JP3710549B2 - Rotating tool - Google Patents

Rotating tool Download PDF

Info

Publication number
JP3710549B2
JP3710549B2 JP11703196A JP11703196A JP3710549B2 JP 3710549 B2 JP3710549 B2 JP 3710549B2 JP 11703196 A JP11703196 A JP 11703196A JP 11703196 A JP11703196 A JP 11703196A JP 3710549 B2 JP3710549 B2 JP 3710549B2
Authority
JP
Japan
Prior art keywords
fiber
inorganic long
rotary tool
long fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11703196A
Other languages
Japanese (ja)
Other versions
JPH09277177A (en
Inventor
毅彦 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Original Assignee
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xebec Technology Co Ltd, Taimei Chemicals Co Ltd filed Critical Xebec Technology Co Ltd
Priority to JP11703196A priority Critical patent/JP3710549B2/en
Publication of JPH09277177A publication Critical patent/JPH09277177A/en
Application granted granted Critical
Publication of JP3710549B2 publication Critical patent/JP3710549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属或いは非金属の被加工物に対して、穿孔、研磨等の加工を行うために用いる回転工具に関する。
【0002】
【従来の技術】
従来、この種の回転工具としては、図4に示すように、一方向に引き揃えたアルミナ長繊維等の無機長繊維aをエポキシ樹脂等の熱硬化性樹脂バインダで結着し、丸棒状等の所望形状に形成し、前記無機長繊維aの繊維端bで穿孔、研磨等の加工を行うようにした回転工具が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の回転工具の場合、引き揃えられた長繊維が回転軸の方向に沿って並んでいるだけのため、例えば、このようにして作られた筒状乃至リング状の回転工具の場合は使用してすぐに縦割れを生じ使い物にならず、また、同様なことが棒状の回転工具の場合にもいえ、樹脂の接着力に依存するため使用中に力がかかり過ぎた場合には棒状の場合といえども回転工具に亀裂が生じる恐れがある。これは研削要素、研磨要素として無機長繊維を使用する回転工具の解決するべき重要な課題となっており、特に高速回転での使用に耐え得る強度の大きな回転工具の開発が望まれている。
【0004】
【課題を解決するための手段】
そこで、本発明の回転工具は前記従来の回転工具の不都合を解消するべく、無機長繊維を熱硬化性樹脂バインダで結着し、前記無機長繊維の繊維端で加工するようにした回転工具であって、前記無機長繊維の繊維束を組紐体に編成したことを特徴とする。
また、請求項2記載の回転工具は、前記無機長繊維の繊維束を棒状の組紐体に編成すると共に該棒状体の回転軸に沿って、無機長繊維からなる芯材を設けたことを特徴とする。
また、請求項3記載の回転工具は、前記無機長繊維の繊維束を筒状の中空組紐体に編成したことを特徴とする。
また、請求項4記載の回転工具は、前記無機長繊維がアルミナ繊維、ボロン繊維、炭化珪素繊維、窒化珪素繊維、ガラス繊維の何れか単独、或いはこれらの組み合わせであることを特徴とする。
また、請求項5記載の回転工具は、前記無機長繊維を30〜75容量%としたことを特徴とする。
【0005】
前記無機長繊維としては、被加工材に対して相対的に加工性を有する材料であればよく、例えば研磨加工であれば、研磨する材料よりも硬くて且つ脆い材料であれば特に限定されるものではないが、前記したとおり、アルミナ繊維、ボロン繊維、炭化珪素繊維、窒化珪素繊維、ガラス繊維等の使用が好ましい。特に、被研磨材がアルミニウム、銅、黄銅の場合にはガラス繊維が最適であり、鉄等の場合にはアルミナ繊維が適している。また、研磨する材料によってはこれらが混合していてもよい。
【0006】
前記無機長繊維としては、単繊維の平均繊維径が3〜40μm程度のものが使用され、6〜35μm程度のものが好ましい。これは、無機長繊維として、現在ヤーンとして市販されている一番細い繊維が3μmであり、また、40μmを越えると非常に取り扱いが難しくなるからである。ただし、研磨領域を越えて、研削領域での有効活用を考えるならば、平均繊維径100μm〜200μmの繊維が理想である。また、逆に研磨より、ポリッシング領域での活用を考えるならば、細いほどよく平均繊維径3μmの繊維が最良ということになる。
【0007】
また、前記無機長繊維の繊維束は繊維束重量500〜3000tex程度のものが使用され、樹脂の含浸性からは500tex程度の細い繊維束を複数本、樹脂に含浸させた後に引き揃えて用いるのが理想的であるが、樹脂の含浸性がよい場合は1500texの繊維束や3000texの繊維束をそのまま樹脂中に含浸させて使うことも可能である。
【0008】
前記無機長繊維を固めるための結合剤であり、且つ、回転工具を構成するFRPのマトリクスでもある、熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ビスマレイミド樹脂、フェノール樹脂等が使用され、特に、無機長繊維を含有するにも係わらずボイド(気泡)をその中に包含しない回転工具が作製でき且つ無機長繊維に対して接着力の強いエポキシ樹脂が最適である。ボイドがあると、例えば研磨加工時に生じた金属粒子がFRP材の中に残留するボイドの中に入り込み、目詰を生じると共に研磨の際にこの金属粒子と同じ硬度である被研磨面を損傷することになる。
【0009】
前記無機長繊維の含有量は、30〜75容量%とすることが好ましく、これは30容量%未満では研磨効果が悪くなり、75容量%を越えると繊維に対する樹脂量が不足し繊維と繊維の間に少しの力でクラックが発生するからである。なお、この回転工具の磨き効果からすれば、繊維の含有量は多い方がよく、55〜65容量%の範囲が好ましい。
【0010】
本発明の前記のような棒状や筒状の回転工具を得るには、組紐機で組紐体に編成され、熱硬化性樹脂を含浸された状態の無機長繊維を用意し、これを所定のサイズの内径を有するパイプまたは金型内に引き入れて硬化させるか、或いは、前記熱硬化性樹脂を含浸された状態の無機長繊維を所定のサイズの孔を設けた加熱金型内を連続的に通過させることにより、いわゆる連続引き抜き成形(プルトリュージョン)により製造することができる。
【0011】
図1は棒状の回転工具の一例を示すもので、無機長繊維1の繊維束2を棒状の組紐体3に編成し、組紐体3の端部に現れる各無機長繊維1の繊維端4で加工するようにしたものである。また、図2は棒状の回転工具の他例を示すもので、回転工具の回転軸に沿って、無機長繊維1の繊維束2を一方向に引き揃えた芯材5を設けて回転工具の強度を高めるようにしたものである。また、図3は筒状の回転工具の一例を示すもので、無機長繊維1の繊維束2を筒状の組紐体3に編成し、組紐体3の端部に現れる各無機長繊維1の繊維端4で加工するようにしたものである。
【0012】
前記無機長繊維の繊維束からなる組紐体は通常の組紐装置で作製が可能である。即ち、例えば16本掛けの組紐機を使用する場合には、16本のボビンのそれぞれに無機長繊維の繊維束を巻き取り、これを組紐機に取付けて起動させれば、16本のボビンが組紐機のガイドレールに従って動き、このボビンの動きに従って編成された組紐体が連続的にできあがってくる。
前記組紐体の太さはボビンに巻かれる繊維束の太さと、設置するボビンの本数によって調節することができる。
なお、組紐体の中心軸、即ち、回転工具の回転軸に沿って無機長繊維からなる芯材を設けてより強度を上げたい場合には、無機長繊維の繊維束から組紐体が組まれて行く時点で、繊維束を一本或いは複数本束ねたものや、先に作製しておいた細い組紐からなる芯材を中心部に入れながら組紐体に組上げるようにすればよい。
【0013】
なお、前記組紐体に編成され、熱硬化性樹脂を含浸された状態の無機長繊維を得るには、次に述べるように二つの方法がある。即ち、熱硬化性樹脂を含浸した無機長繊維の繊維束を組紐機のボビンに巻き取り、これを用いて組紐体を作る方法と、無機長繊維の繊維束のみでまず組紐体を作製し、その後でこれを樹脂槽に漬けて熱硬化性樹脂を含浸させる方法がある。組紐機の掃除の手間からは後の方法、即ち、無機長繊維の繊維束から組紐体を先に作製しておき、その後で樹脂を含浸させるほうがよい。
【0014】
より具体的な製造については、棒状の回転工具の場合は、予め先に述べた容量%の繊維含有量になるように繊維量を調整して樹脂を含浸させた組紐体を、所定の内径を有するパイプまたは金型中に引き込んで硬化させ、その後、パイプまたは金型から硬化物を取り出し、所定の寸法に切断すれば、棒状の回転工具ができあがる。
また、連続引き抜き装置(プルトリュージョンマシーン)を使用して製造する場合は、前記樹脂を含浸させた組紐体を所定のサイズの孔を開けた加熱金型中に通して、これを連続的に硬化させながら棒状体に形成し、所定寸法に切断すれば、棒状の回転工具ができあがる。
【0015】
また、筒状の回転工具の場合は、樹脂を含浸させた中空の無機長繊維組紐体を用意し、所定の内径を有する金属製、セラミック製、または熱に耐え得るプラスチック製からなるパイプまたはシャフト(鉄製で表面に離型剤を塗布したものが最適である)をこの組紐体の中空部分に差し込み、その状態のまま硬化させ、硬化後に中子となるパイプまたはシャフトを引き抜いて中空の筒状体を作製し、これを所定寸法に切断すれば、筒状の回転工具ができあがる。なお、中子となるパイプまたはシャフトを引き抜く前に組紐体の外径を旋盤等で仕上げておくと中子を引き抜いた後に後加工が必要でなくなるので、製造工程上好ましい。
【0016】
以下、本発明回転工具の実施例につき説明する。
(実施例1)
各9μmの1000フィラメントからなるアルミナ繊維の繊維束を使用し、これを16本のボビンに巻き取って組紐機に掛け、更に、中心に9μmの1000フィラメントとからなるアルミナ繊維の繊維束を芯材として配設しながら棒状の組紐体を作製した。この組紐体を下記配合割合の樹脂組成物の入ったレジンバスに入れ、樹脂を含浸させた。
エポキシ樹脂(DER383J ダウケミカル) 100部
テトラヒドロメチル無水フタル酸(HN2200) 80部
イミダゾール(2E4MZーCN 四国化成) 1部
このようにして得られた樹脂を含浸した組紐体を内径2.5mm、長さ15cmのパイプの中に引き込み、その状態のまま120℃の硬化炉で硬化させた。硬化後、パイプの中の組紐体を引き抜いて直径2.5mmの棒状体を得た。この棒状体を旋盤により外径2mmに仕上げ、長さ30mmに切断して研磨用回転工具を作製した。
この研磨用回転工具を回転ドリルに取り付け、鉄製の金型を研磨したところ非常に良好な研磨面を得ることができた。また、前記回転工具は研磨により磨耗仕切るまで割れが生じることなく使用できた。
【0017】
(実施例2)
各9μmの1000フィラメントからなるアルミナ繊維を3本合糸して3000フィラメントの繊維束とし、これを16本のボビンに巻き取って、組紐機に掛け、組紐体を作製した。この組紐体を上記樹脂組成物中に入れ、樹脂を含浸せしめ、これを直径3mmの孔を開けたパイプに引き込み、硬化させ、外径3mmの棒状体を作製した。この棒状体を長さ30mmに切断して研磨用回転工具を作製した。
この研磨用回転工具を回転ドリルに取り付け、実施例1と同様に鉄製の金型を研磨したところ非常に良好な研磨面を得ることができた。また、前記回転工具は研磨により磨耗仕切るまで割れが生じることなく使用できた。
【0018】
(実施例3)
各9μmの1000フィラメントからなるアルミナ繊維を使用し、これを2本づつ合糸し16本のボビンに巻き取って組紐機に掛け、中空部を備えた筒状の組紐体を作製した。この組紐体を実施例1と同様の樹脂組成のレジンバス中に入れ、樹脂を含浸せしめた後、この組紐体の中空部に表面に離型剤を塗布した外径4.5mmの鉄製のロッドを差し込み、その状態で硬化炉に入れ、硬化せしめた。この状態で旋盤により、外径を6mmに仕上げた後、中子の鉄製ロッドを引き抜き、内径4.5mm、外径6mmに仕上げ、長さ50mmに切断し、筒状回転工具を得た。
この筒状回転工具を回転ドリルに取り付け、鉄板の表面を研磨したところ良好な研磨面を得ることができた。また、この場合も、前記回転工具は研磨により磨耗仕切るまで割れが生じることなく使用できた。
【0019】
【発明の効果】
このように、本発明によれば、無機長繊維を熱硬化性樹脂バインダで結着し、前記無機長繊維の繊維端で加工するようにした回転工具において、前記無機長繊維の繊維束を組紐体に編成するようにしたので、無機長繊維同士の結着強度が高まり縦割れが生じることがなく、回転中に折損するおそれのない回転工具を得ることができる。
【図面の簡単な説明】
【図1】本発明回転工具の一実施例の斜視図
【図2】本発明回転工具の他実施例の斜視図
【図3】本発明回転工具の他実施例の斜視図
【図4】従来の回転工具の斜視図
【符号の簡単な説明】
1 無機長繊維
2 繊維束
3 組紐体
4 繊維端
5 芯材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary tool used to perform processing such as drilling and polishing on a metal or non-metal workpiece.
[0002]
[Prior art]
Conventionally, as this type of rotary tool, as shown in FIG. 4, inorganic long fibers a such as alumina long fibers aligned in one direction are bound with a thermosetting resin binder such as epoxy resin to form a round bar shape or the like. There is known a rotary tool that is formed into a desired shape and is processed such as drilling and polishing at the fiber end b of the inorganic long fiber a.
[0003]
[Problems to be solved by the invention]
However, in the case of the conventional rotary tool, since the aligned long fibers are arranged along the direction of the rotation axis, for example, in the case of a cylindrical or ring-shaped rotary tool made in this way Will cause a vertical crack immediately after use, and it will not be useful, and the same applies to rod-like rotary tools, but it depends on the adhesive strength of the resin, so if excessive force is applied during use Even in the case of rods, there is a risk of cracks in the rotating tool. This is an important issue to be solved for rotary tools that use inorganic long fibers as grinding and polishing elements, and in particular, the development of rotary tools with high strength that can withstand use at high speeds is desired.
[0004]
[Means for Solving the Problems]
Accordingly, the rotary tool of the present invention is a rotary tool in which inorganic long fibers are bound with a thermosetting resin binder and processed at the fiber ends of the inorganic long fibers in order to eliminate the disadvantages of the conventional rotary tools. The fiber bundle of the inorganic long fibers is knitted into a braided body.
The rotary tool according to claim 2 is characterized in that a fiber bundle of the inorganic long fibers is knitted into a rod-like braided body and a core material made of inorganic long fibers is provided along the rotation axis of the rod-like body. And
The rotary tool according to claim 3 is characterized in that the inorganic long fiber bundle is knitted into a cylindrical hollow braid.
The rotary tool according to claim 4 is characterized in that the inorganic long fibers are any one of alumina fibers, boron fibers, silicon carbide fibers, silicon nitride fibers, and glass fibers, or a combination thereof.
Moreover, the rotary tool according to claim 5 is characterized in that the inorganic long fiber is 30 to 75% by volume.
[0005]
The inorganic long fiber is not particularly limited as long as it is a material having processability relative to the workpiece. For example, if it is a polishing process, the material is particularly limited if it is harder and more brittle than the material to be polished. Although it is not a thing, as above-mentioned, use of an alumina fiber, a boron fiber, a silicon carbide fiber, a silicon nitride fiber, a glass fiber, etc. is preferable. In particular, when the material to be polished is aluminum, copper, or brass, glass fiber is most suitable, and when it is iron or the like, alumina fiber is suitable. These may be mixed depending on the material to be polished.
[0006]
As the inorganic long fibers, those having an average fiber diameter of about 3 to 40 μm are used, and those having about 6 to 35 μm are preferable. This is because the thinnest fiber currently marketed as a yarn as an inorganic long fiber is 3 μm, and if it exceeds 40 μm, handling becomes very difficult. However, if effective utilization in the grinding region is considered beyond the polishing region, fibers having an average fiber diameter of 100 μm to 200 μm are ideal. On the other hand, if the use in the polishing region is considered rather than polishing, the thinner the better, the better the fiber with an average fiber diameter of 3 μm.
[0007]
In addition, the fiber bundle of the inorganic long fiber is used with a fiber bundle weight of about 500 to 3000 tex. From the impregnation property of the resin, a plurality of thin fiber bundles of about 500 tex are impregnated into the resin and used after being aligned. However, if the resin impregnation property is good, it is possible to impregnate the resin with a fiber bundle of 1500 tex or a fiber bundle of 3000 tex as it is.
[0008]
The thermosetting resin, which is a binder for solidifying the inorganic long fibers and is also a matrix of FRP constituting the rotary tool, includes epoxy resin, unsaturated polyester resin, vinyl ester resin, bismaleimide resin, phenol Resins etc. are used, and in particular, an epoxy resin that can produce a rotary tool that does not contain voids (bubbles) in spite of containing inorganic long fibers and has strong adhesion to inorganic long fibers is optimal. . If there is a void, for example, metal particles generated during the polishing process enter the voids remaining in the FRP material, causing clogging and damaging the surface to be polished having the same hardness as the metal particles during polishing. It will be.
[0009]
The content of the inorganic long fiber is preferably 30 to 75% by volume, and if it is less than 30% by volume, the polishing effect is deteriorated. This is because a crack is generated with a little force. In view of the polishing effect of the rotary tool, the fiber content should be large, and the range of 55 to 65% by volume is preferable.
[0010]
In order to obtain a rod-like or cylindrical rotary tool as described above according to the present invention, an inorganic long fiber knitted into a braided body with a braiding machine and impregnated with a thermosetting resin is prepared, and this is a predetermined size. It is drawn into a pipe or mold having an inner diameter of 2 mm and cured, or the inorganic long fiber impregnated with the thermosetting resin is continuously passed through a heating mold provided with holes of a predetermined size. By making it, it can manufacture by what is called continuous drawing (pultrusion).
[0011]
FIG. 1 shows an example of a rod-like rotary tool, in which a fiber bundle 2 of inorganic long fibers 1 is knitted into a rod-like braided body 3, and the fiber ends 4 of the inorganic long fibers 1 appearing at the ends of the braided body 3. It is intended to be processed. FIG. 2 shows another example of a rod-like rotary tool. A core material 5 in which fiber bundles 2 of inorganic long fibers 1 are aligned in one direction is provided along the rotation axis of the rotary tool. The strength is increased. FIG. 3 shows an example of a cylindrical rotary tool. A fiber bundle 2 of inorganic long fibers 1 is knitted into a cylindrical braid body 3, and each inorganic long fiber 1 appearing at the end of the braid body 3 is shown in FIG. The fiber ends 4 are processed.
[0012]
A braided body composed of a bundle of inorganic long fibers can be produced by a normal braided device. That is, for example, when using a 16-placing braid machine, if a fiber bundle of inorganic long fibers is wound around each of the 16 bobbins, and this is attached to the braiding machine and activated, the 16 bobbins are It moves according to the guide rail of the braiding machine, and a braided body knitted according to the movement of the bobbin is continuously formed.
The thickness of the braided body can be adjusted by the thickness of the fiber bundle wound around the bobbin and the number of bobbins to be installed.
In addition, when a core material made of inorganic long fibers is provided along the central axis of the braided body, that is, the rotation axis of the rotary tool and the strength is to be further increased, the braided body is assembled from a fiber bundle of inorganic long fibers. At the time of going, it is only necessary to assemble one or a plurality of bundles of fiber bundles or a core material made of a thin braid previously prepared into a braid while putting it in the center.
[0013]
There are two methods for obtaining inorganic long fibers knitted into the braid and impregnated with a thermosetting resin as described below. That is, a fiber bundle of inorganic long fibers impregnated with a thermosetting resin is wound on a bobbin of a braiding machine, and a braid is made using this, and a braid is first produced only with a fiber bundle of inorganic long fibers, Thereafter, there is a method in which this is immersed in a resin tank and impregnated with a thermosetting resin. From the trouble of cleaning the braiding machine, it is better to prepare a braided body first from a fiber bundle of inorganic long fibers, and then impregnate the resin afterwards.
[0014]
For more specific production, in the case of a rod-shaped rotary tool, a braided body that has been impregnated with resin by adjusting the amount of fibers so as to have a fiber content of volume% as described above has a predetermined inner diameter. The rod-shaped rotary tool is completed by drawing it into a pipe or mold having the mold and curing it, and then removing the cured product from the pipe or mold and cutting it into a predetermined dimension.
In the case of manufacturing using a continuous drawing machine (pultrusion machine), the braided body impregnated with the resin is passed through a heating mold having a hole of a predetermined size, and this is continuously applied. If it is formed into a rod-like body while being cured and cut to a predetermined size, a rod-like rotary tool is completed.
[0015]
In the case of a cylindrical rotary tool, a hollow inorganic long fiber braid body impregnated with a resin is prepared, and a pipe or shaft made of metal, ceramic, or plastic that can withstand heat has a predetermined inner diameter. (The best one is made of iron and with a release agent applied to the surface) is inserted into the hollow part of this braid body and cured in that state, and the pipe or shaft that becomes the core after curing is pulled out to form a hollow cylinder. If a body is produced and cut into predetermined dimensions, a cylindrical rotary tool is completed. If the outer diameter of the braid is finished with a lathe before pulling out the core pipe or shaft, post-processing is not required after the core is pulled out, which is preferable in the manufacturing process.
[0016]
Hereinafter, examples of the rotary tool of the present invention will be described.
(Example 1)
Each fiber bundle of alumina fibers consisting of 1000 μm filaments of 9 μm is used, wound on 16 bobbins and hung on a braiding machine, and further, the fiber bundle of alumina fibers consisting of 1000 μm filaments of 9 μm at the center. A rod-like braided body was produced while arranging as above. This braid was put into a resin bath containing a resin composition having the following blending ratio and impregnated with resin.
Epoxy resin (DER383J Dow Chemical) 100 parts Tetrahydromethyl phthalic anhydride (HN2200) 80 parts Imidazole (2E4MZ-CN Shikoku Kasei) 1 part It was drawn into a 15 cm pipe and cured in a 120 ° C. curing furnace in that state. After curing, the braided body in the pipe was pulled out to obtain a rod-shaped body having a diameter of 2.5 mm. This rod-shaped body was finished to an outer diameter of 2 mm by a lathe and cut to a length of 30 mm to produce a polishing rotary tool.
When this polishing rotary tool was attached to a rotary drill and an iron mold was polished, a very good polished surface could be obtained. Further, the rotary tool could be used without cracking until it was worn and separated by polishing.
[0017]
(Example 2)
Three alumina fibers each consisting of 1000 μm filaments of 9 μm were combined to form a fiber bundle of 3000 filaments, which were wound around 16 bobbins and hung on a braiding machine to produce a braided body. This braided body was put into the resin composition, impregnated with resin, drawn into a pipe having a hole with a diameter of 3 mm, and cured to produce a rod-shaped body with an outer diameter of 3 mm. This rod-shaped body was cut into a length of 30 mm to produce a polishing rotary tool.
When this polishing rotary tool was attached to a rotary drill and an iron mold was polished in the same manner as in Example 1, a very good polished surface could be obtained. Further, the rotary tool could be used without cracking until it was worn and separated by polishing.
[0018]
(Example 3)
Alumina fibers composed of 1000 μm filaments each having 9 μm were used, two of which were combined, wound around 16 bobbins, hung on a braiding machine, and a tubular braid having a hollow portion was produced. The braided body was put in a resin bath having the same resin composition as in Example 1, impregnated with resin, and then a steel rod having an outer diameter of 4.5 mm, in which a release agent was applied to the hollow portion of the braided body. It was inserted and placed in a curing furnace in that state to be cured. After finishing the outer diameter to 6 mm with a lathe in this state, the core iron rod was pulled out, finished to an inner diameter of 4.5 mm and an outer diameter of 6 mm, and cut to a length of 50 mm to obtain a cylindrical rotary tool.
When this cylindrical rotary tool was attached to a rotary drill and the surface of the iron plate was polished, a good polished surface could be obtained. Also in this case, the rotary tool could be used without cracking until it was separated by wear.
[0019]
【The invention's effect】
Thus, according to the present invention, in a rotary tool in which inorganic long fibers are bound with a thermosetting resin binder and processed at the fiber ends of the inorganic long fibers, the fiber bundles of the inorganic long fibers are braided. Since the body is knitted, the binding strength between the inorganic long fibers is increased and vertical cracking does not occur, and a rotary tool that does not break during rotation can be obtained.
[Brief description of the drawings]
1 is a perspective view of an embodiment of the rotary tool of the present invention. FIG. 2 is a perspective view of another embodiment of the rotary tool of the present invention. FIG. 3 is a perspective view of another embodiment of the rotary tool of the present invention. Perspective view of the rotating tool
DESCRIPTION OF SYMBOLS 1 Inorganic long fiber 2 Fiber bundle 3 Braid body 4 Fiber end 5 Core material

Claims (5)

無機長繊維を熱硬化性樹脂バインダで結着し、前記無機長繊維の繊維端で加工するようにした回転工具であって、前記無機長繊維の繊維束を組紐体に編成したことを特徴とする回転工具。A rotary tool in which inorganic long fibers are bound with a thermosetting resin binder and processed at the fiber ends of the inorganic long fibers, wherein the fiber bundles of the inorganic long fibers are knitted into a braided body. Rotating tool. 前記無機長繊維の繊維束を棒状の組紐体に編成すると共に該棒状体の回転軸に沿って、無機長繊維からなる芯材を設けたことを特徴とする請求項1記載の回転工具。2. The rotary tool according to claim 1, wherein the fiber bundle of the inorganic long fibers is knitted into a rod-like braided body, and a core material made of inorganic long fibers is provided along the rotation axis of the rod-like body. 前記無機長繊維の繊維束を筒状の中空組紐体に編成したことを特徴とする請求項1記載の回転工具。The rotary tool according to claim 1, wherein the fiber bundle of the inorganic long fibers is knitted into a cylindrical hollow braid. 前記無機長繊維はアルミナ繊維、ボロン繊維、炭化珪素繊維、窒化珪素繊維、ガラス繊維の何れか単独、或いはこれらの組み合わせであることを特徴とする請求項1乃至3の何れかに記載の回転工具。The rotary tool according to any one of claims 1 to 3, wherein the inorganic long fiber is any one of alumina fiber, boron fiber, silicon carbide fiber, silicon nitride fiber, and glass fiber, or a combination thereof. . 前記無機長繊維を30〜75容量%としたことを特徴とする請求項1乃至4の何れかに記載の回転工具。The rotary tool according to any one of claims 1 to 4, wherein the inorganic long fiber is 30 to 75% by volume.
JP11703196A 1996-04-15 1996-04-15 Rotating tool Expired - Lifetime JP3710549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11703196A JP3710549B2 (en) 1996-04-15 1996-04-15 Rotating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11703196A JP3710549B2 (en) 1996-04-15 1996-04-15 Rotating tool

Publications (2)

Publication Number Publication Date
JPH09277177A JPH09277177A (en) 1997-10-28
JP3710549B2 true JP3710549B2 (en) 2005-10-26

Family

ID=14701742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11703196A Expired - Lifetime JP3710549B2 (en) 1996-04-15 1996-04-15 Rotating tool

Country Status (1)

Country Link
JP (1) JP3710549B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074532A (en) * 2003-08-28 2005-03-24 Kyocera Corp Rotating tool
WO2016166852A1 (en) * 2015-04-15 2016-10-20 大明化学工業株式会社 Abrasive material and rotary polishing tool

Also Published As

Publication number Publication date
JPH09277177A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US3477180A (en) Reinforced grinding wheels and reinforcement network therefor
US20040195744A1 (en) Fiber-reinforced composite springs
DE69926403T2 (en) SUPERKALANDERROL WITH VERBUNDUMHÜLLUNG
CN1608177A (en) Fiber-reinforced resin roll and method of manufacturing the roll
JP3710549B2 (en) Rotating tool
US20080292418A1 (en) Novel composite tool holders and boring tools
US4259089A (en) Grinding wheel containing grain-coated reinforcement fibers and method of making it
JP2018002535A (en) Fiber for concrete reinforcement and method for producing the same
US20080241446A1 (en) Composite material and methods of filament winding, pultrusion and open molding that material
EP1116553B1 (en) Abrasive article
US6004198A (en) Working tool, and material therefor
JP3679191B2 (en) Wrapping material and method for producing the same
JP2000210847A (en) Edge deburring method for cutting tool
JPH02112926A (en) Manufacture of hoop reinforcement
JPH1029164A (en) Rotary tool, and manufacture thereof
GB2028860A (en) Grinding wheels
JP2728092B2 (en) Manual wrapping material and wrapping method
JP7239951B1 (en) Stick grindstone and polishing method
JP4579382B2 (en) Tube brush-like abrasive, deburring and polishing method
JPH10217132A (en) Processing material for ultrasonic machining
JP2000263447A (en) Abrasive material
JPH10217131A (en) Processing material and tool for processing
JPH0854013A (en) Frp-made washer and its manufacture
JP4398521B2 (en) Wrapping material and manufacturing method thereof
JPH11239981A (en) Lapping material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term