JP3710573B2 - Electrode structure of gallium nitride compound semiconductor light emitting device - Google Patents

Electrode structure of gallium nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP3710573B2
JP3710573B2 JP25787996A JP25787996A JP3710573B2 JP 3710573 B2 JP3710573 B2 JP 3710573B2 JP 25787996 A JP25787996 A JP 25787996A JP 25787996 A JP25787996 A JP 25787996A JP 3710573 B2 JP3710573 B2 JP 3710573B2
Authority
JP
Japan
Prior art keywords
electrode
gallium nitride
compound semiconductor
bonding
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25787996A
Other languages
Japanese (ja)
Other versions
JPH10107318A (en
Inventor
俊雄 幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25787996A priority Critical patent/JP3710573B2/en
Publication of JPH10107318A publication Critical patent/JPH10107318A/en
Application granted granted Critical
Publication of JP3710573B2 publication Critical patent/JP3710573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、青色から紫外光領域で発光可能な窒化ガリウム系化合物半導体発光素子の電極構造に関し、特に、窒化ガリウム系化合物半導体層上に透光性電極を有する窒化ガリウム系化合物半導体発光素子の電極構造に関する。
【0002】
【従来の技術】
従来の窒化ガリウム系化合物半導体発光素子の電極構造として、特開平7−10663号公報に記載の窒化ガリウム系化合物半導体発光素子を図7に示す。
【0003】
まず、絶縁性のサファイア基板1の上に、n型窒化ガリウム系化合物半導体層2、p型窒化ガリウム系化合物半導体層3が形成され、更にその表面上にNi及びAuを積層した合金からなる透光性電極4と、Au単体、またはAuに加えて、Ti、Ni、In、Ptから少なくとも1種類を含む合金からなるボンディング用電極5が形成されている。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。
【0004】
【発明が解決しようとする課題】
しかし、透光性電極4は、発光波長領域にて透光性を保つため非常に薄い膜で形成されている。そのため、透光性電極4とp型窒化ガリウム系化合物半導体層3とのオーミック特性を得るために、熱処理中(アニール中)に露出した表面から透光性電極のNiが変質し、そのためオーミック特性が悪化し、発光効率の低下を招くことになる。このようなNiの変質が生じるのは、窒化ガリウム系材料はオーミック接触を十分に行うことが困難であるため、高い温度で熱処理を行う必要があるからである。
【0005】
さらに、透光性電極4は、非常に薄い膜であるので、p型窒化ガリウム系化合物半導体層3及びボンディング用電極5との密着性が悪く、ワイヤーボンディング時に剥がれ易くなる問題が生じた。
【0006】
従って、ワイヤーボンディング時に透光性電極4及びボンディング用電極5の剥れをなくすことでワイヤーボンディグ時の歩留りが向上し、且つ、発光効率の低下を押さえることのできる信頼性に優れた窒化ガリウム系化合物半導体発光素子の電極構造を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記問題を解決するためになされたもので、窒化ガリウム系化合物半導体発光層の上にNiからなる薄膜とAuからなる薄膜が少なくとも1組以上交互に積層された透光性電極を有し、前記透光性電極上にボンディング用電極を有し、前記透光性電極は、Niからなる薄膜とAuからなる薄膜が少なくとも1組以上交互に積層され、窒化ガリウム系化合物半導体側がNiからなり、表面側がAuからなることを特徴とする。このような構造を形成することにより、透光性電極のNiの変質を防ぐことができ、窒化ガリウム系化合物半導体層と透光性電極とのオーミック特性を維持し、それに伴う発光効率の低下を生じさせないことが可能となる。
【0008】
また、窒化ガリウム系化合物半導体発光層の上にボンディング用電極を有し、前記ボンディング用電極を覆うようにNiからなる薄膜とAuからなる薄膜が少なくとも1組以上交互に積層された透光性電極を有し、前記透光性電極は、窒化ガリウム系化合物半導体側がNiからなり、表面側がAuからなることを特徴とする。
【0009】
また、ボンディング用電極を覆うようにNiとAuからなる多層構造の透光性電極を形成することにより、p型窒化ガリウム系化合物半導体層とボンディング用電極の付着力を一層強めることができる。さらに多層構造の透光性電極の最表面をAuにすることでAuワイヤーと付着力を強めることができる。そのため、ワイヤーボンディング時にボンディング用電極の剥がれを少なくすることが可能となる。
【0010】
また、多層構造の透光性電極とAuからなるボンディング用電極Auの間に密着性を向上させるNiからなるボンディング用電極を形成することにより、p型窒化ガリウム系化合物半導体層とボンディング用電極Auの付着力が強くなる。
【0011】
【発明の実施の形態】
本発明を具体的な実施の形態に基づいて説明する。
【0012】
(実施の形態1)
本発明によって作製された窒化ガリウム系化合物半導体発光素子の電極構造の摸式図を図1に示す。
【0013】
絶縁性のサファイア基板1の上に、n型窒化ガリウム系化合物半導体層2、p型窒化ガリウム系化合物半導体層3が形成され、更にその表面上にNi、Auの順に交互に積層された透光性電極7と、Ni単体からなるボンディング用電極8とAu単体からなるボンディング用電極9が形成されている。透光性電極7は、最もp型窒化ガリウム系化合物半導体層3側はNiからなり、最も表面側はAuからなる。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。
【0014】
上記のような本発明の窒化ガリウム系化合物半導体発光素子の製造工程について図4に示す。
【0015】
まず、MOCVD法で、絶縁性のサファイア基板1上に、n型窒化ガリウム系化合物半導体層2を積層する。次に、p型窒化ガリウム系化合物半導体層3を積層し、p型窒化ガリウム系化合物半導体層3の表面の所望の領域に電子ビーム蒸着法でNiとAuとを交互に2.5nmずつ積層した透光性電極7を形成する。
透光性電極7の膜厚は、発光波長において十分透過する厚さに設定する。
【0016】
p型窒化ガリウム系化合物層3と透光性電極7のNiとのオーミック特性を得るため、500℃のアニールを3分間行う。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。この時の製造工程断面図を図4(a)に示す。
【0017】
次に、透光性電極7上に電子ビーム蒸着法でNiからなるボンディング用電極8を形成し、更に、Auからなるボンディング用電極9を形成する。この時の製造工程断面図を図4(b)に示す。
【0018】
本実施の形態では、透光性電極7はNiとAuとを交互に積層した多層構造からなるが、アニール温度に対して熱的に安定な金属からなる薄膜とNiとからなる多層構造でもよい。熱的に安定な金属としては、Au、Cu、Pt、Pd、Rh等の少なくとも1種からなる金属が好ましい。透光性電極7の形成方法は、電子ビーム蒸着法、真空蒸着法、スパッタリング法を用いてもよい。Auからなるボンディング用電極9は、Auワイヤーとの密着性向上させるためにAuを用いた。
【0019】
(実施の形態2)
本発明によって作製された別の窒化ガリウム系化合物半導体発光素子の電極構造の摸式図を図2に示す。
【0020】
絶縁性のサファイア基板1の上に、n型窒化ガリウム系化合物半導体層2、p型窒化ガリウム系化合物半導体層3が形成され、更にその表面上に、Niからなるボンディング用電極8が形成されている。更に、その上に、Auからなるボンディング用電極9が形成されており、Auからなるボンディング用電極9を覆うようにNiとAuとを交互に積層した透光性電極10が形成されている。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。透光性電極10は、p型窒化ガリウム系化合物半導体層側はNiからなり、表面側はAuからなっている。
【0021】
上記のような本発明の窒化ガリウム系化合物半導体発光素子の製造工程について図5に示す。
【0022】
まず、実施の形態1と同様に形成されたp型窒化ガリウム系化合物半導体層3の表面に、電子ビーム蒸着法で形成されたNiからなるボンディング用電極8を形成し、その上に電子ビーム蒸着法で形成されたAuからなるボンディング用電極9を形成した。次に、Niからなるボンディング用電極8と、Auからなるボンディング用電極9のアニールを500℃、3分間行う。この時の製造工程断面図を図5(a)に示す。
【0023】
Auからなるボンディング用電極9を覆うように、p型窒化ガリウム系化合物半導体層3の表面の所望の領域にNiとAuの順に交互に積層した透光性電極10を電子ビーム蒸着法で15nmの厚さで形成する。次に、透光性電極10のアニールを400℃、3分で行う。この時の製造工程断面図を図5(b)に示す。
【0024】
透光性電極10は、2層構造でなくとも多層構造としても、p型窒化ガリウム系化合物半導体層側をNiとし、表面側をAuの順に構成にしておればよい。多層膜構造とした時の製造工程断面図を図5(c)に示す。
【0025】
次に、ワイヤーボンディングを行うと、透光性電極10が薄膜であるため、透光性電極10を突き破ってボンディング用電極9と接続される。
【0026】
ここで、ボンディング用電極8、9のアニールは透光性電極10のアニールの前に行われている上に、透光性電極10のアニール温度はボンディング用電極8、9のアニールの温度より低いため、透光性電極10の変質が発生することはない。さらに、Auからなるボンディング用電極9の表面上にNiとAuとを積層させる構造の透光性電極10を形成することにより、p型窒化ガリウム系化合物半導体層3とNiからなるボンディング用電極8の付着力を強めることができる。
【0027】
透光性電極10は熱的に安定な金属であるAu、Cu、Pt、Pd、Rh等の少なくとも1種とNiからなる多層構造でも構わない。Auからなるボンディング用電極9はAuワイヤーとの接着性向上のためAuを用いた。
【0028】
透光性電極の形成方法として、電子ビーム蒸着法、真空蒸着法、スパッタリング法等を用いることができる。
【0029】
(実施の形態3)
本発明のまた別の実施の形態によって作製された窒化ガリウム系化合物半導体発光素子の電極構造の摸式図を図3に示す。
【0030】
絶縁性のサファイア基板1の上に、n型窒化ガリウム系化合物半導体層2、p型窒化ガリウム系化合物半導体層3が形成され、その上にNiからなる第1の透光性電極11が形成され、その上にNiからなるボンディング用電極8が形成されている。更に、その上に、Auからなるボンディング用電極9が形成されており、Auからなるボンディング用電極9を覆うように電子ビーム蒸着法で2.5nmずつの膜厚でNiとAuとを交互に積層した第2の透光性電極12が形成されいる。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。第2の透光性電極12は、第1の透光性電極側がNiであり、表面側がAuである。
【0031】
上記のような本発明の窒化ガリウム系化合物半導体発光素子の製造工程について図6に示す。
【0032】
まず、実施の形態1と同様に形成されたp型窒化ガリウム系化合物半導体3の表面に、電子ビーム蒸着法で2.5nmの膜厚のNiからなる第1の透光性電極11を形成する。また、n型窒化ガリウム系化合物半導体層2上にn型電極6を形成した。この時の製造工程断面図を図6(a)に示す。
【0033】
この上に、電子ビーム蒸着法で形成されたNiからなるボンディング用電極8を形成する。この時の製造工程断面図を図6(b)に示す。
【0034】
その上に電子ビーム蒸着法で形成されたAuからなるボンディング用電極9を形成した。p型ボンディング用電極9を覆うように、NiとAuとを順に交互に積層した第2の透光性電極12を電子ビーム蒸着法で2.5nmずつの膜厚で形成する。この時の製造工程断面図を図6(c)に示す。
【0035】
第1の透光性電極11とAuからなるボンディング用電極9の密着力を向上させるために、第1の透光性電極11とAuからなるボンディング用電極9の間にNiからなるボンディング用電極8を形成している。このためワイヤーボンディング時にボンディング用電極8、9の剥がれがなくなる。
【0036】
本実施の形態では、第1の透光性電極11としてNi単体を使用したが、NiとAuとの積層構造や交互に積層することで二層膜、多層膜としてもよい。この時の断面図を図6(d)、図6(e)に示す。また、第2の透光性電極12も、NiとAuとの積層構造や複数層交互に積層した多層膜としても、第2の透光性電極12の表面をAuとすれば構わない。
【0037】
第1、第2の透光性電極形成方法は、電子ビーム蒸着法、真空蒸着法、スパッタリング法等を用いる。
【0038】
実施の形態3において作製された窒化ガリウム系化合物半導体発光素子は、p型窒化ガリウム系化合物半導体層3上の第1の透光性電極11のNiからなる膜の膜厚を厚くできる自由度があるため、オーミック特性及び密着性がより向上できる。
【0039】
また、本実施の形態では、n型窒化ガリウム系化合物半導体層の上にp型窒化ガリウム系化合物半導体層を積層させた窒化ガリウム系化合物半導体発光素子を用いたが、p型窒化ガリウム系化合物半導体層の上にn型窒化ガリウム系化合物半導体層を積層させた窒化ガリウム系化合物半導体発光素子を用いても構わない。
【0040】
【発明の効果】
本発明によれば、電極を発光透光面とする窒化ガリウム系化合物半導体発光素子において、透光性電極がNiと熱的に安定な金属とを交互に積層した多層構造であることによって、ボンディング時にかかる力によっても窒化ガリウム系化合物半導体層とボンディング用電極との剥がれが生じないように密着性を向上できる。また、透光性電極の窒化ガリウム系化合物半導体側にNi、表面側に熱的に安定な金属を配置するように多層構造を形成することにより、アニール中に生じるNiの変質を防ぐことができ、窒化ガリウム半導体層と透光性電極のオーミック特性を維持することができる。
【0041】
また、ボンディング用電極を覆うようにNi及びAuからなる多層構造の透光性電極を形成することにより、p型窒化ガリウム系化合物半導体層とボンディング用電極の付着力を一層強めることができる。また、ボンディング用電極のアニール温度が透光性電極のアニール温度より高く、かつ、ボンディング用電極のアニールを透光性電極のアニールの前に行うことにより、透光性電極の変質が発生することなく、透光性電極とボンディング用電極の密着力を強くできる。
【0042】
そのために、オーミック特性とボンディング時の電極剥がれの問題が解決でき、発光効率及び信頼性の良好な窒化ガリウム系化合物半導体発光素子の電極構造が実現できる。
【0043】
さらに、ボンディング電極をNiで形成することで、透光性電極とボンディング用電極との密着力を向上させるために透光性電極とボンディング用電極の間に密着力が向上する。
【0044】
また、熱的に安定な金属として、Au、Cu、Pt、Pd、Rhが好ましい。
【図面の簡単な説明】
【図1】実施の形態1に記載の窒化ガリウム系化合物半導体発光素子の電極構造の摸式図である。
【図2】実施の形態2に記載の本発明の窒化ガリウム系化合物半導体発光素子の電極構造の摸式図である。
【図3】実施の形態3に記載の本発明の窒化ガリウム系化合物半導体発光素子の電極構造の模式図である。
【図4】実施の形態1に記載の窒化ガリウム系化合物半導体発光素子の電極構造の作製工程を示す図である。
【図5】実施の形態2に記載の窒化ガリウム系化合物半導体発光素子の電極構造の作製工程を示す図である。
【図6】実施の形態3に記載の窒化ガリウム系化合物半導体発光素子の電極構造の作製工程を示す図である。
【図7】従来の窒化ガリウム系化合物半導体発光素子の電極構造の摸式図である。
【符号の説明】
1 絶縁性のサファイア基板
2 n型窒化ガリウム系化合物半導体層
3 p型窒化ガリウム系化合物半導体層
4 透光性電極
5 ボンディング用電極
6 n型電極
7 透光性電極
8 Niからなるボンディング用電極
9 Auからなるボンディング用電極
10 透光性電極
11 第1の透光性電極
12 第2の透光性電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode structure of a gallium nitride-based compound semiconductor light-emitting device capable of emitting light in a blue to ultraviolet region, and in particular, an electrode of a gallium nitride-based compound semiconductor light-emitting device having a translucent electrode on a gallium nitride-based compound semiconductor layer. Concerning structure.
[0002]
[Prior art]
As an electrode structure of a conventional gallium nitride compound semiconductor light emitting device, a gallium nitride compound semiconductor light emitting device described in JP-A-7-10663 is shown in FIG.
[0003]
First, an n-type gallium nitride-based compound semiconductor layer 2 and a p-type gallium nitride-based compound semiconductor layer 3 are formed on an insulating sapphire substrate 1, and a transparent layer made of an alloy in which Ni and Au are stacked on the surface thereof. A bonding electrode 5 made of an alloy containing at least one kind of Ti, Ni, In, and Pt in addition to the photoelectrode 4 and Au alone or Au. An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2.
[0004]
[Problems to be solved by the invention]
However, the translucent electrode 4 is formed of a very thin film in order to maintain translucency in the emission wavelength region. Therefore, in order to obtain ohmic characteristics between the translucent electrode 4 and the p-type gallium nitride compound semiconductor layer 3, Ni of the translucent electrode is altered from the surface exposed during the heat treatment (during annealing). As a result, the luminous efficiency is reduced. Such Ni alteration occurs because a gallium nitride-based material is difficult to perform ohmic contact sufficiently, and thus heat treatment must be performed at a high temperature.
[0005]
Furthermore, since the translucent electrode 4 is a very thin film, the adhesion between the p-type gallium nitride compound semiconductor layer 3 and the bonding electrode 5 is poor, and there is a problem that the translucent electrode 4 is easily peeled off during wire bonding.
[0006]
Therefore, by eliminating the peeling of the translucent electrode 4 and the bonding electrode 5 at the time of wire bonding, the yield at the time of wire bonding is improved, and the gallium nitride excellent in reliability that can suppress the decrease in luminous efficiency An object of the present invention is to provide an electrode structure of a compound semiconductor light emitting device.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problem. A translucent electrode in which at least one pair of Ni thin films and Au thin films are alternately stacked on a gallium nitride compound semiconductor light emitting layer is provided. And having a bonding electrode on the translucent electrode, wherein the translucent electrode is formed by alternately laminating at least one pair of thin films made of Ni and thin films made of Au, and the gallium nitride compound semiconductor side is Ni The surface side is made of Au. By forming such a structure, the Ni of the translucent electrode can be prevented from being altered, the ohmic characteristics of the gallium nitride compound semiconductor layer and the translucent electrode are maintained, and the luminous efficiency associated therewith is reduced. It is possible not to cause it.
[0008]
A translucent electrode having a bonding electrode on a gallium nitride-based compound semiconductor light-emitting layer, wherein at least one pair of Ni thin films and Au thin films are alternately stacked so as to cover the bonding electrodes The translucent electrode is characterized in that the gallium nitride compound semiconductor side is made of Ni and the surface side is made of Au.
[0009]
Further, by forming a multi-layer translucent electrode made of Ni and Au so as to cover the bonding electrode, the adhesion between the p-type gallium nitride compound semiconductor layer and the bonding electrode can be further increased. Furthermore, by making the outermost surface of the translucent electrode having a multilayer structure Au, adhesion with the Au wire can be strengthened. Therefore, it is possible to reduce peeling of the bonding electrode during wire bonding.
[0010]
Further, a p-type gallium nitride compound semiconductor layer and a bonding electrode Au are formed by forming a bonding electrode made of Ni that improves adhesion between the translucent electrode having a multilayer structure and the bonding electrode Au made of Au. The adhesion of becomes stronger.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described based on specific embodiments.
[0012]
(Embodiment 1)
A schematic diagram of an electrode structure of a gallium nitride-based compound semiconductor light-emitting device manufactured according to the present invention is shown in FIG.
[0013]
An n-type gallium nitride compound semiconductor layer 2 and a p-type gallium nitride compound semiconductor layer 3 are formed on an insulating sapphire substrate 1, and Ni and Au are alternately stacked on the surface in this order. , A bonding electrode 8 made of Ni alone and a bonding electrode 9 made of Au alone are formed. The translucent electrode 7 is made of Ni on the most p-type gallium nitride compound semiconductor layer 3 side, and made of Au on the most surface side. An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2.
[0014]
FIG. 4 shows the manufacturing process of the gallium nitride compound semiconductor light emitting device of the present invention as described above.
[0015]
First, the n-type gallium nitride compound semiconductor layer 2 is stacked on the insulating sapphire substrate 1 by MOCVD. Next, the p-type gallium nitride compound semiconductor layer 3 is stacked, and Ni and Au are alternately stacked in a desired region on the surface of the p-type gallium nitride compound semiconductor layer 3 by 2.5 nm each by electron beam evaporation. The translucent electrode 7 is formed.
The film thickness of the translucent electrode 7 is set to a thickness that allows sufficient transmission at the emission wavelength.
[0016]
In order to obtain ohmic characteristics between the p-type gallium nitride compound layer 3 and Ni of the translucent electrode 7, annealing at 500 ° C. is performed for 3 minutes. An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2. A manufacturing process sectional view at this time is shown in FIG.
[0017]
Next, a bonding electrode 8 made of Ni is formed on the translucent electrode 7 by an electron beam evaporation method, and a bonding electrode 9 made of Au is further formed. A manufacturing process sectional view at this time is shown in FIG.
[0018]
In the present embodiment, the translucent electrode 7 has a multilayer structure in which Ni and Au are alternately laminated, but may have a multilayer structure composed of a thin film made of a metal that is thermally stable with respect to the annealing temperature and Ni. . As the thermally stable metal, a metal composed of at least one of Au, Cu, Pt, Pd, Rh and the like is preferable. As a method for forming the translucent electrode 7, an electron beam evaporation method, a vacuum evaporation method, or a sputtering method may be used. The bonding electrode 9 made of Au was made of Au in order to improve the adhesion with the Au wire.
[0019]
(Embodiment 2)
FIG. 2 shows a schematic diagram of an electrode structure of another gallium nitride-based compound semiconductor light-emitting device manufactured according to the present invention.
[0020]
An n-type gallium nitride compound semiconductor layer 2 and a p-type gallium nitride compound semiconductor layer 3 are formed on an insulating sapphire substrate 1, and a bonding electrode 8 made of Ni is formed on the surface thereof. Yes. Furthermore, a bonding electrode 9 made of Au is formed thereon, and a translucent electrode 10 in which Ni and Au are alternately laminated so as to cover the bonding electrode 9 made of Au is formed. An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2. The translucent electrode 10 is made of Ni on the p-type gallium nitride compound semiconductor layer side and made of Au on the surface side.
[0021]
FIG. 5 shows a manufacturing process of the gallium nitride compound semiconductor light emitting device of the present invention as described above.
[0022]
First, a bonding electrode 8 made of Ni formed by an electron beam evaporation method is formed on the surface of a p-type gallium nitride compound semiconductor layer 3 formed in the same manner as in the first embodiment, and an electron beam evaporation is formed thereon. A bonding electrode 9 made of Au formed by the method was formed. Next, annealing of the bonding electrode 8 made of Ni and the bonding electrode 9 made of Au is performed at 500 ° C. for 3 minutes. A manufacturing process sectional view at this time is shown in FIG.
[0023]
A translucent electrode 10 in which Ni and Au are alternately stacked in a desired region on the surface of the p-type gallium nitride compound semiconductor layer 3 so as to cover the bonding electrode 9 made of Au is formed by electron beam evaporation to have a thickness of 15 nm. Form with thickness. Next, annealing of the translucent electrode 10 is performed at 400 ° C. for 3 minutes. A manufacturing process sectional view at this time is shown in FIG.
[0024]
Even if the translucent electrode 10 is not a two-layer structure but a multilayer structure, the p-type gallium nitride compound semiconductor layer side may be Ni and the surface side may be Au. FIG. 5C shows a cross-sectional view of the manufacturing process when the multilayer structure is adopted.
[0025]
Next, when wire bonding is performed, since the translucent electrode 10 is a thin film, the translucent electrode 10 is pierced and connected to the bonding electrode 9.
[0026]
Here, the annealing of the bonding electrodes 8 and 9 is performed before the annealing of the translucent electrode 10, and the annealing temperature of the translucent electrode 10 is lower than the annealing temperature of the bonding electrodes 8 and 9. Therefore, the translucent electrode 10 is not altered. Further, by forming a translucent electrode 10 having a structure in which Ni and Au are laminated on the surface of the bonding electrode 9 made of Au, the p-type gallium nitride compound semiconductor layer 3 and the bonding electrode 8 made of Ni are formed. Can increase the adhesive strength.
[0027]
The translucent electrode 10 may have a multilayer structure composed of at least one of Au, Cu, Pt, Pd, Rh and the like which are thermally stable metals and Ni. The bonding electrode 9 made of Au was made of Au in order to improve the adhesion with the Au wire.
[0028]
As a method for forming the light-transmitting electrode, an electron beam evaporation method, a vacuum evaporation method, a sputtering method, or the like can be used.
[0029]
(Embodiment 3)
FIG. 3 shows a schematic diagram of an electrode structure of a gallium nitride-based compound semiconductor light-emitting device manufactured according to still another embodiment of the present invention.
[0030]
An n-type gallium nitride compound semiconductor layer 2 and a p-type gallium nitride compound semiconductor layer 3 are formed on an insulating sapphire substrate 1, and a first translucent electrode 11 made of Ni is formed thereon. A bonding electrode 8 made of Ni is formed thereon. Further, a bonding electrode 9 made of Au is formed thereon, and Ni and Au are alternately formed in a thickness of 2.5 nm by electron beam evaporation so as to cover the bonding electrode 9 made of Au. A laminated second translucent electrode 12 is formed. An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2. As for the 2nd translucent electrode 12, the 1st translucent electrode side is Ni and the surface side is Au.
[0031]
The manufacturing process of the gallium nitride compound semiconductor light emitting device of the present invention as described above is shown in FIG.
[0032]
First, on the surface of the p-type gallium nitride compound semiconductor 3 formed in the same manner as in the first embodiment, the first translucent electrode 11 made of Ni having a thickness of 2.5 nm is formed by electron beam evaporation. . An n-type electrode 6 was formed on the n-type gallium nitride compound semiconductor layer 2. A manufacturing process sectional view at this time is shown in FIG.
[0033]
On this, a bonding electrode 8 made of Ni formed by electron beam evaporation is formed. A manufacturing process sectional view at this time is shown in FIG.
[0034]
A bonding electrode 9 made of Au formed by electron beam evaporation was formed thereon. A second translucent electrode 12 in which Ni and Au are alternately laminated in order is formed to have a film thickness of 2.5 nm by electron beam evaporation so as to cover the p-type bonding electrode 9. A manufacturing process sectional view at this time is shown in FIG.
[0035]
In order to improve the adhesion between the first translucent electrode 11 and the bonding electrode 9 made of Au, the bonding electrode made of Ni is placed between the first translucent electrode 11 and the bonding electrode 9 made of Au. 8 is formed. For this reason, the bonding electrodes 8 and 9 are not peeled off during wire bonding.
[0036]
In the present embodiment, Ni alone is used as the first translucent electrode 11, but a multilayer structure of Ni and Au may be used, or alternatively, a two-layer film or a multilayer film may be formed. Sectional views at this time are shown in FIGS. 6 (d) and 6 (e). Further, the second translucent electrode 12 may also be a laminated structure of Ni and Au or a multilayer film in which a plurality of layers are alternately laminated as long as the surface of the second translucent electrode 12 is Au.
[0037]
As the first and second translucent electrode forming methods, an electron beam evaporation method, a vacuum evaporation method, a sputtering method, or the like is used.
[0038]
The gallium nitride compound semiconductor light-emitting device manufactured in the third embodiment has a degree of freedom to increase the thickness of the Ni film of the first translucent electrode 11 on the p-type gallium nitride compound semiconductor layer 3. Therefore, ohmic characteristics and adhesion can be further improved.
[0039]
In this embodiment, a gallium nitride compound semiconductor light emitting device in which a p-type gallium nitride compound semiconductor layer is stacked on an n-type gallium nitride compound semiconductor layer is used. However, a p-type gallium nitride compound semiconductor is used. A gallium nitride compound semiconductor light emitting element in which an n-type gallium nitride compound semiconductor layer is stacked on the layer may be used.
[0040]
【The invention's effect】
According to the present invention, in a gallium nitride-based compound semiconductor light-emitting device using an electrode as a light-transmitting light-transmitting surface, the light-transmitting electrode has a multilayer structure in which Ni and a thermally stable metal are alternately stacked. Adhesion can be improved so that peeling between the gallium nitride compound semiconductor layer and the bonding electrode does not occur even with a force applied sometimes. In addition, by forming a multi-layer structure in which Ni is placed on the gallium nitride compound semiconductor side of the translucent electrode and a thermally stable metal is placed on the surface side, it is possible to prevent Ni deterioration that occurs during annealing. The ohmic characteristics of the gallium nitride semiconductor layer and the translucent electrode can be maintained.
[0041]
Further, by forming a multi-layer translucent electrode made of Ni and Au so as to cover the bonding electrode, the adhesion between the p-type gallium nitride compound semiconductor layer and the bonding electrode can be further increased. Further, the annealing temperature of the bonding electrode is higher than the annealing temperature of the translucent electrode, and the annealing of the bonding electrode is performed before the annealing of the translucent electrode, thereby causing the alteration of the translucent electrode. In addition, the adhesion between the translucent electrode and the bonding electrode can be increased.
[0042]
Therefore, the problem of ohmic characteristics and electrode peeling at the time of bonding can be solved, and an electrode structure of a gallium nitride-based compound semiconductor light-emitting element with good luminous efficiency and reliability can be realized.
[0043]
Further, by forming the bonding electrode with Ni, the adhesion between the translucent electrode and the bonding electrode is improved in order to improve the adhesion between the translucent electrode and the bonding electrode.
[0044]
Further, Au, Cu, Pt, Pd, and Rh are preferable as the thermally stable metal.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrode structure of a gallium nitride-based compound semiconductor light-emitting element described in Embodiment 1;
2 is a schematic diagram of an electrode structure of a gallium nitride-based compound semiconductor light-emitting element according to the present invention described in Embodiment 2. FIG.
3 is a schematic diagram of an electrode structure of a gallium nitride-based compound semiconductor light-emitting element according to the present invention described in Embodiment 3. FIG.
4 is a diagram showing a manufacturing process of an electrode structure of the gallium nitride-based compound semiconductor light-emitting element described in Embodiment 1; FIG.
5 is a diagram showing a manufacturing process of an electrode structure of a gallium nitride-based compound semiconductor light-emitting element described in Embodiment 2; FIG.
6 is a diagram showing a manufacturing process of an electrode structure of a gallium nitride-based compound semiconductor light-emitting element described in Embodiment 3; FIG.
FIG. 7 is a schematic diagram of an electrode structure of a conventional gallium nitride-based compound semiconductor light emitting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating sapphire substrate 2 N-type gallium nitride compound semiconductor layer 3 P-type gallium nitride compound semiconductor layer 4 Translucent electrode 5 Bonding electrode 6 N-type electrode 7 Translucent electrode 8 Bonding electrode 9 made of Ni Bonding electrode 10 made of Au Translucent electrode 11 First translucent electrode 12 Second translucent electrode

Claims (7)

窒化ガリウム系化合物半導体発光層の上に、Niからなる薄膜とCu、Pd、Rhの群から1つ以上選択された金属よりなる薄膜とが交互に1組み以上積層されてなる透光性電極を有し、
前記透光性電極上にボンディング用電極を有し、
前記透光性電極は、窒化ガリウム系化合物半導体側にNiからなる薄膜が位置し、表面側に前記選択された金属からなる薄膜が位置する構造である
ことを特徴とする窒化ガリウム系化合物半導体発光素子の電極構造。
On the gallium nitride-based compound semiconductor light-emitting layer, a thin film made of Ni and Cu, Pd, a translucent electrode and the thin film made of one or more metal selected from the group are laminated alternately one set or more Rh Have
Having a bonding electrode on the translucent electrode;
The translucent electrode has a structure in which a thin film made of Ni is located on the gallium nitride compound semiconductor side and a thin film made of the selected metal is located on the surface side. The electrode structure of the element.
前記透光性電極は、Niからなる薄膜とCu、Pd、Rhの群から1つ以上選択された金属よりなる薄膜とが交互に2組み以上積層されてなるものである
ことを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子の電極構造。
The translucent electrode claims, characterized in that a thin film made of Ni and Cu, Pd, and a thin film made of one or more metal selected from the group consisting of Rh are those formed by laminating alternately two sets or more Item 2. An electrode structure of a gallium nitride-based compound semiconductor light-emitting device according to Item 1 .
窒化ガリウム系化合物半導体発光層の上に、ボンディング用電極を有し、
前記ボンディング用電極の上に、当該ボンディング用電極の上面を全面的に覆う、Niからなる薄膜と熱的に安定な金属からなる薄膜とが交互に1組み以上積層されてなる透光性電極を有し、
前記透光性電極は、窒化ガリウム系化合物半導体側にNiからなる薄膜が位置し、表面側に前記選択された金属からなる薄膜が位置する構造である
ことを特徴とする窒化ガリウム系化合物半導体発光素子の電極構造。
On the gallium nitride compound semiconductor light emitting layer, it has a bonding electrode,
A translucent electrode in which one or more pairs of thin films made of Ni and thin films made of a thermally stable metal are alternately stacked on the bonding electrode so as to cover the entire upper surface of the bonding electrode. Have
The translucent electrode is positioned a thin film made of Ni to a gallium nitride-based compound semiconductor side, gallium nitride-based compound, wherein the thin film made of the selected metal on the surface side of the structure you location position Electrode structure of semiconductor light emitting device.
前記熱的に安定な金属が、Cu、Pd、Rhの群から1つ以上選択された金属よりなるThe thermally stable metal is made of one or more metals selected from the group consisting of Cu, Pd, and Rh.
ことを特徴とする請求項3に記載の窒化ガリウム系化合物半導体発光素子の電極構造。The electrode structure of the gallium nitride-based compound semiconductor light-emitting device according to claim 3.
窒化ガリウム系化合物半導体発光層の上に、第1の透光性電極を有し、前記第1の透光性電極上にボンディング用電極を有し、
前記ボンディング用電極の上に、当該ボンディング用電極を覆うように、Niからなる薄膜と熱的に安定な金属からなる薄膜とが交互に1組み以上積層されてなる第2の透光性電極を有し、
前記第2の透光性電極は、第1の透光性電極側にNiからなる薄膜が位置し、表面側に熱的に安定な金属からなる薄膜が位置する構造である
ことを特徴とする窒化ガリウム系化合物半導体発光素子の電極構造。
On the gallium nitride compound semiconductor light emitting layer, it has a first translucent electrode, and has a bonding electrode on the first translucent electrode,
On the bonding electrode so as to cover the bonding electrode, the second light-transmitting electrode and a thin film made of a thin film and thermally stable metal composed of Ni are laminated alternately one set or more Have
The second translucent electrode has a structure in which a thin film made of Ni is located on the first translucent electrode side, and a thin film made of a thermally stable metal is located on the surface side. Electrode structure of gallium nitride compound semiconductor light emitting device.
前記熱的に安定な金属がAu、Cu、Pt、Pd、Rhの少なくとも1種類からなる
ことを特徴とする請求項5に記載の窒化ガリウム系化合物半導体発光素子の電極構造。
It said thermally stable metal, Au, Cu, Pt, Pd , an electrode structure of a gallium nitride-based compound semiconductor light-emitting device according to claim 5, characterized in that it consists of at least one of Rh.
前記ボンディング用電極は、Niからなるボンディング用電極と、その上にAuからなるボンディング用電極が積層された構造である
ことを特徴とする請求項1乃至6に記載の窒化ガリウム系化合物半導体発光素子の電極構造。
Said bonding electrodes, and the bonding electrode made of Ni, the gallium nitride-based compound semiconductor light-emitting device according to claim 1 to 6 bonding electrode made of Au thereon characterized in that it is a laminated structure Electrode structure.
JP25787996A 1996-09-30 1996-09-30 Electrode structure of gallium nitride compound semiconductor light emitting device Expired - Fee Related JP3710573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25787996A JP3710573B2 (en) 1996-09-30 1996-09-30 Electrode structure of gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25787996A JP3710573B2 (en) 1996-09-30 1996-09-30 Electrode structure of gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10107318A JPH10107318A (en) 1998-04-24
JP3710573B2 true JP3710573B2 (en) 2005-10-26

Family

ID=17312460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25787996A Expired - Fee Related JP3710573B2 (en) 1996-09-30 1996-09-30 Electrode structure of gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3710573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201264B1 (en) * 1999-01-14 2001-03-13 Lumileds Lighting, U.S., Llc Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials
US6287947B1 (en) * 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
WO2009154191A1 (en) * 2008-06-16 2009-12-23 昭和電工株式会社 Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp
JP5515431B2 (en) * 2008-06-16 2014-06-11 豊田合成株式会社 Semiconductor light emitting device, electrode thereof, manufacturing method and lamp
CN102124574B (en) 2008-06-16 2013-07-17 丰田合成株式会社 Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp

Also Published As

Publication number Publication date
JPH10107318A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP4183299B2 (en) Gallium nitride compound semiconductor light emitting device
US7872276B2 (en) Vertical gallium nitride-based light emitting diode and method of manufacturing the same
JP4050444B2 (en) Light emitting device and manufacturing method thereof
JP5084100B2 (en) Nitride-based light emitting device and manufacturing method thereof
JP4211329B2 (en) Nitride semiconductor light emitting device and method of manufacturing light emitting device
JP5630384B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP4449405B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
CN111640830B (en) Flip LED chip and preparation method thereof
JP2697572B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2006324511A (en) Nitride semiconductor element
US20060054919A1 (en) Light-emitting element, method for manufacturing the same and lighting equipment using the same
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
JP2008140841A (en) Light-emitting element
US20050142820A1 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
JP3916011B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP2012248807A (en) Light-emitting element and manufacturing method thereof
JP3710573B2 (en) Electrode structure of gallium nitride compound semiconductor light emitting device
JP4901241B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2012529170A (en) Light emitting semiconductor device and manufacturing method
KR101760969B1 (en) Nitride semiconductor light emitting element and method for manufacturing same
WO2014109137A1 (en) Light emitting element and method for manufacturing same
JP2002016286A (en) Semiconductor light-emitting element
JPH08306643A (en) Electrode and light emitting element for iii-v group compound semiconductor
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP3344296B2 (en) Electrodes for semiconductor light emitting devices

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees