記耐火物の上部であって、ガス雰囲気中の炉本体の内周壁に酸化物系耐火物を配置し、前記耐火物と前記酸化物系耐火物との間にSiC90wt%以上の目地材を充填しているので、熱伝導率が向上し、冷却効果が高まると共に、溶融スラグに対する耐食性及び耐摩耗性が向上し、炉本体の寿命を延ばすことができると共に、溶融スラグによる目地材の損傷を避けることが可能となり、溶融スラグがスラグ部の耐火物間に侵入するのを防ぎ、炉本体の耐久性をより一層向上させることができる。しかも、本発明の耐火構造によれば、スラグ部の耐火物が上方および横方向の二面から加熱を受けて温度上昇して加速度的に侵食されることを防止できる
【図面の簡単な説明】
【図1】本発明の実施形態に係る耐火構造が適用された溶融炉を示す断面図である。
【図2】スラグ部の耐火物について、SiC含有量と侵食量との関係を示す侵食グラフである。
【図3】気相部について、SiCとCrを比較した場合の侵食量を示す線図である。
【符号の説明】
1 プラズマ灰溶融炉
2 炉本体
3 溶融スラグ
4 溶融メタル
11 ガス雰囲気
12 スラグ部煉瓦
13 気相部煉瓦
14 目地材
L スラグライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory structure of a melting furnace for melting incineration ash such as sewage sludge, municipal waste and industrial waste, and incineration ash discharged from an incinerator such as a commercial thermal power plant.
[0002]
[Prior art]
Conventionally, incineration ash such as sewage sludge, municipal waste, and industrial waste has been melted by an ash melting furnace and taken out as molten slag and molten metal in order to achieve resource recycling, volume reduction, and detoxification. .
That is, in order to melt the incineration ash in the furnace body using such a melting furnace, for example, the incineration ash discharged from the waste incinerator is introduced into the furnace body through various conveying means and supply means. The injected incineration ash is melted with high-temperature plasma. The molten slag and molten metal generated in the melting furnace are discharged from the tap through the tap, led to the slag pit and metal pit via the conveyor, and used for various purposes. .
[0003]
By the way, the inner peripheral wall of the furnace body of the melting furnace has a fireproof structure because it is exposed to high temperature, and a brick refractory is placed at the position of the slag line that is the boundary line between the molten slag and the gas atmosphere. Has been. In addition, a refractory material for a gas phase brick is disposed in the upper part of the brick and in a gas atmosphere.
As such a slag line position brick and a brick located in a gas atmosphere, a material containing a relatively small amount of SiC fired in an oxidizing atmosphere is used. In addition, the outer peripheral part of the furnace main body is covered with a water cooling jacket provided via a stamp and an iron skin, and the outer peripheral part of the furnace main body is cooled by cooling water flowing through the inside of the water cooling jacket.
[0004]
[Problems to be solved by the invention]
However, in the refractory structure of the conventional melting furnace mentioned above, SiO 2 and a molten slag SiC to SiO 2 and during firing were present originally in a small refractory of SiC amount at the slag part refractories are generated by oxidation In response, she was eroded. Further, if the amount of SiC in the slag part refractory is small, the thermal conductivity is low and the cooling effect is not sufficient, which promotes erosion.
On the other hand, when using a large amount of SiC as the conventional vapor phase refractory, oxidation by exhaust gas proceeds at a higher speed than erosion of the slag portion refractory, so that the slag portion refractory below is upward and lateral The refractory temperature increased and the erosion was expected to accelerate due to two-sided heating.
[0005]
The present invention has been made in view of such a situation, and an object of the present invention is to improve the thermal conductivity by using a refractory material with a large amount of SiC, to extend the life by increasing the cooling effect, and to provide a furnace for molten slag and the like. An object of the present invention is to provide a refractory structure for a melting furnace capable of improving the corrosion resistance of a main body.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described problems of the prior art, in the present invention, silicon carbide aggregate is formed by mixing metal Si and carbon, and any or all of Si, Al, Fe, and C as antioxidants. hints, calcined in a non-oxidizing atmosphere, place a 90 wt% or more including self-sintering type refractories of the SiC, the inner peripheral wall of the furnace body located near the boundary line between the molten slag and the gas atmosphere, the An oxide-based refractory is disposed on the inner peripheral wall of the furnace body in a gas atmosphere at the top of the refractory, and a joint material of SiC 90 wt% or more is filled between the refractory and the oxide-based refractory. ing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on illustrated embodiments. Here, FIG. 1 is a schematic sectional view showing a melting furnace to which the fireproof structure according to the embodiment of the present invention is applied. As shown in FIG. 1, the plasma ash melting furnace 1 of the present embodiment has a furnace body 2 having a fireproof structure formed in a bottomed cylindrical shape, and a molten slag 3 is provided on a lower side surface of the furnace body 2. An outlet 6 for discharging the molten metal 4 and the exhaust gas 5 and an outlet 7 having a downward slope are provided. The molten slag 3 is discharged from the furnace body 2 of the melting furnace 1 by an overflow method that overflows through the outlet 6.
In addition, a main electrode 8 and a furnace bottom electrode 9 connected to a DC power supply device (not shown) are disposed at the upper and lower centers of the furnace body 2, and nitrogen gas is sent to the main electrode 8 from a nitrogen gas generator (not shown). It is comprised so that it may be supplied, and when the incinerated ash thrown in is heated with the high temperature plasma 10, it will fuse | melt. For this reason, an ash charging port (not shown) for charging incineration ash such as waste into the furnace body 2 is provided on the upper side surface of the furnace body 2 opposite to the tap hole 6.
[0009]
The inner peripheral wall of the furnace body 2 is installed on the slag brick 12 provided in the vicinity of the height position of the slag line L, which is a boundary line between the molten slag 3 and the gas atmosphere 11, or on the slag brick 12. A large number of refractories such as gas phase bricks 13 are arranged without gaps along the circumferential direction and stacked, and joint material (mortar) 14 is provided between adjacent bricks in the vertical and circumferential directions. Filled. The outer peripheral portion of the furnace main body 2 is covered with a water cooling jacket 16 provided via a filler stamp 15 and an iron skin, and the outer periphery of the furnace main body 2 is cooled by cooling water flowing inside the water cooling jacket 16. The part is cooled.
[0010]
The said slag part brick 12 is provided in the location which contacts the molten slag 3 of high temperature (1400-1600 degreeC). Therefore, as the slag portion brick 12, a self-bonding type (self-bonding) or silicon nitride-bonded refractory containing SiC of 90 wt% or more, preferably SiC of 95 wt% and fired in a non-oxidizing atmosphere is used. . When the SiC amount is 90 wt% or less, the corrosion resistance against the molten slag 3 is not sufficient, and the cooling effect of the furnace body 2 is also insufficient.
[0011]
The silicon nitride bonding type is a method in which silicon carbide aggregate is mixed with metal Si and molded, and heated in a nitrogen atmosphere to form Si 3 N 4 to form a bonding material. The self-sintering mold is formed by mixing silicon carbide aggregate with metal Si and carbon, and heating in a non-oxidizing atmosphere (including firing refractories together with carbon breaths) to form SiC. Is the method.
And the joint material 14 between the slag part bricks 12 is formed with the mortar of SiC 90 wt% or more. As the antioxidant, any or all of Si, Al, Fe, and C are included.
[0012]
Further, the gas phase brick 13 is made of an oxide refractory containing chromium or the like at a location in contact with the exhaust gas 5 in the gas atmosphere 11. In the plasma melting furnace 1 of the present embodiment, ash is melted by Joule heat generation of current flowing in the slag, so the slag is not less than 1250 ° C. (about 1400 to 1600 ° C.) which is the melting temperature of the ash, and the refractory surface temperature It was about 1000-1100 degreeC. Further, the inside of the furnace was a reducing atmosphere, and the atmosphere temperature was about 1000 to 1300 ° C., which was lower than the slag temperature. Since the slag is overflowed, the slag may rise and fall by several tens of millimeters depending on the output situation, but the liquid level is basically constant.
[0013]
In the refractory structure of the melting furnace 1 according to the embodiment of the present invention, the refractory constituting the inner peripheral wall of the furnace body 2 includes SiC 90 wt% or more in the vicinity of the slag line L exposed to the high temperature of the molten slag 3, A self-bonding or nitriding bond-type slag brick 12 fired in an oxidizing atmosphere is disposed, and a gas-phase brick 13 of an oxide-based refractory in a gas atmosphere 11 affected by the exhaust gas 5 above the slag brick 12. Therefore, the corrosion resistance against the molten slag 3 and the exhaust gas 5 can be improved.
This result is shown in FIGS. FIG. 2 shows an erosion graph when the SiC content is increased for the slag brick 12, and the SiC content is any when the test temperatures are 1250 ° C., 1300 ° C., 1400 ° C., and 1500 ° C. It turns out that the amount of erosion is reducing that it is 90 wt% or more. Further, FIG. 3 shows erosion data comparing SiC and Cr 2 O 3 in the gas phase part, and the erosion amount of the oxide refractory containing chromium is smaller than that of the SiC refractory. It can be seen that it is better to use the latter oxide-based refractory containing chromium or the like as the vapor phase brick 13.
Moreover, in the fireproof structure of the present embodiment, the wettability with respect to the molten slag 3 is deteriorated due to the presence of the slag brick 12, the penetration of the molten slag 3 is suppressed and the hardness is high, and thus the high hardness increases and the slag flow is prevented. Abrasion resistance is high, and durability of the furnace body 2 can be improved.
In addition, since the refractory structure having a large amount of SiC is used in the refractory structure of the present embodiment, the cooling effect can be enhanced along with the improvement of thermal conductivity, and the life of the furnace body 2 can be extended. Moreover, since the joint material 14 of SiC 90 wt% or more is filled between the slag part bricks 12, it prevents the molten slag 3 from entering between these bricks due to the damage of the joint material 14, and the durability of the furnace body 2. Property can be further improved.
[0014]
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. For example, in the above-described embodiment, the present invention is applied to the furnace body 2 of the plasma ash melting furnace 1, but the refractory structure of the present invention is applied to a melting furnace such as a resistance melting furnace other than the plasma ash melting furnace or an arc type melting furnace. You may do it.
[0015]
【The invention's effect】
As described above, the refractory structure of the melting furnace according to the present invention is formed by mixing silicon carbide aggregate with metal Si and carbon, and includes any or all of Si, Al, Fe, and C as an antioxidant. It was calcined in a non-oxidizing atmosphere, to place the SiC of 90 wt% or more including self-sintering type refractory material, the inner peripheral wall of the furnace body located near the boundary line between the molten slag and the gas atmosphere, the refractory An oxide refractory is disposed on the inner peripheral wall of the furnace main body in a gas atmosphere, and a joint material of SiC 90 wt% or more is filled between the refractory and the oxide refractory . Therefore, the thermal conductivity is improved, the cooling effect is enhanced, the corrosion resistance and wear resistance against the molten slag are improved, the life of the furnace body can be extended, and damage to the joint material due to the molten slag can be avoided. And the molten slag It is possible to prevent the slag portion from entering between the refractories and further improve the durability of the furnace body. In addition , according to the fireproof structure of the present invention, it is possible to prevent the refractory in the slag portion from being heated from the two upper and lateral surfaces to rise in temperature and eroded at an accelerated rate .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a melting furnace to which a refractory structure according to an embodiment of the present invention is applied.
FIG. 2 is an erosion graph showing the relationship between the SiC content and the erosion amount of the refractory in the slag part.
FIG. 3 is a diagram showing the amount of erosion when SiC and Cr 2 O 3 are compared in the gas phase part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma ash melting furnace 2 Furnace main body 3 Molten slag 4 Molten metal 11 Gas atmosphere 12 Slag part brick 13 Gas phase part brick 14 Joint material L Slag line

Claims (1)

炭化ケイ素骨材に金属Siと炭素を混合して成形し、かつ酸化防止剤としてSi、Al、Fe、Cのいずれか或いはすべてを含み、非酸化雰囲気で焼成されたSiC90wt%以上含む自己焼結型の耐火物を、溶融スラグとガス雰囲気との境界線付近に位置する炉本体の内周壁に配置し、前記耐火物の上部であって、ガス雰囲気中の炉本体の内周壁に酸化物系耐火物を配置し、前記耐火物と前記酸化物系耐火物との間にSiC90wt%以上の目地材を充填していることを特徴とする溶融炉の耐火構造。 A mixture of metal Si and carbon and formed into silicon carbide aggregate, and including Si, Al, Fe, either or all of the C as an antioxidant, was fired in a non-oxidizing atmosphere, the SiC least 90 wt% including The self-sintering refractory is disposed on the inner peripheral wall of the furnace body located near the boundary line between the molten slag and the gas atmosphere, and is the upper part of the refractory and the inner peripheral wall of the furnace body in the gas atmosphere. A refractory structure for a melting furnace, characterized in that an oxide-based refractory is disposed on the surface, and a joint material of SiC 90 wt% or more is filled between the refractory and the oxide-based refractory .
JP2001012970A 2001-01-22 2001-01-22 Refractory structure of melting furnace Expired - Lifetime JP3712621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012970A JP3712621B2 (en) 2001-01-22 2001-01-22 Refractory structure of melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012970A JP3712621B2 (en) 2001-01-22 2001-01-22 Refractory structure of melting furnace

Publications (2)

Publication Number Publication Date
JP2002213878A JP2002213878A (en) 2002-07-31
JP3712621B2 true JP3712621B2 (en) 2005-11-02

Family

ID=18879899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012970A Expired - Lifetime JP3712621B2 (en) 2001-01-22 2001-01-22 Refractory structure of melting furnace

Country Status (1)

Country Link
JP (1) JP3712621B2 (en)

Also Published As

Publication number Publication date
JP2002213878A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
RU2002125939A (en) METHOD AND DEVICE FOR PRODUCING A MELTED IRON
JP4723893B2 (en) Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace
JP5027861B2 (en) Refractory structure of waste melting furnace
JP3712621B2 (en) Refractory structure of melting furnace
JP6429190B2 (en) Electric furnace for melting steelmaking slag
JP3970542B2 (en) Furnace wall structure of electric melting furnace and method for suppressing wear of furnace wall refractories
JP2528586B2 (en) Electric melting furnace
JP3726778B2 (en) Hot metal holding container
JP2001263620A (en) Plasma arc melting furnace
JP3778698B2 (en) Incineration residue melting furnace
JP5473271B2 (en) Electric heating device
CN110906740A (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
US1542562A (en) Furnace for melting and treating ores and metals generally
JP3120024B2 (en) Fly ash melting equipment
JP3857089B2 (en) Ash melting treatment method and ash melting treatment apparatus
JP2006300410A (en) Ash melting furnace
JPH0532511Y2 (en)
JP2000283425A (en) Slag hole
JP2004150755A (en) Ash melting furnace
JP2000283448A (en) Slag hole and method for replacing the same
KR880000948Y1 (en) Water-cooled refractory lined furnaces
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
JP2005055173A (en) Ash melting furnace
JPH0835642A (en) Incineration ash melting furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R151 Written notification of patent or utility model registration

Ref document number: 3712621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term