JP3812981B2 - Ceramic fiber for processing material, manufacturing method thereof and processing material - Google Patents

Ceramic fiber for processing material, manufacturing method thereof and processing material Download PDF

Info

Publication number
JP3812981B2
JP3812981B2 JP35526296A JP35526296A JP3812981B2 JP 3812981 B2 JP3812981 B2 JP 3812981B2 JP 35526296 A JP35526296 A JP 35526296A JP 35526296 A JP35526296 A JP 35526296A JP 3812981 B2 JP3812981 B2 JP 3812981B2
Authority
JP
Japan
Prior art keywords
fiber
ceramic fiber
ceramic
alumina
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35526296A
Other languages
Japanese (ja)
Other versions
JPH10183427A (en
Inventor
求仁 勝岡
毅彦 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Original Assignee
Xebec Technology Co Ltd
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xebec Technology Co Ltd, Taimei Chemicals Co Ltd filed Critical Xebec Technology Co Ltd
Priority to JP35526296A priority Critical patent/JP3812981B2/en
Publication of JPH10183427A publication Critical patent/JPH10183427A/en
Application granted granted Critical
Publication of JP3812981B2 publication Critical patent/JP3812981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属或いは非金属を切断、穿孔、研磨等の加工をするために用いるのに好適な加工材並びにこの加工材の加工要素として用いられるアルミナ系セラミック繊維とその製造方法に関する。
【0002】
【従来の技術】
従来、この種の加工材として、例えば、特開平1ー222865号公報に開示されるように、アルミナ繊維を一方向に引き揃えて、これをエポキシ樹脂等の熱硬化性樹脂で結着してなるラッピング材が知られている。また、特開平2ー232174号公報に開示されるように、アルミナ繊維を一方向に引き揃えて、これをエポキシ樹脂等の熱硬化性樹脂で結着してなる切削、研磨用回転工具が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の加工材に使用されているアルミナ繊維は繊維強度が大きく且つ柔軟性にも優れているものの、例えば研磨材として使用した場合には、研磨性が必ずしも満足できるものでなく、更なる加工性の向上が望まれていた。
そこで、本発明は、通常のアルミナ繊維よりも更に繊維強度の大きな加工性に優れたセラミック繊維並びにこのセラミック繊維を含む加工材を提供することを目的とする。
また、本発明は、このような加工性に優れたセラミック繊維の製造方法を提供することも目的とする。
【0004】
【課題を解決するための手段】
本発明の加工材用セラミック繊維は、加工材の加工要素として用いられるセラミック繊維であって、アルミナ繊維の前駆体繊維を焼成してセラミック繊維とし、前記前駆体繊維を1200℃以下で焼成してセラミックス化した後、1300℃以上の高温で30秒間以内加熱処理し、アルミナ成分80〜90重量%とシリカ成分20〜10重量%とによって形成され、該セラミック繊維の結晶構造が主としてムライト結晶と中間アルミナとで構成され、該ムライト結晶の平均粒径が25〜70ナノメータとしたことを特徴とする。
また、請求項2記載の加工材用セラミック繊維は、前記アルミナ成分が85重量%以上であることを特徴とする。
また、請求項記載の加工材用セラミック繊維は、前記前駆体繊維は塩基性塩化アルミニウムとコロイダルシリカとポリビニルアルコールからなる水性の紡糸原液を乾式紡糸して得られたものであることを特徴とする。
また、請求項記載の加工材は、請求項1又は2に記載のセラミック繊維を含むことを特徴とする。
また、請求項記載の加工材は、前記セラミック繊維を樹脂バインダで結着してなることを特徴とする。
また、請求項記載の加工材は、前記セラミック繊維を結着する樹脂バインダがエポキシ樹脂であることを特徴とする。
【0005】
【発明の実施の形態】
本発明の加工材用セラミック繊維は平均粒径が25〜70ナノメータであるムライト結晶で構成され、本発明の加工材は前記平均粒径が25〜70ナノメータであるムライト結晶で構成されるセラミック繊維を含む。
前記ムライト結晶は、通常の中間アルミナ質の製品に比べて硬度が高く、また、平均結晶粒径が約10倍程度大きいために良好な加工性を示す。
【0006】
一般に、アルミナ繊維と呼ばれるものは70〜85重量%のAl23と15〜30重量%のSiO2 を主成分とする多結晶質の繊維であって、繊維径は5〜40μm程度である。その結晶状態は主として中間アルミナで、平均結晶径はせいぜい5ナノメーター程度の極めて微細な結晶粒子からなる焼結体である。このため、適度な柔軟性と高い機械的強度を示し、各種の繊維強化材料(FRP,FRM)への利用が期待されている。
このようなアルミナ繊維は1400℃以上の高温で長い時間加熱されると中間アルミナの他にムライトやコランダムといった粗大な結晶が生成し、その結果、収縮や脆化が進み繊維としての機能が著しく低下する。
【0007】
本発明の加工性のよいセラミック繊維は、従来のアルミナ繊維に比べて結晶の成長を進めてある点が特徴である。しかし、上記の説明のように過度の熱処理は繊維の強度特性を著しく低下させる。本発明のセラミック繊維はこの点を考慮し、1300℃以上の高い温度で短時間、具体的には30秒以内の熱処理をすることでムライトとしては微細な粒径の結晶を生成させることにより繊維の脆化を抑制しながら硬度を高め、加工性のよいセラミック繊維を製造することに特徴がある。
【0008】
本発明の製造方法によって加工性のよいセラミック繊維を得ることができるが、この場合ムライト結晶の粒径を25ナノメーター以上にすると、特に加工性に優れたセラミック繊維が得られる。しかし、100ナノメーター以上に成長させてしまうと脆化が著しく進行するので好ましくない。従って、ムライト結晶の粒径は25〜70ナノメーターの範囲にする必要がある。
【0009】
また、本発明のセラミック繊維の成分組成は、高い高度を得るために、アルミナ成分が少なくとも80重量%以上含まれることが必要で、85重量%以上含まれることが特に好ましい。尚、その他の残部は主としてシリカ成分である。
【0010】
本発明の加工材用セラミック繊維の製造方法は、アルミナ繊維の前駆体繊維を焼成してセラミック繊維とするときの焼成温度と、その後の加熱処理に特徴があるものであって、前駆体繊維を製造するための出発原料等については従来のアルミナ繊維の製造方法と特に異なるものではない。
具体的には、塩基性塩化アルミニウムとコロイダルシリカとポリビニルアルコールから成る水性の紡糸原液を乾式紡糸して前駆体繊維を得、この前記前駆体繊維を1200℃以下で焼成してセラミックス化した後、1300℃以上の高温で30秒間以内加熱処理すればよい。
【0011】
加工要素として前記セラミック繊維を含む加工材は、これら繊維を適当に引き揃え、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂に含浸して硬化することにより簡単に製造することができる。
【0012】
【実施例】
以下本発明の実施例を比較例と共に説明する。
先ず、アルミニウムイオン13.2重量%、塩素イオン11.45重量%含有する塩基性塩化アルミニウムの水溶液を34kg、二酸化ケイ素を20重量%含有するコロイダルシリカ7.5kgに、平均重合度1700の部分ケン化ポリビニルアルコール2.5kgを溶解して粘度が約1000ポイズ/20℃の紡糸原液を調製した。
【0013】
これを1000ホールの紡糸ノズルから押し出して乾式紡糸し、さらに1200℃まで焼成してセラミック繊維束を得た。更に、このセラミック繊維束を1400℃のパイプ炉に通して連続的に巻き取った。この時、1400℃での加熱時間が2秒および5秒となるように繊維束の通過速度を調整して実施例1,2として2種類の繊維束を得た。
尚、比較例1として1200℃で焼成しただけで1400℃での加熱処理を行わない繊維束を得た。
【0014】
得られた繊維束の繊維径、X線回折による結晶構造、2θが約26°付近に現れるムライトの(210)面の回折線の半減値巾(β1/2 )から下記の一般式によって求めた平均粒径(Dhkl)を表1に示した。
hkl=0.9λ/β1/2・COSθ
(但し、Dhkl:(210)面の平均粒径,λ:X線の波長,θ:X線の視斜角)
【0015】
次に、上記各繊維束とエポキシ樹脂による一方向強化材(以下「UDーFRP」と略記する)を作成し、金属に対する研磨性を調べた。
UDーFRPの作成は次のようにして行った。
先ず、定法に従って、繊維束をドラムに平行巻きし、下記の組成の樹脂を塗布し、余剰の樹脂を絞り取り、ドラムから切り開いて繊維が一方向配列した樹脂含浸シートを得た。これを温風乾燥機内で95℃、1時間乾燥した後、ポリエステルフィルムで上下から挟み込み、約60℃に加熱したローラープレスにかけてUDプリプレグシートを得た。
エポキシ樹脂(エピコート828 油化シェルエポキシ社製) 60重量部
エポキシ樹脂(エピコート1001 油化シェルエポキシ社製) 40重量部
三弗化ホウ素モノエチルアミン 2.5重量部
MEK 35重量部
このUDプリプレグシートを積み重ね、20Kg/cm2 の圧力下で170℃、1時間加熱して硬化させ、厚さ3.7mmのUDーFRPを得た。
【0016】
次に、これらUDーFRPの研削性を試験し、表1にその結果を示した。
各試験片はL×W×T=20mm×5mm×3.7mmの立方体とし、UDーFRPから切り出すに当たり、辺L(20mm)が繊維の配列方向と60℃の角度をなすようにした。図1は試験片(加工材)の斜視図を示すもので、図中1はセラミック繊維を示す。
尚、研削性の試験方法については、次のようにした。
被研削材として、L×W×T=80mm×15mm×2mmの鉄板を用意し、これをしかりと固定して、この鉄板のLW面を被研削面とし、UD−FRPの各試験片のLT面を乗せ、上から一定の荷重(1375g)をかけながら試験片を往復運動させた。この時、運動巾は45mm、運動速度は125往復/分、総往復運動回数は10000回とした。
この時、初めの被研削材の重さをA、研削後の被研削材の重さをBとして、次の式から研削率を求めた。
研削率(重量%)=(AーB/A)×100
【0017】
【表1】

Figure 0003812981
【0018】
次に実施例1と比較例1のUD−FRPから得られた前記試験片を、鉄製の金型磨きを専門とする5社に持ち込み、研磨性の評価をしたところ、表2に示すような結果が得られた。
【0019】
【表2】
Figure 0003812981
【0020】
表2から明らかなように、粒径が25〜70ナノメータと大きなムライト結晶を含むセラミック繊維が非常に研磨性に優れていることが確認できた。
【0021】
【発明の効果】
以上のように本発明によれば、通常のアルミナ繊維よりもさらに繊維強度の高い加工性に優れたセラミック繊維並びにこのセラミック繊維を含む加工材を得ることができるとともに、このような加工性の優れたセラミック繊維を製造することができる。
【図面の簡単な説明】
【図1】本発明の加工材の一実施例の斜視図
【符号の説明】
1 セラミック繊維[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing material suitable for use in processing such as cutting, drilling and polishing of metal or nonmetal, an alumina-based ceramic fiber used as a processing element of the processing material, and a method for producing the same.
[0002]
[Prior art]
Conventionally, as this type of processed material, for example, as disclosed in JP-A-1-222865, alumina fibers are aligned in one direction and bonded with a thermosetting resin such as an epoxy resin. A wrapping material is known. Further, as disclosed in JP-A-2-232174, there is known a rotary tool for cutting and polishing in which alumina fibers are aligned in one direction and bonded with a thermosetting resin such as an epoxy resin. It has been.
[0003]
[Problems to be solved by the invention]
However, although the alumina fiber used in the above-described conventional processed material has high fiber strength and excellent flexibility, for example, when used as an abrasive, the abrasiveness is not always satisfactory, and further, Improvement of processability has been desired.
Accordingly, an object of the present invention is to provide a ceramic fiber having a higher fiber strength and excellent workability than a normal alumina fiber, and a processed material containing the ceramic fiber.
Another object of the present invention is to provide a method for producing such a ceramic fiber excellent in workability.
[0004]
[Means for Solving the Problems]
The ceramic fiber for a processing material of the present invention is a ceramic fiber used as a processing element of a processing material, and a precursor fiber of alumina fiber is fired to form a ceramic fiber, and the precursor fiber is fired at 1200 ° C. or less. After being ceramicized , it is heat-treated at a high temperature of 1300 ° C. or higher for 30 seconds and formed by 80 to 90% by weight of the alumina component and 20 to 10% by weight of the silica component. is composed of alumina, average particle size of the mullite crystals is characterized in that a 25 to 70 nanometers.
Moreover, the ceramic fiber for processed materials according to claim 2 is characterized in that the alumina component is 85% by weight or more.
The ceramic fiber for processing material according to claim 3 , wherein the precursor fiber is obtained by dry-spinning an aqueous spinning stock solution composed of basic aluminum chloride, colloidal silica, and polyvinyl alcohol. To do.
A processed material according to a fourth aspect includes the ceramic fiber according to the first or second aspect.
The processed material according to claim 5 is characterized in that the ceramic fibers are bound by a resin binder.
The processed material according to claim 6 is characterized in that the resin binder for binding the ceramic fibers is an epoxy resin.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The ceramic fiber for processing material of the present invention is composed of mullite crystal having an average particle diameter of 25 to 70 nanometers, and the processing material of the present invention is ceramic fiber composed of mullite crystal having an average particle diameter of 25 to 70 nanometers. including.
The mullite crystal has a higher hardness than a normal intermediate alumina product, and exhibits an excellent workability because the average crystal grain size is about 10 times larger.
[0006]
In general, what is called alumina fiber is a polycrystalline fiber mainly composed of 70 to 85% by weight of Al 2 O 3 and 15 to 30% by weight of SiO 2 , and the fiber diameter is about 5 to 40 μm. . The sintered body is mainly composed of intermediate alumina and is composed of extremely fine crystal particles having an average crystal diameter of about 5 nanometers at most. For this reason, moderate softness | flexibility and high mechanical strength are shown, and the utilization to various fiber reinforced materials (FRP, FRM) is anticipated.
When such an alumina fiber is heated at a high temperature of 1400 ° C. or higher for a long time, coarse crystals such as mullite and corundum are formed in addition to intermediate alumina, and as a result, shrinkage and embrittlement progress and the function as a fiber is significantly reduced. To do.
[0007]
The ceramic fiber with good processability of the present invention is characterized in that crystal growth is advanced as compared with the conventional alumina fiber. However, as described above, excessive heat treatment significantly reduces the strength properties of the fiber. In consideration of this point, the ceramic fiber of the present invention is produced by generating crystals with a fine grain size as mullite by performing heat treatment at a high temperature of 1300 ° C. or higher for a short time, specifically within 30 seconds. It is characterized by increasing the hardness while suppressing the embrittlement of the ceramic and producing ceramic fibers with good workability.
[0008]
Ceramic fibers with good processability can be obtained by the production method of the present invention. In this case, when the particle size of mullite crystals is 25 nanometers or more, ceramic fibers having particularly excellent processability can be obtained. However, if it grows to 100 nanometers or more, embrittlement will remarkably progress, which is not preferable. Therefore, the particle size of the mullite crystal needs to be in the range of 25 to 70 nanometers.
[0009]
In addition, in order to obtain a high altitude, the component composition of the ceramic fiber of the present invention needs to contain at least 80% by weight of the alumina component, and particularly preferably 85% by weight or more. The remaining balance is mainly a silica component.
[0010]
The method for producing a ceramic fiber for a processing material according to the present invention is characterized by a firing temperature when a precursor fiber of alumina fiber is fired to form a ceramic fiber, and a subsequent heat treatment. The starting material for production is not particularly different from the conventional method for producing alumina fibers.
Specifically, a precursor fiber is obtained by dry spinning an aqueous spinning stock solution composed of basic aluminum chloride, colloidal silica, and polyvinyl alcohol, and the precursor fiber is fired at 1200 ° C. or less to be converted into ceramics. What is necessary is just to heat-process within 30 second at the high temperature of 1300 degreeC or more.
[0011]
A processed material containing the ceramic fiber as a processing element can be easily manufactured by properly aligning these fibers and impregnating them with a thermosetting resin such as an epoxy resin or a phenol resin and curing.
[0012]
【Example】
Examples of the present invention will be described below together with comparative examples.
First, 34 kg of an aqueous solution of basic aluminum chloride containing 13.2% by weight of aluminum ions and 11.45% by weight of chlorine ions and 7.5 kg of colloidal silica containing 20% by weight of silicon dioxide were mixed with a partial sapon having an average degree of polymerization of 1700. 2.5 kg of polyvinyl alcohol was dissolved to prepare a spinning dope having a viscosity of about 1000 poise / 20 ° C.
[0013]
This was extruded from a spinning nozzle with 1000 holes, dry-spun, and fired to 1200 ° C. to obtain a ceramic fiber bundle. Further, the ceramic fiber bundle was continuously wound through a pipe furnace at 1400 ° C. At this time, the passing speed of the fiber bundle was adjusted so that the heating time at 1400 ° C. was 2 seconds and 5 seconds, and two types of fiber bundles were obtained as Examples 1 and 2.
As Comparative Example 1, a fiber bundle was obtained which was baked at 1200 ° C. and was not subjected to heat treatment at 1400 ° C.
[0014]
Obtained by the following general formula from the fiber diameter of the obtained fiber bundle, the crystal structure by X-ray diffraction, and the half-value width (β 1/2 ) of the diffraction line on the (210) plane of mullite where 2θ appears around 26 °. The average particle diameter (D hkl ) is shown in Table 1.
D hkl = 0.9λ / β 1/2・ COSθ
(However, D hkl : Average particle diameter of (210) plane, λ: X-ray wavelength, θ: Oblique angle of X-ray)
[0015]
Next, a unidirectional reinforcing material (hereinafter abbreviated as “UD-FRP”) made of each of the above fiber bundles and an epoxy resin was prepared, and the abrasiveness to metal was examined.
Creation of UD-FRP was performed as follows.
First, according to a conventional method, a fiber bundle was wound in parallel on a drum, a resin having the following composition was applied, excess resin was squeezed out, cut out from the drum, and a resin-impregnated sheet in which fibers were aligned in one direction was obtained. After drying this at 95 ° C. for 1 hour in a hot air dryer, it was sandwiched from above and below with a polyester film and applied to a roller press heated to about 60 ° C. to obtain a UD prepreg sheet.
Epoxy resin (Epicoat 828 made by Yuka Shell Epoxy) 60 parts by weight Epoxy resin (Epicoat 1001 made by Yuka Shell Epoxy) 40 parts by weight Boron trifluoride monoethylamine 2.5 parts by weight MEK 35 parts by weight This UD prepreg sheet Stacking and curing by heating at 170 ° C. for 1 hour under a pressure of 20 kg / cm 2, a 3.7 mm thick UD-FRP was obtained.
[0016]
Next, the grindability of these UD-FRPs was tested, and Table 1 shows the results.
Each test piece was a cube of L × W × T = 20 mm × 5 mm × 3.7 mm, and when cut out from the UD-FRP, the side L (20 mm) formed an angle of 60 ° C. with the fiber arrangement direction. FIG. 1 shows a perspective view of a test piece (processed material), in which 1 denotes a ceramic fiber.
The grindability test method was as follows.
As a material to be ground, an iron plate of L × W × T = 80 mm × 15 mm × 2 mm is prepared, and this is firmly fixed, and the LW surface of this iron plate is used as a surface to be ground, and LT of each test piece of UD-FRP The test piece was reciprocated while placing a surface and applying a constant load (1375 g) from above. At this time, the movement width was 45 mm, the movement speed was 125 reciprocations / minute, and the total number of reciprocations was 10,000.
At this time, the weight of the first material to be ground was A, and the weight of the material to be ground after grinding was B, and the grinding rate was obtained from the following equation.
Grinding rate (% by weight) = (A−B / A) × 100
[0017]
[Table 1]
Figure 0003812981
[0018]
Next, the test pieces obtained from the UD-FRP of Example 1 and Comparative Example 1 were brought into five companies specializing in iron mold polishing and evaluated for abrasiveness, as shown in Table 2. Results were obtained.
[0019]
[Table 2]
Figure 0003812981
[0020]
As is apparent from Table 2, it was confirmed that the ceramic fiber containing a large mullite crystal having a particle size of 25 to 70 nanometers was very excellent in abrasiveness.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a ceramic fiber having higher fiber strength than ordinary alumina fibers and excellent workability, and a processed material containing the ceramic fiber, and such excellent workability. Ceramic fibers can be produced.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of a processed material according to the present invention.
1 Ceramic fiber

Claims (6)

加工材の加工要素として用いられるセラミック繊維であって、アルミナ繊維の前駆体繊維を焼成してセラミック繊維とし、前記前駆体繊維を1200℃以下で焼成してセラミックス化した後、1300℃以上の高温で30秒間以内加熱処理し、アルミナ成分80〜90重量%とシリカ成分20〜10重量%とによって形成され、該セラミック繊維の結晶構造が主としてムライト結晶と中間アルミナとで構成され、該ムライト結晶の平均粒径が25〜70ナノメータとしたことを特徴とする加工材用セラミック繊維。A ceramic fiber used as a processing element of a processed material , wherein a precursor fiber of alumina fiber is fired to make a ceramic fiber, and the precursor fiber is fired at 1200 ° C. or lower to be ceramicized, and then heated to 1300 ° C. or higher. The ceramic fiber is mainly composed of mullite crystals and intermediate alumina, and is formed of 80 to 90% by weight of the alumina component and 20 to 10% by weight of the silica component. ceramic fiber for processing material having an average particle size is characterized in that a 25 to 70 nanometers. 前記アルミナ成分が85重量%以上であることを特徴とする請求項1記載の加工材用セラミック繊維。  2. The ceramic fiber for work material according to claim 1, wherein the alumina component is 85% by weight or more. 前記前駆体繊維は塩基性塩化アルミニウムとコロイダルシリカとポリビニルアルコールからなる水性の紡糸原液を乾式紡糸して得られたものであることを特徴とする請求項記載の加工材用セラミック繊維。 The precursor fiber of the basic machine stock ceramic fiber according to claim 1, wherein the aluminum chloride and colloidal silica and spinning solution aqueous of polyvinyl alcohol is obtained by dry spinning. 加工要素として、請求項1又は2に記載のセラミック繊維を含むことを特徴とする加工材。A processed material comprising the ceramic fiber according to claim 1 or 2 as a processed element. 前記セラミック繊維を樹脂バインダで結着してなることを特徴とする請求項記載の加工材。The processed material according to claim 4, wherein the ceramic fibers are bound with a resin binder. 前記樹脂バインダがエポキシ樹脂であることを特徴とする請求項記載の加工材。6. The processed material according to claim 5, wherein the resin binder is an epoxy resin.
JP35526296A 1996-12-20 1996-12-20 Ceramic fiber for processing material, manufacturing method thereof and processing material Expired - Lifetime JP3812981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35526296A JP3812981B2 (en) 1996-12-20 1996-12-20 Ceramic fiber for processing material, manufacturing method thereof and processing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35526296A JP3812981B2 (en) 1996-12-20 1996-12-20 Ceramic fiber for processing material, manufacturing method thereof and processing material

Publications (2)

Publication Number Publication Date
JPH10183427A JPH10183427A (en) 1998-07-14
JP3812981B2 true JP3812981B2 (en) 2006-08-23

Family

ID=18442914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35526296A Expired - Lifetime JP3812981B2 (en) 1996-12-20 1996-12-20 Ceramic fiber for processing material, manufacturing method thereof and processing material

Country Status (1)

Country Link
JP (1) JP3812981B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206421A (en) * 2001-01-11 2002-07-26 Ibiden Co Ltd Holding-seal material for catalytic converter, ceramic fiber, and method of manufacturing the ceramic fiber
JP2011231774A (en) * 2011-07-26 2011-11-17 Ibiden Co Ltd Method of manufacturing holding seal material for catalytic converter
CN105051272A (en) * 2013-01-23 2015-11-11 电气化学工业株式会社 Alumina fiber and alumina fiber aggregate
WO2023042385A1 (en) 2021-09-17 2023-03-23 大明化学工業株式会社 Linear abrasive member for polishing brush, and polishing brush
CN117980435A (en) * 2021-09-17 2024-05-03 大明化学工业株式会社 Linear abrasive for polishing brush and polishing brush
JP7239951B1 (en) * 2022-08-02 2023-03-15 大明化学工業株式会社 Stick grindstone and polishing method

Also Published As

Publication number Publication date
JPH10183427A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
US4485179A (en) Reaction inhibited-silicon carbide fiber reinforced high temperature glass-ceramic composites
US4588699A (en) High strength, thermally stable magnesium aluminosilicate glass-ceramic matrix-sic fiber composites
US4589900A (en) High-strength thermally stable magnesium aluminosilicate glass-ceramic matrix sic fiber composite
JPH0146474B2 (en)
US4410635A (en) Discontinuous silicon carbide fiber reinforced ceramic composites
JPH0197213A (en) Non-oxide sintered ceramic fiber
JPS6235996B2 (en)
JPH0239468B2 (en)
US4581053A (en) Method of producing woven fiber reinforced glass matrix composite articles
JPH055785B2 (en)
JP3812981B2 (en) Ceramic fiber for processing material, manufacturing method thereof and processing material
US5391213A (en) Method for manufacturing fibre-reinforced structures with a glass matrix
EP1367040B1 (en) Friction material
JP3141512B2 (en) Silicon carbide based inorganic fiber reinforced ceramic composite
JPH10202539A (en) Processed material and rotating tool
JPH11508220A (en) Mullite-containing coatings and ceramic matrix composites for inorganic fibers
JPS63278833A (en) High strength ceramic composite
JP2000263447A (en) Abrasive material
JPH06116035A (en) Carbon fiber bundle-reinforced silicon carbide sintered body and its production
JP2004067487A (en) Carbon-fiber-reinforced carbon composite material mixed with ceramics
JP2000079567A (en) Lapping material
JPH11263668A (en) Ceramic matrix-fiber composite material parts and their production
JPH0411664B2 (en)
JPH10217131A (en) Processing material and tool for processing
JP2980213B2 (en) Inorganic fiber sintered body and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term