JPH0532511Y2 - - Google Patents

Info

Publication number
JPH0532511Y2
JPH0532511Y2 JP15088986U JP15088986U JPH0532511Y2 JP H0532511 Y2 JPH0532511 Y2 JP H0532511Y2 JP 15088986 U JP15088986 U JP 15088986U JP 15088986 U JP15088986 U JP 15088986U JP H0532511 Y2 JPH0532511 Y2 JP H0532511Y2
Authority
JP
Japan
Prior art keywords
furnace
molten slag
bricks
wall
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15088986U
Other languages
Japanese (ja)
Other versions
JPS6357496U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15088986U priority Critical patent/JPH0532511Y2/ja
Publication of JPS6357496U publication Critical patent/JPS6357496U/ja
Application granted granted Critical
Publication of JPH0532511Y2 publication Critical patent/JPH0532511Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ロツクウール製造用等の目的で溶融
スラグを処理する際に使用する溶融スラグ加熱炉
の内壁のれんが積み構造に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a brickwork structure for the inner wall of a molten slag heating furnace used for processing molten slag for purposes such as rock wool production.

〔従来の技術〕[Conventional technology]

高炉から多量に発生する溶融スラグを、溶融状
態のままで電気炉等の加熱炉に投入することによ
り、エネルギー消費を少なくしたロツクウール製
造方法が注目されている(特開昭59−189282号公
報、特開昭59−189284号公報参照)。
A method of manufacturing rock wool that reduces energy consumption by charging molten slag, which is generated in large quantities from a blast furnace, in a molten state into a heating furnace such as an electric furnace is attracting attention (Japanese Patent Application Laid-open No. 189282/1983, (Refer to Japanese Patent Application Laid-open No. 189284/1984).

第2図は、このロツクウール製造に使用される
装置として、本考案者等が特願昭60−291691号で
提案した電気炉である。
FIG. 2 shows an electric furnace proposed by the present inventors in Japanese Patent Application No. 1983-291691 as an apparatus used for producing this rock wool.

電気炉1の本体に設けられた溶融スラグ挿入装
置2に、高炉等から排出された溶融スラグを鍋車
3等の搬送手段によつて搬送し、注入する。そし
て、ストツパー4を調節して、溶融スラグ装入装
置2から適量の溶融スラグを、電気炉1内に装入
する。電気炉1内に装入された溶融スラグは、装
入管5を介して装入された予熱珪石等の成分調整
剤と共に、ガス導入管6から吹き込まれた不活性
ガスによつて攪拌される。また、炉内の溶融スラ
グが所定の温度を維持するように、加熱手段とし
て電極7を電気炉1内部に装入している。
Molten slag discharged from a blast furnace or the like is transported and injected into a molten slag insertion device 2 provided in the main body of an electric furnace 1 using a transport means such as a pan car 3. Then, by adjusting the stopper 4, an appropriate amount of molten slag is charged into the electric furnace 1 from the molten slag charging device 2. The molten slag charged into the electric furnace 1 is stirred by the inert gas blown from the gas introduction pipe 6 together with the component adjusting agent such as preheated silica stone charged through the charging pipe 5. . Further, an electrode 7 is inserted into the electric furnace 1 as a heating means so that the molten slag in the furnace is maintained at a predetermined temperature.

この電気炉1内で加熱・成分調整された原料溶
融物8は、流体シリンダ等の傾動機構9の駆動に
より電気炉1を傾動させて、流出口10から製綿
機11に排出される。他方、装入された溶融スラ
グに含まれている溶銑は、炉内で溶融スラグから
分離し炉底に堆積する。この溶銑12は、電気炉
1を適宜逆傾動させることにより、出銑口13か
ら排出される。なお、符番14は、この出銑口1
3を開口する開孔機を示す。
The molten raw material 8 heated and component-adjusted in the electric furnace 1 is discharged from the outlet 10 to the cotton mill 11 by tilting the electric furnace 1 by driving a tilting mechanism 9 such as a fluid cylinder. On the other hand, hot metal contained in the charged molten slag is separated from the molten slag in the furnace and deposited on the bottom of the furnace. This hot metal 12 is discharged from the tap hole 13 by appropriately tilting the electric furnace 1 in reverse. In addition, the code number 14 indicates this taphole 1.
3 is shown.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

この溶融スラグ加熱炉の内壁は、溶融スラグに
接触することから、耐スラグ侵食性に優れた黒鉛
質れんがで構築している。そして、炉内を還元性
又は不活性雰囲気に維持して、黒鉛質れんがの酸
化を防止しながら操業している。しかし、この種
の加熱炉においては、前述したように溶融スラグ
装入装置2、副原料装入管5、ガス導入管6、電
極7等を炉体上部に装備させるために、その天井
に多数の開口が設けられている。更に、この外に
排ガスを炉外に導く排気口、炉内点検用マンホー
ル、炉内監視用孔等を炉蓋に設けることが必要と
される場合もある。
The inner walls of this molten slag heating furnace are constructed of graphite bricks that have excellent slag erosion resistance because they come into contact with molten slag. The inside of the furnace is maintained in a reducing or inert atmosphere to prevent oxidation of the graphite bricks during operation. However, in this type of heating furnace, in order to equip the molten slag charging device 2, auxiliary raw material charging pipe 5, gas introduction pipe 6, electrode 7, etc. on the upper part of the furnace body, a large number of them are mounted on the ceiling. An opening is provided. Furthermore, in addition to this, it may be necessary to provide the furnace lid with an exhaust port for guiding exhaust gas out of the furnace, a manhole for inspecting the inside of the furnace, a hole for monitoring the inside of the furnace, and the like.

そのため、炉蓋の開口部を介して外気が侵入す
ることは避けられない。また、定期的な炉内高温
下での内部点検、れんが侵食量の測定、溶融物の
サンプリング等のときには、炉内の不活性雰囲気
を維持した正圧状態で操業することは非常に困難
である。更に、操業を一定期間継続した後で炉内
の溶融スラグ及び溶銑を全量排出し、流出口にあ
る水冷銅ノズルの交換、電極直下部にある炉底れ
んがの侵食状態の調査、出銑口部れんがの取替え
等の作業が必要となるが、このような作業の際に
外気の侵入を完全に防止することができない。
Therefore, it is inevitable that outside air will enter through the opening in the furnace lid. Furthermore, when performing periodic internal inspections under high temperatures inside the furnace, measuring the amount of brick erosion, sampling molten material, etc., it is extremely difficult to operate under positive pressure while maintaining an inert atmosphere inside the furnace. . Furthermore, after continued operation for a certain period of time, all of the molten slag and hot metal in the furnace were discharged, the water-cooled copper nozzle at the outlet was replaced, the corrosion state of the furnace bottom brick directly below the electrode was investigated, and the taphole area was investigated. Work such as replacing bricks is required, but it is not possible to completely prevent outside air from entering during such work.

また、溶融スラグを調質する反応の過程で、酸
素、炭酸ガス等の酸化性ガスを発生するため、通
常操業時は炉内を非酸化性雰囲気に維持している
にも拘らず、酸素、炭素ガス等により黒鉛質れん
がが酸化され、スラグに容易に侵食される状態に
なる。このような酸化は、溶融スラグの湯面に接
する個所の内壁において、特に顕著にみられる。
In addition, during the reaction process of refining molten slag, oxidizing gases such as oxygen and carbon dioxide are generated. Graphite bricks are oxidized by carbon gas and become easily corroded by slag. Such oxidation is particularly noticeable on the inner wall of the molten slag in contact with the molten metal surface.

そこで、本考案は、酸化及びスラグによる侵食
を防止し、耐久性のある溶融スラグ加熱炉を提供
することを目的とする。
Therefore, an object of the present invention is to provide a durable molten slag heating furnace that prevents oxidation and slag erosion.

〔問題点を解決するための手段〕[Means for solving problems]

本考案のれんが積み構造は、その目的を達成す
るために、炉内を不活性雰囲気に維持し、溶融ス
ラグを副原料を添加しながら高温保持して均質化
を行つた後、得られた溶融物の一定量を連続的に
排出する溶融スラグ加熱炉において、炉内上部及
び湯面近傍の内壁を炭化珪素質れんがで構築し、
前記湯面近傍以下の内壁を黒鉛質れんがで構築し
たことを特徴とする。
In order to achieve this purpose, the brickwork structure of the present invention maintains the inside of the furnace in an inert atmosphere, and homogenizes the molten slag by maintaining it at a high temperature while adding auxiliary materials. In a molten slag heating furnace that continuously discharges a certain amount of material, the upper part of the furnace and the inner wall near the molten metal surface are constructed of silicon carbide bricks.
It is characterized in that the inner wall below the vicinity of the hot water level is constructed of graphite bricks.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本考
案の特徴を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

溶融スラグ加熱炉は、炉内の溶融スラグ湯面8
aを一定に維持しながら処理を行うために、炉内
の溶融スラグが少なくなつたときには、加熱炉を
傾動させながら溶融スラグを装入する。また、処
理された溶融スラグを排出するときには、第2図
において加熱1を右に傾動させる。他方、溶融ス
ラグから分離した溶銑を排出する際には、加熱炉
1を左に傾動させる。
The molten slag heating furnace has a molten slag surface 8 in the furnace.
In order to carry out the treatment while maintaining a constant, when the amount of molten slag in the furnace becomes low, molten slag is charged while tilting the heating furnace. Moreover, when discharging the treated molten slag, the heating 1 is tilted to the right in FIG. On the other hand, when discharging the hot metal separated from the molten slag, the heating furnace 1 is tilted to the left.

このように溶融スラグ湯面8aは広範囲にわた
つて内壁を上下方向に移動する。そこで、本実施
例にあつては、第1図に示すように、この溶融ス
ラグ湯面8aの最低位置8b以上の内壁を、炭化
珪素質れんがAで構築する。この炭化珪素質れん
がAとしては、たとえば炭化珪素35〜60重量%、
人造黒鉛20〜35重量%、金属珪素3〜13重量%、
焙焼無煙炭0〜35重量%の組成のものが使用され
る。
In this way, the molten slag surface 8a moves vertically along the inner wall over a wide range. Therefore, in this embodiment, as shown in FIG. 1, the inner wall above the lowest position 8b of the molten slag surface 8a is constructed of silicon carbide bricks A. As this silicon carbide brick A, for example, 35 to 60% by weight of silicon carbide,
Artificial graphite 20-35% by weight, metallic silicon 3-13% by weight,
The composition of roasted anthracite 0 to 35% by weight is used.

この炭化珪素質れんがAは、耐酸化性に優れた
ものであり、炉内雰囲気に多少の酸素等の酸化性
ガスが含まれていても、酸化により劣化すること
が少ない。また、スラグによる侵食に対しても充
分な耐用性をもつ。
This silicon carbide brick A has excellent oxidation resistance and is unlikely to deteriorate due to oxidation even if the atmosphere in the furnace contains some oxidizing gas such as oxygen. It also has sufficient resistance to erosion by slag.

ただし、炭化珪素質れんがAで内壁全体を構築
すると、熱伝導率が比較的高いために、特に炉壁
が薄くなつている流出口10や出銑口13の近傍
で溶融スラグの熱が外部に放散されることにな
る。そのため、溶融スラグや溶銑の温度降下に伴
う流動性の低下が生じ、出湯状態が不安定にな
る。この欠点を補うため、本実施例においては、
流出口10や出銑口13の近傍を、熱伝導率が比
較的小さい黒鉛質れんがBで構築している。
However, if the entire inner wall is constructed with silicon carbide bricks A, the heat of the molten slag will be transferred to the outside, especially near the outlet 10 and the tap hole 13, where the furnace wall is thin, due to its relatively high thermal conductivity. It will be dissipated. Therefore, the fluidity of the molten slag and hot metal decreases as the temperature decreases, making the tapping state unstable. In order to compensate for this drawback, in this example,
The vicinity of the outlet 10 and the tap hole 13 is constructed of graphite brick B, which has a relatively low thermal conductivity.

また、流出口10や出銑口13の近傍のみに黒
鉛質れんがを配置すると、それが炭化珪素質れん
がと接する個所で、両者間に熱膨張差が生じる。
そのため、れんがの縦目地部が切れ、溶融スラ
グ、溶銑等の目地差し、混入等の問題が発生す
る。そこで、湯面の最低位置8b以下の内壁全体
を黒鉛質れんがBが構築している。また、このよ
うに構築するとき、炭化珪素質れんがで炉内壁全
体を構築する場合に比較して、築炉費用が低減さ
れる。
Furthermore, if graphite bricks are placed only in the vicinity of the outlet 10 and the tap hole 13, a difference in thermal expansion will occur between the graphite bricks and the silicon carbide bricks at the locations where they are in contact with the silicon carbide bricks.
As a result, the vertical joints of the bricks are cut, causing problems such as molten slag, hot metal, etc. entering the joints. Therefore, graphite bricks B are used to construct the entire inner wall below the lowest point 8b of the hot water level. Moreover, when constructing in this manner, the cost of constructing the furnace is reduced compared to the case where the entire inner wall of the furnace is constructed from silicon carbide bricks.

この黒鉛質れんがBとしては、たとえば次の組
成又はをもつものが使用される。
As this graphite brick B, for example, one having the following composition or composition is used.

組成 組成 焙焼無煙炭 90〜80重量% 80〜85重量% 天然黒鉛 − 7〜10重量% 人造黒鉛 10〜20重量% − アルミナ粉 − 4〜5重量% 金属珪素粉 − 4〜5重量% この黒鉛質れんがが、炭化珪素質れんがに比較
すると耐酸化性には劣るが、酸化されない状態で
はスラグによる侵食に対して優れた抵抗を示す。
また、熱伝導率が炭化珪素質れんがに比較して小
さいので、これを肉厚の小さい内壁部分、特に流
出口10及び出銑口13近傍に使用すると、溶融
スラグの熱がその内壁を介して放散される割合も
少なくなる。更に、この黒鉛質れんがは、溶銑に
対しても充分な抵抗力を示す。そのため、炉内に
装入された溶融スラグから分離して炉底に堆積し
た溶銑により劣化することもほとんどない。
Composition Composition Roasted anthracite 90-80% by weight 80-85% by weight Natural graphite - 7-10% by weight Artificial graphite 10-20% by weight - Alumina powder - 4-5% by weight Silicon metal powder - 4-5% by weight This graphite Plain bricks have inferior oxidation resistance compared to silicon carbide bricks, but in the unoxidized state they exhibit excellent resistance to erosion by slag.
In addition, since the thermal conductivity is lower than that of silicon carbide bricks, if this brick is used in the inner wall portion with a small wall thickness, especially near the outlet 10 and the tap hole 13, the heat of the molten slag will be transferred through the inner wall. The rate of radiation is also reduced. Furthermore, this graphite brick exhibits sufficient resistance to hot metal. Therefore, there is almost no deterioration due to molten pig iron separated from the molten slag charged into the furnace and deposited on the bottom of the furnace.

このように、加熱炉の内壁に使用する耐火物と
して、炭化珪素質れんがA及び黒鉛質れんがBを
組み合わせることにより、耐久性に優れ且つ熱効
率の良い溶融スラグ加熱炉が得られる。
Thus, by combining silicon carbide bricks A and graphite bricks B as refractories used for the inner wall of the heating furnace, a molten slag heating furnace with excellent durability and high thermal efficiency can be obtained.

たとえば、炉内高さが1300mm、通常時の溶融ス
ラグ湯面8aの高さが750mmで、炉底から湯面の
最低位置8bまでが500mmの電気炉において、湯
面の最低位置8b以上の内壁を炭化珪素質れんが
Aで構築し、それより下方の内壁を電気炉の電極
等に使用されているものと同材質の黒鉛質れんが
Bにより構築した。ただし、炭化珪素質れんがA
及び黒鉛質れんがBは、それぞれ次の組成を持つ
ものであつた。
For example, in an electric furnace where the height inside the furnace is 1300 mm, the normal height of the molten slag surface 8a is 750 mm, and the distance from the bottom of the furnace to the lowest point 8b of the molten metal surface is 500 mm, the inner wall above the lowest point 8b of the molten metal surface was constructed from silicon carbide bricks A, and the inner wall below it was constructed from graphite bricks B, which are the same material used for electrodes in electric furnaces. However, silicon carbide brick A
and graphite brick B had the following compositions.

炭化珪素質れんがA 黒鉛質れんがB 焙焼無煙炭 30重量% 焙焼無煙炭 90重量% 炭化珪素 40重量% 人造黒鉛 10重量% 人造黒鉛 25重量% 金属珪素 5重量% このように2種のれんがにより構成された内壁
をもつ電気炉を4000時間使用した後、その内壁の
損傷状態を検査したところ、溶融スラグの湯面が
移動する範囲にある炭化珪素質れんがAは、40mm
の深さで侵食されたにすぎなつた。
Silicon carbide brick A Graphite brick B Roasted anthracite 30% by weight Roasted anthracite 90% by weight Silicon carbide 40% by weight Artificial graphite 10% by weight Artificial graphite 25% by weight Silicon metal 5% by weight As shown above, it is composed of two types of bricks. After using the electric furnace with the inner wall for 4,000 hours, we inspected the damage on the inner wall and found that the silicon carbide brick A in the area where the molten slag surface moves is 40 mm
It was only eroded to a depth of .

これに対して、内壁全体を黒鉛質れんがにより
構築した電気炉にあつては、同一条件下の損傷深
さは160mmであつた。
In contrast, in an electric furnace whose entire inner wall was constructed of graphite bricks, the damage depth was 160 mm under the same conditions.

〔考案の効果〕[Effect of idea]

以上に説明したように、本考案においては、溶
融スラグ加熱炉の内壁を湯面の最低位置から上と
下とに区分し、上方部を炭化珪素質れんがで構築
し、下方部を黒鉛質れんがで構築している。これ
により、酸化による黒鉛質れんがの劣化を招くこ
となく、耐スラグ侵食性、耐溶銑性等の優れた性
質を充分に発揮させることができる。このように
構築された加熱炉は、優れた耐久性をもつことか
ら、補修回数を低減させることが可能となり、そ
の稼動効率が向上する。
As explained above, in the present invention, the inner wall of the molten slag heating furnace is divided into upper and lower parts from the lowest level of the molten metal, with the upper part made of silicon carbide bricks and the lower part made of graphite bricks. are doing. Thereby, excellent properties such as slag erosion resistance and hot metal resistance can be fully exhibited without causing deterioration of graphite bricks due to oxidation. Since the heating furnace constructed in this manner has excellent durability, the number of repairs can be reduced, and its operating efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案を適用した溶融スラグ加熱炉
の内部構造を示す。また、第2図は、本考案者等
が出願した特願昭60−291691号の明細書で開示し
ている溶融スラグ加熱炉を示す図である。
FIG. 1 shows the internal structure of a molten slag heating furnace to which the present invention is applied. Further, FIG. 2 is a diagram showing a molten slag heating furnace disclosed in the specification of Japanese Patent Application No. 1983-291691 filed by the inventors of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉内を不活性雰囲気に維持し、溶融スラグを副
原料を添加しながら高温保持して均質化を行つた
後、得られた溶融物の一定量を連続的に排出する
溶融スラグ加熱炉において、炉内上部及び湯面近
傍の内壁を炭化珪素質れんがで構築し、前記湯面
近傍以下の内壁を黒鉛質れんがで構築したことを
特徴とする溶融スラグ加熱炉のれんが積み構造。
In a molten slag heating furnace, the inside of the furnace is maintained in an inert atmosphere, the molten slag is homogenized by maintaining it at a high temperature while adding auxiliary materials, and then a certain amount of the obtained molten material is continuously discharged. 1. A brickwork structure for a molten slag heating furnace, characterized in that an inner wall in the upper part of the furnace and near the hot water level is made of silicon carbide bricks, and an inner wall below the hot water level is made of graphite bricks.
JP15088986U 1986-09-30 1986-09-30 Expired - Lifetime JPH0532511Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15088986U JPH0532511Y2 (en) 1986-09-30 1986-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15088986U JPH0532511Y2 (en) 1986-09-30 1986-09-30

Publications (2)

Publication Number Publication Date
JPS6357496U JPS6357496U (en) 1988-04-16
JPH0532511Y2 true JPH0532511Y2 (en) 1993-08-19

Family

ID=31067445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15088986U Expired - Lifetime JPH0532511Y2 (en) 1986-09-30 1986-09-30

Country Status (1)

Country Link
JP (1) JPH0532511Y2 (en)

Also Published As

Publication number Publication date
JPS6357496U (en) 1988-04-16

Similar Documents

Publication Publication Date Title
KR101560513B1 (en) Steel slag reduction equipment and steel slag reduction system
SU1496637A3 (en) Method and apparatus for continuous refining of steel in electric furnace
TW564261B (en) Method and device for producing molten iron
EP1120618B1 (en) A method of relining a vessel and vessel suitable therefore
BRPI0706624A2 (en) process for making an iron-containing product from iron ore
US6528011B2 (en) Colloidal silica refractory system for an electric arc furnace
US4414026A (en) Method for the production of ferrochromium
JPH0532511Y2 (en)
CN109477685B (en) Melting furnace
US3849586A (en) Electric arc furnaces and refractory shapes therefor
JP2000204405A (en) Operation of blast furnace
JPS589790B2 (en) Monolithic refractory material for blast furnace gutter
JP5135846B2 (en) Operation method of storage furnace
JPH0821691A (en) Preheating and melting method for iron scrap of electric furnace
Rigby Controlling the processing parameters affecting the refractory requirements for Peirce-Smith converters and anode refining vessels
KR100229909B1 (en) Ladle structure
Smith All you need to know about refining Part 2: Puddling Hearths
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
JP3982389B2 (en) Operation method of horizontal blowing refining furnace
JP3712621B2 (en) Refractory structure of melting furnace
CN104964569B (en) A kind of anode fire door and floss hole molten steel set means of defence and molten steel set
JPH04316982A (en) Operating method of metallurgic furnace and metallurgic furnace
JP2000008115A (en) Melting of cold iron source
GB190525174A (en) Improvements in Electric Furnaces.
JPH021899B2 (en)