JP2000263447A - Abrasive material - Google Patents

Abrasive material

Info

Publication number
JP2000263447A
JP2000263447A JP2000006949A JP2000006949A JP2000263447A JP 2000263447 A JP2000263447 A JP 2000263447A JP 2000006949 A JP2000006949 A JP 2000006949A JP 2000006949 A JP2000006949 A JP 2000006949A JP 2000263447 A JP2000263447 A JP 2000263447A
Authority
JP
Japan
Prior art keywords
abrasive
fiber
polishing
alumina
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006949A
Other languages
Japanese (ja)
Inventor
Takuma Miyazawa
琢磨 宮澤
Takehiko Sumiyoshi
毅彦 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Original Assignee
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xebec Technology Co Ltd, Taimei Chemicals Co Ltd filed Critical Xebec Technology Co Ltd
Priority to JP2000006949A priority Critical patent/JP2000263447A/en
Publication of JP2000263447A publication Critical patent/JP2000263447A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a grinding wheel, which can facilitate accurate polishing of a material of hard quality, and very excellent in polishing efficiency as compared with a diamond electro-deposited grinding wheel in the past. SOLUTION: This abrasive material consists of alumina long fiber, diamond abrasive grain, and matrix resin, with the fiber end of the alumina long fiber serving as an abrasive treatment end. This abrasive material is formed in a compound structure of a fiber rich part consisting of the alumina long fiber and the matrix resin and an abrasive grain rich part consisting of the diamond abrasive grain and the matrix resin. The abrasive material comprises, for instance, an UD sheet layer arranging all the alumina long fiber in the same direction to be bound by a thermosetting resin matrix and an abrasive grain layer binding the diamond abrasive grain by the thermosetting resin matrix, the abrasive grain is arranged in at least one surface of obverse/reverse flat surfaces, and a tip end part of the alumina long fiber is integrally formed in flat plate shape so as to be hit to a polishing surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は研磨用砥石等の研磨
材に関し、超硬合金や高硬度鋼や焼入れ鋼のような硬質
材の研磨に適しており、特に、これらの硬質材でできた
リブやボスなどの微細部分を手磨きで、或いは、振動工
具や回転工具などを用いて精密研磨するのに適した研磨
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive material such as a grinding wheel, and is suitable for polishing hard materials such as cemented carbide, high-hardness steel, and hardened steel. The present invention relates to an abrasive material suitable for precision polishing fine parts such as ribs and bosses by hand polishing or using a vibration tool or a rotary tool.

【0002】[0002]

【従来の技術】近年、ロックウェル硬度C(HRC)が
50以上の高硬度鋼や焼入れ鋼、さらに高度の高い超硬
合金製の金型が増えている。これら硬質材料を研磨でき
る砥材は主としてダイヤモンドである。しかし、従来の
ダイヤモンド砥石はダイヤモンド砥粒材を金属や熱硬化
性樹脂を結合剤として成形されており、硬質材料の研
削、切断には広く使われているが、研磨にはほとんど使
われておらず、ことに精密研磨に適したダイヤモンド砥
石は存在しなかったと言ってもよい。その理由は、精密
研磨をする際には従来はダイヤモンドパウダーやダイヤ
モンドペーストを使って木や竹製のヘラで磨くのが一般
的であり、この方法は、研磨に時間がかかり熟練を要す
るなどの問題があって固形砥石タイプの出現が強く望ま
れていたが、砥石も小型で肉薄の形状のものでないとワ
ークに対応できず、同時に砥石自体にかなりの強度と弾
力性が要求され、従来のダイヤモンド砥石をこのような
形状に成形すると脆くて実用的でなかったからである。
2. Description of the Related Art In recent years, molds made of high-hardness steel or hardened steel having a Rockwell hardness C (HRC) of 50 or more and cemented carbide having a higher degree have been increasing. The abrasive material capable of polishing these hard materials is mainly diamond. However, conventional diamond whetstones are formed using diamond abrasives as a binder with metal or thermosetting resin, and are widely used for grinding and cutting hard materials, but are rarely used for polishing. It can be said that there was no diamond grindstone suitable for precision polishing. The reason is that when precision polishing is conventionally performed, it is common to polish with a wooden or bamboo spatula using diamond powder or diamond paste, and this method requires a long time for polishing and requires skill. There was a problem and the appearance of the solid whetstone type was strongly desired, but the whetstone could not cope with the work unless it was small and thin, and at the same time, the whetstone itself required considerable strength and elasticity. This is because forming the diamond whetstone into such a shape was brittle and impractical.

【0003】一方、砥石を補強する方法として各種の強
化繊維を配合する方法が広く知られている。例えば特開
昭63−52972号公報には炭化ケイ素系繊維、炭素
繊維、窒化ケイ素繊維、ボロン繊維、アルミナ質繊維の
短繊維で補強する方法が提案されている。また、同公報
にはそれ以前から長繊維で補強する方法が知られていた
ことも開示されている。しかし、これまでのところ、強
化繊維と砥粒とマトリックス樹脂の3成分からなる砥石
でも硬質材料の精密研磨ができるものは知られていなか
った。すなわち、硬質材の研磨には優れた研磨性と高い
砥石強度の両立が求められる中で、従来知られている繊
維強化砥石はこの要求を充分満たしていなかった。
On the other hand, as a method of reinforcing a grindstone, a method of blending various reinforcing fibers is widely known. For example, Japanese Patent Application Laid-Open No. 63-52972 proposes a method of reinforcing with short fibers of silicon carbide fiber, carbon fiber, silicon nitride fiber, boron fiber, and alumina fiber. The publication also discloses that a method of reinforcing with long fibers was known before that time. However, up to now, there has been no known whetstone composed of the three components of the reinforcing fiber, the abrasive grains, and the matrix resin that can precisely polish a hard material. In other words, while polishing of a hard material requires both excellent polishing properties and high grindstone strength, conventionally known fiber-reinforced grindstones have not sufficiently satisfied this requirement.

【0004】[0004]

【発明が解決しようとする課題】このように、繊維強化
砥石においては、研磨性を重視して砥粒含有率を高くし
ようとすると強度が低下し、一方強度を重視して繊維含
有率を高くしようとすると実用的な研磨性が得られな
い、といった問題があった。本発明者らは、この問題を
解決し、優れた研磨性を持ちながら充分な実用強度を有
する研磨材を提供しようとするものである。
As described above, in the fiber-reinforced grindstone, when the abrasive content is emphasized to increase the abrasive content, the strength is reduced, while the strength is emphasized and the fiber content is increased. If this is attempted, there is a problem that practical polishing properties cannot be obtained. The present inventors have attempted to solve this problem and provide an abrasive having excellent practicality and sufficient practical strength.

【0005】[0005]

【課題を解決するための手段】本発明の研磨材は、前記
目的を達成するべく、アルミナ質長繊維と、ダイヤモン
ド砥粒と、マトリックス樹脂を必須の構成成分とし、ま
ず、研磨材内におけるアルミナ質長繊維とダイヤモンド
砥粒の分布状態をアルミナ質長繊維リッチ部とダイヤモ
ンド砥粒リッチ部の2領域に分けることにより、優れた
研磨性を発揮させるとともに強度の向上を図った。この
ようなアルミナ質長繊維とダイヤモンド砥粒の配置によ
って研磨材の強度を低下させることなく研磨に必要かつ
充分な砥粒を配合させることが可能となった。さらに強
化繊維として特定のアルミナ質長繊維を使用することに
より、研磨材としてより高い強度を達成した。すなわ
ち、本発明の研磨材料は、請求項1に記載の通り、アル
ミナ質長繊維と、ダイヤモンド砥粒と、マトリックス樹
脂からなり、前記アルミナ質長繊維の繊維端を研磨処理
端とした研磨材であって、前記アルミナ質長繊維とマト
リックス樹脂からなる繊維リッチ部と、前記ダイヤモン
ド砥粒とマトリックス樹脂とからなる砥粒リッチ部の複
合構造に形成されたことを特徴とする。また、請求項2
記載の研磨材は、請求項1記載の研磨材において、前記
繊維リッチ部はアルミナ質長繊維のUDシートで形成さ
れことを特徴とする。また、請求項3記載の研磨材は、
請求項1記載の研磨材において、長手方向に平行して設
けられる繊維リッチ部と砥粒リッチ部からなる複数本の
紐状要素を集束成形したことを特徴とする。また、請求
項4記載の研磨材は、請求項1乃至3の何れかに記載の
研磨材において、ダイヤモンド砥粒の含有量が10〜2
0重量%であることを特徴とする。また、請求項5記載
の研磨材は、請求項1乃至4の何れかに記載の研磨材に
おいて、アルミナ質長繊維のフィラメントが主として横
断面形状が偏平状のフィラメントからなることを特徴と
する。また、請求項6記載の研磨材は、請求項5記載の
研磨材において、前記横断面形状の長軸の短軸に対する
比が1.3〜1.8であることを特徴とする。また、請
求項7記載の研磨材は、請求項1乃至6の何れかに記載
の研磨材において、アルミナ質長繊維の長手方向に対し
て垂直に荷重を架けた場合の曲げ強度が500Mpa以
上、曲げ弾性率が50Gpa以上であることを特徴とす
る。また、請求項8記載の研磨材は、請求項1乃至7の
何れかに記載の研磨材において、厚み0.45〜1.2
mmの平板形状に形成したことを特徴とする。
In order to achieve the above object, the abrasive of the present invention comprises alumina long fibers, diamond abrasive grains, and a matrix resin as essential components. By dividing the distribution state of long fibers and diamond abrasive grains into two regions, that is, an alumina long fiber rich area and a diamond abrasive grain rich area, excellent polishing properties were exhibited and strength was improved. With such an arrangement of the alumina continuous fiber and the diamond abrasive grains, it is possible to mix necessary and sufficient abrasive grains for polishing without lowering the strength of the abrasive. Furthermore, by using a specific alumina long fiber as a reinforcing fiber, higher strength was achieved as an abrasive. That is, the polishing material of the present invention is an abrasive material comprising an alumina continuous fiber, diamond abrasive grains, and a matrix resin, wherein a fiber end of the alumina continuous fiber is a polished end, as described in claim 1. Further, it is characterized in that it is formed in a composite structure of a fiber-rich portion composed of the alumina long fiber and the matrix resin, and an abrasive grain-rich portion composed of the diamond abrasive and the matrix resin. Claim 2
An abrasive according to the present invention is characterized in that, in the abrasive according to the first aspect, the fiber-rich portion is formed of a UD sheet of alumina long fiber. The abrasive according to claim 3 is:
The abrasive material according to claim 1, wherein a plurality of cord-like elements each composed of a fiber-rich portion and an abrasive-grain-rich portion provided in parallel with the longitudinal direction are formed in a bundle. The abrasive according to claim 4 is the abrasive according to any one of claims 1 to 3, wherein the content of diamond abrasive grains is 10 to 2 or less.
0% by weight. The abrasive according to claim 5 is characterized in that, in the abrasive according to any one of claims 1 to 4, the filaments of the alumina long fibers mainly consist of filaments having a flat cross section. The abrasive according to claim 6 is the abrasive according to claim 5, wherein a ratio of a major axis to a minor axis of the cross-sectional shape is 1.3 to 1.8. Further, the abrasive according to claim 7 is the abrasive according to any one of claims 1 to 6, wherein a bending strength when a load is applied perpendicularly to a longitudinal direction of the long alumina fiber is 500 Mpa or more, The flexural modulus is 50 GPa or more. The abrasive according to claim 8 is the abrasive according to any one of claims 1 to 7, wherein the thickness is 0.45 to 1.2.
mm in the shape of a flat plate.

【0006】[0006]

【発明の実施の形態】本発明の研磨材料に用いる繊維
は、アルミナ質長繊維である。強化用繊維としてはガラ
ス繊維、炭素繊維、炭化ケイ素繊維などが知られている
が、研磨材として用いると研磨面で滑るという欠点があ
り、アルミナ質繊維が最も適している。その理由は、ア
ルミナ質繊維の場合は研磨時に繊維の先端部が順次破砕
していくためと考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The fibers used in the polishing material of the present invention are alumina long fibers. Glass fibers, carbon fibers, silicon carbide fibers, and the like are known as reinforcing fibers, but when used as an abrasive, there is a drawback that they slip on the polished surface, and alumina fibers are most suitable. It is considered that the reason is that, in the case of alumina fibers, the tips of the fibers are sequentially crushed during polishing.

【0007】本発明の研磨材料に用いるダイヤモンド砥
粒は市販の100番〜1,000番程度の番手のものが
最も好適に使用されるがこれに限定されるものではな
い。
As the diamond abrasive used for the polishing material of the present invention, a commercially available diamond abrasive having a number of about 100 to 1,000 is most preferably used, but is not limited thereto.

【0008】本発明のアルミナ質繊維と砥粒とを結合す
るマトリックス樹脂としては、エポキシ樹脂、フェノー
ル樹脂、ポリイミド樹脂、ポリマレイミド樹脂、不飽和
ポリエステル樹脂などの熱硬化性樹脂が好適である。
As the matrix resin for bonding the alumina fibers and abrasive grains of the present invention, a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a polymaleimide resin, and an unsaturated polyester resin is preferable.

【0009】本発明研磨材の特徴は、研磨材を構成する
強化繊維と砥粒の分布を、繊維リッチ部と砥粒リッチ部
に分離して、繊維層内部に砥粒が含まれないようにする
ことにより、砥粒リッチ部による高い研磨性と繊維リッ
チ部のアルミナ質繊維による研磨性と強度保持によって
本発明の目的である研磨性と実用強度の確保を達成し
た。
The abrasive of the present invention is characterized in that the distribution of the reinforcing fibers and the abrasive grains constituting the abrasive is separated into a fiber rich portion and an abrasive grain rich portion so that the abrasive particles are not contained in the fiber layer. As a result, the abrasiveness and practical strength, which are the objects of the present invention, are achieved by the high abrasiveness of the abrasive grain-rich portion and the abrasiveness and strength retention of the fiber-rich portion with alumina fibers.

【0010】前記砥粒リッチ部と繊維リッチ部の形成
は、基本的には砥粒を含まないマトリックス樹脂でアル
ミナ質繊維を結着して繊維リッチ部を形成し、このよう
にして形成された繊維リッチ部と一体に且つ別領域に分
離形成されるマトリックス樹脂内にのみダイヤモンド砥
粒が含まれるように構成すれば、その形成方法は特に限
定されるものではない。
The formation of the abrasive-rich portion and the fiber-rich portion is basically performed by binding alumina fibers with a matrix resin containing no abrasive and forming a fiber-rich portion. The method for forming the diamond abrasive grains is not particularly limited as long as the diamond abrasive grains are contained only in the matrix resin integrally formed with the fiber-rich portion and separately formed in another area.

【0011】例えば、前記繊維リッチ部はアルミナ長繊
維のUDシートや、ワインディングシートで形成し、こ
れらシートを単層とした、或いは、複層に積層した構成
としてもよい。具体的には、アルミナ質長繊維が全て同
じ方向に配されて熱硬化性樹脂マトリックスで結着され
たUDシート層と、ダイヤモンド砥粒が熱硬化性樹脂マ
トリックスで結着された砥粒層で構成し、前記砥粒層が
少なくとも表裏平坦面の一面に配されると共に前記アル
ミナ質長繊維の先端部が研磨面に当たるように平板状に
一体形成するようにしてもよい。また、前記UDシート
からなる繊維リッチ部は、巻回して棒状体に形成するな
どその成形は任意である。
For example, the fiber-rich portion may be formed of a UD sheet or a winding sheet of alumina long fiber, and these sheets may be formed in a single layer or a multilayer structure. Specifically, a UD sheet layer in which all of the alumina long fibers are arranged in the same direction and bound by a thermosetting resin matrix, and an abrasive layer in which diamond abrasive grains are bound by a thermosetting resin matrix. In this case, the abrasive layer may be arranged on at least one surface of the front and back flat surfaces, and may be integrally formed in a flat plate shape such that the tip of the alumina long fiber hits the polishing surface. The fiber-rich portion made of the UD sheet may be formed in any shape, such as being wound into a rod.

【0012】また、例えば前記ダイヤモンド砥粒層を備
えた前記UDシートを細紐状に裁断することにより、長
手方向に平行に繊維リッチ部と砥粒リッチ部とを備える
ようにした紐状要素を複数本用意し、これを平板状、丸
棒状などの任意の形状に集束成形して研磨材に形成して
もよい。
Further, for example, by cutting the UD sheet provided with the diamond abrasive grain layer into a thin string shape, a string-shaped element having a fiber rich portion and an abrasive grain rich portion in parallel with the longitudinal direction is provided. A plurality may be prepared, and these may be formed into an arbitrary shape such as a flat plate shape or a round bar shape to form an abrasive.

【0013】本発明研磨材は、例えば、厚み0.45〜
1.2mmで、幅3〜20mm程度の平板状に形成すれ
ばよい。
The abrasive of the present invention has a thickness of, for example, 0.45 to 0.45.
What is necessary is just to form it as a flat plate of 1.2 mm and a width of about 3 to 20 mm.

【0014】本発明研磨材の砥粒含有率については10
〜20重量%であることが好ましい。本発明研磨材の全
砥粒の含有率が20重量%以下で充分な研磨性があるの
でこれより多く砥粒を含有させる必要がない上に、強度
が低下したり、研磨材料の消耗が早くなったりする。一
方、10重量%未満では基本的に研磨性が不充分であ
る。
The abrasive content of the abrasive of the present invention is 10
Preferably, it is about 20% by weight. Since the abrasive of the present invention has sufficient abrasiveness when the total abrasive content of the abrasive is 20% by weight or less, it is not necessary to contain more abrasives, and the strength decreases and the abrasive material is consumed quickly. Or become. On the other hand, if it is less than 10% by weight, the polishing properties are basically insufficient.

【0015】本発明で使用するアルミナ質繊維は、強度
が高いほどよいことは言うまでもない。アルミナ質繊維
の引張強度は、短繊維や開発当初の脆弱な長繊維はせい
ぜい100kg/mm2程度であったが、その後改良されて1
50〜200kg/mm2程度ものが造られている。本発明で
使用するアルミナ質長繊維は引張強度1.8Gpa(約1
80kg/mm2)以上、引張弾性率180Gpa(約180ton
/mm2)以上であることが好ましい。
It goes without saying that the alumina fiber used in the present invention has better strength. The tensile strength of alumina fibers was at most about 100 kg / mm 2 for short fibers and fragile long fibers at the beginning of development.
About 50 to 200 kg / mm 2 are produced. The alumina long fiber used in the present invention has a tensile strength of 1.8 GPa (about 1 GPa).
80kg / mm 2 ) or more, tensile modulus 180Gpa (about 180ton)
/ mm 2 ) or more.

【0016】アルミナ繊維の強度は、上記のように、炭
素繊維などと比較すると必ずしも高くない。従って、砥
石の強度を向上させるために高い強度のアルミナ質繊維
を使用するにしても限界がある。そこで本発明者らは鋭
意検討の結果、繊維のフィラメント群が主として横断面
形状が偏平状のフィラメントからなるアルミナ質繊維を
使用すると、砥石の強度がさらに向上することを見出し
た。すなわち、本発明で使用するアルミナ質繊維はフィ
ラメント群が、通常の横断面形状が真円形のものではな
く、主として偏平状であることが好ましい。偏平状の具
体的な形状としては、楕円状、繭玉状、雨滴状などであ
り、これらが混在していてもよい。また、丸断面フィラ
メントと混在していてもよいが、丸断面フィラメントは
少ないほうがよく、例えば成形体の横断面写真で全フィ
ラメントの横断面数の20%以下、より好ましくは10
%以下であることが好ましい。尚、前記偏平状は、長軸
の短軸に対する比が1.3〜1.8の範囲にすることが
好ましい。このような横断面形状が偏平状の繊維を使用
すると砥石の強度がより向上する理由は、マトリックス
樹脂を介して隣接するフィラメントや砥粒との接着面積
が増大したり、成形体が外部応力を受けて破壊する際、
繊維がマトリックス樹脂から抜ける現象、いわゆる引抜
き現象が起こり難くなったりするためと推察される。
As described above, the strength of alumina fibers is not always high as compared with carbon fibers and the like. Therefore, there is a limit even if high-strength alumina fibers are used to improve the strength of the grindstone. The inventors of the present invention have conducted intensive studies and found that the strength of the grindstone is further improved when the filament group of the fibers is mainly made of alumina fibers having a flat cross section. That is, the alumina fibers used in the present invention preferably have a filament group mainly having a flat shape, not a normal circular cross section. Specific examples of the flat shape include an elliptical shape, a cocoon shape, and a raindrop shape, and these may be mixed. The filament may be mixed with the filament having a round cross section, but the number of filaments having a round cross section is preferably as small as possible.
% Is preferable. The flat shape preferably has a ratio of the major axis to the minor axis in the range of 1.3 to 1.8. The reason that the strength of the grindstone is further improved by using such a fiber having a flat cross-sectional shape is that the bonding area between adjacent filaments and abrasive grains increases through the matrix resin, and the molded body may generate external stress. When receiving and destroying,
It is presumed that the phenomenon that the fiber comes off from the matrix resin, that is, the so-called pull-out phenomenon, hardly occurs.

【0017】本発明の研磨材は硬質材の研磨に使用する
ため、具体的な強度としては、曲げ強度500Mpa以
上、曲げ弾性率50Gpa以上であることが実用上好まし
い。使用中での研磨材の破損の心配をほとんどなくすた
めには、曲げ強度800Mpa程度が要求される。引張強
度が1.8Gpa以上、引張弾性率180Gpa以上のアルミ
ナ質繊維を使用して本発明の層状構造にするとこのよう
な強度を得ることが可能である。その上でアルミナ質繊
維束を構成するフィラメントの横断面形状が主として偏
平状のものを使用するとより高強度の研磨材料が得られ
る。曲げ強度1,000Mpa以上であればより好まし
い。
Since the abrasive of the present invention is used for polishing hard materials, it is practically preferable that the specific strength of the abrasive is 500 MPa or more and the flexural modulus is 50 GPa or more. A bending strength of about 800 MPa is required in order to almost eliminate the fear of breakage of the abrasive during use. Such a strength can be obtained by using an alumina fiber having a tensile strength of 1.8 Gpa or more and a tensile modulus of 180 Gpa or more in the layered structure of the present invention. In addition, if the cross-sectional shape of the filaments constituting the alumina fiber bundle is mainly flat, a polishing material with higher strength can be obtained. It is more preferable that the bending strength is 1,000 Mpa or more.

【0018】[0018]

【実施例】以下、本発明の実施例につき説明する。 (実施例1)繊維径10μmでフィラメント数1000
本のアルミナ繊維ロービングヤーン(Al 85
重量%、SiO 15重量%、平均引張強度2.5Gp
a、平均引張弾性率220Gpa)をエポキシ樹脂(エピコ
ート828 油化シェルエポキシ製)100重量部、テ
トラヒドロキシメチル無水フタル酸(HN2200日立
化成工業製)80重量部、イミダゾール(2E4MZ−
CN 四国化成工業)2重量部から成る樹脂組成物の槽
にディッピングして該樹脂組成物を含浸させ、余剰の樹
脂を鋼製のローラーで絞りながら直径330mmの回転
ドラムに巻き取った。この時、ドラム上でヤーンが重な
り合わないように、且つ隣同士のヤーンが離れ過ぎない
ようにトラバースし、巻き幅250mmに巻き上げた
後、離型紙の上からローラー掛けをして樹脂と繊維とを
充分に馴染ませてから注意深く切り開き、厚さ0.25
mm、幅250mm、長さ約1000mmで繊維が1方
向に配列したシート状成形物を得た。引き続き、これを
115℃で30分加熱して半硬化させ、4等分して、1
辺250mmのアルミナ長繊維のUDプリプレグ4枚を
得た。
Embodiments of the present invention will be described below. (Example 1) The number of filaments is 1000 with a fiber diameter of 10 μm.
Alumina fiber roving yarn (Al 2 O 3 85
Weight%, SiO 2 15 weight%, average tensile strength 2.5Gp
a, 100 parts by weight of an epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy), 80 parts by weight of tetrahydroxymethyl phthalic anhydride (HN2200 manufactured by Hitachi Chemical Co., Ltd.), and imidazole (2E4MZ-)
CN (Shikoku Chemical Industry Co., Ltd.) The resin composition was dipped in a tank of 2 parts by weight and impregnated with the resin composition, and the excess resin was wound around a rotating drum having a diameter of 330 mm while being squeezed with a steel roller. At this time, the yarn is traversed so that the yarns do not overlap on the drum, and the yarns adjacent to each other are not separated too much. Carefully cut open and allow thickness to 0.25
mm, a width of 250 mm, a length of about 1000 mm, and a sheet-like molded product in which fibers were arranged in one direction. Subsequently, this was heated at 115 ° C. for 30 minutes to be semi-cured, divided into four equal parts, and
Four UD prepregs of alumina long fiber having a side of 250 mm were obtained.

【0019】上記のようにして得たUDシートを3枚使
い、この内2枚のシートのそれぞれの片面に人造ダイヤ
モンド砥粒(170−200番、EID社製)を均等に
付着させ、砥粒を付着させないシートを真ん中にして、
残りのシートのダイヤモンド砥粒の付着した面が外側に
なるように3枚を積層し、この時真ん中のシートの繊維
方向を軸として上下のシートの繊維方向を別々の方向に
約5度ずらし(上のシートと下のシートの繊維方向のず
れは約10度)、加熱、加圧成型機で温度160℃、圧
力30kg/cmの条件で3時間硬化させた。得られ
た成形板から幅10mm、長さ50mmの平板状スティ
ックを80枚切り出し、研磨用砥石とした。砥石の平均
厚さは0.5mm、ダイヤモンド砥粒の含有率は約1
2.5重量%、曲げ強度は840Mpa、曲げ弾性率は5
7.3Gpaであった。
Using three UD sheets obtained as described above, artificial diamond abrasive grains (No. 170-200, manufactured by EID) are evenly adhered to one side of each of the two UD sheets. With the sheet that does not adhere
The three sheets are laminated so that the surface of the remaining sheets to which the diamond abrasive grains adhere is on the outside, and at this time, the fiber directions of the upper and lower sheets are shifted by about 5 degrees in different directions about the fiber direction of the middle sheet as an axis ( The upper sheet and the lower sheet were shifted by about 10 degrees in the fiber direction), and were cured with a heating and pressure molding machine at a temperature of 160 ° C. and a pressure of 30 kg / cm 2 for 3 hours. Eighty flat sticks each having a width of 10 mm and a length of 50 mm were cut out from the obtained molded plate, and used as a grindstone for polishing. The average thickness of the whetstone is 0.5mm and the content of diamond abrasive grains is about 1
2.5 wt%, flexural strength 840 Mpa, flexural modulus 5
It was 7.3 GPa.

【0020】この砥石の研磨性能を次のようにして測定
した。研磨テスト用ワークとしてNAK80の高硬度鋼
放電加工品(放電加工面の硬度HRC50、面粗度Ra
約10μm)を用い、研磨工具(UHT製 ターボラッ
プスイング TLS−07)に上記スティック砥石を取
り付け、エアー圧によって砥石に17,000往復/分
の振動を与え、全荷重約250gを掛けながら上記ワー
クにスティック側面を押し当てて研磨試験を実施した。
この時の研磨時間とワークの研磨面の面粗度Ra(μ
m)との関係を表1に示した。また、研磨後の試験片の
減量を測定し、研磨時間と切削量との関係を表2に示し
た。さらに、同砥石を用い、超硬合金(V−30、HR
A89.0、面粗度Ra約1μm)のワークに対し同様
の条件で研磨性試験を実施した。その結果を表3に示し
た。
The grinding performance of this grindstone was measured as follows. NAK80 high hardness steel electric discharge machined product (hardness HRC50 of electric discharge machined surface, surface roughness Ra as polishing test work)
The stick whetstone is attached to a polishing tool (Turbo-Lap Swing TLS-07 manufactured by UHT) using a polishing tool (approximately 10 μm), and the vibration is applied to the whetstone by air pressure at 17,000 reciprocations / minute to apply a total load of about 250 g. A polishing test was performed by pressing the side of the stick against the surface.
The polishing time at this time and the surface roughness Ra (μ
Table 1 shows the relationship with m). Further, the weight loss of the test piece after polishing was measured, and the relationship between the polishing time and the cutting amount was shown in Table 2. Furthermore, using the same grindstone, the cemented carbide (V-30, HR
(A89.0, surface roughness Ra of about 1 μm) was subjected to an abrasion test under the same conditions. Table 3 shows the results.

【0021】(実施例2)実施例1と同じ条件でUDプ
リプレグシートを4枚製作し、それぞれのシートの片面
にダイヤモンド砥粒(100−120番)を付着させて
から全てのシートの繊維方向を同じにし、先ず2枚のシ
ートのダイヤモンド砥粒の付着していない面同士を合わ
せ、さらにその両表面に残りのシートのダイヤモンド砥
粒の付着していない面を合わせて、実施例1と同様に加
熱、加圧成形し、厚さ1mmの成形板を得た。この板か
ら幅10mm、長さ50mmの平板状のスティック状砥
石80枚を切り出した。砥石のダイヤモンド砥粒の含有
率は約17重量%、曲げ強度は596Mpa、曲げ弾性率
は58.6Gpaであった。この砥石についてスティック
とワークとの角度を45度とし、荷重を700gとした
他は実施例1と同じ条件で研磨試験を実施し、その結果
を表1、表2に示した。さらに、同砥石を用い、超硬合
金(V−30、HRA89.0、面粗度Ra約1μm)
のワークに対し同様の条件で研磨性試験を実施した。そ
の結果を表3に示した。表1、2に示される結果からわ
かるように、実施例1、2とも、超硬合金の金型の面粗
度として通常要求されるRa=0.5μm以下のレベル
が短時間の間に容易に達成されている。
(Example 2) Four UD prepreg sheets were manufactured under the same conditions as in Example 1, and after attaching diamond abrasive grains (No. 100-120) to one surface of each sheet, the fiber direction of all sheets was adjusted. First, the surfaces of the two sheets on which the diamond abrasive grains are not adhered are aligned with each other, and the surfaces of the remaining sheets on which the diamond abrasive grains are not adhered are also aligned, and the same as in Example 1. To form a molded plate having a thickness of 1 mm. From this plate, 80 flat stick-shaped grindstones having a width of 10 mm and a length of 50 mm were cut out. The content of the diamond abrasive grains in the grindstone was about 17% by weight, the bending strength was 596 Mpa, and the flexural modulus was 58.6 Gpa. A polishing test was performed on this grindstone under the same conditions as in Example 1 except that the angle between the stick and the work was 45 degrees and the load was 700 g. The results are shown in Tables 1 and 2. Further, using the same grindstone, a cemented carbide (V-30, HRA 89.0, surface roughness Ra about 1 μm)
An abrasion test was performed on the workpiece under the same conditions. Table 3 shows the results. As can be seen from the results shown in Tables 1 and 2, in both Examples 1 and 2, the level of Ra = 0.5 μm or less, which is usually required as the surface roughness of the cemented carbide mold, is easily obtained in a short time. Has been achieved.

【0022】(比較例1)実施例1において、あらかじ
め樹脂組成物に実施例1で使用したのと同じダイヤモン
ド砥粒を40重量%混合し、常に樹脂槽を掻き混ぜなが
らアルミナ繊維のロービングヤーンをディッピングした
他は、実施例1と同じ操作、条件でUDプリプレグシー
トを作成した。このシートにはダイヤモンド砥粒が既に
含まれているので、シート表面への砥粒の付着はせず
に、各シートの繊維の方向を実施例1と同じようにずら
して3枚積層し、加熱、加圧処理して板状に成形し、同
じ寸法のスティックを切り出した。この砥石中の砥粒の
分布状態は実施例1と違ってランダムであり、含有率は
約15重量%、スティックの厚さは0.5mm、曲げ強
度は362Mpa、曲げ弾性率は35.2Gpaであった。実
施例1と同じNAK材の研磨性試験を実施したところ、
研磨中にスティックが折れてしまった。
(Comparative Example 1) In Example 1, 40% by weight of the same diamond abrasive grains as used in Example 1 were previously mixed with the resin composition, and the roving yarn of alumina fiber was constantly mixed with the resin tank while stirring. Except for the dipping, a UD prepreg sheet was prepared under the same operation and conditions as in Example 1. Since this sheet already contains diamond abrasive grains, the abrasive grains are not attached to the sheet surface, and the fiber direction of each sheet is shifted in the same manner as in Example 1 to laminate three sheets. Then, pressure treatment was performed to form a plate, and a stick having the same dimensions was cut out. The distribution state of the abrasive grains in this whetstone is random unlike Example 1, the content is about 15% by weight, the thickness of the stick is 0.5 mm, the bending strength is 362 MPa, and the bending elastic modulus is 35.2 GPa. there were. When a polishing test of the same NAK material as in Example 1 was performed,
The stick broke during polishing.

【0023】(比較例2)比較例1において、樹脂に混
合するダイヤモンド砥粒の量を15重量%に変えた他は
同じ条件でスティック状砥石を製作した。砥石の砥粒含
有率は約5重量%、厚さは0.48mm、曲げ強度は5
43Mpa、曲げ弾性率は52.4Gpaで強度的には実用レ
ベルに達したが、実施例1と同じNAK材の研磨性試験
を実施したところ、表1,2に示すように、研磨性は極
めて低かった。
Comparative Example 2 A stick-shaped grindstone was manufactured under the same conditions as in Comparative Example 1, except that the amount of diamond abrasive grains mixed with the resin was changed to 15% by weight. The abrasive content of the grindstone is about 5% by weight, the thickness is 0.48mm, and the bending strength is 5
At 43 Mpa and the flexural modulus was 52.4 GPa, the strength reached a practical level. However, when the same NAK material as in Example 1 was subjected to the polishing test, as shown in Tables 1 and 2, the polishing performance was extremely high. It was low.

【0024】(比較例3)市販のダイヤモンド電着ヤス
リ(リブ用ダイヤモンドヤスリ HTL2−200、厚
さ0.3mm、幅6mm、長さ72mm、ダイヤモンド
砥粒200番)で実施例1と同じ研磨性試験を実施し、
その結果を表1、表2に示した。また、超硬合金の研磨
試験を実施例1と同じ条件で実施し、その結果を表3に
示した。
(Comparative Example 3) A commercially available diamond electrodeposited file (diamond file for ribs HTL2-200, thickness 0.3 mm, width 6 mm, length 72 mm, diamond abrasive grain No. 200) having the same abrasiveness as in Example 1 Conduct the test,
The results are shown in Tables 1 and 2. In addition, a polishing test of the cemented carbide was performed under the same conditions as in Example 1, and the results are shown in Table 3.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】上記各表から明らかなように、本発明によ
れば、従来のダイヤモンド電着スティックに比べて初期
の面粗度が同じにもかかわらず、同一研磨時間での面粗
度(Ra)が極めて低く、なおかつ切削量に優れた研磨
効率のよい砥石が得られる。
As is clear from the above tables, according to the present invention, the surface roughness (Ra) at the same polishing time was obtained despite the same initial surface roughness as compared with the conventional diamond electrodeposition stick. Is extremely low, and a grinding wheel with excellent cutting efficiency and high polishing efficiency can be obtained.

【0029】(実施例3)モノフィラメントが0.25
TEXで、フィラメント数が1,000本のアルミナ質
長繊維束(Al23 87重量%、SiO2 13重量
%、比重3.2、比重とTEXから求めた平均繊維径1
0μm、この径から求めた平均引張強度2.5Gpa、平均
引張弾性率220Gpa、フィラメントの断面写真から主
として繭玉状の横断面形状のフィラメントからなり、該
形状の短軸対長軸の比率は主として1.5前後であっ
た。尚、丸断面フィラメントはほとんど観察されなかっ
た)を使用し、このアルミナ質長繊維束を平行巻きで、
隣同士の繊維束の間にできるだけ隙間ができないように
トラバースしながら直径330mmの回転ドラムに幅25
0mmに巻き取り、繊維層の上にポリフィルムを当て、そ
の上からローラーをかけて繊維束を開き、繊維束の間の
わずかな隙間を完全になくした。引き続きこの繊維層に
下記配合のエポキシ樹脂組成物をハンドローラーで塗布
し、乾燥してから回転軸方向に切り開いてUDプリプレ
グシートを得た。 エポキシ樹脂組成物 エピコート828(油化シェルエポキシ製)100重量部 3フッ化ホウ素モノエチルアミン 3重量部 メチルエチルケトン(MEK) 25重量部 このシートから220mm×220mmのシートを切り出
し、115℃で15分間加熱してプレキュア(予備硬
化)させた後、シートの両面に375〜400メッシュ
のダイヤモンド砥粒(400番)を200メッシュの篩
を使ってできるだけ均一に散布し、付着させた。このと
き全体を計量しながらダイヤモンド含有率が約12重量
%になるようにした。次に、このシートを裁断機にか
け、繊維方向に沿って幅約1mmに裁断した。得られた紐
状物を55本ずつ、幅10mm×深さ10mm×長さ220
mmの溝状金型の凹部に並べ、この上から金型の凸部を合
わせてホットプレスにかけ、厚さ1mmまで圧縮して10
0℃、1時間加熱し、さらに170℃で3時間加熱して
エポキシ樹脂組成物を硬化させた。硬化物の断面を電子
顕微鏡で観察の結果、幅1mm、厚さ0.2mm前後の多数
の繊維層(1部屈曲しているものもある)が不規則な方
向に配列し、各繊維層の境界面に厚さ0.05mm前後の
ダイヤモンド砥粒層が観察された。
Example 3 Monofilament is 0.25
Alumina long fiber bundles having 1,000 filaments in TEX (87% by weight of Al 2 O 3 , 13% by weight of SiO 2 , specific gravity 3.2, average fiber diameter 1 obtained from specific gravity and TEX)
0 μm, average tensile strength 2.5 Gpa obtained from this diameter, average tensile elasticity 220 Gpa, filaments with a cross section of a cocoon-shaped cross section, and a short axis to long axis ratio of 1 .5. In addition, the filament with a round cross section was hardly observed), and this alumina-based long fiber bundle was wound in parallel,
While traversing so that the gap between adjacent fiber bundles is as small as possible, a rotating drum with a diameter of 330 mm
The fiber bundle was wound up to 0 mm, a polyfilm was applied on the fiber layer, and a roller was rolled from above to open the fiber bundle, thereby completely eliminating a slight gap between the fiber bundles. Subsequently, an epoxy resin composition having the following composition was applied to this fiber layer with a hand roller, dried, and then cut open in the rotation axis direction to obtain a UD prepreg sheet. Epoxy resin composition Epicoat 828 (manufactured by Yuka Shell Epoxy) 100 parts by weight Boron trifluoride monoethylamine 3 parts by weight Methyl ethyl ketone (MEK) 25 parts by weight A 220 mm × 220 mm sheet is cut out from this sheet and heated at 115 ° C. for 15 minutes. After pre-curing (preliminary curing), diamond abrasive grains (No. 400) of 375 to 400 mesh were sprinkled and adhered to both sides of the sheet as uniformly as possible using a 200 mesh sieve. At this time, the diamond content was adjusted to about 12% by weight while weighing the whole. Next, the sheet was cut by a cutting machine to a width of about 1 mm along the fiber direction. 55 pieces of the obtained string-like objects were each 10 mm in width × 10 mm in depth × 220 in length.
mm in a groove of a groove-shaped mold, and press the top of the mold with the convex part of the mold, apply hot pressing, and compress to a thickness of 1 mm.
The mixture was heated at 0 ° C. for 1 hour, and further heated at 170 ° C. for 3 hours to cure the epoxy resin composition. As a result of observing the cross section of the cured product with an electron microscope, a large number of fiber layers (some of which are partially bent) having a width of about 1 mm and a thickness of about 0.2 mm were arranged in an irregular direction. A diamond abrasive layer having a thickness of about 0.05 mm was observed at the boundary surface.

【0030】成形体の1部をルツボに取って秤量し、空
気中で650℃、1時間焼成して樹脂を焼却してから秤
量し、さらに1,200℃で3時間焼成してダイヤモン
ドを焼却してから秤量し、ダイヤモンド含有率を算出し
た結果、12.4重量%であった。
A part of the molded product is put into a crucible, weighed, baked in air at 650 ° C. for 1 hour to burn the resin, weighed, and further baked at 1,200 ° C. for 3 hours to burn diamond. After that, it was weighed and the diamond content was calculated. As a result, it was 12.4% by weight.

【0031】この成形体の強度は、試験片を10本測定
して平均値を求めた。その結果、曲げ強度1,210Mp
a、曲げ弾性率106Gpaで、ラッピング材として充分な
強度があると判断された。
The average strength of the molded body was determined by measuring ten test pieces. As a result, the bending strength was 1,210 Mp
a, It was determined that the flexural modulus was 106 Gpa and that it had sufficient strength as a wrapping material.

【0032】また、テスト用ラッピング材として厚さ1
mm×幅10mm×長さ50mmのスティック状にカットした
成形体を専用のエアー工具(UHT社製ターボラップス
イング TLS−07)に装着し、毎分17,000往
復の振動を与えて、荷重約700gをかけながら超硬合
金テスト片の研磨テストを実施した。使用した超硬合金
(V10ワイヤーカット、ロックウェル硬度A=90)
の研磨前の面粗度は、Ra=2.291μm、Rmax
=19.175μmであったが、30mm×15mmの研磨
面を10分間研磨した結果、Ra=0.194μm、R
max=5.754μmに達し、30分後にはRa=
0.062μm、Rmax=0.931μmに達し、きわ
めて研磨性が良好であった。研磨性能の持続性と均一性
はほとんど問題のないレベルであった。
The test wrapping material has a thickness of 1
The molded body cut into a stick shape of mm x 10 mm x 50 mm in length was mounted on a special air tool (Turbo-Lap Swing TLS-07 manufactured by UHT), and a vibration of 17,000 reciprocations per minute was given to load approximately The polishing test of the cemented carbide test piece was performed while applying 700 g. Used cemented carbide (V10 wire cut, Rockwell hardness A = 90)
Surface roughness before polishing was Ra = 2.291 μm, Rmax
= 19.175 μm, but as a result of polishing the polished surface of 30 mm × 15 mm for 10 minutes, Ra = 0.194 μm, R
max = 5.754 μm, and after 30 minutes Ra =
It reached 0.062 μm and Rmax = 0.931 μm, and the polishing property was extremely good. The sustainability and uniformity of the polishing performance were at a level with almost no problem.

【0033】ラッピング材として実用的な強度を有して
いるか否かを確認する手段として、強度試験だけではな
く、実際の研磨に近い状況での評価が必要であると考
え、ラッピング材の対衝撃性を下記のようにして評価し
た。前記の研磨テストと同じ材質の超硬合金板で表面を
階段状に加工した板(段差は2mm)を、上の段から下の
段に向かって手で研磨し、ラッピング材の先端が上の段
から下の段に落ちる際の衝撃に耐えるかどうかを確認し
た。その結果、本実施例で得たラッピング材は割れたり
折れたりせず、充分な実用強度を有していた。
As a means for confirming whether or not the wrapping material has practical strength, it is necessary to evaluate not only a strength test but also a situation close to actual polishing. The properties were evaluated as follows. The surface of the cemented carbide plate of the same material as the above-mentioned polishing test was machined in steps from the upper stage to the lower stage with the surface processed in a step shape (the step is 2 mm). We checked whether it could withstand the impact of falling from the tier to the lower tier. As a result, the wrapping material obtained in this example did not break or break, and had sufficient practical strength.

【0034】(実施例4)実施例3と同じ条件で得た紐
状物を40本引き揃え、テフロンフィルムを巻き付けて
丸棒状にし、ラバープレス機(液槽はシリコンオイルを
使用)にセットして50kg/cm2で加圧しながら120
℃、30分間加熱し、さらに150℃、30分間加熱し
てから取り出し、フィルムの包装を解いてからオーブン
に入れて170℃で3時間加熱して直径約3.2mmの丸
棒状成形体を得た。これをダイヤモンドディスクカッタ
ーで長さ50mmに切断後、センターレス加工して直径
3.0mmの丸棒とした。このようにして製作した丸棒の
ダイヤモンド含有率は12.2重量%、強度は5本の平
均値で、曲げ強度1,030Mpa、曲げ弾性率96Gpa
で、回転工具として充分な強度を有していると判断され
た。
(Example 4) Forty cords obtained under the same conditions as in Example 3 were aligned, wrapped with a Teflon film to form a round bar, and set in a rubber press (liquid tank using silicone oil). 120 while pressing at 50 kg / cm 2
The film was heated at 150 ° C. for 30 minutes, further heated at 150 ° C. for 30 minutes, taken out, unwrapped, placed in an oven and heated at 170 ° C. for 3 hours to obtain a round bar-shaped molded product having a diameter of about 3.2 mm. Was. This was cut to a length of 50 mm with a diamond disc cutter, and then processed into a centerless rod into a round bar having a diameter of 3.0 mm. The diamond content of the round bar manufactured in this manner is 12.2% by weight, the strength is an average value of five pieces, the bending strength is 1,030 MPa, and the bending elasticity is 96 GPa.
It was determined that the steel had sufficient strength as a rotary tool.

【0035】厚さ5mmのDC53焼入鋼板(ロックウェ
ル硬度C=61)の上から放電加工により逆円錐形の穴
を開け(穴径3mm、円錐角度60度)穴の底部(円錐頂
点部)に径1mmの貫通孔を開けたものを試験片として用
意した。円錐内壁の面粗度はRa=2.488μm、R
max=18.219μmであった。次に、丸棒を専用
の回転工具に取り付け、ダイヤモンドヤスリを使って先
端を試験片と同じ円錐形に加工し、30,000rpmで
回転させて試験片の円錐孔内壁の研磨を行い、1分間毎
に面粗度を測定した。使用中の強度は全く問題なく、丸
棒の折れや亀裂の発生はみられなかった。面粗度は3分
間の研磨でRa=0.925μm、Rmax=6.31
3μmに達成し、実用上充分な性能を有していた。
An inverted conical hole is drilled from a 5 mm thick DC53 hardened steel plate (Rockwell hardness C = 61) by electric discharge machining (hole diameter: 3 mm, cone angle: 60 degrees). A 1 mm diameter through-hole was prepared as a test piece. The surface roughness of the inner wall of the cone is Ra = 2.488 μm, R
max = 18.219 μm. Next, the round bar was attached to a special rotating tool, the tip was machined to the same conical shape as the test piece using a diamond file, and the inner wall of the test piece was polished by rotating at 30,000 rpm for 1 minute. The surface roughness was measured every time. The strength during use was not a problem at all, and no breakage or cracking of the round bar was observed. The surface roughness was Ra = 0.925 μm and Rmax = 6.31 after 3 minutes of polishing.
The thickness reached 3 μm, which was sufficient for practical use.

【0036】[0036]

【発明の効果】このように、本発明によれば、ロックウ
ェル硬度C(HRC)が50以上の高硬度鋼や、さらに
硬度の高い超硬合金のような硬質材に対しても、粗研磨
と仕上げ研磨に共通して使用でき、リブやボスの金型の
溝やコーナ部等の微細部分や小面積部分の精密研磨にも
適用でき、超硬合金の金型の面粗度として通常要求され
るRa=0.5μm以下のレベルが短時間の間に容易に
達成され得る研磨効率を有する精密研磨性に優れた研磨
用砥石と研磨方法が提供される。
As described above, according to the present invention, rough polishing is performed on hard materials such as high-hardness steel having a Rockwell hardness C (HRC) of 50 or more and hard metals having higher hardness. It can be used commonly for finishing and polishing, and can also be applied to precision polishing of fine parts and small areas such as grooves and corners of ribs and boss molds, usually required for surface roughness of cemented carbide molds The present invention provides a polishing whetstone and a polishing method which have a polishing efficiency at which a level of Ra = 0.5 μm or less can be easily achieved in a short time and have excellent precision polishing properties.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質長繊維と、ダイヤモンド砥粒
と、マトリックス樹脂からなり、前記アルミナ質長繊維
の繊維端を研磨処理端とした研磨材であって、前記アル
ミナ質長繊維とマトリックス樹脂からなる繊維リッチ部
と、前記ダイヤモンド砥粒とマトリックス樹脂からなる
砥粒リッチ部の複合構造に形成されたことを特徴とする
研磨材。
1. A polishing material comprising an alumina continuous fiber, diamond abrasive grains, and a matrix resin, wherein a fiber end of the alumina continuous fiber is a polished end. A polishing material formed in a composite structure of a fiber-rich portion made of a diamond abrasive grain and a matrix resin.
【請求項2】 前記繊維リッチ部はアルミナ質長繊維の
UDシートで形成されたことを特徴とする請求項1記載
の研磨材。
2. The abrasive according to claim 1, wherein the fiber-rich portion is formed of a UD sheet of long alumina fibers.
【請求項3】 長手方向に平行して設けられる繊維リッ
チ部と砥粒リッチ部からなる複数本の紐状要素を集束成
形したことを特徴とする請求項1記載の研磨材。
3. The abrasive according to claim 1, wherein a plurality of cord-like elements each comprising a fiber-rich portion and an abrasive-rich portion provided in parallel with the longitudinal direction are formed by convergence.
【請求項4】 ダイヤモンド砥粒の含有量が10〜20
重量%であることを特徴とする請求項1乃至3の何れか
に記載の研磨材。
4. The content of diamond abrasive grains is 10 to 20.
The abrasive according to any one of claims 1 to 3, wherein the amount is% by weight.
【請求項5】 アルミナ質長繊維のフィラメントが主と
して横断面形状が偏平状のフィラメントからなることを
特徴とする請求項1乃至4の何れかに記載の研磨材。
5. The abrasive according to claim 1, wherein the filaments of the alumina long fibers are mainly composed of filaments having a flat cross section.
【請求項6】 前記横断面形状の長軸の短軸に対する比
が1.3〜1.8であることを特徴とする請求項5記載
の研磨材。
6. The abrasive according to claim 5, wherein a ratio of a major axis to a minor axis of the cross-sectional shape is 1.3 to 1.8.
【請求項7】 アルミナ質長繊維の長手方向に対して垂
直に荷重を架けた場合の曲げ強度が500Mpa以上、曲
げ弾性率が50Gpa以上であることを特徴とする請求項
1乃至6の何れかに記載の研磨材。
7. The method according to claim 1, wherein the bending strength is 500 Mpa or more and the bending elastic modulus is 50 Gpa or more when a load is applied perpendicularly to the longitudinal direction of the alumina long fiber. The abrasive according to any one of the above.
【請求項8】 厚み0.45〜1.2mmの平板形状に
形成したことを特徴とする請求項1乃至7の何れかに記
載の研磨材。
8. The abrasive according to claim 1, wherein the abrasive is formed in a flat plate shape having a thickness of 0.45 to 1.2 mm.
JP2000006949A 1999-01-14 2000-01-14 Abrasive material Pending JP2000263447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006949A JP2000263447A (en) 1999-01-14 2000-01-14 Abrasive material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP744199 1999-01-14
JP11-7441 1999-01-14
JP2000006949A JP2000263447A (en) 1999-01-14 2000-01-14 Abrasive material

Publications (1)

Publication Number Publication Date
JP2000263447A true JP2000263447A (en) 2000-09-26

Family

ID=26341735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006949A Pending JP2000263447A (en) 1999-01-14 2000-01-14 Abrasive material

Country Status (1)

Country Link
JP (1) JP2000263447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144242A (en) * 2000-11-09 2002-05-21 Xebec Technology Co Ltd Deburring polishing grinding wheel for vibrational tool
JP2002219656A (en) * 2001-01-23 2002-08-06 Xebec Technology Co Ltd Brush type grinding wheel, burr removal, and polishing method
US6811469B2 (en) * 2001-04-25 2004-11-02 Asahi Glass Company, Limited Grinding wheel for polishing and polishing method employing it
CN100391694C (en) * 2004-12-10 2008-06-04 广东奔朗超硬材料制品有限公司 Mosaic resin diamond composite grinding block and its producing method
CN103381481A (en) * 2012-05-03 2013-11-06 湖南科技大学 Diamond fiber, as well as manufacturing method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144242A (en) * 2000-11-09 2002-05-21 Xebec Technology Co Ltd Deburring polishing grinding wheel for vibrational tool
JP2002219656A (en) * 2001-01-23 2002-08-06 Xebec Technology Co Ltd Brush type grinding wheel, burr removal, and polishing method
US6811469B2 (en) * 2001-04-25 2004-11-02 Asahi Glass Company, Limited Grinding wheel for polishing and polishing method employing it
CN100391694C (en) * 2004-12-10 2008-06-04 广东奔朗超硬材料制品有限公司 Mosaic resin diamond composite grinding block and its producing method
CN103381481A (en) * 2012-05-03 2013-11-06 湖南科技大学 Diamond fiber, as well as manufacturing method and application thereof

Similar Documents

Publication Publication Date Title
DE69530780T2 (en) COATED ABRASIVE OBJECT AND METHOD FOR THE PRODUCTION THEREOF
US9409279B2 (en) Bonded abrasive tool and method of forming
EP3013529B1 (en) Abrasive article
DE69937719T2 (en) Ceramic-bonded abrasive test specimen reinforced by resin impregnation and method for producing the same
CN109890567A (en) Abrasive article and its forming method with multiple portions
US5226929A (en) Abrasive brush
CN1638904A (en) Sawing wire
JP2001509093A (en) Cutting tools
CN110497327A (en) Big outer diameter resin wheel and preparation method thereof
JP2000263447A (en) Abrasive material
US6447562B1 (en) Abrasive
JP3261712B2 (en) Abrasive grinding material
US6004198A (en) Working tool, and material therefor
JP2001225273A (en) Polishing/grinding material
JP3812981B2 (en) Ceramic fiber for processing material, manufacturing method thereof and processing material
GB2028860A (en) Grinding wheels
JP3679191B2 (en) Wrapping material and method for producing the same
JPS60186376A (en) Abrasive molded body
JP2000079567A (en) Lapping material
JPH10217129A (en) Abrasive grains and processing material
JP2000280179A (en) Grinding rotary tool
WO2006015563A1 (en) Grinding disc
JP2861269B2 (en) Abrasive grinding material
JP2000288949A (en) Polishing rotary tool
JPH04336975A (en) Grinding and polishing brush

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330