JP3707352B2 - Mounting structure of printed wiring board - Google Patents

Mounting structure of printed wiring board Download PDF

Info

Publication number
JP3707352B2
JP3707352B2 JP2000154808A JP2000154808A JP3707352B2 JP 3707352 B2 JP3707352 B2 JP 3707352B2 JP 2000154808 A JP2000154808 A JP 2000154808A JP 2000154808 A JP2000154808 A JP 2000154808A JP 3707352 B2 JP3707352 B2 JP 3707352B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
board
connection hole
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000154808A
Other languages
Japanese (ja)
Other versions
JP2001332831A (en
Inventor
和充 石川
啓幸 工藤
正幸 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2000154808A priority Critical patent/JP3707352B2/en
Priority to US09/855,476 priority patent/US6600214B2/en
Priority to TW090111497A priority patent/TW535465B/en
Priority to CNB011180412A priority patent/CN1190999C/en
Priority to KR10-2001-0026500A priority patent/KR100412155B1/en
Publication of JP2001332831A publication Critical patent/JP2001332831A/en
Application granted granted Critical
Publication of JP3707352B2 publication Critical patent/JP3707352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の電子部品が実装されるプリント配線板をモジュール基板とし、マザーボードに実装するプリント配線板の実装構造に関する。
【0002】
【従来の技術】
一般に、半導体素子やチップ部品等の多数の電子部品をマザーボードに実装する方法として、これら多数の電子部品を機能ごとにグループ化しこのグループ化した電子部品を1枚のプリント配線板(モジュール基板)に一旦実装し、このプリント配線板をマザーボード上に実装する方法がある。図7は従来のプリント配線板の製造方法の概略を説明する平面図、図8はプリント配線板をマザーボードに実装した状態を示す断面図である。
【0003】
図7において、1は外形寸法が大きく形成された、いわゆる大盤板と呼ばれている絶縁基板であって、この絶縁基板1から複数枚(本実施例では9枚)のプリント配線板2が形成される。すなわち、絶縁基板1には、プレス加工によってプリント配線板2が切断される切断線3上に、ドリルによって多数の貫通穴4が穿孔される。絶縁基板1にめっき処理を行い回路形成後、切断線3から切断することによって、図8に示すように、絶縁基板1の上部表面に、回路導体5と接続ランド6が形成され、かつ貫通穴4の端面に端面電極となる半円筒形の貫通接続穴7が形成された個々のプリント配線板2が形成される。
【0004】
このように形成されたプリント配線板2の接続ランド部6に、電子部品8をはんだ9を介して面付け実装した後、マザーボード10のランド部11に半円筒形の貫通接続穴7を端面電極として加熱実装することによって、はんだ12を介してプリント配線板2がマザーボード10上に実装される。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来のプリント配線板の実装構造においては、プリント配線板2の電子部品8を実装する表面と反対側の裏面をマザーボード10の表面に対向させるようにマザーボード10上に実装している。したがって、プリント配線板2の裏面側には電子部品8を実装することができないので、プリント配線板2へ実装する電子部品8の数に自ずと限界があった。しかも、プリント配線板2の電子部品8を実装している表面積の大きい面をマザーボード10に対向させるようにしてマザーボード10上に実装していることによって、マザーボード10上におけるプリント配線板2の占める面積が大きくなる。このため、マザーボード10上におけるプリント配線板2の実装枚数が少なくなるので、電子部品を高密度に実装することができなかった。
【0006】
本発明は上記した従来の問題に鑑みなされたものであり、その目的とするところは、電子部品の実装密度を向上させたプリント配線の実装構造を提供することにある。
【0007】
【課題を解決するための手段】
この目的を達成するために、請求項1に係る発明は、電子部品が実装されたプリント配線板をマザーボード上に実装するプリント配線板の実装構造であって、
前記プリント配線板の貫通穴の内壁に銅めっき膜を形成した貫通接続穴内にアンカー効果を有する非導電性の金属含有ペーストを充填して非貫通接続穴とし、この非貫通接続穴を横切るように切断し、金属含有ペーストが露呈した半円筒形の非貫通接続穴の切断面および上下面に金属めっき膜を形成し、平坦な側面端子部および上下端子部をプリント配線板の側面および上下面に配置し、前記側面端子部を前記マザーボードの端子部に電気的に接続することにより、前記プリント配線板をマザーボード上に立設した状態で実装したものである。
したがって、プリント配線板(モジュール基板)の表裏両面に電子部品を実装可能になる。また、マザーボード上におけるプリント配線板(モジュール基板)の占める面積が減少する。また、めっき触媒作用のアンカー効果によって金属粉含有ペースト中の金属粒子がアンカーとなり、充填されているペーストとめっき膜である金属被膜の密着強度が強くなる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図を用いて説明する。図1(a)は本発明に係るプリント配線板の実装構造に採用したプリント配線板の製造方法の前半を説明するための工程図、同図(b)はその工程に合わせた断面図である。図2(a)は同じくプリント配線板の製造方法の後半を説明するための工程図、同図(b)はその工程に合わせた断面図である。図3は図2(b)における工程(VII )で形成された本発明に係るプリント配線板の外観斜視図、同図(b)は要部の斜視図である。図4は図2(b)における工程(VIII)で形成された端面端子部を示し、同図(a)は要部の断面図、同図(b)は要部の斜視図である。図5は電子部品を実装した本発明に係るプリント配線板をマザーボードに実装した状態を示す断面図、図6は同じく斜視図である。
【0010】
図1の工程(I) において、20は両面銅張積層板であって、外形寸法の大きい、いわゆる大盤板の絶縁基板21の上下の表面に、銅箔22,22が張り合わされている。同図の工程(II)において、ドリルによって穴あけ加工を行い、後述する切断線29上に貫通穴23,23を穿孔する。同図の工程(III) において、両面銅張積層板20の全面に無電解銅めっきによるパネルめっきを行い、銅めっき膜25を形成し、貫通接続穴24,24を形成する。
【0011】
同図の工程(IV)において、図示を省略したスクリーンを被せ、圧入法あるいはスキージングによる印刷法によって、貫通接続穴24,24内にめっき触媒作用を有する非導電性の充填材としての金属粉含有ペースト27を充填する。同図の工程(V) において、エッチング処理によって回路を形成し、絶縁基板21の表裏に導体パターン28aを形成する。しかる後、必要に応じてソルダーレジストを形成する。
【0012】
図2の工程(VI)に示すように、金属粉含有ペースト27が充填された非貫通接続穴26,26を横切るようにして切断する切断線29にルーター加工によりスリットが形成され、絶縁基板21が多数枚に分割され、同図の工程(VII) および図3(a)に示すように、個々のプリント配線板30aが形成される。図3(b)に示すように、このプリント配線板30aの端面には、充填されたペースト27が切断面から露呈した半円筒形の非貫通接続穴26aが形成される。したがって、プリント配線板の端面端子部の絶縁基板21に平面的にめっき膜を形成するよりは、図3に示すように、絶縁基板21の内部に凹設する半円筒形の非貫通接続穴26aは、絶縁基板21と銅めっき膜の接触面積が大きくなり密着力が向上するため、導体端子部が絶縁基板21から剥離するようなことがなくなる。
【0013】
ここで、工程(VI)において、絶縁基板21を切断線29においてルータ加工によって切断するとき、貫通接続穴内にペースト27が充填されていることにより、非貫通接続穴26の切断面にバリが発生するのを抑制できる。したがって、後述する無電解金属めっき処理によって半円筒形の非貫通接続穴26a上に金属めっき膜を析出させるときに、金属めっき膜が半円筒形の非貫通接続穴26aから剥離するようなことがないので、品質が安定し信頼性が向上する。
【0014】
次いで、図2の工程(VIII)において、図示を省略しためっきレジスト膜で覆い、無電解金属めっき処理を行うことにより、導体パターン28a上に金属めっきの被膜が形成される。同時に、プリント配線板30aの切断面に露呈した半円筒形の非貫通接続穴26aの上下面および切断面に金属めっきの被膜が形成されるので、この金属めっきの被膜によって非貫通接続穴26aを覆うようにして、上面端子部31と側面端子部32と下面端子部33とからなる端面端子部34が形成される。このようにして、金属含有ペースト27が金属めっきの被膜に覆われた個々のプリント配線板30が形成される。
【0015】
このとき、図4(a)に示すように、貫通接続穴内にめっき触媒作用を有するペースト27が充填されていることにより、めっき触媒作用のアンカー効果によってペースト27中の粒子27aがアンカーとなり、ペースト27と金属めっきの被膜との密着性が向上する。したがって、端面端子部34が絶縁基板21から剥離するようなことが防止できるので、品質が安定し信頼性が向上する。
【0016】
次に、このように形成されたプリント配線板30をマザーボード10上に実装する方法を図5および図6を用いて説明する。
まず、プリント配線板30の表裏の導体パターン28a上に多数の電子部品8をはんだ9を介して面付け実装した後、マザーボード10のランド部11上に平坦な側面端子部32を載置し、加熱実装することによって、はんだ12を介してプリント配線板30がマザーボード10上に立設するようにして実装される。すなわち、半円筒形の貫通接続穴内に充填された金属粉含有ペースト27と、このペースト27を覆う金属被膜からなる導体端子の平坦な側面端子部32をプリント配線板30の接続端子としたものである。この場合、プリント配線板30を縦方向および横方向のいずれの方向にして、マザーボード10のランド部11上に立設して実装することができる。
【0017】
このように、プリント配線板30の側面端子部32を介して、プリント配線板30をマザーボード10上に立設するように実装したことにより、プリント配線板30の表裏に電子部品8を実装することができるので、1枚のプリント配線板30に実装可能な電子部品8の数が従来の表面のみに実装した場合と比較して約2倍に増加する。しかも、プリント配線板30をマザーボード10上に立設させたことにより、プリント配線板30の表面積の小さい側面をマザーボード10に対向させるようにしてマザーボード10上に実装できるので、マザーボード10上におけるプリント配線板30の占める面積が小さくなる。このため、マザーボード10上におけるプリント配線板30の実装枚数が増加するので、電子部品8の実装効率が向上し電子部品8の高密度実装が可能になる。
【0018】
また、マザーボード10上に実装されたプリント配線板30は、貫通接続穴内にペーストが充填され貫通接続穴内が空洞状態になっていない非貫通接続穴であることにより、マザーボード10のランド部11に面付け実装する際に、側面端子部32へのはんだ12の付着力が向上する。また、上、下面端子部31,33を設けたことにより、プリント配線板30をマザーボード10上に実装する際に、これら上、下面端子部31,33にもはんだ12が付着するので、プリント配線板30がマザーボード10上に堅固に実装されるだけではなく、側面端子部32とランド部11との間の接続抵抗が小さくなり接続不良が低減される。
【0019】
両面基板のみならず多層のプリント配線板にも適用できる。また、充填材として非導電性の金属粉含有ペーストを用いたが、導電性の金属粉含有ペーストを用いてもよく、また、金、銀、錫、ニッケル、パラジウムが混入した金属粉含有ペーストでもよく、要は触媒作用を有するものであればよい。また、工程(IV)において、貫通接続穴24内に充填する充填剤を導電性の銅ペースト27または金属粉含有のペーストを用いた場合には、工程(II)の穴あけ加工をし、工程(IV)のめっき触媒入りペーストの充填後に工程(III) のパネルめっき処理を行えばよい。また、工程(VI)において、切断線29によって絶縁基板21を多数枚のプリント配線板に分割したが、切断線29の一部を切り残しておき、工程(VIII)において、多数枚のプリント配線板に分割してもよい。
【0020】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、充填材のアンカー効果によって金属粉含有ペースト中の金属粒子がアンカーとなり、充填されているペーストとめっき膜である金属被膜の密着強度が強くなるため端面端子部のプリント配線板からの剥離を防止することができるので品質が安定し信頼性が向上する。また、平坦な側面端子部をマザーボードのランド部に載置することにより、プリント配線板をマザーボードに立設した状態で実装することができるため、プリント配線板の表裏に電子部品を実装することが可能になるから電子部品の実装密度が向上する。また、充填材によって貫通接続穴が充填されるので、貫通接続穴を切断するときにバリが発生するようなことがなく品質が向上する。さらに、絶縁基板とめっき膜の接触面積も大きくなり導体端子部の密着力が向上する。
【図面の簡単な説明】
【図1】 同図(a)は本発明に係るプリント配線板の実装構造に採用されるプリント配線板の前半を説明するための工程図、同図(b)はその工程に合わせた断面図である。
【図2】 同図(a)は本発明に係るプリント配線板の実装構造に採用されるプリント配線板の後半を説明するための工程図、同図(b)はその工程に合わせた断面図である。
【図3】 図2(b)における工程(VII )で形成された本発明に係るプリント配線板の外観斜視図、同図(b)は要部の斜視図である。
【図4】 図2(b)における工程(VIII)で形成された端面端子部を示し、同図(a)は要部の断面図、同図(b)は要部の斜視図である。
【図5】 電子部品を実装した本発明に係るプリント配線板をマザーボードに実装した状態を示す断面図である。
【図6】 電子部品を実装した本発明に係るプリント配線板をマザーボードに実装した状態を示す斜視図である。
【図7】 従来のプリント配線板の実装構造に採用されるプリント配線板の製造方法の概略を説明する平面図である。
【図8】 従来のプリント配線板の実装構造を示す断面図である。
【符号の説明】
8…電子部品、10…マザーボード、11…ランド部、21…絶縁基板、26…非貫通接続穴、27…ペースト、28a…導体パターン、30…プリント配線板、31…上面端子部、32…側面端子部、33…下面端子部、34…端面端子部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed wiring board mounting structure that is mounted on a motherboard using a printed wiring board on which a plurality of electronic components are mounted as a module substrate.
[0002]
[Prior art]
In general, as a method of mounting a large number of electronic components such as semiconductor elements and chip components on a motherboard, the large number of electronic components are grouped by function and the grouped electronic components are combined into a single printed wiring board (module board). There is a method of mounting once and mounting this printed wiring board on a mother board. FIG. 7 is a plan view for explaining the outline of a conventional method for manufacturing a printed wiring board, and FIG. 8 is a sectional view showing a state in which the printed wiring board is mounted on a mother board.
[0003]
In FIG. 7, reference numeral 1 denotes an insulating substrate having a large outer dimension, which is called a so-called large board, and a plurality (9 in this embodiment) of printed wiring boards 2 are formed from the insulating substrate 1. Is done. That is, in the insulating substrate 1, a large number of through holes 4 are drilled by a drill on a cutting line 3 where the printed wiring board 2 is cut by pressing. After the insulating substrate 1 is plated to form a circuit and then cut from the cutting line 3, a circuit conductor 5 and a connection land 6 are formed on the upper surface of the insulating substrate 1 as shown in FIG. Each printed wiring board 2 having a semi-cylindrical through-connection hole 7 serving as an end face electrode is formed on the end face 4.
[0004]
After the electronic component 8 is impositioned and mounted on the connection land portion 6 of the printed wiring board 2 thus formed via the solder 9, the semi-cylindrical through-connection hole 7 is provided in the land portion 11 of the motherboard 10 as an end surface electrode. As a result, the printed wiring board 2 is mounted on the mother board 10 via the solder 12.
[0005]
[Problems to be solved by the invention]
However, in the conventional printed wiring board mounting structure described above, the printed wiring board 2 is mounted on the mother board 10 so that the back surface opposite to the front surface on which the electronic component 8 is mounted is opposed to the front surface of the mother board 10. . Therefore, since the electronic component 8 cannot be mounted on the back side of the printed wiring board 2, the number of electronic components 8 to be mounted on the printed wiring board 2 is naturally limited. In addition, by mounting the printed circuit board 2 on the motherboard 10 so that the surface of the printed circuit board 2 on which the electronic component 8 is mounted is opposed to the motherboard 10, the area occupied by the printed circuit board 2 on the motherboard 10 is increased. Becomes larger. For this reason, since the number of the printed wiring boards 2 mounted on the mother board 10 is reduced, the electronic components cannot be mounted at a high density.
[0006]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a printed wiring mounting structure in which the mounting density of electronic components is improved.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the invention according to claim 1 is a printed wiring board mounting structure for mounting a printed wiring board on which an electronic component is mounted on a motherboard,
A non-conductive metal-containing paste having an anchor effect is filled into a through-connection hole in which a copper plating film is formed on the inner wall of the through-hole of the printed wiring board to form a non-through-connection hole, so as to cross the non-through-connection hole Cut and form a metal plating film on the cut surface and upper and lower surfaces of the semi-cylindrical non-through connection hole where the metal-containing paste is exposed, and place flat side terminal portions and upper and lower terminal portions on the side surface and upper and lower surfaces The printed wiring board is mounted in a standing state on the mother board by arranging and electrically connecting the side terminal parts to the terminal parts of the mother board.
Therefore, electronic components can be mounted on both the front and back surfaces of the printed wiring board (module substrate). In addition, the area occupied by the printed wiring board (module substrate) on the motherboard is reduced. In addition, the metal particles in the metal powder-containing paste serve as anchors due to the anchoring effect of the plating catalytic action, and the adhesion strength between the filled paste and the metal film as the plating film is increased.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a process diagram for explaining the first half of a method for manufacturing a printed wiring board employed in a printed wiring board mounting structure according to the present invention, and FIG. 1B is a cross-sectional view corresponding to the process. . FIG. 2A is a process diagram for explaining the latter half of the method for manufacturing a printed wiring board, and FIG. 2B is a cross-sectional view corresponding to the process. FIG. 3 is an external perspective view of the printed wiring board according to the present invention formed in step (VII) in FIG. 2B, and FIG. 3B is a perspective view of the main part. 4A and 4B show the end face terminal portion formed in step (VIII) in FIG. 2B, where FIG. 4A is a cross-sectional view of the main portion, and FIG. 4B is a perspective view of the main portion. FIG. 5 is a cross-sectional view showing a state in which the printed wiring board according to the present invention on which electronic components are mounted is mounted on a mother board, and FIG. 6 is a perspective view of the same.
[0010]
In step (I) of FIG. 1, reference numeral 20 denotes a double-sided copper-clad laminate, and copper foils 22 and 22 are bonded to upper and lower surfaces of an insulating substrate 21 of a so-called large board having a large outer dimension. In step (II) in the figure, drilling is performed with a drill, and through holes 23 are formed on a cutting line 29 described later. In the step (III) of the figure, panel plating by electroless copper plating is performed on the entire surface of the double-sided copper clad laminate 20 to form a copper plating film 25 and through-connection holes 24 and 24 are formed.
[0011]
In step (IV) of the figure, a metal powder as a non-conductive filler having a plating catalytic action in the through-connection holes 24, 24 is applied by press-fitting or squeezing printing, with a screen not shown. The containing paste 27 is filled. In the step (V) in the figure, a circuit is formed by etching, and a conductor pattern 28 a is formed on the front and back of the insulating substrate 21. Thereafter, a solder resist is formed as necessary.
[0012]
As shown in step (VI) of FIG. 2, a slit is formed by a router process on a cutting line 29 that cuts across the non-penetrating connection holes 26, 26 filled with the metal powder-containing paste 27. Are divided into a large number of sheets, and individual printed wiring boards 30a are formed as shown in step (VII) and FIG. As shown in FIG. 3B, a semi-cylindrical non-penetrating connection hole 26a in which the filled paste 27 is exposed from the cut surface is formed on the end surface of the printed wiring board 30a. Therefore, as shown in FIG. 3, the semi-cylindrical non-through connection hole 26a provided in the insulating substrate 21 is recessed rather than forming a plating film on the insulating substrate 21 at the end surface terminal portion of the printed wiring board. Since the contact area between the insulating substrate 21 and the copper plating film is increased and the adhesion is improved, the conductor terminal portion is not peeled off from the insulating substrate 21.
[0013]
Here, in the step (VI), when the insulating substrate 21 is cut at the cutting line 29 by router processing, the paste 27 is filled in the through-connection hole, so that burrs are generated on the cut surface of the non-through-hole 26. Can be suppressed. Therefore, when a metal plating film is deposited on the semi-cylindrical non-through hole 26a by an electroless metal plating process described later, the metal plating film may be peeled off from the semi-cylindrical non-through hole 26a. As a result, quality is stable and reliability is improved.
[0014]
Next, in step (VIII) of FIG. 2, a metal resist film is formed on the conductor pattern 28a by covering with a plating resist film (not shown) and performing electroless metal plating. At the same time, a metal plating film is formed on the upper and lower surfaces and the cut surface of the semi-cylindrical non-penetrating connection hole 26a exposed on the cut surface of the printed wiring board 30a, so that the non-penetrating connection hole 26a is formed by the metal plating film. An end surface terminal portion 34 including the upper surface terminal portion 31, the side surface terminal portion 32, and the lower surface terminal portion 33 is formed so as to cover. In this manner, individual printed wiring boards 30 in which the metal-containing paste 27 is covered with the metal plating film are formed.
[0015]
At this time, as shown in FIG. 4 (a), the paste 27 having the plating catalytic action is filled in the through-connection holes, whereby the particles 27a in the paste 27 become anchors due to the anchoring effect of the plating catalytic action. Adhesiveness between 27 and the metal plating film is improved. Therefore, it is possible to prevent the end surface terminal portion 34 from being peeled off from the insulating substrate 21, so that the quality is stable and the reliability is improved.
[0016]
Next, a method for mounting the printed wiring board 30 thus formed on the mother board 10 will be described with reference to FIGS.
First, after mounting a large number of electronic components 8 on the conductive patterns 28a on the front and back sides of the printed wiring board 30 via the solder 9, the flat side terminal portions 32 are placed on the land portions 11 of the motherboard 10, By mounting by heating, the printed wiring board 30 is mounted on the mother board 10 via the solder 12. That is, the metal powder-containing paste 27 filled in the semi-cylindrical through-hole and the flat side terminal portion 32 of the conductor terminal made of a metal film covering the paste 27 are used as the connection terminals of the printed wiring board 30. is there. In this case, the printed wiring board 30 can be mounted upright on the land portion 11 of the motherboard 10 in either the vertical direction or the horizontal direction.
[0017]
In this way, the electronic component 8 is mounted on the front and back of the printed wiring board 30 by mounting the printed wiring board 30 so as to stand on the mother board 10 via the side terminal portions 32 of the printed wiring board 30. Therefore, the number of electronic components 8 that can be mounted on one printed wiring board 30 is increased approximately twice as compared with the case where the electronic components 8 are mounted only on the conventional surface. In addition, since the printed wiring board 30 is erected on the mother board 10, the printed wiring board 30 can be mounted on the mother board 10 so that the side surface having a small surface area faces the mother board 10. The area occupied by the plate 30 is reduced. For this reason, since the number of the printed wiring boards 30 mounted on the mother board 10 increases, the mounting efficiency of the electronic components 8 is improved, and the electronic components 8 can be mounted at high density.
[0018]
Further, the printed wiring board 30 mounted on the mother board 10 is a non-penetrating connection hole in which paste is filled in the through connection hole and the inside of the through connection hole is not in a hollow state. When being mounted, the adhesion force of the solder 12 to the side terminal portion 32 is improved. Since the upper and lower surface terminal portions 31 and 33 are provided, when the printed wiring board 30 is mounted on the mother board 10, the solder 12 adheres to the upper and lower surface terminal portions 31 and 33. The board 30 is not only firmly mounted on the mother board 10, but also the connection resistance between the side terminal portion 32 and the land portion 11 is reduced, and the connection failure is reduced.
[0019]
It can be applied not only to double-sided boards but also to multilayer printed wiring boards. Moreover, although the non-conductive metal powder containing paste was used as the filler, the conductive metal powder containing paste may be used, or the metal powder containing paste mixed with gold, silver, tin, nickel, palladium may be used. In short, what is necessary is just to have a catalytic action. Further, in the step (IV), when the conductive copper paste 27 or the paste containing metal powder is used as the filler to be filled in the through-hole 24, the drilling process in the step (II) is performed, The panel plating process of step (III) may be performed after filling the paste containing the plating catalyst of IV). Further, in step (VI), the insulating substrate 21 is divided into a large number of printed wiring boards by the cutting lines 29. However, a part of the cutting lines 29 is left uncut, and in the step (VIII), a large number of printed wirings are left. It may be divided into plates.
[0020]
【The invention's effect】
As described above, according to the first aspect of the present invention, the metal particles in the metal powder-containing paste serve as an anchor due to the anchor effect of the filler, and the adhesion strength between the filled paste and the metal film as the plating film is high. Since it becomes strong, peeling of the end surface terminal portion from the printed wiring board can be prevented, so that quality is stabilized and reliability is improved. In addition, by mounting the flat side terminal part on the land part of the motherboard, the printed wiring board can be mounted upright on the motherboard, so electronic components can be mounted on the front and back of the printed wiring board. Since this becomes possible, the mounting density of electronic components is improved. Further, since the through-hole is filled with the filler, the quality is improved without generating burrs when the through-hole is cut. Furthermore, the contact area between the insulating substrate and the plating film is increased, and the adhesion of the conductor terminal portion is improved.
[Brief description of the drawings]
FIG. 1A is a process diagram for explaining the first half of a printed wiring board employed in a printed wiring board mounting structure according to the present invention, and FIG. 1B is a cross-sectional view corresponding to that process. It is.
FIG. 2A is a process diagram for explaining the second half of a printed wiring board employed in a printed wiring board mounting structure according to the present invention, and FIG. 2B is a cross-sectional view corresponding to that process. It is.
3 is an external perspective view of the printed wiring board according to the present invention formed in step (VII) in FIG. 2B, and FIG. 3B is a perspective view of the main part.
4A and 4B show an end surface terminal portion formed in step (VIII) in FIG. 2B, where FIG. 4A is a cross-sectional view of the main portion, and FIG. 4B is a perspective view of the main portion.
FIG. 5 is a cross-sectional view showing a state in which a printed wiring board according to the present invention on which electronic components are mounted is mounted on a motherboard.
FIG. 6 is a perspective view showing a state in which a printed wiring board according to the present invention on which electronic components are mounted is mounted on a motherboard.
FIG. 7 is a plan view for explaining an outline of a method for manufacturing a printed wiring board employed in a conventional printed wiring board mounting structure;
FIG. 8 is a cross-sectional view showing a conventional printed wiring board mounting structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 8 ... Electronic component, 10 ... Mother board, 11 ... Land part, 21 ... Insulating board, 26 ... Non-penetrating connection hole, 27 ... Paste, 28a ... Conductor pattern, 30 ... Printed wiring board, 31 ... Top terminal part, 32 ... Side Terminal part, 33 ... lower surface terminal part, 34 ... end face terminal part.

Claims (1)

電子部品が実装されたプリント配線板をマザーボード上に実装するプリント配線板の実装構造であって、
前記プリント配線板の貫通穴の内壁に銅めっき膜を形成した貫通接続穴内にアンカー効果を有する非導電性の金属含有ペーストを充填して非貫通接続穴とし、この非貫通接続穴を横切るように切断し、金属含有ペーストが露呈した半円筒形の非貫通接続穴の切断面および上下面に金属めっき膜を形成し、平坦な側面端子部および上下端子部をプリント配線板の側面および上下面に配置し、前記側面端子部を前記マザーボードの端子部に電気的に接続することにより、前記プリント配線板をマザーボード上に立設した状態で実装したことを特徴とするプリント配線板の実装構造。
A printed wiring board mounting structure for mounting a printed wiring board on which an electronic component is mounted on a motherboard,
A non-conductive metal-containing paste having an anchor effect is filled into a through-connection hole in which a copper plating film is formed on the inner wall of the through-hole of the printed wiring board to form a non-through-connection hole, so as to cross the non-through-connection hole Cut and form a metal plating film on the cut surface and upper and lower surfaces of the semi-cylindrical non-through connection hole where the metal-containing paste is exposed, and place flat side terminal portions and upper and lower terminal portions on the side surface and upper and lower surfaces A printed wiring board mounting structure, wherein the printed wiring board is mounted in a standing state on the mother board by arranging and electrically connecting the side terminal parts to the terminal parts of the mother board.
JP2000154808A 2000-05-15 2000-05-25 Mounting structure of printed wiring board Expired - Fee Related JP3707352B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000154808A JP3707352B2 (en) 2000-05-25 2000-05-25 Mounting structure of printed wiring board
US09/855,476 US6600214B2 (en) 2000-05-15 2001-05-14 Electronic component device and method of manufacturing the same
TW090111497A TW535465B (en) 2000-05-15 2001-05-14 Electronic component device and method of manufacturing the same
CNB011180412A CN1190999C (en) 2000-05-15 2001-05-15 Electronic element apparatus and manufacture thereof
KR10-2001-0026500A KR100412155B1 (en) 2000-05-15 2001-05-15 Electronic Component Device and Method of Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154808A JP3707352B2 (en) 2000-05-25 2000-05-25 Mounting structure of printed wiring board

Publications (2)

Publication Number Publication Date
JP2001332831A JP2001332831A (en) 2001-11-30
JP3707352B2 true JP3707352B2 (en) 2005-10-19

Family

ID=18659841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154808A Expired - Fee Related JP3707352B2 (en) 2000-05-15 2000-05-25 Mounting structure of printed wiring board

Country Status (1)

Country Link
JP (1) JP3707352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382615B2 (en) * 2014-07-22 2018-08-29 京セラ株式会社 Wiring board, electronic device, and mounting structure of electronic device
JP6899244B2 (en) * 2016-04-20 2021-07-07 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2001332831A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
KR100412155B1 (en) Electronic Component Device and Method of Manufacturing the Same
EP1708552A2 (en) Method of production of circuit board utilizing electroplating
JP3707352B2 (en) Mounting structure of printed wiring board
JP2000077809A (en) Printed wiring board having plated, sealed and taper shaped through hole and manufacture therefor
JP2653905B2 (en) Printed circuit board manufacturing method and electronic component mounting method
JP3770895B2 (en) Manufacturing method of wiring board using electrolytic plating
JP2002232102A (en) Circuit board
JP3905802B2 (en) Printed wiring board and manufacturing method thereof
JP2002076636A (en) Wiring board and its manufacturing method
JPH10261854A (en) Printed wiring board and manufacturing method thereof
JPH11274734A (en) Electronic circuit device and its manufacture
JPH05211386A (en) Printed wiring board and manufacture thereof
JP2002043710A (en) Printed wiring board and method for manufacturing the same
JPH05121860A (en) Printed wiring board and its manufacture
JPH06204664A (en) Multilayer substrate
JPH1051094A (en) Printed wiring board, and its manufacture
JP3056899B2 (en) Method of forming blind through hole
JPH0653658A (en) Multilayer printed wiring board
JPH05347466A (en) Printed circuit board
JP4562154B2 (en) Manufacturing method of semiconductor module
JP2563815B2 (en) Printed wiring board with blind through holes
JPH11186346A (en) Substrate for semiconductor device and manufacture thereof
JPS61271898A (en) Soldering of through hole
JP2002271017A (en) Printed wiring board and its manufacturing method
JPH0763110B2 (en) Multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees