JP3708409B2 - Spherical protrusion array inspection apparatus and array inspection method - Google Patents

Spherical protrusion array inspection apparatus and array inspection method Download PDF

Info

Publication number
JP3708409B2
JP3708409B2 JP2000198310A JP2000198310A JP3708409B2 JP 3708409 B2 JP3708409 B2 JP 3708409B2 JP 2000198310 A JP2000198310 A JP 2000198310A JP 2000198310 A JP2000198310 A JP 2000198310A JP 3708409 B2 JP3708409 B2 JP 3708409B2
Authority
JP
Japan
Prior art keywords
array
angle
spherical
illumination light
limit angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000198310A
Other languages
Japanese (ja)
Other versions
JP2002013912A (en
Inventor
貴之 畑瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000198310A priority Critical patent/JP3708409B2/en
Publication of JP2002013912A publication Critical patent/JP2002013912A/en
Application granted granted Critical
Publication of JP3708409B2 publication Critical patent/JP3708409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体パッケージのバンプ形成用に搭載される導電性ボールなどの球状突起の配列状態を検査する球状突起の配列検査装置および配列検査方法に関するものである。
【0002】
【従来の技術】
BGA(Ball Grid Array)などの半導体パッケージには基板回路との接続用の球状突起電極である金属バンプが設けられている。この金属バンプは半田ボールなどの導電性ボール(以下、「ボール」と略称)をパッケージの電極上に搭載して接合することにより形成される。ボールをパッケージに搭載した後には、ボールの配列状態、すなわちボールの有無やボール位置が正常であるか否かを検査するための配列検査が行われる。従来よりこの配列検査は配列面を撮像して得られた画像データを画像認識することによって行われる。
【0003】
以下、従来のボール配列検査について図面を参照して説明する。図7は、従来のボール配列検査の説明図である。図7(a)において、パッケージを構成する基板2上にはバンプ形成用の電極3が格子状に設けられており、各電極3上にはボール4が搭載される。ボール搭載後の基板2は、上方に配置されたカメラ6によって撮像される。この撮像時には、ボール配列面はリング照明装置5によって照明され、水平面に近い斜め方法から照明光が照射される。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来のボール配列検査方法には、以下に述べるような問題点があった。一般にパッケージには多数のボールが格子状に配列されるため、照明光の照射状態によっては、図7(b)に示すように水平に近い斜め方向から照射される照明光が1つのボール4によって遮られる場合がある。このような場合には、隣接するボール4の大部分には照明光が照射されず、したがってカメラ6には当該ボール4からの反射光が入射しない結果、ボール4が存在するにも拘わらず撮像画面上ではボール無しと判断されてしまう。
【0005】
また、パッケージ上のボール搭載位置である電極3上にボールが存在しない場合には、図7(c)に示すように電極3の表面に直接照明光が照射される。そして照射角度によっては電極表面で反射された照明光がカメラ6に入射し、撮像画面上にはボール4によって生じる光沢部分とサイズ的に略等しい光沢部分が現れる場合がある。この結果、ボール4が実際には存在しないにも拘わらず、ボール有りと誤判定される。このように従来の金属バンプなどの球状突起の配列検査においては、照明光の照射方向に起因して誤判定を生じ易く、正しい配列検査が困難であるという問題点があった。
【0006】
そこで本発明は、照明光の照射方向を適切に設定して、誤判定を防止することができる球状突起の配列検査装置および配列検査方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1記載の球状突起の配列検査装置は、ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査装置であって、前記球状突起の配列面を垂直方向から撮像する撮像手段と、前記撮像時に前記配列面に対して斜め方向から照明光を照射する照明手段とを備え、前記照明光の配列面に対する照射角度は、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が当該球状突起の隣接位置にある電極を覆う限界の角度で定められる上限角度以下に設定されている。
【0008】
請求項2記載の球状突起の配列検査方法は、ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査方法であって、前記球状突起の配列面を垂直方向から撮像手段によって撮像する際に前記配列面に照射される照明光の照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が当該球状突起の隣接位置にある電極を覆う限界の角度で定められる上限角度以下に設定する。
【0009】
請求項3記載の球状突起の配列検査装置は、ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査装置であって、前記球状突起の配列面を垂直方向から撮像する撮像手段と、前記撮像時に前記配列面に対して斜め方向から照明光を照射する照明手段とを備え、前記照明光の配列面に対する照射角度は、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記電極表面によって反射される反射光の光量が所定光量以下に限定される角度に設定されている。
【0010】
請求項4記載の球状突起の配列検査方法は、ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査方法であって、前記球状突起の配列面を垂直方向から撮像手段によって撮像する際に前記配列面に照射される照明光の照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記電極表面によって反射される反射光の光量が所定光量以下に限定される角度に設定する。
【0011】
本発明によれば、検査対象を照明する照明手段の照明光の配列面への照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が隣接位置にある電極上を覆う限界の角度で定められる上限角度以下、もしくはこの照明光が電極表面によって反射される反射光の光量が所定光量以下に限定される角度に設定することにより、全ての球状突起に適切に照明光を入射させることができると共に、球状突起が存在しない電極部分からの反射光を極力少なくし、誤判定を防止することができる。
【0012】
【発明の実施の形態】
次に本発明の実施の形態を図面を参照して説明する。図1は本発明の一実施の形態のボール配列検査装置の斜視図、図2、図3、図4、図5、図6は本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図である。
【0013】
まず図1を参照してボール配列検査装置について説明する。図1において、検査ステージ1上には半導体パッケージの基板2が載置されている。基板2の上面に格子状に形成された電極3上には導電性ボール4(以下、「ボール4」と略記)が搭載されている。検査ステージ1は検査ステージ駆動部7によって駆動される。
【0014】
検査ステージ1の上方には照明手段であるリング照明装置5が配設されている。リング照明装置5は照明制御部8によって制御され、基板2のボール4の配列面に対して水平方向に近い斜め方向から照明光を照射する。リング照明装置5の更に上方には、撮像手段であるカメラ6が垂直に配置されており、カメラ6はボール4の配列面を垂直方向から撮像する。カメラ6によって得られた撮像データは検査部10に送られ、ここで撮像データを画像処理することにより、基板2の上面の配列面における球状突起としてのボール4の有無や位置ずれが検出される。このボール配列検査は、制御部9によって検査ステージ駆動部7、照明制御部8、検査部10を制御することによって行われる。
【0015】
次に図2、図3を参照してボール配列検査におけるボール4の撮像画面および基板2の配列面上でのボール4の照明方法について説明する。本実施の形態に示すボール配列検査では、図2(a)に示すようにボール4に対してリング照明装置5によって全周方向から照明光が照射される。そしてこの照明光はボール4の表面に入射して反射されるが、図2(b)に示すようにこの反射光のうち特定範囲cからの反射光のみが上方に反射されてカメラ6によって受光される。カメラ6の撮像画面上では、図2(c)に示すようにボール4からの反射光はボール4の輪郭線内に位置する円環状の光沢部dとして認識され、これによりボール4の存在が検出される。
【0016】
ここで上記方法によるボール検出が正しく行われるためには、まず第1にボール4からの反射光が確実にカメラ6に入光すること、換言すればボール4の表面の内上方に光を反射させる特定範囲(図2(b)参照)に照明光が入射することが必要である。更にボール4が存在しない位置において電極3からの反射光がカメラに入光しないか、あるいは入光する光量が所定光量以下に限定されることが必要である。電極3からの反射光がある程度以上の光量でカメラ6に入光すると、ボール4と電極3との識別ができない場合が生じるからである。
【0017】
このような照明条件はリング照明装置5から照射される照明光の照射角度(照明光の主光線がボール配列面に対してなす角度)に依存し、照射角度が所定の角度範囲内であれば前記条件が満足される。この角度範囲は以下に説明する下限角度および上限角度によって規定される。すなわち、下限角度は水平に近い斜め方向から照射される照明光のうち、前述の特定範囲(図2(b)参照)に特定方向から入光する照明光が、照射方向の手前側のボールによって遮られることなく入射する条件を満たす限界の角度であり、上限角度はボールが存在しない位置の電極への照明光の照射を、照射方向の手前側のボールによって遮ることができる限界の角度である。
【0018】
まず下限角度について説明する。図2(a)に示すように、リング照明装置5から照射される照明光は、基板2の配列面に対して照射角度θで照射される。図3はこのようにして照射され特定のボール4に入射する照明光の主光線が、カメラ6に入光する幾何学的条件を示すものである。図3に示すように、照射角度θで照射された照明光の主光線は、ボール4の入射点に法線R(法線角度θr)に対してθiの角度で入射し、同じ角度θiの方向に反射される。このとき、反射光がカメラ6によって受光されるためには、反射光が水平方向となす角度θc(カメラ角度)が、カメラ6の撮像可能な角度範囲に含まれることが条件となる。
【0019】
この条件においては、照射角度θ、法線角度θr、入射角度θiの間には、(数1)に示す関係が成立する。そしてこの条件を満たす照射角度θの下限角度、すなわちボール4Aの左斜め方向から照射される光線が、ボール4Aに遮られることなくボール4Bの特定範囲(図2(b)参照)に入射するための下限角度θLは、図3に示す角度θについての正接の定義(線分Y1/線分X1)を表す(数2)と(数1)とを同時に満たすようなθで求められる。ここで(数2)中のa,b,rはそれぞれボール半径、ボールピッチおよび電極半径を示す。
【0020】
【数1】

Figure 0003708409
【0021】
【数2】
Figure 0003708409
【0022】
すなわち、このようにして求められたθLより大きい照射角度で照明光を照射すれば、ボール4の特定範囲には手前側の他のボールによって遮光されることなく照明光が入射し、かつこの照明光の反射光は垂直上方に反射されてカメラ6によって受光される。これにより、基板2の電極3上にボール4が存在するにも拘らず隣接するボールによって照明光が遮光されることによるボール検出ミスを防ぐことができる。
【0023】
なお、一般的にはボール半径a、ボールピッチb、電極半径rおよびカメラ6に固有の撮像可能な角度範囲が与えられることにより、上記下限角度θLが計算により求められるが、通常はボール半径a、ボールピッチb、電極半径r相互間には所定の関係が存在し、前記各寸法はほぼ一定の比率に設定される場合が多い。例えば、多くの場合ボールピッチとボール径の比率は、b/a=1.67であり、電極半径とボール半径との間には、r=0.6〜0.7aの関係が成り立つ。
【0024】
また、撮像対象の視野範囲が小さい場合には、カメラ6は撮像対象のボール4の垂直上方に位置していると近似的に見なして差し支えない。このような場合には、前述のカメラ角度θcをπ/2に固定して考えることができ、(数3)を得る。そしてこのような前提に基づいて、実際に前記下限角度θLを計算によって求めると、約6度という値を得る。
【0025】
なお、広い撮像視野を対象として配列検査を行う場合には、視野の縁部に位置するボールからの反射光は垂直上方ではなく、前述のようにカメラ角度θcの方向に入射する。この場合には、使用するカメラ6の撮像視野角度と配列面からの高さとに基づいて、上述の下限角度θLを補正することになる。すなわち、カメラ角度θcとπ/2との差に基づいて、下限角度θLを大きく設定する必要がある。
【0026】
【数3】
Figure 0003708409
【0027】
図4は、照射角度θの上限を示す上限角度θUを求める関係を示すものである。図4(a)において、ボール4Aの右側の電極3A上には、搭載ミス等の異常によりボールが存在しない。そしてこの電極3Aの上面に照明光が照射され、電極3Aからの反射光がカメラ6に受光されると、ボールが実際には存在しないにも拘らず、正規のボール4による光沢部と略等しい大きさの光沢部が撮像画面上で検出されて誤判定の原因となる。
【0028】
そこで本実施の形態においては、隣接するボール4が照明光を遮ることによって生じる影が電極3Aを覆うような条件を設定する。すなわち電極3Aが周囲のボールの影の範囲に含まれる条件を示す上限角度θUを求め、照射角度θがこの上限角度θUよりも小さくなるように設定する。図4(a)に示すように、上限角度θUも正接の定義(線分Y2/線分X2)によって、(数4)を満たすような角度θとして求めることができる。
【0029】
【数4】
Figure 0003708409
【0030】
照射角度がこのようにして求められた上限角度θU以下であれば、照射光は手前側の隣接するボール4に遮られて電極3Aの上面には照明光が直接入射せず、電極3A上にボール4が存在しない場合においても電極3Aから照明光が反射されることがなく、反射光がカメラ6に受光されてボール有りとして誤判定されることがない。
【0031】
なお、基板2上の電極は格子状に配列されているため、1つの電極についてみた場合、隣接するボールに該当するものは照射光の水平面内での方向によって異なる。すなわち図4(b)に示すように、電極3Aの隣接するボールとしては、直近真横に位置するボール4A以外にも、矢印e,fで示す照射方向を考えた場合にはボール4C,4Dもそれぞれ隣接ボールに該当する。したがって、実際の上限角度を計算によって求める場合には、必要とされる遮光度合い、すなわち画像処理における識別の難易度を考慮して、どの範囲までを含めるかを適宜選択しなければならない。一般には斜め45度方向に位置するボール4Cまでを対象に含めればよい。この場合には、上限角度θUは約20度となる。
【0032】
そしてこのようにして求められた下限角度θL、上限角度θUに基づいて、リング照明装置5の配設位置が設定される。すなわち図5に示すように、リング照明装置5の単位部分(図5(a)に示す左部分)についてみれば、基板2の左端部および右端部における照射角度θ1,θ2のいずれもが、下限角度θLよりも大きく上限角度θUよりも小さくなるように、リング照明装置5と基板2との位置関係およびリング照明装置5における照明取り付け角度を設定する。
【0033】
また、照射角度θ1,θ2の設定において、リング照明装置5に遮光板5aを設け、開口部5bを介して照射された照明光が、前述の照射角度θ1,θ2で入射するようにしてもよい。この場合においても、照射角度θ1,θ2のいずれもが、下限角度θLよりも大きく上限角度θUよりも小さくなるように、開口部5bの大きさや位置が設定される。
【0034】
なお、(数4)によって求められた上限角度θUは、電極3全体がボール4の影に含まれる幾何学的条件を示すものであり、実際の照射角度を設定する場合には必ずしもこのようにして求められた上限角度θUに厳密に限定される必要はない。すなわち電極3に部分的に照明光が入射しても、電極3からの反射光の光量が所定量以下に限定されるような照射角度であれば、画像処理において電極3からの反射光を正常なボール4からの反射光と明瞭に識別することが可能であることから、誤判定を生じることがない。したがって、画像処理において識別可能な範囲内で、照射角度の設定の自由度を拡大することができる。
【0035】
また、本実施の形態では、カメラ6の撮像視野内に検査対象の基板2の配列面が全て収まる場合について説明したが、本発明はこれに限定されず、カメラ6の撮像視野よりも大きい基板を検査対象とする場合であっても本発明を適用することができる。この場合には、図6に示すようにカメラ6の撮像視野Eの両端部における照射角度θ’1,θ’2が、前述の上限角度θUよりも小さく下限角度θLよりも大きくなるように設定する。
【0036】
更に上記実施の形態では、基板2にボール4を搭載した状態におけるボール配列検査の例を示したが、ボール搭載後にリフロー工程を経て半導体パッケージ上に金属バンプが形成された状態における球状突起としての金属バンプの配列状態を検査対象とする場合においても本発明を適用することができる。さらには、ボンディング装置や電子部品実装装置による金属バンプの配列状態の検査(認識)にも適用することができる。
【0037】
【発明の効果】
本発明によれば、検査対象を照明する照明手段の照明光の配列面への照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が隣接位置にある電極上を覆う限界の角度で定められる上限角度以下、もしくはこの照明光が電極表面によって反射される反射光の光量が所定量以下に限定される角度に設定するようにしたので、全ての球状突起に適切に照明光を入射させることができると共に、球状突起が存在しない電極部分からの反射光を極力少なくし、誤判定を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のボール配列検査装置の斜視図
【図2】本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図
【図3】本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図
【図4】本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図
【図5】本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図
【図6】本発明の一実施の形態のボール配列検査装置におけるボール照明方法の説明図
【図7】従来のボール配列検査の説明図
【符号の説明】
2 基板
3 電極
4 ボール
5 リング照明装置
6 カメラ
10 検査部
θL 下限角度
θU 上限角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spherical protrusion arrangement inspection device and an arrangement inspection method for inspecting the arrangement state of spherical protrusions such as conductive balls mounted for forming bumps of a semiconductor package.
[0002]
[Prior art]
A semiconductor package such as a BGA (Ball Grid Array) is provided with metal bumps that are spherical protruding electrodes for connection to a substrate circuit. This metal bump is formed by mounting and bonding a conductive ball (hereinafter abbreviated as “ball”) such as a solder ball on the electrode of the package. After the balls are mounted on the package, an array inspection for inspecting the array state of the balls, that is, whether the balls are present and whether the ball positions are normal or not is performed. Conventionally, this array inspection is performed by recognizing image data obtained by imaging the array surface.
[0003]
Hereinafter, a conventional ball array inspection will be described with reference to the drawings. FIG. 7 is an explanatory diagram of a conventional ball array inspection. In FIG. 7A, bump forming electrodes 3 are provided in a grid pattern on a substrate 2 constituting the package, and balls 4 are mounted on the electrodes 3. The substrate 2 after the ball is mounted is imaged by the camera 6 disposed above. At the time of this imaging, the ball array surface is illuminated by the ring illumination device 5, and illumination light is irradiated from an oblique method close to a horizontal plane.
[0004]
[Problems to be solved by the invention]
However, the conventional ball array inspection method has the following problems. In general, since a large number of balls are arranged in a lattice pattern in a package, depending on the irradiation state of the illumination light, the illumination light irradiated from an oblique direction near the horizontal as shown in FIG. May be blocked. In such a case, most of the adjacent balls 4 are not irradiated with illumination light, and therefore the reflected light from the balls 4 does not enter the camera 6, so that the imaging is performed even though the balls 4 exist. It is judged that there is no ball on the screen.
[0005]
When no ball is present on the electrode 3 which is the ball mounting position on the package, the illumination light is directly applied to the surface of the electrode 3 as shown in FIG. Depending on the irradiation angle, illumination light reflected from the electrode surface may enter the camera 6 and a glossy portion that is approximately the same size as the glossy portion generated by the ball 4 may appear on the imaging screen. As a result, it is erroneously determined that there is a ball even though the ball 4 does not actually exist. As described above, in the conventional arrangement inspection of spherical projections such as metal bumps, there is a problem that erroneous determination is likely to occur due to the irradiation direction of illumination light, and correct arrangement inspection is difficult.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a spherical projection array inspection apparatus and array inspection method that can appropriately set the irradiation direction of illumination light and prevent erroneous determination.
[0007]
[Means for Solving the Problems]
The spherical protrusion arrangement inspection device according to claim 1, wherein the spherical protrusion arrangement inspection apparatus inspects an arrangement state of the spherical protrusions arranged on the plurality of electrodes formed on the workpiece, the spherical protrusion arrangement surface. And an illumination unit that illuminates illumination light from an oblique direction with respect to the arrangement surface during the imaging, and the illumination angle of the illumination light with respect to the arrangement surface is a spherical protrusion. The reflected light that is incident and reflected on the surface of the lens is equal to or greater than a lower limit angle determined by a limit angle at which light enters the imaging unit, and a shadow generated by the illumination light being blocked by the spherical protrusion is a shadow of the spherical protrusion. It is set below the upper limit angle determined by the limit angle that covers the electrode at the adjacent position.
[0008]
3. The method for inspecting the array of spherical protrusions according to claim 2, wherein the method for inspecting the array of spherical protrusions inspects the array state of the spherical protrusions arranged on a plurality of electrodes formed on the workpiece. The angle of illumination light applied to the array surface when the image is picked up by the image pickup means from the vertical direction, and the reflected light incident on the surface of the spherical projection is reflected by the reflected light entering the image pickup means. It is set to be equal to or greater than a lower limit angle determined by a limit angle, and is equal to or less than an upper limit angle determined by a limit angle that covers an electrode at an adjacent position of the spherical protrusion. .
[0009]
4. The spherical protrusion arrangement inspection device according to claim 3, wherein the spherical protrusion arrangement inspection apparatus inspects the arrangement state of the spherical protrusions arranged on a plurality of electrodes formed on the workpiece, And an illumination unit that illuminates illumination light from an oblique direction with respect to the arrangement surface during the imaging, and the illumination angle of the illumination light with respect to the arrangement surface is a spherical protrusion. The reflected light that is incident on and reflected from the surface is equal to or greater than a lower limit angle determined by the limit angle at which the light enters the imaging means, and the amount of reflected light that is reflected by the electrode surface is a predetermined amount of light. The angle is limited to the following.
[0010]
5. The method for inspecting the arrangement of spherical protrusions according to claim 4, wherein the method for inspecting the arrangement of spherical protrusions for inspecting the arrangement state of spherical protrusions arranged on a plurality of electrodes formed on a workpiece, The angle of illumination light applied to the array surface when the image is picked up by the image pickup means from the vertical direction, and the reflected light incident on the surface of the spherical projection is reflected by the reflected light entering the image pickup means. The angle is set to an angle that is equal to or larger than a lower limit angle determined by a limit angle and that the amount of reflected light reflected by the electrode surface is limited to a predetermined light amount or less.
[0011]
According to the present invention, the irradiation angle of the illumination light on the arrangement surface of the illumination light of the illumination means that illuminates the inspection target is reflected on the imaging means by the reflected light that is reflected when the illumination light is incident on the surface of the spherical protrusion. It is not less than the lower limit angle determined by the limit angle, and the illumination light is blocked by the spherical protrusion, and the shadow formed by the upper limit angle determined by the limit angle that covers the electrode at the adjacent position, or this illumination light is By setting the amount of reflected light reflected by the electrode surface to an angle limited to a predetermined light amount or less, illumination light can be appropriately incident on all the spherical protrusions, and from the electrode part where the spherical protrusions do not exist. The reflected light can be reduced as much as possible to prevent erroneous determination.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a ball array inspection apparatus according to an embodiment of the present invention. FIGS. 2, 3, 4, 5, and 6 are ball illumination methods for the ball array inspection apparatus according to an embodiment of the present invention. It is explanatory drawing of.
[0013]
First, the ball array inspection apparatus will be described with reference to FIG. In FIG. 1, a substrate 2 of a semiconductor package is placed on an inspection stage 1. Conductive balls 4 (hereinafter abbreviated as “balls 4”) are mounted on the electrodes 3 formed in a lattice pattern on the upper surface of the substrate 2. The inspection stage 1 is driven by the inspection stage drive unit 7.
[0014]
Above the inspection stage 1, a ring illumination device 5 as an illumination means is disposed. The ring illumination device 5 is controlled by the illumination control unit 8 and irradiates illumination light from an oblique direction close to the horizontal direction with respect to the arrangement surface of the balls 4 of the substrate 2. A camera 6 serving as an imaging unit is vertically arranged above the ring illumination device 5, and the camera 6 images the arrangement surface of the balls 4 from the vertical direction. The imaging data obtained by the camera 6 is sent to the inspection unit 10, where the imaging data is subjected to image processing, thereby detecting the presence / absence and displacement of the balls 4 as spherical protrusions on the array surface on the upper surface of the substrate 2. . The ball array inspection is performed by controlling the inspection stage driving unit 7, the illumination control unit 8, and the inspection unit 10 by the control unit 9.
[0015]
Next, with reference to FIGS. 2 and 3, an imaging screen of the balls 4 in the ball array inspection and a method of illuminating the balls 4 on the array surface of the substrate 2 will be described. In the ball arrangement inspection shown in the present embodiment, as shown in FIG. 2A, the illumination light is irradiated from the entire circumference direction to the ball 4 by the ring illumination device 5. The illumination light is incident on the surface of the ball 4 and reflected. As shown in FIG. 2B, only the reflected light from the specific range c is reflected upward and received by the camera 6 as shown in FIG. Is done. On the imaging screen of the camera 6, the reflected light from the ball 4 is recognized as an annular glossy portion d located within the outline of the ball 4 as shown in FIG. Detected.
[0016]
Here, in order for the ball detection by the above method to be performed correctly, first, the reflected light from the ball 4 surely enters the camera 6, in other words, the light is reflected inside the surface of the ball 4. It is necessary that the illumination light is incident on a specific range (see FIG. 2B). Further, it is necessary that the reflected light from the electrode 3 does not enter the camera at a position where the ball 4 is not present, or the amount of incident light is limited to a predetermined amount or less. This is because if the reflected light from the electrode 3 enters the camera 6 with a certain amount of light, the ball 4 and the electrode 3 may not be distinguished.
[0017]
Such illumination conditions depend on the illumination angle of the illumination light emitted from the ring illumination device 5 (the angle formed by the principal ray of the illumination light with respect to the ball arrangement surface), and if the illumination angle is within a predetermined angle range. The above conditions are satisfied. This angle range is defined by a lower limit angle and an upper limit angle described below. That is, the lower limit angle of the illumination light irradiated from an oblique direction close to the horizontal is that the illumination light entering the specific range from the specific direction (see FIG. 2B) is caused by the ball on the near side of the irradiation direction. It is the limit angle that satisfies the condition of entering without being blocked, and the upper limit angle is the limit angle at which the illumination light can be blocked by the ball in front of the irradiation direction on the electrode at the position where the ball does not exist .
[0018]
First, the lower limit angle will be described. As shown in FIG. 2A, the illumination light emitted from the ring illumination device 5 is applied to the arrangement surface of the substrate 2 at an irradiation angle θ. FIG. 3 shows the geometric conditions under which the chief ray of the illumination light irradiated in this way and incident on a specific ball 4 enters the camera 6. As shown in FIG. 3, the chief ray of the illumination light irradiated at the irradiation angle θ is incident on the incident point of the ball 4 at an angle θi with respect to the normal R (normal angle θr), and has the same angle θi. Reflected in the direction. At this time, in order for the reflected light to be received by the camera 6, it is a condition that the angle θc (camera angle) formed by the reflected light with respect to the horizontal direction is included in the angle range that the camera 6 can capture.
[0019]
Under this condition, the relationship shown in (Formula 1) is established among the irradiation angle θ, the normal angle θr, and the incident angle θi. The lower limit angle of the irradiation angle θ satisfying this condition, that is, the light beam irradiated from the diagonally left direction of the ball 4A enters the specific range of the ball 4B (see FIG. 2B) without being blocked by the ball 4A. The lower limit angle θL is obtained by θ satisfying both (Equation 2) and (Equation 1) representing the definition of the tangent (the line segment Y1 / the line segment X1) for the angle θ shown in FIG. Here, a, b, and r in (Equation 2) indicate a ball radius, a ball pitch, and an electrode radius, respectively.
[0020]
[Expression 1]
Figure 0003708409
[0021]
[Expression 2]
Figure 0003708409
[0022]
That is, if the illumination light is irradiated at an irradiation angle larger than θL determined in this way, the illumination light is incident on the specific range of the ball 4 without being blocked by other balls on the near side, and this illumination The reflected light is reflected vertically upward and received by the camera 6. Thereby, although the ball 4 exists on the electrode 3 of the substrate 2, it is possible to prevent a ball detection error caused by the illumination light being blocked by the adjacent ball.
[0023]
In general, the ball radius a, the ball pitch b, the electrode radius r, and the angle range that can be captured by the camera 6 are given, whereby the lower limit angle θL is obtained by calculation. Usually, the ball radius a There is a predetermined relationship between the ball pitch b and the electrode radius r, and the dimensions are often set to a substantially constant ratio. For example, in many cases, the ratio of the ball pitch to the ball diameter is b / a = 1.67, and a relationship of r = 0.6 to 0.7a is established between the electrode radius and the ball radius.
[0024]
Further, when the field of view of the imaging target is small, the camera 6 may be regarded approximately as being positioned vertically above the imaging target ball 4. In such a case, it can be considered that the camera angle θc is fixed to π / 2, and (Equation 3) is obtained. Based on this assumption, when the lower limit angle θL is actually calculated, a value of about 6 degrees is obtained.
[0025]
When performing an array inspection for a wide imaging field of view, the reflected light from the ball located at the edge of the field of view is incident not in the vertical direction but in the direction of the camera angle θc as described above. In this case, the above-described lower limit angle θL is corrected based on the imaging viewing angle of the camera 6 to be used and the height from the arrangement surface. That is, the lower limit angle θL needs to be set large based on the difference between the camera angle θc and π / 2.
[0026]
[Equation 3]
Figure 0003708409
[0027]
FIG. 4 shows the relationship for obtaining the upper limit angle θU indicating the upper limit of the irradiation angle θ. In FIG. 4A, the ball does not exist on the right electrode 3A of the ball 4A due to an abnormality such as a mounting error. When the illumination light is irradiated on the upper surface of the electrode 3A and the reflected light from the electrode 3A is received by the camera 6, even though the ball does not actually exist, it is substantially equal to the glossy portion of the regular ball 4. A glossy part having a size is detected on the imaging screen, which causes erroneous determination.
[0028]
Therefore, in the present embodiment, a condition is set such that a shadow caused by the adjacent ball 4 blocking the illumination light covers the electrode 3A. That is, the upper limit angle θU indicating the condition that the electrode 3A is included in the shadow range of the surrounding ball is obtained, and the irradiation angle θ is set to be smaller than the upper limit angle θU. As shown in FIG. 4A, the upper limit angle θU can also be obtained as an angle θ satisfying (Equation 4) by the definition of tangent (line segment Y2 / line segment X2).
[0029]
[Expression 4]
Figure 0003708409
[0030]
If the irradiation angle is equal to or less than the upper limit angle θU thus determined, the irradiation light is blocked by the adjacent ball 4 on the near side, and the illumination light does not directly enter the upper surface of the electrode 3A. Even when the ball 4 is not present, the illumination light is not reflected from the electrode 3A, and the reflected light is received by the camera 6 and is not erroneously determined as having the ball.
[0031]
In addition, since the electrodes on the substrate 2 are arranged in a lattice pattern, when one electrode is viewed, what corresponds to an adjacent ball differs depending on the direction of the irradiation light in the horizontal plane. That is, as shown in FIG. 4B, as the balls adjacent to the electrode 3A, in addition to the ball 4A positioned right next to the ball, the balls 4C and 4D are also considered when the irradiation directions indicated by the arrows e and f are considered. Each corresponds to an adjacent ball. Therefore, when the actual upper limit angle is obtained by calculation, it is necessary to appropriately select the range to be included in consideration of the required light shielding degree, that is, the difficulty of identification in image processing. In general, it is sufficient to include up to the ball 4C located in an oblique 45 degree direction. In this case, the upper limit angle θU is about 20 degrees.
[0032]
And the arrangement | positioning position of the ring illuminating device 5 is set based on lower limit angle (theta) L and upper limit angle (theta) U which were calculated | required in this way. That is, as shown in FIG. 5, regarding the unit portion of the ring illumination device 5 (the left portion shown in FIG. 5A), both the irradiation angles θ1 and θ2 at the left end portion and the right end portion of the substrate 2 are lower limits. The positional relationship between the ring illumination device 5 and the substrate 2 and the illumination attachment angle in the ring illumination device 5 are set so as to be larger than the angle θL and smaller than the upper limit angle θU.
[0033]
In setting the irradiation angles θ1 and θ2, the ring illumination device 5 may be provided with a light shielding plate 5a so that the illumination light irradiated through the opening 5b is incident at the irradiation angles θ1 and θ2. . Also in this case, the size and position of the opening 5b are set so that both the irradiation angles θ1 and θ2 are larger than the lower limit angle θL and smaller than the upper limit angle θU.
[0034]
The upper limit angle θU obtained by (Equation 4) indicates the geometric condition in which the entire electrode 3 is included in the shadow of the ball 4, and this is not necessarily the case when setting the actual irradiation angle. It is not necessary to strictly limit the upper limit angle θU determined in this way. That is, even if illumination light is partially incident on the electrode 3, if the irradiation angle is such that the amount of reflected light from the electrode 3 is limited to a predetermined amount or less, the reflected light from the electrode 3 is normal in image processing. Since it can be clearly distinguished from the reflected light from the correct ball 4, no erroneous determination occurs. Therefore, the degree of freedom in setting the irradiation angle can be expanded within a range that can be identified in image processing.
[0035]
Further, in the present embodiment, a case has been described in which the entire arrangement surface of the inspection target substrate 2 is within the imaging field of the camera 6, but the present invention is not limited to this, and the substrate is larger than the imaging field of the camera 6. The present invention can be applied even when the inspection target is used. In this case, as shown in FIG. 6, the irradiation angles θ′1 and θ′2 at both ends of the imaging field E of the camera 6 are set to be smaller than the upper limit angle θU and larger than the lower limit angle θL. To do.
[0036]
Furthermore, in the above-described embodiment, an example of the ball array inspection in a state where the balls 4 are mounted on the substrate 2 is shown. However, as a spherical protrusion in a state where metal bumps are formed on the semiconductor package through a reflow process after mounting the balls. The present invention can be applied even when the arrangement state of the metal bumps is an inspection target. Furthermore, the present invention can be applied to inspection (recognition) of the arrangement state of metal bumps by a bonding apparatus or an electronic component mounting apparatus.
[0037]
【The invention's effect】
According to the present invention, the irradiation angle of the illumination light on the arrangement surface of the illumination light of the illumination means that illuminates the inspection target is reflected on the imaging means by the reflected light that is reflected when the illumination light is incident on the surface of the spherical protrusion. It is equal to or greater than a lower limit angle determined by a limit angle, and the illumination light is blocked by the spherical protrusion, and a shadow generated by the upper limit angle determined by a limit angle covering the electrode at the adjacent position or less than this upper limit angle. Since the amount of reflected light reflected by the electrode surface is set to an angle that is limited to a predetermined amount or less, the illumination light can be appropriately incident on all the spherical protrusions, and the electrode without the spherical protrusions. The reflected light from the portion can be reduced as much as possible, and erroneous determination can be prevented.
[Brief description of the drawings]
FIG. 1 is a perspective view of a ball array inspection apparatus according to an embodiment of the present invention. FIG. 2 is an explanatory view of a ball illumination method in the ball array inspection apparatus according to an embodiment of the present invention. FIG. 4 is an explanatory diagram of a ball illumination method in the ball array inspection apparatus of the embodiment. FIG. 4 is an explanatory diagram of a ball illumination method in the ball array inspection apparatus of the embodiment of the invention. FIG. 6 is an explanatory view of a ball illumination method in a ball array inspection apparatus according to an embodiment of the present invention. FIG. 7 is an explanatory view of a conventional ball array inspection. ]
2 Substrate 3 Electrode 4 Ball 5 Ring illumination device 6 Camera 10 Inspection unit θL Lower limit angle θU Upper limit angle

Claims (4)

ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査装置であって、前記球状突起の配列面を垂直方向から撮像する撮像手段と、前記撮像時に前記配列面に対して斜め方向から照明光を照射する照明手段とを備え、前記照明光の配列面に対する照射角度は、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が当該球状突起の隣接位置にある電極を覆う限界の角度で定められる上限角度以下に設定されていることを特徴とする球状突起の配列検査装置。An apparatus for inspecting an array of spherical protrusions for inspecting an array state of spherical protrusions arranged on a plurality of electrodes formed on a workpiece, an imaging means for imaging an array surface of the spherical protrusions from a vertical direction, and during the imaging Illuminating means for illuminating illumination light from an oblique direction with respect to the array surface, and the illumination angle of the illumination light with respect to the array surface is such that the reflected light reflected by the illumination light incident on the surface of the spherical protrusion is A shadow angle that is greater than or equal to a lower limit angle determined by a limit angle at which light enters the imaging unit and that is covered by the spherical protrusion is determined by a limit angle that covers an electrode at a position adjacent to the spherical protrusion. An arrangement inspection device for spherical projections, wherein the arrangement is set to be equal to or less than an upper limit angle. ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査方法であって、前記球状突起の配列面を垂直方向から撮像手段によって撮像する際に前記配列面に照射される照明光の照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記球状突起に遮られて生じる影が当該球状突起の隣接位置にある電極を覆う限界の角度で定められる上限角度以下に設定することを特徴とする球状突起の配列検査方法。A method for inspecting an array of spherical protrusions for inspecting an array state of spherical protrusions arranged on a plurality of electrodes formed on a workpiece, wherein the array is formed when an image of the array surface of the spherical protrusions is picked up by an imaging means from a vertical direction. The illumination angle of the illumination light applied to the surface is equal to or greater than a lower limit angle determined by a limit angle at which the reflected light incident on the surface of the spherical protrusion is reflected by the illumination light entering the imaging means, and A method of inspecting the array of spherical protrusions, wherein a shadow generated by the illumination light being blocked by the spherical protrusions is set to an upper limit angle or less determined by a limit angle covering an electrode at an adjacent position of the spherical protrusion. ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査装置であって、前記球状突起の配列面を垂直方向から撮像する撮像手段と、前記撮像時に前記配列面に対して斜め方向から照明光を照射する照明手段とを備え、前記照明光の配列面に対する照射角度は、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記電極表面によって反射される反射光の光量が所定光量以下に限定される角度に設定されていることを特徴とする球状突起の配列検査装置。An apparatus for inspecting an array of spherical protrusions for inspecting an array state of spherical protrusions arranged on a plurality of electrodes formed on a workpiece, an imaging means for imaging an array surface of the spherical protrusions from a vertical direction, and during the imaging Illuminating means for illuminating illumination light from an oblique direction with respect to the array surface, and the illumination angle of the illumination light with respect to the array surface is such that the reflected light reflected by the illumination light incident on the surface of the spherical protrusion is It is set to an angle that is equal to or larger than a lower limit angle determined by a limit angle of incident light to the imaging unit, and that the amount of reflected light reflected by the electrode surface is limited to a predetermined light amount or less. A device for inspecting the arrangement of spherical projections. ワークに形成された複数の電極上に配列された球状突起の配列状態を検査する球状突起の配列検査方法であって、前記球状突起の配列面を垂直方向から撮像手段によって撮像する際に前記配列面に照射される照明光の照射角度を、この照明光が球状突起の表面に入射して反射される反射光が前記撮像手段に入光する限界の角度で定められる下限角度以上であり、かつこの照明光が前記電極表面によって反射される反射光の光量が所定光量以下に限定される角度に設定することを特徴とする球状突起の配列検査方法。A method for inspecting an array of spherical protrusions for inspecting an array state of spherical protrusions arranged on a plurality of electrodes formed on a workpiece, wherein the array is formed when an image of the array surface of the spherical protrusions is picked up by an imaging means from a vertical direction. The illumination angle of the illumination light applied to the surface is equal to or greater than a lower limit angle determined by a limit angle at which the reflected light incident on the surface of the spherical protrusion is reflected by the illumination light entering the imaging means, and An array inspection method for spherical projections, wherein the illumination light is set to an angle at which the amount of reflected light reflected by the electrode surface is limited to a predetermined amount or less.
JP2000198310A 2000-06-30 2000-06-30 Spherical protrusion array inspection apparatus and array inspection method Expired - Lifetime JP3708409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198310A JP3708409B2 (en) 2000-06-30 2000-06-30 Spherical protrusion array inspection apparatus and array inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198310A JP3708409B2 (en) 2000-06-30 2000-06-30 Spherical protrusion array inspection apparatus and array inspection method

Publications (2)

Publication Number Publication Date
JP2002013912A JP2002013912A (en) 2002-01-18
JP3708409B2 true JP3708409B2 (en) 2005-10-19

Family

ID=18696492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198310A Expired - Lifetime JP3708409B2 (en) 2000-06-30 2000-06-30 Spherical protrusion array inspection apparatus and array inspection method

Country Status (1)

Country Link
JP (1) JP3708409B2 (en)

Also Published As

Publication number Publication date
JP2002013912A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US4728195A (en) Method for imaging printed circuit board component leads
JP4946668B2 (en) Substrate position detection device and substrate position detection method
JP3299193B2 (en) Bump inspection method / apparatus, information storage medium
JP5421763B2 (en) Inspection apparatus and inspection method
US7539338B2 (en) Bump inspection apparatus and method for IC component, bump forming method for IC component, and mounting method for IC component
KR102534983B1 (en) Apparatus and method for detecting attitude of electronic component
WO2019124508A1 (en) Wire shape inspecting device and wire shape inspecting method
JP4804295B2 (en) Component recognition method, component recognition device, surface mounter and component inspection device
JP3708409B2 (en) Spherical protrusion array inspection apparatus and array inspection method
JP3722608B2 (en) Appearance inspection device
JPH07120237A (en) Picture recognizing device
TWI758383B (en) Photographing device, bump inspection device, and photographing method
JPH11307567A (en) Manufacture of semiconductor device containing bump inspection process
JP3632461B2 (en) Image recognition method
JP4563254B2 (en) IC parts bump inspection system
JP4090557B2 (en) Electronic component recognition method and apparatus
JP3659152B2 (en) Inspection method of conductive ball mounting condition
JP4387572B2 (en) Component recognition control method and component recognition control device
JPS6337479A (en) Pattern recognizer
JP3366211B2 (en) Mirror object imaging method
JPH06260794A (en) Method and equipment for recognizing position of electronic part
JP3326665B2 (en) Solder ball mounting inspection method, solder ball mounting inspection device, and solder ball mounting device
JPH11296657A (en) Image pickup optical system for image processor
JPH0845970A (en) Die bonding device
JPH06102024A (en) Method and equipment for inspecting wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R151 Written notification of patent or utility model registration

Ref document number: 3708409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term