JP3710346B2 - Method for producing methoxy group-containing silane-modified phenolic resin - Google Patents

Method for producing methoxy group-containing silane-modified phenolic resin Download PDF

Info

Publication number
JP3710346B2
JP3710346B2 JP34965899A JP34965899A JP3710346B2 JP 3710346 B2 JP3710346 B2 JP 3710346B2 JP 34965899 A JP34965899 A JP 34965899A JP 34965899 A JP34965899 A JP 34965899A JP 3710346 B2 JP3710346 B2 JP 3710346B2
Authority
JP
Japan
Prior art keywords
phenol resin
methoxy group
resin
partial condensate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34965899A
Other languages
Japanese (ja)
Other versions
JP2001002745A (en
Inventor
秀樹 合田
詔二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP34965899A priority Critical patent/JP3710346B2/en
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to PCT/JP2000/000440 priority patent/WO2000044806A1/en
Priority to ES00901954T priority patent/ES2238986T3/en
Priority to EP00901954A priority patent/EP1086972B1/en
Priority to AT00901954T priority patent/ATE292159T1/en
Priority to US09/623,953 priority patent/US6441106B1/en
Priority to DE60019046T priority patent/DE60019046T2/en
Priority to KR1020007010727A priority patent/KR100591698B1/en
Priority to CNB00800076XA priority patent/CN1155641C/en
Priority to TW089101479A priority patent/TW490472B/en
Publication of JP2001002745A publication Critical patent/JP2001002745A/en
Application granted granted Critical
Publication of JP3710346B2 publication Critical patent/JP3710346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、メトキシ基含有シラン変性フェノール樹脂の製造方法に関する。本発明により得られるメトキシ基含有シラン変性フェノール樹脂は、エポキシ樹脂組成物の硬化剤はあるいは樹脂組成物として、IC封止材、積層板などの電気・電子材料、その他、接着剤、コーティング剤、インキ等のさまざまな用途に使用できる。
【0002】
【従来の技術】
従来より、エポキシ樹脂は一般に硬化剤と組み合わせて使用されており、特に電気・電子材料関係の分野においては、耐熱性、耐薬品性、電気特性等に優れていることから硬化剤としてフェノールノボラック樹脂が好適に用いられている。しかし、近年の電気・電子材料分野の発展に伴い、エポキシ樹脂組成物にも高度の性能が要求されるようになり、一般的なフェノールノボラック樹脂では架橋密度の高い硬化物を提供し難いため、耐熱性に関しても充分とはいえなくなっている。
【0003】
エポキシ樹脂組成物の耐熱性を向上させるため、たとえば、エポキシ樹脂に、硬化剤として用いるフェノールノボラック樹脂に加え、ガラス繊維、ガラス粒子、マイカ等のフィラーが混合されている。しかし、この方法でも十分な耐熱性は得られない。また、この方法ではエポキシ樹脂硬化物の透明性が失われ、しかもフィラーと樹脂との界面の接着性が劣るため、伸長率等の機械的特性も不十分である。
【0004】
また、エポキシ樹脂の硬化剤として、フェノールノボラック樹脂中でアルコキシシランの加水分解、重縮合を行って得られるフェノールノボラック樹脂とシリカとの複合体を使用することにより、エポキシ樹脂硬化物の耐熱性を向上させる方法が提案されている(特開平9−216938号公報)。かかる複合体を硬化剤とするエポキシ樹脂硬化物では、ある程度は耐熱性が向上するものの、硬化剤中の水や硬化時に生じる水、メタノールに起因して、硬化物中にボイド(気泡)が発生する。また、耐熱性を一層向上させる目的でアルコキシシラン量を増やすと、生成するシリカが凝集して得られる硬化物の透明性が失われて白化するうえ、多量のアルコキシシランのゾル化するために多量の水が必要となり、その結果として硬化物のそり、割れ、クラックを招く。
【0005】
また、フェノール樹脂をシラン変性する方法により耐熱性等を向上させる試みもなされている。シラン変性フェノール樹脂の製法としては、たとえば、分子鎖両末端にアルコキシ基を有するオルガノポリシロキサンとフェノール樹脂を加熱下に縮合反応させる方法(特開昭50−129699号公報)、分子鎖両末端にアルコキシ基または水酸基を有するオルガノポリシロキサンとフェノール樹脂を加熱下に縮合反応させる方法(特開昭61−192711号公報)が知られている。しかし、これらの方法で得られるシラン変性フェノール樹脂は、ジオルガノポリシロキサン単位を含むため、耐熱性が不十分である。
【0006】
【発明が解決しようとする課題】
本発明は、エポキシ樹脂用の硬化剤等として使用できる、耐熱性に優れたメトキシ基含有シラン変性フェノール樹脂の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは前記課題を解決すべく、鋭意検討を重ねた結果、フェノール樹脂(1)のフェノール性水酸基の一部を、以下に示す加水分解性メトキシシラン部分縮合物(2)と脱メタノール反応させることにより、前記目的に合致したシラン変性フェノール樹脂が得られることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、フェノール樹脂(1)と、メチルトリメトキシシランおよび/またはテトラメトキシシランから誘導される加水分解性メトキシシラン部分縮合物(2)を、実質的に無水条件下に脱メタノール反応させることを特徴とするメトキシ基含有シラン変性フェノール樹脂の製造方法;さらには当該製造方法により得られるメトキシ基含有シラン変性フェノール樹脂に関する。
【0009】
【発明の実施の形態】
本発明の製造方法に用いるフェノール樹脂(1)としては、フェノール類とアルデヒド類を酸触媒の存在下に反応させて得られるノボラック型フェノール樹脂、またはフェノール類とアルデヒド類をアルカリ触媒の存在下に反応させて得られるレゾール型フェノール樹脂のいずれも使用できる。ただし、レゾール型フェノール樹脂は、通常、縮合水を含有しており、加水分解性メトキシシシラン部分縮合物(2)が加水分解するおそれがあるため、本発明のフェノール樹脂(1)としては、ノボラック型フェノール樹脂を使用するのが好ましい。また、フェノール樹脂(1)は通常、平均フェノール核数3〜8程度のものを使用するのが好ましい。
【0010】
なお、フェノール類としては、たとえば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、p−エチルフェノール、p−イソプロピルフェノール、p−ターシャリーブチルフェノール、p−クロロフェノール、p−ブロモフェノールなどの各種のものがあげられる。ホルムアルデヒド類としては、ホルマリンの他、パラホルムアルデヒド、トリオキサン、テトラオキサン等のホルムアルデヒド発生源物質を使用することもできる。なお、酸性触媒またはアルカリ触媒は従来より知られているものが使用される。
【0011】
また、本発明のシラン変性フェノール樹脂組成物を構成する加水分解性メトキシシラン部分縮合物(2)は、メチルトリメトキシシランおよび/またはテトラメトキシシランである加水分解性メトキシシラン化合物を部分的に加水分解、縮合して得られるオリゴマーである。加水分解性メトキシシラン化合物には公知各種のものがあるが、本発明ではエステル化反応速度、硬化反応速度が大きく、またコスト面から、テトラメトキシシランおよび/またはメチルトリメトキシシランが必須使用される。
【0013】
加水分解性メトキシシラン部分縮合物(2)は、上記物質の中から1種または2種以上を適宜選択すればよいが、1分子当りのSiの平均個数は2〜100であることが好ましい。Siの平均個数が2未満であると、フェノール樹脂(1)とのエステル化反応の際、反応せずにメタノールと一緒に系外に流出するアルコキシシラン化合物の量が増え、好ましくない。また100以上になると、フェノール樹脂(1)との反応性が落ち、目的物質が得られにくい。市販品などの入手容易性を考慮すれば、1分子当りのSiの平均個数は3〜20程度のものとされる。
【0014】
本発明では、前記フェノール樹脂(1)と、前記の加水分解性メトキシシラン部分縮合物(2)を脱メタノール反応させるが、フェノール樹脂(1)と加水分解性メトキシシラン部分縮合物(2)の使用割合は、得られるシラン変性フェノール樹脂中に、フェノール性水酸基が残存するような割合であれば、特に制限されない。通常、フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量(当量比)を、0.2〜10の範囲にするのが好ましい。ただし、前記当量比は、1付近(化学量論的に等量付近)であると、脱メタノール反応の進行によって溶液の高粘度化やゲル化を招き易いため、脱メタノール反応の進行を調整する必要がある。
【0015】
前記当量比が1未満の場合には、得られるメトキシ基含有シラン変性フェノール樹脂中の加水分解性メトキシシラン部分縮合物(2)の割合が高いため、シリカ含有率が増え、耐熱性、硬度を上昇させるのに有効である。例えば、エポキシ樹脂としてエポキシ当量400以上の高分子量物を使用する場合などのエポキシ硬化物の架橋密度が通常低い場合などは、得られるエポキシ硬化物の架橋密度が通常低くなるので、かかる場合には前記当量比を1未満とするのが好適である。なお、前記当量比が小さくなると、メトキシ基含有シラン変性フェノール樹脂のフェノール性水酸基が少なくなるため、メトキシ基含有シラン変性フェノール樹脂をエポキシ樹脂用硬化剤等として用いる場合には、その硬化性が落ち、充分な架橋密度の硬化物を得難く、未反応の加水分解性メトキシシラン部分縮合物(2)の割合が増加し、エポキシ樹脂硬化物が白化するおそれがある。これらを考慮すれば、前記当量比は0.2以上、さらには0.3以上とするのがより好ましい。
【0016】
一方、前記当量比が1を超える場合には、メトキシ基含有シラン変性フェノール樹脂中の加水分解性メトキシシラン部分縮合物(2)のメトキシ基の残存率が少なくなる。たとえば、かかるシラン変性フェノール樹脂を、エポキシ樹脂の硬化剤として用いれば、硬化時にメトキシシリル基の縮合反応によって副生されるメタノールや水の発生が少なく、そり、ボイド(気泡)、クラックの発生を効果的に抑えられる。特に、エポキシ樹脂としてノボラックフェノールタイプやエポキシ当量400未満(特にエポキシ当量200以下)ものを使用する場合などのエポキシ樹脂硬化物に、そり、ボイド(気泡)、クラックが発生し易い場合に、かかるシラン変性フェノール樹脂を用いると好適である。なお、前記当量比が大きくなると、硬化剤中のシリカの割合が少なくなり、エポキシ樹脂硬化物の耐熱性を充分向上できない。これらを考慮すれば前記当量比は10以下、さらには8以下とするのが好ましい。
【0017】
かかるシラン変性フェノール樹脂の製造は、たとえば、前記各成分を仕込み、加熱して生成するメタノールを留去しながらエステル交換反応を行なう。反応温度は70〜150℃程度、好ましくは80〜130℃であり、全反応時間は2〜15時間程度である。反応温度が70℃未満の場合には、効率的にメタノールを留去できず、150℃以上であるとメトキシシラン化合物が硬化縮合を開始するため、好ましくない。
【0018】
また、上記の脱メタノール反応に際しては、反応促進のために従来公知のエステルと水酸基のエステル交換触媒を使用することができる。たとえば、酢酸、パラ−トルエンスルホン酸、安息香酸、プロピオン酸などの有機酸やリチウム、ナトリウム、カリウム、ルビジュウム、セシウム、マグネシウム、カルシュウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、砒素、セリウム、硼素、カドミウム、マンガンのような金属や、これら酸化物、有機酸塩、ハロゲン化物、アルコキシド等があげられる。これらのなかでも、特に有機酸系や有機錫、有機酸錫が好ましく、具体的には、酢酸、オクチル酸錫、ジブチル錫ジラウレートが有効である。
【0019】
また、上記のフェノール樹脂(1)および加水分解性メトキシシシラン部分縮合物(2)の反応は、有機溶剤中でも無溶剤でも行うことができる。有機溶剤としては、フェノール樹脂(1)および加水分解性メトキシシシラン部分縮合物(2)を溶解する有機溶剤であれば特に制限はない。このような有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノンなどの沸点が75℃以上の非プロトン性極性溶媒を用いるのが好ましい。一方、エステル化反応を迅速に進行させたい場合には無溶剤で反応させるのが好ましい。しかしながら、フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量(当量比)が1付近であったり、加水分解性メトキシシラン部分縮合物(2)1分子当りのSiの平均個数が8以上であると反応系の粘度上昇が激しくなりすぎるため、このような場合には溶剤を用いるのが好ましい。
【0020】
上記反応においては、所望のフェノール性水酸基当量や粘度を有するメトキシ基含有シラン変性フェノール樹脂組成物を得るため、フェノール樹脂(1)と加水分解性メトキシシラン部分縮合物(2)の脱メタノール反応の進行を途中で止めることができる。反応の進行を止める方法は特に限定されないが、所定のメタノール流出量となった時点で冷却する方法、触媒を失活させる方法、メタノールを加える方法などが有効である。
【0021】
上記のような本発明の製造方法により得られるメトキシ基含有シラン変性フェノール樹脂は、フェノール性水酸基の少なくとも1つがシラン変性されたフェノール樹脂を主成分として含むが、当該樹脂中には未反応のフェノール樹脂(1)や加水分解性メトキシシラン部分縮合物(2)が含有されていてもよい。なお、本発明のメトキシ基含有シラン変性フェノール樹脂の使用にあたっては、未反応の加水分解性メトキシシシラン部分縮合物(2)の加水分解、重縮合を促進するため、シラン変性フェノール樹脂中に、少量の水や、触媒量のギ酸、酢酸、プロピオン酸、パラトルエンスルホン酸、メタンスルホン酸等の有機酸触媒、ホウ酸、リン酸等の無機酸触媒やアルカリ系の触媒、有機錫、有機酸錫系触媒を含有させることもできる。
【0022】
当該シラン変性フェノール樹脂のメトキシシリル基は、水によって加水分解、縮合することによりシロキサン結合を形成する。そのため、大気中の湿気などによる外界からの水分によって分子量が変化し、粘度変化を受けやすい。そこで、シラン変性フェノール樹脂が開放系で長い時間置かれる場合や多湿環境で保存される場合には、フェノール樹脂(1)と、加水分解性メトキシシシラン部分縮合物(2)との反応後にメタノールを溶剤として添加しておく方法が有効である。
【0023】
【発明の効果】
本発明の製造方法によれば、エポキシ樹脂用硬化剤等の各種の用途に使用できる、耐熱性に優れたメトキシ基含有シラン変性フェノール樹脂を提供できる。
【0024】
【実施例】
以下、実施例および比較例をあげて本発明を具体的に説明する。なお、各例中、部および%は特記なし限り重量基準である。
【0025】
実施例1
攪拌機、分水器、温度計及び窒素ガス導入管を備えた反応装置に、ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)859.5gおよびジメチルホルムアミド400gを加え、100℃で溶解した。更にテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)190.5gと触媒としてジブチル錫ジラウレート2gを加え、110℃で6時間、脱メタノール反応させた。80℃まで冷却し、更にジメチルホルムアミドを加え、不揮発分50%のシラン変性フェノール樹脂溶液(硬化剤A)を得た。なお、仕込み時のフェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシラン部分縮合物(2)のメトキシ基の当量)は2である。
【0026】
得られたシラン変性フェノール樹脂溶液の水酸基当量は338であった。また、脱メタノール量は90gであった。シラン変性フェノール樹脂のフェノール性OH収率(シランと反応した水酸基/仕込みフェノール樹脂(1)の水酸基×100(%))は34.8%であり、メトキシ基収率(フェノール性水酸基と反応したメトキシ基/仕込み加水分解性メトキシシラン部分縮合物のメトキシ基×100(%))は69.6%であった。なお、フェノール性OH収率およびメトキシ基収率は、いずれも反応生成物のH−NMRによって、フェノール性水酸基、メトキシ基の各ピーク面積を測定することにより得た(以下同様)。硬化剤Aの製造条件および組成を表1に示す。
【0027】
実施例2
実施例1と同様の反応装置に、ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)662.5gおよびジメチルホルムアミド400gを加え、100℃で溶解した。更にテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)587.5gと触媒として酢酸2.8gを加え、110℃で6時間、脱メタノール反応を行った。80℃まで冷却し、更にジメチルホルムアミドを加え、不揮発分50%のシラン変性フェノール樹脂溶液(硬化剤B)を得た。なお、仕込み時の当量比(フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量)は0.5である。
【0028】
得られたシラン変性フェノール樹脂溶液の水酸基当量は614であり、脱メタノール量は95gであった。また、シラン変性フェノール樹脂のフェノール性OH収率は50.3%、メトキシ基収率は25.1%であった。硬化剤Bの製造条件および組成を表1に示す。
【0029】
実施例3
実施例1と同様の反応装置に、ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)662.5gおよびメチルエチルケトン300gを加え、80℃で溶解した。更にテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)587.5gと触媒として酢酸3.4gを加え、95℃で8時間、還流反応を行った。50℃まで冷却し、更にメチルエチルケトンを加え、不揮発分50%のシラン変性フェノール樹脂溶液(硬化剤C)を得た。なお、仕込み時の当量比(フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量)は0.5である。
【0030】
得られたシラン変性フェノール樹脂溶液の水酸基当量は504であり、脱メタノール量は70gであった。得られたシラン変性フェノール樹脂のフェノール性OH収率は39.0%、メトキシ基収率は19.5%であった。硬化剤Cの製造条件および組成を表1に示す。
【0031】
実施例4
実施例1と同様の反応装置に、ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)662.5gおよびジメチルホルムアミド400gを加え、100℃で溶解した。更にテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)587.5g加え、110℃で12時間、還流反応を行った。80℃まで冷却し、更にジメチルホルムアミドを加え、不揮発分50%のシラン変性フェノール樹脂溶液(硬化剤D)を得た。なお、仕込み時の当量比(フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量)は0.5である。
【0032】
得られたシラン変性フェノール樹脂溶液の水酸基当量は587であり、脱メタノール量は95gであった。得られたシラン変性フェノール樹脂のフェノール性OH収率は47.6%、メトキシ基収率は23.8%であった。硬化剤Dの製造条件および組成を表1に示す。
【0033】
実施例5〜10
実施例1において、ノボラック型フェノール樹脂(1)、反応溶剤、加水分解性アルコキシシラン(2)、触媒、エステル交換時間および希釈溶剤に関し、これらの種類や使用量のうちいずれか少なくとも1種の項目につき表2〜表3に示すように変化させた他は、実施例1と同様の手順に基づいて各種のシラン変性フェノール樹脂溶液を得た(順に硬化剤E〜Lという)。
【0034】
【表1】

Figure 0003710346
【0035】
【表2】
Figure 0003710346
【0036】
【表3】
Figure 0003710346
【0037】
表1〜表3に記載の略号は以下を意味する。
(1) ノボラックフェノール樹脂(1)の種類
タマノル759:ノボラック型フェノール樹脂(荒川化学工業(株)製商品名)
タマノル756D:クレゾール型フェノール樹脂(荒川化学工業(株)製商品名)
(2) 反応溶剤の種類
DMF:ジメチルホルムアミド、 MEK:メチルエチルケトン
CYN:シクロヘキサノン
(3) 加水分解性アルコキシシラン部分縮合物(2)の種類
MS―51:メチルシリケート51(多摩化学(株)製商品名)
MS―56:メチルシリケート56(多摩化学(株)製商品名)
MTMS−A:多摩化学(株)製,試作品名
(1分子当りの平均Si個数4.5のメチルトリメトキシシラン部分縮合物)
(4) 反応触媒の種類
SnL :ジブチル錫ジラウレート
(5) 反応時間(時間)
(6) 希釈溶剤の種類
MEK:メチルエチルケトン、 MeOH:メタノール
(7) 硬化剤の不揮発分(%)
(8) 仕込当量比(R):
フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性アルコキシシラン部分縮合物(2)のメトキシ基の当量
(9) 留去メタノール量(g)
(10)フェノール性OH収率(Y−PH):
(シランと反応した水酸基/仕込みフェノール樹脂(1)の水酸基)×100(%)
(11)メトキシ基収率(Y−Si):
(フェノール性水酸基と反応したメトキシ基/仕込み加水分解性アルコキシシラン(2)のメトキシ基)×100(%)
(12) 硬化剤溶液のフェノール性水酸基の当量(E)(単位はg)
【0038】
比較例1
ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)をジメチルホルムアミドに溶解し不揮発分50%の樹脂溶液とした。
【0039】
比較例2
ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)859.5g、テトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)190.5gをジメチルホルムアミド836.1gに溶解し、さらに水27.2gを加えて攪拌し、不揮発分50%の樹脂溶液(溶液のフェノール性水酸基当量223.8)とした。
【0040】
比較例3
ノボラック型フェノール樹脂(荒川化学工業(株)製,商品名タマノル759)662.5g、テトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)587.5gをジメチルホルムアミド590.3gに溶解し、さらに水84gを加えて攪拌し、不揮発分50%の樹脂溶液(溶液のフェノール性水酸基当量305)とした。
【0041】
(粘度安定性評価)
実施例1〜12および比較例1〜3で得られた硬化剤溶液(硬化剤A〜L)100gを、合成直後、ポリエチレン製の容器(容量150g)に移し、温度40℃、湿度80%の状態に1ヶ月保存した。保存前のB型粘度及び保存後のB型粘度から粘度安定性を、下記の基準で評価した。結果は表4に示す。
(保存のB型粘度−保存のB型粘度)/(保存前の粘度)×100%
○:10未満
○△:10以上30未満
△:30以上100未満
×:100以上
【0042】
【表4】
Figure 0003710346
【0043】
試験例1〜15
エポキシ樹脂(東都化成(株)製,商品名YD011,エポキシ当量475)をジメチルホルムアミドに溶解した不揮発分50%の樹脂溶液、実施例1〜12または比較例1〜3で得られたシラン変性フェノール樹脂および2−エチル−4−メチルイミダゾール(触媒)を表5に示すように混合し、各種のエポキシ樹脂組成物を調製した。
【0044】
試験例16
試験例15でエポキシ樹脂組成物を調製する際に、さらにテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)1.03gおよび水0.15gを加えてエポキシ樹脂組成物を調製した。当該組成を表5に示す。
【0045】
試験例17
試験例15でエポキシ樹脂組成物を調製する際に、さらにテトラメトキシシラン部分縮合物(多摩化学(株)製,商品名メチルシリケート51)2.35gおよび水0.38gを加えてエポキシ樹脂組成物を調製した。当該組成を表5に示す。
【0046】
【表5】
Figure 0003710346
【0047】
試験例1〜17で得られた樹脂組成物(硬化物)の各ユニット重量比率(%)を使用比率から求めた。結果を表6に示す。表6から分かるように、試験例1(実施例1の硬化剤A)におけるフェノール樹脂/シリカ(重量比)と、試験例14(比較例2の樹脂溶液)におけるフェノール樹脂/シリカ(重量比)を略同じとした。また、試験例2、3、4、9、12(実施例2、3、4、9、12の各硬化剤)におけるフェノール樹脂/シリカと試験例15(比較例3の樹脂溶液)におけるフェノール樹脂/シリカを略同じとした。また、試験例2、3、4、9、10、11、12の各硬化物におけるシリカ含有率と、試験16の硬化物におけるシリカ含有率を略同じとした。また、試験例6,7の各硬化物におけるシリカ含有率と、試験例17の硬化物におけるシリカ含有率を略同じとした。
【0048】
【表6】
Figure 0003710346
【0049】
試験例1〜17で得られた樹脂組成物を、フッ素樹脂コーティングされた容器(縦×横×深さ=10cm×10cm×1.5cm)に注ぎ、135℃で1時間、160℃で2時間、溶剤の除去および硬化を行った。試験例1〜15については、透明な硬化フィルム(膜厚約0.4mm)を作成することができたが、試験例16、17については硬化時の発泡・収縮が激しく、硬化フィルムは得られなかった。
【0050】
試験例2、5、11、12および14で得られた硬化フィルムを粘弾性測定器(レオロジ社製,商品名DVE−V4,測定条件:振幅1μm,振動数10Hz,スロープ3℃/分)を用いて動的貯蔵弾性率を測定し、耐熱性を評価した。測定結果を図1に示す。図1から明らかように実施例の硬化フィルムは耐熱性に優れていることが認められる。
【0051】
試験例1〜17について、硬化物の状態の良さ(気泡、収縮の度合い)を以下の基準評価した。結果を表7に示す。
【0052】
(気泡評価)
○:硬化物中に気泡がない
○△:硬化物中の気泡が5個以内である
△:硬化物中に気泡が6から20個ある。
×:硬化物中に気泡が21個以上存在する。
【0053】
(収縮評価)
○:硬化物にクラックがない。
△:硬化物にクラックが存在する。
×:硬化物は割れている。
【0054】
【表7】
Figure 0003710346

【図面の簡単な説明】
【図1】 試験例で得られた硬化フィルムの耐熱性の評価結果である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a methoxy group-containing silane-modified phenol resin. The methoxy group-containing silane-modified phenolic resin obtained by the present invention is an epoxy resin composition curing agent or resin composition, such as an IC sealing material, an electrical / electronic material such as a laminate, other adhesives, coating agents, Can be used for various applications such as ink.
[0002]
[Prior art]
Conventionally, epoxy resins are generally used in combination with a curing agent. In particular, in the field of electrical and electronic materials, phenolic novolac resin is used as a curing agent because of its excellent heat resistance, chemical resistance, electrical properties, etc. Are preferably used. However, with the recent development of the electric and electronic materials field, the epoxy resin composition is required to have high performance, and it is difficult to provide a cured product having a high crosslinking density with a general phenol novolac resin. The heat resistance is not sufficient.
[0003]
In order to improve the heat resistance of the epoxy resin composition, for example, a filler such as glass fiber, glass particles, and mica is mixed with the epoxy resin in addition to the phenol novolac resin used as a curing agent. However, sufficient heat resistance cannot be obtained even with this method. Further, in this method, the transparency of the cured epoxy resin is lost, and the adhesiveness at the interface between the filler and the resin is inferior, so that the mechanical properties such as the elongation rate are insufficient.
[0004]
Moreover, by using a composite of phenol novolac resin and silica obtained by hydrolysis and polycondensation of alkoxysilane in a phenol novolac resin as a curing agent for the epoxy resin, the heat resistance of the cured epoxy resin can be improved. A method for improving this has been proposed (Japanese Patent Laid-Open No. 9-216938). Epoxy resin cured products using such a composite as a curing agent have improved heat resistance to some extent, but voids (bubbles) are generated in the cured product due to water in the curing agent, water generated during curing, and methanol. To do. In addition, if the amount of alkoxysilane is increased for the purpose of further improving heat resistance, the transparency of the cured product obtained by agglomeration of the generated silica is lost and whitening occurs. Water is required, resulting in warping, cracking and cracking of the cured product.
[0005]
Attempts have also been made to improve heat resistance and the like by a method of modifying a phenol resin with silane. As a method for producing a silane-modified phenol resin, for example, a method in which an organopolysiloxane having an alkoxy group at both ends of a molecular chain and a phenol resin are subjected to a condensation reaction under heating (Japanese Patent Laid-Open No. 50-129699), A method is known in which an organopolysiloxane having an alkoxy group or a hydroxyl group and a phenol resin are subjected to a condensation reaction under heating (Japanese Patent Application Laid-Open No. 61-192711). However, since the silane-modified phenol resin obtained by these methods contains a diorganopolysiloxane unit, the heat resistance is insufficient.
[0006]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the methoxy group containing silane modified phenol resin excellent in heat resistance which can be used as a hardening | curing agent etc. for epoxy resins.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have determined that a part of the phenolic hydroxyl group of the phenol resin (1) is converted into the hydrolyzable methoxysilane partial condensate (2) and demethanol shown below. It was found that a silane-modified phenolic resin meeting the above-mentioned purpose can be obtained by the reaction, and the present invention has been completed.
[0008]
That is, the present invention includes a phenol resin (1), methyltrimethoxysilane and / or hydrolyzable methoxysilane partial condensate derived from tetramethoxysilane and (2), substantially removing methanol under anhydrous conditions The present invention relates to a method for producing a methoxy group-containing silane-modified phenol resin characterized by reacting; and further relates to a methoxy group-containing silane-modified phenol resin obtained by the production method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The phenol resin (1) used in the production method of the present invention is a novolak type phenol resin obtained by reacting phenols and aldehydes in the presence of an acid catalyst, or phenols and aldehydes in the presence of an alkali catalyst. Any of the resol type phenol resins obtained by reacting can be used. However, since the resol type phenolic resin usually contains condensed water and the hydrolyzable methoxysilane partial condensate (2) may be hydrolyzed, the phenolic resin (1) of the present invention includes: It is preferable to use a novolac type phenolic resin. Moreover, it is preferable to use a phenol resin (1) whose average phenol nucleus is about 3 to 8 in general.
[0010]
Examples of phenols include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, and 3,4. Examples thereof include various compounds such as -xylenol, 3,5-xylenol, p-ethylphenol, p-isopropylphenol, p-tertiary butylphenol, p-chlorophenol, and p-bromophenol. In addition to formalin, formaldehyde generating materials such as paraformaldehyde, trioxane, and tetraoxane can be used as the formaldehyde. In addition, what is known conventionally is used for an acidic catalyst or an alkali catalyst.
[0011]
Further, the hydrolyzable methoxysilane partial condensate constituting the silane-modified phenolic resin composition of the present invention (2) is methyltrimethoxysilane and / or tetramethoxysilane der Ru hydrolyzable methoxysilane compound partially It is an oligomer obtained by hydrolysis and condensation. There are various known hydrolyzable methoxysilane compounds, but in the present invention, the esterification reaction rate and the curing reaction rate are high, and tetramethoxysilane and / or methyltrimethoxysilane are essential from the viewpoint of cost. .
[0013]
The hydrolyzable methoxysilane partial condensate (2) may be appropriately selected from one or more of the above substances, but the average number of Si per molecule is preferably 2-100. When the average number of Si is less than 2, the amount of the alkoxysilane compound flowing out of the system together with methanol does not react during the esterification reaction with the phenol resin (1), which is not preferable. Moreover, when it becomes 100 or more, the reactivity with a phenol resin (1) falls and it is hard to obtain a target substance. Considering the availability of commercially available products, the average number of Si per molecule is about 3-20.
[0014]
In the present invention, the phenol resin (1) and the hydrolyzable methoxysilane partial condensate (2) are subjected to a demethanol reaction. The phenol resin (1) and the hydrolyzable methoxysilane partial condensate (2) The usage ratio is not particularly limited as long as the phenolic hydroxyl group remains in the resulting silane-modified phenol resin. Usually, it is preferable that the equivalent of the phenolic hydroxyl group of the phenol resin (1) / the equivalent of the methoxy group of the hydrolyzable methoxysilane partial condensate (2) (equivalent ratio) is in the range of 0.2-10. However, if the equivalent ratio is around 1 (stoichiometrically around the same amount), the progress of the demethanol reaction is adjusted because the progress of the demethanol reaction tends to increase the viscosity and gelation of the solution. There is a need.
[0015]
When the equivalent ratio is less than 1, the ratio of the hydrolyzable methoxysilane partial condensate (2) in the resulting methoxy group-containing silane-modified phenol resin is high, so the silica content increases, and the heat resistance and hardness are increased. It is effective to raise. For example, when the crosslinking density of an epoxy cured product is usually low, such as when a high molecular weight product having an epoxy equivalent of 400 or more is used as the epoxy resin, the crosslinking density of the resulting epoxy cured product is usually low. The equivalent ratio is preferably less than 1. In addition, since the phenolic hydroxyl group of the methoxy group-containing silane-modified phenol resin decreases as the equivalent ratio decreases, the curability decreases when the methoxy group-containing silane-modified phenol resin is used as a curing agent for epoxy resins. It is difficult to obtain a cured product having a sufficient cross-linking density, the proportion of the unreacted hydrolyzable methoxysilane partial condensate (2) increases, and the cured epoxy resin may be whitened. Considering these, the equivalent ratio is more preferably 0.2 or more, and further preferably 0.3 or more.
[0016]
On the other hand, when the equivalent ratio exceeds 1, the residual ratio of methoxy groups in the hydrolyzable methoxysilane partial condensate (2) in the methoxy group -containing silane-modified phenol resin is reduced. For example, if such a silane-modified phenolic resin is used as a curing agent for an epoxy resin, there is little generation of methanol and water by-produced by the condensation reaction of methoxysilyl groups during curing, and warpage, voids (bubbles), and cracks are generated. Effectively suppressed. In particular, when a novolak phenol type or an epoxy equivalent less than 400 (especially an epoxy equivalent of 200 or less) is used as an epoxy resin, such a silane is likely to be warped, voided, or cracked. It is preferable to use a modified phenolic resin. In addition, when the said equivalent ratio becomes large, the ratio of the silica in a hardening | curing agent will decrease, and the heat resistance of epoxy resin hardened | cured material cannot fully be improved. Considering these, the equivalent ratio is preferably 10 or less, more preferably 8 or less.
[0017]
In the production of such a silane-modified phenolic resin, for example, the above components are charged and the ester exchange reaction is carried out while distilling off methanol produced by heating. The reaction temperature is about 70 to 150 ° C., preferably 80 to 130 ° C., and the total reaction time is about 2 to 15 hours. When the reaction temperature is less than 70 ° C., methanol cannot be efficiently distilled off, and when it is 150 ° C. or more, the methoxysilane compound starts curing condensation, which is not preferable.
[0018]
In the above demethanol reaction, a conventionally known ester-hydroxyl ester exchange catalyst can be used to promote the reaction. For example, organic acids such as acetic acid, para-toluenesulfonic acid, benzoic acid, propionic acid, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium, cobalt, germanium, tin, Examples thereof include metals such as lead, antimony, arsenic, cerium, boron, cadmium and manganese, and oxides, organic acid salts, halides and alkoxides thereof. Among these, organic acid type, organic tin, and organic acid tin are particularly preferable, and specifically, acetic acid, tin octylate, and dibutyltin dilaurate are effective.
[0019]
Moreover, reaction of said phenol resin (1) and hydrolysable methoxy silane partial condensate (2) can be performed even in an organic solvent or without a solvent. The organic solvent is not particularly limited as long as it is an organic solvent that dissolves the phenol resin (1) and the hydrolyzable methoxysilane compound (2). As such an organic solvent, it is preferable to use an aprotic polar solvent having a boiling point of 75 ° C. or higher, such as dimethylformamide, dimethylacetamide, methyl ethyl ketone, and cyclohexanone. On the other hand, when it is desired to proceed the esterification reaction rapidly, it is preferable to carry out the reaction without solvent. However, the equivalent of phenolic hydroxyl group of phenol resin (1) / equivalent (equivalent ratio) of methoxy group of hydrolyzable methoxysilane partial condensate (2) is close to 1, or the hydrolyzable methoxysilane partial condensate (2) If the average number of Si per molecule is 8 or more, the viscosity of the reaction system will increase excessively. In such a case, it is preferable to use a solvent.
[0020]
In the above reaction, in order to obtain a methoxy group-containing silane-modified phenol resin composition having a desired phenolic hydroxyl group equivalent and viscosity, a methanol removal reaction of the phenol resin (1) and the hydrolyzable methoxysilane partial condensate (2) is performed. Progress can be stopped halfway. A method for stopping the progress of the reaction is not particularly limited, but a method of cooling when a predetermined amount of methanol flows out, a method of deactivating the catalyst, a method of adding methanol, and the like are effective.
[0021]
The methoxy group-containing silane-modified phenol resin obtained by the production method of the present invention as described above contains, as a main component, a phenol resin in which at least one phenolic hydroxyl group is silane-modified, but unreacted phenol in the resin. Resin (1) and hydrolyzable methoxysilane partial condensate (2) may be contained. In using the methoxy group-containing silane-modified phenol resin of the present invention, in order to promote hydrolysis and polycondensation of the unreacted hydrolyzable methoxysilane partial condensate (2), Small amount of water, catalytic amount of organic acid catalyst such as formic acid, acetic acid, propionic acid, paratoluenesulfonic acid, methanesulfonic acid, etc., inorganic acid catalyst such as boric acid, phosphoric acid, alkaline catalyst, organic tin, organic acid A tin-based catalyst can also be contained.
[0022]
The methoxysilyl group of the silane-modified phenol resin forms a siloxane bond by hydrolysis and condensation with water. For this reason, the molecular weight is changed by moisture from the outside due to moisture in the atmosphere, and the viscosity is easily changed. Therefore, when the silane-modified phenol resin is left in an open system for a long time or stored in a humid environment, methanol is reacted after the reaction between the phenol resin (1) and the hydrolyzable methoxysilane partial condensate (2). A method in which is added as a solvent is effective.
[0023]
【The invention's effect】
According to the production method of the present invention, it is possible to provide a methoxy group-containing silane-modified phenol resin excellent in heat resistance that can be used for various uses such as a curing agent for epoxy resins.
[0024]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In each example, parts and% are based on weight unless otherwise specified.
[0025]
Example 1
To a reaction apparatus equipped with a stirrer, a water separator, a thermometer, and a nitrogen gas introduction tube, 859.5 g of novolak type phenol resin (Arakawa Chemical Industries, Ltd., trade name Tamanoru 759) and 400 g of dimethylformamide were added, and 100 ° C. And dissolved. Further, 190.5 g of a tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) and 2 g of dibutyltin dilaurate as a catalyst were added, and a demethanol reaction was carried out at 110 ° C. for 6 hours. After cooling to 80 ° C., dimethylformamide was further added to obtain a silane-modified phenol resin solution (curing agent A) having a nonvolatile content of 50%. In addition, the equivalent of the phenolic hydroxyl group of the phenol resin (1) at the time of preparation / the equivalent of the methoxy group of the hydrolyzable methoxysilane partial condensate (2) is 2.
[0026]
The obtained silane-modified phenol resin solution had a hydroxyl group equivalent of 338. The amount of demethanol was 90 g. The phenolic OH yield of the silane-modified phenol resin (hydroxyl group reacted with silane / hydroxyl group of charged phenol resin (1) × 100 (%)) was 34.8%, and the methoxy group yield (reacted with phenolic hydroxyl group). The methoxy group / the hydrated hydrolyzable methoxysilane partial condensate methoxy group × 100 (%)) was 69.6%. The phenolic OH yield and methoxy group yield were both obtained by measuring the respective peak areas of the phenolic hydroxyl group and methoxy group by 1 H-NMR of the reaction product (the same applies hereinafter). The production conditions and composition of the curing agent A are shown in Table 1.
[0027]
Example 2
To the same reactor as in Example 1, 662.5 g of novolak type phenol resin (trade name Tamanoru 759, manufactured by Arakawa Chemical Industries, Ltd.) and 400 g of dimethylformamide were added and dissolved at 100 ° C. Furthermore, 587.5 g of tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) and 2.8 g of acetic acid as a catalyst were added, and a methanol removal reaction was performed at 110 ° C. for 6 hours. After cooling to 80 ° C., dimethylformamide was further added to obtain a silane-modified phenol resin solution (curing agent B) having a nonvolatile content of 50%. The equivalence ratio at the time of charging (equivalent of phenolic hydroxyl group of phenol resin (1) / equivalent of methoxy group of hydrolyzable methoxysilane partial condensate (2)) is 0.5.
[0028]
The obtained silane-modified phenol resin solution had a hydroxyl group equivalent of 614 and a demethanol amount of 95 g. The silane-modified phenol resin had a phenolic OH yield of 50.3% and a methoxy group yield of 25.1%. The production conditions and composition of the curing agent B are shown in Table 1.
[0029]
Example 3
662.5 g of novolak type phenol resin (Arakawa Chemical Industries, Ltd., trade name Tamanoru 759) and 300 g of methyl ethyl ketone were added to the same reactor as in Example 1, and dissolved at 80 ° C. Further, 587.5 g of a tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) and 3.4 g of acetic acid as a catalyst were added, and refluxed at 95 ° C. for 8 hours. After cooling to 50 ° C., methyl ethyl ketone was further added to obtain a silane-modified phenol resin solution (curing agent C) having a nonvolatile content of 50%. The equivalence ratio at the time of charging (equivalent of phenolic hydroxyl group of phenol resin (1) / equivalent of methoxy group of hydrolyzable methoxysilane partial condensate (2)) is 0.5.
[0030]
The resulting silane-modified phenolic resin solution had a hydroxyl group equivalent of 504 and a demethanol amount of 70 g. The obtained silane-modified phenol resin had a phenolic OH yield of 39.0% and a methoxy group yield of 19.5%. The production conditions and composition of the curing agent C are shown in Table 1.
[0031]
Example 4
To the same reactor as in Example 1, 662.5 g of novolak type phenol resin (trade name Tamanoru 759, manufactured by Arakawa Chemical Industries, Ltd.) and 400 g of dimethylformamide were added and dissolved at 100 ° C. Furthermore, 587.5 g of tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) was added, and a reflux reaction was performed at 110 ° C. for 12 hours. After cooling to 80 ° C., dimethylformamide was further added to obtain a silane-modified phenol resin solution (curing agent D) having a nonvolatile content of 50%. The equivalence ratio at the time of charging (equivalent of phenolic hydroxyl group of phenol resin (1) / equivalent of methoxy group of hydrolyzable methoxysilane partial condensate (2)) is 0.5.
[0032]
The resulting silane-modified phenol resin solution had a hydroxyl equivalent weight of 587 and a demethanol amount of 95 g. The obtained silane-modified phenol resin had a phenolic OH yield of 47.6% and a methoxy group yield of 23.8%. The production conditions and composition of the curing agent D are shown in Table 1.
[0033]
Examples 5-10
In Example 1, with respect to the novolak-type phenol resin (1), the reaction solvent, the hydrolyzable alkoxysilane (2), the catalyst, the transesterification time, and the dilution solvent, at least one of these types and amounts used Various silane-modified phenolic resin solutions were obtained based on the same procedure as in Example 1 except that it was changed as shown in Tables 2 to 3 (in order, called curing agents E to L).
[0034]
[Table 1]
Figure 0003710346
[0035]
[Table 2]
Figure 0003710346
[0036]
[Table 3]
Figure 0003710346
[0037]
The abbreviations described in Tables 1 to 3 mean the following.
(1) Types of novolac phenolic resin (1) Tamanoru 759: Novolac type phenolic resin (trade name, manufactured by Arakawa Chemical Industries, Ltd.)
Tamanoru 756D: Cresol type phenol resin (trade name, manufactured by Arakawa Chemical Industries, Ltd.)
(2) Types of reaction solvents DMF: dimethylformamide, MEK: methyl ethyl ketone CYN: cyclohexanone
(3) Type of hydrolyzable alkoxysilane partial condensate (2) MS-51: Methyl silicate 51 (trade name, manufactured by Tama Chemical Co., Ltd.)
MS-56: Methyl silicate 56 (trade name, manufactured by Tama Chemical Co., Ltd.)
MTMS-A: Tama Chemical Co., Ltd., prototype name (methyltrimethoxysilane partial condensate with an average Si number of 4.5 per molecule)
(4) Type of reaction catalyst SnL: Dibutyltin dilaurate
(5) Reaction time (hours)
(6) Types of diluent solvent MEK: Methyl ethyl ketone, MeOH: Methanol
(7) Non-volatile content of curing agent (%)
(8) Charge equivalent ratio (R):
Equivalent of phenolic hydroxyl group of phenol resin (1) / Equivalent of methoxy group of hydrolyzable alkoxysilane partial condensate (2)
(9) Distilled methanol amount (g)
(10) Phenolic OH yield (Y-PH):
(Hydroxyl group reacted with silane / hydroxyl group of charged phenol resin (1)) × 100 (%)
(11) Methoxy group yield (Y-Si):
(Methoxy group reacted with phenolic hydroxyl group / methoxy group of charged hydrolyzable alkoxysilane (2)) × 100 (%)
(12) Equivalent (E) of phenolic hydroxyl group in the curing agent solution (unit: g)
[0038]
Comparative Example 1
A novolac type phenol resin (Arakawa Chemical Industries, Ltd., trade name Tamanoru 759) was dissolved in dimethylformamide to obtain a resin solution having a nonvolatile content of 50%.
[0039]
Comparative Example 2
859.5 g of novolak-type phenol resin (Arakawa Chemical Industries, Ltd., trade name Tamanoru 759), 190.5 g of tetramethoxysilane partial condensate (Tama Chemical Co., Ltd., trade name: methyl silicate 51) was added to dimethylformamide 836. It melt | dissolved in 1g, and also 27.2g of water was added and stirred, and it was set as the resin solution (The phenolic hydroxyl group equivalent of 223.8 of a solution) of 50% of non volatile matters.
[0040]
Comparative Example 3
662.5 g of novolak type phenol resin (Arakawa Chemical Industries, Ltd., trade name Tamano 759) and 587.5 g of tetramethoxysilane partial condensate (trade name: methyl silicate 51, trade name: methyl silicate 51) were added to 590% dimethylformamide. It melt | dissolved in 3g, and also 84g of water was added and stirred, and it was set as the resin solution (phenolic hydroxyl group equivalent 305 of a solution) of 50% of non volatile matters.
[0041]
(Viscosity stability evaluation)
Immediately after synthesis, 100 g of the curing agent solutions (curing agents A to L) obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were transferred to a polyethylene container (capacity 150 g), and the temperature was 40 ° C. and the humidity was 80%. Stored in state for 1 month. The viscosity stability was evaluated according to the following criteria from the B-type viscosity before storage and the B-type viscosity after storage. The results are shown in Table 4.
(B-type viscosity after storage-B-type viscosity before storage) / (Viscosity before storage) x 100%
○: Less than 10 ○ △: 10 or more and less than 30 Δ: 30 or more and less than 100 ×: 100 or more
[Table 4]
Figure 0003710346
[0043]
Test Examples 1-15
50% non-volatile resin solution prepared by dissolving epoxy resin (trade name YD011, epoxy equivalent 475, manufactured by Toto Kasei Co., Ltd.) in dimethylformamide, silane-modified phenol obtained in Examples 1-12 or Comparative Examples 1-3 Resin and 2-ethyl-4-methylimidazole (catalyst) were mixed as shown in Table 5 to prepare various epoxy resin compositions.
[0044]
Test Example 16
When preparing an epoxy resin composition in Test Example 15, 1.03 g of a tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) and 0.15 g of water were added to the epoxy resin composition. Was prepared. The composition is shown in Table 5.
[0045]
Test Example 17
When preparing an epoxy resin composition in Test Example 15, 2.35 g of a tetramethoxysilane partial condensate (manufactured by Tama Chemical Co., Ltd., trade name: methyl silicate 51) and 0.38 g of water were added, and the epoxy resin composition was added. Was prepared. The composition is shown in Table 5.
[0046]
[Table 5]
Figure 0003710346
[0047]
Each unit weight ratio (%) of the resin composition (cured product) obtained in Test Examples 1 to 17 was determined from the usage ratio. The results are shown in Table 6. As can be seen from Table 6, phenol resin / silica (weight ratio) in Test Example 1 (curing agent A of Example 1) and phenol resin / silica (weight ratio) in Test Example 14 (resin solution of Comparative Example 2). Are substantially the same. Further, phenol resin / silica in Test Examples 2, 3, 4, 9, and 12 (each curing agent of Examples 2, 3, 4, 9, and 12) and phenol resin in Test Example 15 (resin solution of Comparative Example 3). / Silica was almost the same. Moreover, the silica content rate in each cured product of Test Examples 2, 3, 4, 9, 10, 11, and 12 and the silica content rate in the cured product of Test 16 were made substantially the same. Moreover, the silica content in each cured product of Test Examples 6 and 7 and the silica content in the cured product of Test Example 17 were made substantially the same.
[0048]
[Table 6]
Figure 0003710346
[0049]
The resin compositions obtained in Test Examples 1 to 17 were poured into a fluororesin-coated container (length × width × depth = 10 cm × 10 cm × 1.5 cm), 135 ° C. for 1 hour, and 160 ° C. for 2 hours. The solvent was removed and cured. For Test Examples 1 to 15, a transparent cured film (film thickness of about 0.4 mm) could be prepared, but for Test Examples 16 and 17, foaming / shrinkage during curing was severe, and a cured film was obtained. There wasn't.
[0050]
The cured films obtained in Test Examples 2, 5, 11, 12, and 14 were subjected to a viscoelasticity measuring instrument (manufactured by Rheology, trade name DVE-V4, measurement conditions: amplitude 1 μm, frequency 10 Hz, slope 3 ° C./min). The dynamic storage modulus was used to measure the heat resistance. The measurement results are shown in FIG. As is apparent from FIG. 1, it is recognized that the cured films of the examples are excellent in heat resistance.
[0051]
About the test examples 1-17, the following reference | standard evaluation was carried out for the goodness of a state of a hardened material (bubble, degree of contraction). The results are shown in Table 7.
[0052]
(Bubble evaluation)
◯: There are no bubbles in the cured product. ◯: There are 5 or less bubbles in the cured product. Δ: There are 6 to 20 bubbles in the cured product.
X: There are 21 or more bubbles in the cured product.
[0053]
(Shrinkage evaluation)
○: There is no crack in the cured product.
(Triangle | delta): A crack exists in hardened | cured material.
X: The cured product is cracked.
[0054]
[Table 7]
Figure 0003710346

[Brief description of the drawings]
1 is an evaluation result of heat resistance of a cured film obtained in a test example.

Claims (7)

フェノール樹脂(1)と、メチルトリメトキシシランおよび/またはテトラメトキシシランから誘導される加水分解性メトキシシラン部分縮合物(2)を、実質的に無水条件下に脱メタノール反応させることを特徴とするメトキシ基含有シラン変性フェノール樹脂の製造方法。A phenol resin (1), and characterized in that methyltrimethoxysilane and / or hydrolyzable methoxysilane partial condensate derived from tetramethoxysilane and (2), thereby substantially de-methanol reaction under anhydrous conditions A method for producing a methoxy group-containing silane-modified phenol resin. 加水分解性メトキシシラン部分縮合物(2)の1分子当りのSiの平均個数が2〜100である請求項1に記載の製造方法。  The production method according to claim 1, wherein the average number of Si per molecule of the hydrolyzable methoxysilane partial condensate (2) is 2 to 100. フェノール樹脂(1)と加水分解性メトキシシラン部分縮合物(2)の使用割合が、フェノール樹脂(1)のフェノール性水酸基の当量/加水分解性メトキシシシラン部分縮合物(2)のメトキシ基の当量(当量比)で0.2〜10の範囲にある請求項1または2に記載の製造方法。  The use ratio of the phenol resin (1) to the hydrolyzable methoxysilane partial condensate (2) is the equivalent of the phenolic hydroxyl group of the phenol resin (1) / the methoxy group of the hydrolyzable methoxysilane partial condensate (2). The production method according to claim 1 or 2, wherein the equivalent (equivalent ratio) is in the range of 0.2 to 10. フェノール樹脂(1)がノボラック型フェノール樹脂である請求項1〜3のいずれかに記載の製造方法。  The production method according to any one of claims 1 to 3, wherein the phenol resin (1) is a novolak type phenol resin. 脱メタノール反応を、70〜150℃の範囲内で行う請求項1〜4のいずれかに記載の製造方法。  The manufacturing method in any one of Claims 1-4 which perform a demethanol reaction within the range of 70-150 degreeC. 脱メタノール反応に際して、または該反応終了後にメタノールを存在させる請求項1〜4のいずれかに記載の製造方法。  The production method according to any one of claims 1 to 4, wherein methanol is present during the demethanol reaction or after completion of the reaction. 請求項1〜6のいずれかに記載の製造方法により得られるメトキシ基含有シラン変性フェノール樹脂。  A methoxy group-containing silane-modified phenol resin obtained by the production method according to claim 1.
JP34965899A 1999-01-29 1999-12-09 Method for producing methoxy group-containing silane-modified phenolic resin Expired - Fee Related JP3710346B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP34965899A JP3710346B2 (en) 1999-04-22 1999-12-09 Method for producing methoxy group-containing silane-modified phenolic resin
CNB00800076XA CN1155641C (en) 1999-01-29 2000-01-27 Curing agent for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
EP00901954A EP1086972B1 (en) 1999-01-29 2000-01-27 Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
AT00901954T ATE292159T1 (en) 1999-01-29 2000-01-27 HARDENERS FOR EPOXY RESINS, EPOXY RESIN COMPOSITION AND METHOD FOR PRODUCING SILANE-MODIFIED PHENOLIC RESINS
US09/623,953 US6441106B1 (en) 1999-01-29 2000-01-27 Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
DE60019046T DE60019046T2 (en) 1999-01-29 2000-01-27 HARDENERS FOR EPOXY RESINS, EPOXY RESIN COMPOSITION AND METHOD FOR THE PRODUCTION OF SILANE-MODIFIED PHENOL RESIN
PCT/JP2000/000440 WO2000044806A1 (en) 1999-01-29 2000-01-27 Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
ES00901954T ES2238986T3 (en) 1999-01-29 2000-01-27 STRENGTHENING AGENT FOR EPOXIDIC RESIN, COMPOSITION OF EPOXIDIC RESIN, AND PROCEDURE TO PRODUCE PHENOLIC RESIN MODIFIED WITH SILANO.
KR1020007010727A KR100591698B1 (en) 1999-01-29 2000-01-27 Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
TW089101479A TW490472B (en) 1999-01-29 2000-01-28 Curing agent for epoxy resin, epoxy resin composition and process for preparing silane modified phenol resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-114635 1999-04-22
JP11463599 1999-04-22
JP34965899A JP3710346B2 (en) 1999-04-22 1999-12-09 Method for producing methoxy group-containing silane-modified phenolic resin

Publications (2)

Publication Number Publication Date
JP2001002745A JP2001002745A (en) 2001-01-09
JP3710346B2 true JP3710346B2 (en) 2005-10-26

Family

ID=26453351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34965899A Expired - Fee Related JP3710346B2 (en) 1999-01-29 1999-12-09 Method for producing methoxy group-containing silane-modified phenolic resin

Country Status (1)

Country Link
JP (1) JP3710346B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052123A (en) * 2005-02-18 2012-03-15 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device
JP5028913B2 (en) * 2005-08-25 2012-09-19 日立化成工業株式会社 Epoxy resin composition, hollow package for housing semiconductor element, and electronic component device
JP5040509B2 (en) * 2006-08-09 2012-10-03 日立化成工業株式会社 Epoxy resin composition and electronic component device
JP5716882B2 (en) * 2009-03-06 2015-05-13 荒川化学工業株式会社 Methoxy group-containing silane-modified biphenylphenol resin, epoxy resin composition and cured product
WO2011152277A1 (en) * 2010-06-02 2011-12-08 Jsr株式会社 Color-filter coloring composition, color filter, and display element
JP2012131902A (en) * 2010-12-21 2012-07-12 Nitto Denko Corp Semiconductor sealing epoxy resin composition and semiconductor device using the same
CN114671988B (en) * 2020-12-24 2023-10-17 上海彤程电子材料有限公司 Multifunctional group-containing substituted benzyl phenolic polymer and preparation method and application thereof

Also Published As

Publication number Publication date
JP2001002745A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
EP1086972B1 (en) Hardener for epoxy resin, epoxy resin composition, and process for producing silane-modified phenolic resin
US6506868B1 (en) Partial condensate of glycidyl ether group-containing alkoxysilane, silane-modified resin, compositions thereof and preparation methods thereof
JP3339910B2 (en) Curable resin composition
JP3468195B2 (en) Epoxy resin composition
JP3710346B2 (en) Method for producing methoxy group-containing silane-modified phenolic resin
JP3468291B2 (en) Alkoxy group-containing silane-modified phenolic resin, resin composition, epoxy resin curing agent, and organic / inorganic hybrid.
JP3395744B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
EP0456490B1 (en) Preparation process of resin composition having phenolic hydroxyl groups
JP3633674B2 (en) Liquid epoxy resin composition for sealing and cured product thereof
JP4189756B2 (en) Process for producing alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin composition, and phenylene ether resin-silica hybrid cured product
JP3982320B2 (en) Epoxy resin molding material and element housing type semiconductor package
JP3369323B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH1121426A (en) Epoxy resin composition for sealing semiconductor
JPH0364532B2 (en)
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP3236382B2 (en) Production method of phenolic resin
JP3464541B2 (en) Molding resin composition and molded article thereof
JP2009242719A (en) Phenolic novolac resin, epoxy resin composition and cured product therefrom, and semiconductor device
JP7392906B1 (en) Easy-to-dismantle rotor fixing resin composition and rotor disassembly method
JP2003048953A (en) Methoxy group-containing silane-modified novolak epoxy resin and semicured material and cured material obtained from the same resin composition
JPH09302058A (en) Heat-resistant phenol resin excellent in thermosetting properties and its production
JP3479818B2 (en) Epoxy resin composition and semiconductor device
WO2023234341A1 (en) Easy-to-dismantle rotor-fixing resin composition and method for dismantling rotor
JP3502042B2 (en) Phenol / triazine derivative cocondensation resin and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050809

R150 Certificate of patent or registration of utility model

Ref document number: 3710346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees