JP3982389B2 - Operation method of horizontal blowing refining furnace - Google Patents

Operation method of horizontal blowing refining furnace Download PDF

Info

Publication number
JP3982389B2
JP3982389B2 JP2002326898A JP2002326898A JP3982389B2 JP 3982389 B2 JP3982389 B2 JP 3982389B2 JP 2002326898 A JP2002326898 A JP 2002326898A JP 2002326898 A JP2002326898 A JP 2002326898A JP 3982389 B2 JP3982389 B2 JP 3982389B2
Authority
JP
Japan
Prior art keywords
vessel
horizontal
blowing
furnace
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002326898A
Other languages
Japanese (ja)
Other versions
JP2004162091A (en
Inventor
肇 天野
潤 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002326898A priority Critical patent/JP3982389B2/en
Publication of JP2004162091A publication Critical patent/JP2004162091A/en
Application granted granted Critical
Publication of JP3982389B2 publication Critical patent/JP3982389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、横吹き精錬炉の操業方法に関し、更に詳細には、炉壁に略水平に設けられた横吹き羽口から溶鋼中に精錬用ガスを吹き込む吹錬により脱炭、還元、成分調整等を行なう横吹き精錬炉の操業方法に関するものである。
【0002】
【従来の技術】
近年、鋼中の非金属介在物やガス成分を著しく低減させた、清浄度の高い製品を求めるユーザの品質要求が厳しくなってきたことにより、転炉、電気炉によって生産されている所謂高級鋼、低合金鋼、特殊鋼は、何らかの形で真空精錬、もしくはそれに代わる炉外精錬工程で処理されている。例えば、真空精錬と炉外製錬工程を組み合わせたステンレス鋼の精錬方法として、AOD精錬法がある。このAOD精錬法は、転炉や電炉等で溶解された溶鋼を、移送鍋により横吹き精錬炉の一種であるAOD炉(アルゴン酸素脱炭炉)に移し、ベッセル内を真空排気装置により減圧しながら、酸素ガスと共に不活性ガス(Ar、N2)等の精錬用ガスを溶鋼中に吹き込む吹錬により、Crの酸化損失を抑えながら、脱炭、還元、成分調整等を行なうものである。
【0003】
前記AOD炉では、図4または図5に示すように、炉10の本体であるベッセル12が支持体11,11を介して傾動可能に支持され、その縦軸線Pを鉛直に立てて、材料や添加物の装入や溶鋼を取鍋等に出鋼するための出鋼口12aが真上を向く鉛直姿勢で吹錬される。また、精錬の完了した溶鋼の出鋼に際しては、モータ等の傾動装置(図示せず)で前記ベッセル12を支持体11,11を支点として傾動させることで、前記出鋼口12aから溶鋼を取鍋等へ出鋼するようになっている。前記ベッセル12は、鋼板からなる外殻14と、該外殻14の内側に2重に張られた耐火物16,18とで構成される。また、前記ベッセル12の炉壁には、図5に示すように、出鋼する際に下側となる出鋼側とは反対側に偏った部分(図面上では下側)の底部近傍に複数の横吹き羽口20が周方向に離間して設けられている。なお、前記横吹き羽口20は、ベッセル12の縦軸線Pと直交する略水平姿勢で、外殻14および耐火物16,18を貫通して溶鋼中に開口している。そして、各横吹き羽口20から、酸素ガス、アルゴンガス,窒素ガス等の精錬用ガスをベッセル12内の溶鋼中に吹き込んで、溶鋼を激しく撹拌するよう構成されている。
【0004】
前記耐火物は、外殻14側に臨む永久張レンガ16と溶鋼に接する内張レンガ18とから構成され、所要の大きさのブロック状に形成された各レンガ16,18を積み重ねて構築(築炉)されている。前記永久張レンガ16としては、焼成マグネシアレンガ等が用いられ、また内張レンガ18としては、マグクロ質ダイレクトボンドレンガやドロマイトレンガ等が用いられる。そして、前記内張レンガ18は、吹錬中の溶鋼やスラグの激しい撹拌、ダストおよびガスの大量発生、急激な温度変化等、かなり過酷な条件の下に使用される。
【0005】
前記内張レンガ18は、操業を繰り返すと、様々な要因で溶損していく。この内張レンガ18の溶損の要因としては、炉壁の底部近傍に設けられた横吹き羽口20より大量に吹き込まれる精錬用ガスと溶鋼成分の反応熱による溶鋼温度の高温化およびガス流や溶鋼流による内張レンガ18の表面に対する摩擦現象等に起因する機械的摩擦がある。また、吹錬終了時から次の吹錬の間に内張レンガ18の表面温度が低下することに起因する熱応力による亀裂あるいは剥離が生じる熱的スポーリング、更にスラグが内張レンガ18に侵入することで、化学的浸食作用による内張レンガ18表面に形成される変質層と未変質層との熱膨張の差により剥離する構造的スポーリング等が挙げられる。
【0006】
前記内張レンガ18の溶損が進み、該レンガ18の残寸が短くなると、ベッセル12より脱落してしまう。そこで、吹き付けによる補修や部分的な張り替えや全体の張り替え(解体−築炉)が必要となる。また、前記ベッセル12内において、内張レンガ18の溶損速度は部位によって異なり、特に横吹き羽口20の上方および周辺に位置する内張レンガ18は、吹き込まれるガスで溶鋼が撹拌されることによる機械的摩擦と温度変化による熱的スポーリングが激しく起こるため、局所溶損が著しい。すなわち、横吹き羽口20上方付近の内張レンガ18の溶損速度が、ベッセル12における内張レンガ18全体の耐用寿命を左右している。そこで、前記内張レンガ18の耐用寿命を延ばすため、該内張レンガ18について溶損パターンを考慮して、図4に示すように、内張レンガ18の厚み(内外方向の長さ)を各ゾーンによって変えており、特に横吹き羽口20の上方および周辺の内張レンガ18は厚く設定している。
【0007】
また、横吹き羽口20付近の耐火物の形状を変更することで、耐久性を向上させるものがある(例えば、特許文献1参照)。更には、横吹き羽口20付近の耐火物について、その耐摩耗性をより向上させた材質の耐火物を採用することが行なわれている(例えば、特許文献2参照)。
【0008】
【特許文献1】
特開平7−253278号公報
【特許文献2】
特開平11−100256号公報
【0009】
【発明が解決しようとする課題】
しかし、前記内張レンガ18を厚くすると重量が増すと共に、ベッセル12内の容積が少なくなるので限界があった。また、耐火物の形状や材質を変更するものでは、設備費が嵩む問題が指摘される。
【0010】
【発明の目的】
この発明は、従来の技術に係る前記問題に鑑み、これを好適に解決するべく提案されたものであって、略水平に横吹き羽口を設けた横吹き精錬炉において、コストを掛けることなく、ベッセルに内張りされた耐火物の耐用寿命を延ばし得る横吹き精錬炉の操業方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記課題を克服し、所期の目的を達成するため、本発明に係る横吹き精錬炉の操業方法は、
外殻に内張した耐火物からなる炉壁の下部に横吹き羽口が略水平、かつ周方向に偏在して設けられたベッセルを備えた横吹き精錬炉を使用し、前記横吹き羽口から前記ベッセル内の溶鋼中に精錬用ガスを吹き込んで操業を行なうに際し、
前記横吹き羽口が所要角度だけ上向きとなるよう前記ベッセルの傾斜姿勢を保持して操業するようにしたことを特徴とする。
【0012】
【発明の実施の形態】
次に、本発明に係る横吹き精錬炉の操業方法につき、好適な実施形態例を挙げて以下に説明する。なお、横吹き精錬炉としてAOD炉を例に挙げて説明するが、AOD炉自体の構造は、図4または図5を参照して説明した従来の技術と基本的に同一であるので、既出の部材については、同じ参照符号を使用し、その詳細な説明は省略する。
【0013】
図1に示すベッセル12には、前述した如く、出鋼側と反対方向の炉壁に偏った部分(周方向の一部分に偏って)、周方向に所定間隔で複数(実施形態例では例えば5本であるが、その数には限定されず、1本であってもよい。)の横吹き羽口20が設けられている。この横吹き羽口20は2重構造であって、その軸線はベッセル12の縦軸線Pと略直交、すなわち略水平に設定してある。そして、操業に際しては、溶鋼が装入されたベッセル12を、前記傾動装置により支持体11,11を傾動中心Oとして、該傾動中心Oを通るベッセル12の縦軸線Pを同じく傾動中心Oを通る鉛直線Sに対して傾けて、前記横吹き羽口20が上向き(ガスの吹出口が上を向く)となる傾斜姿勢に保持した状態で吹錬が行なわれるよう構成される。なお、従来のようにベッセル12を鉛直姿勢で操業する際においても、溶鋼中に精錬用ガスを吹き込むことにより前記出鋼口12aから溶鋼が飛散しており、該ベッセル12を傾斜することで溶鋼界面と出鋼口12aとの距離が短くなると、溶鋼の飛散量は増加する。すなわち、ベッセル12の傾斜姿勢における縦軸線Pの鉛直線Sに対する傾斜角度θは、溶鋼の飛散を考慮すると、0°<θ≦10°の範囲が好ましく、特に最適には3°≦θ≦5°の範囲である。
【0014】
【実施形態例の作用】
次に、実施形態例に係る横吹き精錬炉の操業方法の作用について説明する。図1に示すように、ベッセル12の出鋼口12aが出鋼側とは反対を向くよう該ベッセル12を傾けることで、前記横吹き羽口20は上向きとなり、これに伴って該横吹き羽口20の上方に位置する内張レンガ18は、該横吹き羽口20から吹き出されるガスの吹き出し方向に対して逃げる方向に退避する。この状態で操業すると、前記横吹き羽口20から溶鋼中へは、該横吹き羽口20上方の内張レンガ18から離間する方向にガスが吹き込まれる。すなわち、前記横吹き羽口20上方の内張レンガ18近傍での溶鋼撹拌は少なくなり、これによって、該内張レンガ18の溶損が抑制され、耐火物の耐用寿命の向上が図られる。しかも、耐火物の厚み、形状、材質を変更する必要がないから、設備コストが上昇することもない。
【0015】
前記ベッセル12は、既存の傾動装置を使用して傾斜させることができ、またガス吹き込み設備や廃ガス処理設備等の設備を変更する必要もない。すなわち、本実施形態例に係る横吹き精錬炉の操業方法は、既存の設備を変更することなく簡単に実施可能である。
【0016】
ここで、AOD炉10による吹錬に際し、前記横吹き羽口20から吹き込まれるガスによる溶鋼の撹拌エネルギーは、該横吹き羽口20の吹出口と溶鋼界面との間に一定の関係がある。すなわち、実施形態例のように、ベッセル12を傾斜させることで、横吹き羽口20の吹出口と溶鋼界面との距離Lは長くなり、これに伴いガスによる撹拌エネルギーが増加し、精錬能力が向上する。また、吹き込みガスを削減して精錬コストを低減することができる。
【0017】
【実施例】
炉底から3段目の内張レンガ18に対応する位置に5本の横吹き羽口20が設けられているベッセル12に、70tのステンレス鋼の溶鋼を装入し、前記横吹き羽口20からアルゴンガスを吹き込む。このアルゴンガスは、精錬スタートから溶鋼中のC(炭素)濃度が0.6%までは吹き込まず、その後、Cが0.6〜0.3%の範囲では1000Nm3/hr、Cが0.3〜0.1%の範囲では2100Nm3/hrのアルゴンガスを吹き込む。前記条件において、ベッセル12の縦軸線Pを鉛直線Sに一致させた鉛直姿勢で操業する従来例と、ベッセル12の縦軸線Pを鉛直線Sに対して5°傾け、横吹き羽口20が上向きになる傾斜姿勢で操業する実施例との内張レンガ18の耐用回数(ch)を比較した。なお、前記内張レンガ18の耐用回数(ch)はチャージによって表され、この1チャージとは、溶鋼の装入、吹錬、出鋼するまでの1サイクルである。ここで、内張レンガ18の予想耐用回数(ch)は、重回帰分析により、Al還元ch比率、アクティブ時間、間欠度、真空処理時間、マグネシア使用量、塩基度、再処理比率から導かれる。そして、従来例の操業においては、内張レンガ18の実績耐用回数は、図2に示す予想耐用回数(理論値)に収束してゆく。これに対し、実施例の操業では、予想耐用回数より実績耐用回数が向上することが確認された。
【0018】
次に、前述した条件[0017]で操業した際に、前記横吹き羽口20より上方の内張レンガ18の段数による溶損速度を比較し、その結果を図3に示す。図3からも明らかな如く、横吹き羽口20が設けられる3段目の内張レンガ18より上方の4段目から8段目の内張レンガ18においては、従来例に比べて実施例の方が溶損速度が低下、すなわち耐用寿命が延びていることが確認できた。
【0019】
【発明の効果】
以上に説明した如く、本発明に係る横吹き精錬炉の操業方法によれば、横吹き羽口が上向きになるようベッセルを傾斜して吹錬することで、横吹き羽口上方の耐火物の溶損を抑制でき、ベッセル内耐火物の耐用寿命を延ばし得る。このことにより、耐火物の張り替え周期が長くなり、炉の補修、張り替えに掛かるコストを削減し得る。また、ベッセルを傾けることで、横吹き羽口の吹出口から溶鋼界面までの距離が長くなり、これに伴い撹拌効率が向上して、精錬能力が向上する。
【図面の簡単な説明】
【図1】本発明の好適な実施形態例に係る吹錬時のベッセルの状況を示す縦断面図である。
【図2】実施例と従来例との内張レンガの耐久寿命に関するデータを、横軸に予想耐用回数、縦軸に実績耐用回数をプロットしたグラフ図である。
【図3】実施例と従来例との横吹き羽口上方の内張レンガの溶損速度を示すグラフ図である。
【図4】従来の技術に係る吹錬時のベッセルの状況を示す縦断面図である。
【図5】ベッセルの横断面図である。
【符号の説明】
10 AOD炉(横吹き精錬炉),12 ベッセル,14 外殻
16 永久張レンガ(耐火物),18 内張レンガ(耐火物),20 横吹き羽口
P 縦軸線,S 鉛直線,θ 傾斜角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a horizontal blowing refining furnace, and more specifically, decarburization, reduction, and component adjustment by blowing a refining gas into molten steel from a horizontal blowing tuyere provided substantially horizontally on the furnace wall. It is related with the operating method of the horizontal blowing smelting furnace which performs etc.
[0002]
[Prior art]
In recent years, the so-called high-grade steel produced by converters and electric furnaces has become strict due to the stricter quality requirements of users seeking products with a high degree of cleanliness, with significantly reduced non-metallic inclusions and gas components in steel. Low alloy steels and special steels are processed in some form by vacuum refining, or an alternative furnace refining process. For example, there is an AOD refining method as a refining method of stainless steel that combines vacuum refining and out-of-furnace refining processes. In this AOD refining method, molten steel melted in a converter, electric furnace, etc. is transferred to an AOD furnace (argon oxygen decarburization furnace), which is a type of horizontal blown refining furnace, using a transfer pan, and the inside of the vessel is depressurized by a vacuum exhaust device. However, decarburization, reduction, component adjustment, and the like are performed while suppressing oxidation loss of Cr by blowing a refining gas such as an inert gas (Ar, N 2 ) together with oxygen gas into the molten steel.
[0003]
In the AOD furnace, as shown in FIG. 4 or FIG. 5, a vessel 12 that is a main body of the furnace 10 is supported so as to be tiltable through support bodies 11 and 11, and its vertical axis P is set up vertically, Blowing is performed in a vertical posture in which a steel outlet 12a for charging an additive and taking out molten steel to a ladle or the like faces directly above. In addition, when the molten steel that has been refined is discharged, the molten steel is removed from the outlet hole 12a by tilting the vessel 12 with the support bodies 11 and 11 as fulcrums using a tilting device (not shown) such as a motor. Steel is put out to pans. The vessel 12 includes an outer shell 14 made of a steel plate and refractories 16 and 18 stretched doubly inside the outer shell 14. Further, as shown in FIG. 5, the vessel wall of the vessel 12 has a plurality of portions near the bottom of a portion (lower side in the drawing) that is biased to the opposite side of the steel output side that is the lower side when steel is output. Horizontal blowing tuyere 20 are provided spaced apart in the circumferential direction. The horizontal blowing tuyere 20 is opened in the molten steel through the outer shell 14 and the refractories 16 and 18 in a substantially horizontal posture orthogonal to the longitudinal axis P of the vessel 12. Then, a refining gas such as oxygen gas, argon gas, nitrogen gas or the like is blown into the molten steel in the vessel 12 from each side blowing tuyere 20, and the molten steel is vigorously stirred.
[0004]
The refractory is made up of permanent bricks 16 facing the outer shell 14 and lining bricks 18 in contact with the molten steel, and is constructed by building bricks 16 and 18 formed in a block shape of a required size. Furnace). As the permanent tension brick 16, fired magnesia brick or the like is used, and as the lining brick 18, magchromatic direct bond brick or dolomite brick or the like is used. The lining brick 18 is used under fairly severe conditions such as vigorous stirring of molten steel and slag during blowing, large generation of dust and gas, and rapid temperature change.
[0005]
The lining brick 18 melts down due to various factors when the operation is repeated. As the cause of the erosion of the lining brick 18, the temperature of the molten steel is increased by the reaction heat of the refining gas and the molten steel component injected in large quantities from the side blowing tuyere 20 provided near the bottom of the furnace wall, and the gas flow In addition, there is mechanical friction caused by a friction phenomenon or the like with respect to the surface of the lining brick 18 due to the molten steel flow. In addition, thermal spalling that causes cracking or peeling due to thermal stress caused by a decrease in the surface temperature of the lining brick 18 between the end of blowing and the next blowing, and further slag enters the lining brick 18 By doing so, structural spalling that peels due to the difference in thermal expansion between the altered layer and the unaltered layer formed on the surface of the lining brick 18 due to the chemical erosion action can be cited.
[0006]
When melting of the lining brick 18 progresses and the remaining size of the brick 18 becomes shorter, the brick 18 falls off from the vessel 12. Therefore, repair by spraying, partial replacement, and total replacement (disassembly-furnace) are required. Further, in the vessel 12, the erosion speed of the lining brick 18 varies depending on the part, and particularly, the lining brick 18 located above and around the side blowing tuyere 20 is agitated by the blown gas. Because of mechanical friction due to heat and thermal spalling due to temperature changes, local erosion is remarkable. That is, the melting rate of the lining brick 18 near the upper side of the horizontal blowing tuyere 20 affects the useful life of the entire lining brick 18 in the vessel 12. Therefore, in order to extend the useful life of the lining brick 18, the thickness of the lining brick 18 (the length in the inner and outer directions) is set as shown in FIG. The lining bricks 18 above and around the horizontal blowing tuyere 20 are set thick.
[0007]
Moreover, there exists a thing which improves durability by changing the shape of the refractory in the vicinity of the horizontal blowing tuyere 20 (for example, refer patent document 1). Further, a refractory material having improved wear resistance has been adopted for the refractory near the side blow tuyere 20 (see, for example, Patent Document 2).
[0008]
[Patent Document 1]
JP-A-7-253278 [Patent Document 2]
Japanese Patent Laid-Open No. 11-1000025
[Problems to be solved by the invention]
However, when the lining brick 18 is thickened, the weight increases and the volume in the vessel 12 is reduced. Moreover, the thing which changes the shape and material of a refractory raises the problem that equipment cost increases.
[0010]
OBJECT OF THE INVENTION
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-described problems related to the prior art, and it is proposed to suitably solve this problem. In a horizontal blowing refining furnace provided with horizontal blowing tuyere substantially horizontally, no cost is applied. An object of the present invention is to provide a method for operating a horizontal blowing smelting furnace that can extend the useful life of a refractory lined on a vessel.
[0011]
[Means for Solving the Problems]
In order to overcome the above-mentioned problems and achieve the intended purpose, the operation method of the horizontal blowing smelting furnace according to the present invention is:
The horizontal blown tuyeres are provided with a horizontal blown refining furnace provided with a vessel provided with a horizontal blower tuyere at a lower part of a furnace wall made of a refractory lined on the outer shell and being unevenly distributed in the circumferential direction. From the operation of blowing the gas for refining into the molten steel in the vessel from
The horizontal blowing tuyere is operated while maintaining the inclined posture of the vessel so that the required angle is upward.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the operation method of the horizontal blowing smelting furnace according to the present invention will be described below with reference to preferred embodiments. Although the AOD furnace will be described as an example of the horizontal blowing refining furnace, the structure of the AOD furnace itself is basically the same as the conventional technique described with reference to FIG. 4 or FIG. About the member, the same referential mark is used and the detailed description is abbreviate | omitted.
[0013]
As described above, the vessel 12 shown in FIG. 1 includes a portion biased toward the furnace wall in the direction opposite to the steel output side (biased toward a portion in the circumferential direction), and a plurality (for example, 5 in the embodiment) at a predetermined interval in the circumferential direction. Although it is a book, it is not limited to the number, and may be one.) The horizontal blowing tuyere 20 is provided. The horizontal blowing tuyere 20 has a double structure, and its axis is set substantially orthogonal to the vertical axis P of the vessel 12, that is, substantially horizontal. In operation, the vessel 12 charged with molten steel is passed through the tilting center O along the vertical axis P of the vessel 12 passing through the tilting center O, with the support bodies 11 and 11 as the tilting center O by the tilting device. Blowing is performed in a state where the horizontal blowing tuyere 20 is tilted with respect to the vertical line S and is held in an inclined posture in which the side blowing tuyere 20 faces upward (the gas blowing port faces upward). Even when the vessel 12 is operated in a vertical posture as in the prior art, the molten steel is scattered from the steel outlet 12a by blowing a refining gas into the molten steel, and the molten steel is inclined by inclining the vessel 12. When the distance between the interface and the steel outlet 12a becomes shorter, the amount of molten steel scattered increases. That is, the inclination angle θ of the vertical axis P with respect to the vertical line S in the inclined posture of the vessel 12 is preferably in the range of 0 ° <θ ≦ 10 °, particularly optimally 3 ° ≦ θ ≦ 5, considering the scattering of molten steel. It is in the range of °.
[0014]
Operation of Embodiment Example
Next, the effect | action of the operating method of the horizontal blowing smelting furnace which concerns on the example of an embodiment is demonstrated. As shown in FIG. 1, by tilting the vessel 12 so that the steel outlet 12a of the vessel 12 faces away from the steel output side, the horizontal blowing tuyere 20 is directed upward. The lining brick 18 positioned above the mouth 20 is retreated in a direction to escape with respect to the blowing direction of the gas blown out from the side blowing tuyere 20. When operating in this state, gas is blown into the molten steel from the horizontal blowing tuyere 20 in a direction away from the lining brick 18 above the horizontal blowing tuyere 20. That is, molten steel agitation in the vicinity of the lining brick 18 above the side blow tuyere 20 is reduced, thereby suppressing the erosion of the lining brick 18 and improving the service life of the refractory. Moreover, since it is not necessary to change the thickness, shape, and material of the refractory, the equipment cost does not increase.
[0015]
The vessel 12 can be tilted using an existing tilting device, and there is no need to change equipment such as gas blowing equipment or waste gas treatment equipment. That is, the operation method of the horizontal blowing smelting furnace according to this embodiment can be easily implemented without changing existing facilities.
[0016]
Here, during the blowing by the AOD furnace 10, the stirring energy of the molten steel by the gas blown from the horizontal blowing tuyere 20 has a certain relationship between the blowing outlet of the horizontal blowing tuyere 20 and the molten steel interface. That is, by inclining the vessel 12 as in the embodiment, the distance L between the blowout port of the horizontal blowing tuyere 20 and the molten steel interface is increased, and the stirring energy by the gas is increased accordingly, and the refining ability is increased. improves. Further, the refining cost can be reduced by reducing the blowing gas.
[0017]
【Example】
A 70 t stainless steel molten steel is charged into the vessel 12 provided with five horizontal blow tuyere 20 at a position corresponding to the third-stage lining brick 18 from the bottom of the furnace. Introduce argon gas. This argon gas is not blown until the C (carbon) concentration in the molten steel is 0.6% from the start of refining, and then 1000 Nm 3 / hr when C is in the range of 0.6 to 0.3% and C is 0.00. In the range of 3 to 0.1%, argon gas of 2100 Nm 3 / hr is blown. In the above conditions, the conventional example operates in a vertical posture in which the vertical axis P of the vessel 12 coincides with the vertical line S, and the vertical axis P of the vessel 12 is inclined by 5 ° with respect to the vertical line S. The number of service life (ch) of the lining brick 18 was compared with that of the example operating in an upward inclined posture. In addition, the service life (ch) of the lining brick 18 is represented by a charge, and this one charge is one cycle from charging, blowing, and taking out of molten steel. Here, the expected useful life (ch) of the lining brick 18 is derived from the Al reduction ch ratio, active time, intermittent degree, vacuum processing time, magnesia usage, basicity, and reprocessing ratio by multiple regression analysis. In the operation of the conventional example, the actual service life of the lining brick 18 converges to the expected service life (theoretical value) shown in FIG. On the other hand, in the operation of the example, it was confirmed that the actual service life improved from the expected service life.
[0018]
Next, when operating under the above-mentioned conditions [0017], the erosion speeds due to the number of lining bricks 18 above the horizontal blowing tuyere 20 were compared, and the results are shown in FIG. As apparent from FIG. 3, the fourth to eighth lining bricks 18 above the third lining brick 18 provided with the horizontal blow tuyere 20 are of the embodiment compared to the conventional example. It was confirmed that the melting rate decreased, that is, the service life was extended.
[0019]
【The invention's effect】
As described above, according to the operation method of the horizontal blowing refining furnace according to the present invention, the refractory above the horizontal blowing tuyere is blown by tilting the vessel so that the horizontal blowing tuyere is facing upward. Melting loss can be suppressed, and the useful life of the refractory in the vessel can be extended. As a result, the refractory replacement period becomes longer, and the cost required for furnace repair and replacement can be reduced. In addition, by tilting the vessel, the distance from the outlet of the horizontal blowing tuyere to the molten steel interface is increased, and accordingly, the stirring efficiency is improved and the refining ability is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a state of a vessel during blowing according to a preferred embodiment of the present invention.
FIG. 2 is a graph in which data relating to the endurance life of the lining bricks of an example and a conventional example is plotted with the expected service life on the horizontal axis and the actual service life on the vertical axis.
FIG. 3 is a graph showing the erosion rate of the lining bricks above the horizontal blowing tuyere of the example and the conventional example.
FIG. 4 is a longitudinal sectional view showing a state of a vessel during blowing according to a conventional technique.
FIG. 5 is a cross-sectional view of a vessel.
[Explanation of symbols]
10 AOD furnace (horizontal blown refining furnace), 12 vessel, 14 outer shell 16 permanent tension brick (refractory), 18 lining brick (refractory), 20 horizontal blow tuyere P vertical axis, S vertical line, θ inclination angle

Claims (2)

外殻(14)に内張した耐火物(16,18)からなる炉壁の下部に横吹き羽口(20)が略水平、かつ周方向に偏在して設けられたベッセル(12)を備えた横吹き精錬炉(10)を使用し、前記横吹き羽口(20)から前記ベッセル(12)内の溶鋼中に精錬用ガスを吹き込んで操業を行なうに際し、
前記横吹き羽口(20)が所要角度だけ上向きとなるよう前記ベッセル(12)の傾斜姿勢を保持して操業するようにした
ことを特徴とする横吹き精錬炉の操業方法。
A horizontal blowing tuyere (20) is provided in the lower part of the furnace wall made of refractory (16, 18) lined on the outer shell (14), and is provided with a vessel (12) provided in a substantially horizontal and circumferentially distributed manner. When performing the operation by blowing a refining gas from the horizontal blowing tuyere (20) into the molten steel in the vessel (12) using the horizontal blowing refining furnace (10),
A method for operating a horizontal blown refining furnace, characterized in that the horizontal blown tuyere (20) is operated while maintaining the inclined posture of the vessel (12) so that the required angle is upward.
前記ベッセル(12)の傾斜姿勢は、該ベッセル(12)の縦軸線(P)が鉛直線(S)に対する角度(θ)を0°<θ≦10°の範囲に設定している請求項1記載の横吹き精錬炉の操業方法。The inclined posture of the vessel (12) is such that the angle (θ) of the vertical axis (P) of the vessel (12) with respect to the vertical line (S) is set in a range of 0 ° <θ ≦ 10 °. The operation method of the horizontal blowing smelting furnace described.
JP2002326898A 2002-11-11 2002-11-11 Operation method of horizontal blowing refining furnace Expired - Lifetime JP3982389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326898A JP3982389B2 (en) 2002-11-11 2002-11-11 Operation method of horizontal blowing refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326898A JP3982389B2 (en) 2002-11-11 2002-11-11 Operation method of horizontal blowing refining furnace

Publications (2)

Publication Number Publication Date
JP2004162091A JP2004162091A (en) 2004-06-10
JP3982389B2 true JP3982389B2 (en) 2007-09-26

Family

ID=32805706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326898A Expired - Lifetime JP3982389B2 (en) 2002-11-11 2002-11-11 Operation method of horizontal blowing refining furnace

Country Status (1)

Country Link
JP (1) JP3982389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721139B2 (en) * 2005-06-21 2011-07-13 大同特殊鋼株式会社 Horizontal blow vacuum refining furnace

Also Published As

Publication number Publication date
JP2004162091A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
CN1233850C (en) Direct smelting vessel and direct smelting process
JP4745731B2 (en) Method of melting hot metal with cupola
KR20000068375A (en) Installation and method for producing molten metal
JP5774092B2 (en) Direct smelting method
WO2007100113A1 (en) Blowing lance for refining, blowing lance apparatus for refining, method of desiliconizing of molten iron, and method of pretreatment of molten iron
US6528011B2 (en) Colloidal silica refractory system for an electric arc furnace
RU2344179C2 (en) Method of continuous processing iron oxide containing materials and device for implementation of this method
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
RU2226219C2 (en) Direct melting method
FI103584B (en) A converter and a method for blowing up a metal from above
RU2002130713A (en) METHOD AND DEVICE FOR DIRECT Smelting
JP3982389B2 (en) Operation method of horizontal blowing refining furnace
US4414026A (en) Method for the production of ferrochromium
JPH0125815B2 (en)
JP3726778B2 (en) Hot metal holding container
JP4360270B2 (en) Method for refining molten steel
RU2468091C2 (en) Iron-melting furnace with liquid bath
US3964897A (en) Method and arrangement for melting charges, particularly for use in the production of steel
RU2756679C1 (en) Method for combined blowing of the melt in the converter
JPS61235506A (en) Heating up method for molten steel in ladle
JP2002038223A (en) Operating method of copper smelting furnace and draft lance used therefor
RU2548871C2 (en) Method for direct production of metals from materials containing iron oxides (versions) and device for implementing it
RU2165462C2 (en) Tandem steel-making unit and method of steel melting in tandem steel-making unit
JP3697587B2 (en) Molten metal container
JPH0532511Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150