JP3706107B2 - LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE - Google Patents

LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE Download PDF

Info

Publication number
JP3706107B2
JP3706107B2 JP2003008719A JP2003008719A JP3706107B2 JP 3706107 B2 JP3706107 B2 JP 3706107B2 JP 2003008719 A JP2003008719 A JP 2003008719A JP 2003008719 A JP2003008719 A JP 2003008719A JP 3706107 B2 JP3706107 B2 JP 3706107B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
driving transistor
gate
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003008719A
Other languages
Japanese (ja)
Other versions
JP2003295793A (en
Inventor
光明 納
彩 安西
潤 小山
誠 宇田川
昌彦 早川
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2003008719A priority Critical patent/JP3706107B2/en
Publication of JP2003295793A publication Critical patent/JP2003295793A/en
Application granted granted Critical
Publication of JP3706107B2 publication Critical patent/JP3706107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロルミネッセンス(Electro Luminescence:EL)素子および、薄膜トランジスタ(以下TFTと表記)を基板上に作り込んで形成された電子表示装置の駆動方法に関する。特に半導体素子(半導体薄膜を用いた素子)を用いた発光装置に関する。また発光装置を表示部に用いた電子機器に関する。
【0002】
なお、本明細書中では、EL素子とは、一重項励起子からの発光(蛍光)を利用するものと、三重項励起子からの発光(燐光)を利用するものの両方を示すものとする。
【0003】
【従来の技術】
近年、自発光型素子として、EL素子を有した発光装置の開発が活発化している。発光装置は、液晶表示装置と異なり自発光型である。EL素子は一対の電極(陽極と陰極)間にEL層が挟まれた構造となっている。発光装置の型式としては、パッシブマトリクス型とアクティブマトリクス型とがあるが、高解像度化に伴う画素数の増加や動画表示のため、高速な動作が要求されるものに関しては、アクティブマトリクス型が向いている。
【0004】
アクティブマトリクス型有機ELパネルの各画素には電圧を保持するために、保持容量(Cs)部が設けられている。実際の画素構成例を図12(A)に示す。また、図12(B)は等価回路を示している。特許文献1で開示されているように、Cs部が大きく、その分有機ELの発光面積が小さくなってしまう。Cs部の他にも画素を構成するTFT・配線・コンタクト・隔壁などの形状や数、配置の仕方が発光面積を小さくしてしまう要因となっている。発光面積が小さくなることによって、電流密度が高くなり、有機ELの信頼性が著しく低下する。
【0005】
また、無理に開口率を稼ごうとして、開口部を複雑な形状にしてしまうと、有機EL発光部のシュリンクを助長してしまうこともある。ここで、EL発光部のシュリンクとは、EL層が物理的に収縮する状態ではなく、EL素子の有効面積(EL素子が発光している部分の面積)が、端部より徐々に縮小していく状態をいう。つまり、開口部の形状が複雑になると、開口部の面積に対して、端部の長さがより長くなり、したがってシュリンクを助長することになってしまう。
【0006】
【特許文献1】
特開平8−234683号
【0007】
【発明が解決しようとする課題】
図20に、アクティブマトリクス型EL表示装置の画素部の構成の例を示す。点線枠2300で囲まれた部分が画素部であり、その中に複数の画素を有する。点線枠2310で囲まれた部分が1画素である。
【0008】
ゲート信号線駆動回路から選択信号が入力されるゲート信号線(G1、G2、・・・、Gy)は、各画素が有するスイッチング用TFT2301のゲート電極に接続されている。また、各画素が有するスイッチング用TFT2301のソース領域とドレイン領域は、一方がソース信号線駆動回路から信号が入力されるソース信号線(S1〜Sx)に、他方が駆動用TFT2302のゲート電極に接続されている。各画素の有する駆動用TFT2302のソース領域とドレイン領域の一方は電流供給線(V1、V2、・・・、Vx)に、他方は、各画素が有するEL素子2304の一方の電極に接続されている。また、表示期間中に、駆動用TFT2302のゲート・ソース間電圧を保持するための容量手段2303を各画素に設けていても良い。
【0009】
EL素子2304は、陽極と、陰極と、陽極と陰極の間に設けられたEL層とを有する。EL素子2304の陽極が駆動用TFT2302のソース領域またはドレイン領域と接続している場合、EL素子2304の陽極が画素電極、陰極が対向電極となる。逆に、EL素子2304の陰極が駆動用TFT2302のソース領域またはドレイン領域と接続している場合、EL素子2304の陰極が画素電極、陽極が対向電極となる。
【0010】
なお、本明細書において、対向電極の電位を対向電位という。なお、対向電極に対向電位を与える電源を対向電源と呼ぶ。画素電極の電位と対向電極の電位の電位差がEL駆動電圧であり、このEL駆動電圧が、画素電極と対向電極とに挟まれたEL層に印加される。
【0011】
このような発光装置の階調表示方法として、アナログ階調方式と、デジタル階調方式が挙げられる。デジタル階調方式としては面積階調や時間階調方式がある。
【0012】
アナログ階調方式とデジタル階調方式のそれぞれの場合において、Csを設ける場合の値について説明する。
【0013】
アナログ階調方式の場合は一般的に、1フレーム期間に1回、各画素にアナログ映像信号が書き込まれる。各画素へのアナログ映像信号入力はアナログ電圧、あるいはアナログ電流によって行われる。アナログ電圧の場合は、書き込まれたアナログ電圧がそのまま各画素の保持容量に蓄えられ、1フレーム期間(フレーム周波数60Hzの場合1フレーム期間の長さは16.66ms)そのアナログ電圧を保持しなくてはならない。アナログ電流の場合は書き込まれた電流が各画素内で一旦アナログ電圧に変換される。そのアナログ電圧を1フレーム期間保持しなくてはならない。
【0014】
また、デジタル階調方式の場合は、前述のように、デジタル映像信号を1フレーム期間に複数(n)回書き込む必要がある。4ビット階調ならn=4回以上、6ビット階調ならn=6回以上となる。したがって、1フレーム期間をn個に分割した内、最も長いサブフレームの間保持できなくてはならない。
【0015】
続いて、駆動用TFTとEL素子の関係について説明する。
【0016】
図15(A)に示すように、各画素の電流供給線・対向電源間には駆動用TFT1505とEL素子1506が直列に接続されている。EL素子1506に流れる電流は、図15(B)の駆動用TFTのVd−Id曲線とEL素子のV−I曲線の交点が動作点となり、そのときの駆動用TFT1505のソース・ドレイン間電圧とEL素子1505の両電極間の電圧に従って、電流が流れる。
【0017】
駆動用TFT1505のゲート・ソース間電圧(|VGS|)が、ソース・ドレイン間電圧(|VDS|)よりもしきい値電圧分以上大きいと、駆動用TFT1505は線形領域で動作(定電圧駆動)し、それよりも小さいと、駆動用TFT1505は飽和領域で動作(定電流駆動)する。
【0018】
駆動用TFT1505を線形領域で動作させる場合、すなわち動作点における駆動用TFT1505の動作が線形領域に含まれる場合は、駆動用TFT1505の|VDS|がEL素子1506の両電極間の電圧(|VEL|)に比べて遥かに小さく、駆動用TFT1505の特性ばらつきが、EL素子1506を流れる電流に殆ど影響しない。しかし、温度変化や経時変化によってEL素子1506の抵抗が変化してしまうと、電流もその影響を受け変化してしまう。例えば、図16(A)に示すように、EL素子1506が劣化し、その電圧−電流特性が1601から1602へと変化すると、動作点もまた、1603から1604へと変化する。このとき、駆動用TFT1505が線形領域で動作していると、動作点の移動に伴い、ΔIDだけ、EL素子1506を流れる電流値が減少することになる。したがって輝度が低下する。
【0019】
これに対し、駆動用TFT1505を飽和領域で動作させた場合では、図16(B)に示すように、EL素子の劣化によってEL素子1506の電圧−電流特性が1611から1612へと変化しても、駆動用TFT1505のドレイン電流(IDS)が一定のため、動作点が1613から1614に変化しても、EL素子1506には一定の電流が流れる。そのため、輝度の変動が駆動用TFT1505を線形領域で動作させたときと比べて少ない。
【0020】
駆動用TFTのチャネル長・チャネル幅の設定や、駆動用TFTやEL素子の特性・駆動電圧によっては動作点を全て飽和領域に持ってくることも出来る。
【0021】
しかし、駆動用TFT1505を飽和領域で動作させた場合では、EL素子1506に流れる電流値を決めているのはTFTのVGS−IDS特性のみに依存するため、駆動用TFT1505の特性が各画素でばらつくと、そのままEL素子1506の発光輝度のばらつきに反映される。また、保持期間中のVGSの変化も流れる電流に大きく影響する。飽和領域におけるIDSは、式(1)で表される。
【0022】
【数1】

Figure 0003706107
【0023】
スイッチング用TFT1504のオフリーク電流により、駆動用TFT1505のゲート電極の電荷はソース信号線1501にリークし、それにともなって駆動用TFTの|VGS|が変化するため、IDSも変化してしまう。よって、スイッチング用TFT1504からの電荷のリークによる、駆動用TFTのVGS損失を補うための容量が必要となる。これを保持容量と呼んでいる。保持容量の大きさは、駆動用TFTのVGS−IDS特性と、EL素子1506の輝度が1階調分変化するのに伴う電流値の変化量ΔIELの関係で決まる。式(1)からもわかるように、IDSはVGSの2乗に比例するため、|VGS|の変化に対してIDSは大変敏感である。ΔIELから、駆動用TFT1505に許容されるVGSの変化量ΔVGSを求める。必要な保持容量の大きさはスイッチング用TFTのオフリーク電流値Ioff、および保持時間から、式(2)(3)を用いて決定する。ここでΔtは微小時間、ΔVGSは、駆動用TFT1505のゲート・ソース間電圧の増分である。
【0024】
【数2】
Figure 0003706107
【0025】
【数3】
Figure 0003706107
【0026】
1フレーム期間に複数回の書き込み動作を行うデジタル階調方式に比べて、アナログ階調方式は1フレームに1回しか書き込まれないので、保持時間が長くなり、より大きな保持容量が必要となる。
【0027】
また、前述の理由から各画素の駆動用TFTのチャネル長は長く保つ必要があり、駆動用TFTサイズが大きくなることにより開口率が下がってしまう。
【0028】
本発明は、前述の課題を鑑みてなされたものであり、駆動用TFTのばらつきが映像の画質に影響しにくく、かつ高開口率を実現する発光装置を提供することを課題とする。
【0029】
【課題を解決するための手段】
課題を解決するために、本発明では以下のような手段を講じた。
【0030】
本発明の発光装置においては、画素部に、大きなCs部を設けず、駆動用TFTのチャネル長・チャネル幅を大きくし、駆動用TFTのゲート電極と、チャネル形成領域との間の容量(チャネル容量)をCsとして利用する。
【0031】
図18のように、TFT電極はゲート絶縁膜1803を挟んで、ゲート電極1804、ソース電極1807、ドレイン電極1808で構成されている。そのため各端子間、ゲート電極1804・ソース電極1807・ソース領域1802a間にはゲート・ソース間容量1811、1812が、ゲート電極1804・ドレイン電極1808・ドレイン領域1802b間にはゲート・ドレイン間容量1813、1814が本質的に存在する。
【0032】
TFTをONさせるのに必要なゲート・ソース間電圧が、TFTのゲート電極1804とソース領域1802a間に印加されれば、チャネル形成領域1809内にチャネル1810が形成されドレイン電流が流れる。この時ゲート電極1804とチャネル間にチャネル容量1815が発生する。
【0033】
ゲート電極1804、ソース電極1807、ドレイン電極1808の電圧条件によってチャネル領域は変化するため、チャネル容量も変化する。
【0034】
電圧条件によるチャネル領域の変化を、図17を用い説明する。ここにはPチャネル型TFTを例として用いた。
【0035】
図17の(B)のように、TFTがOFF状態の場合、チャネル形成領域1704にチャネルは形成されないため、チャネル容量は無視出来る。
【0036】
次に、図17(C)のように、TFTを線形領域で動作する場合、ソース・ドレイン間全面にチャネル1706が形成され、正孔はソースからドレインに向けて直線的に減少するように分布する。チャネル形成領域の半導体全表面に正孔が存在するため、充分なチャネル容量が確保出来る。
【0037】
次に、図17(D)のように、TFTを飽和領域で動作する場合、チャネル1706は形成されるが、ドレイン側の半導体表面には正孔の分布がない状態になる。しかし、ソース側の半導体表面には正孔が存在するため、ゲート・ソース間に充分な容量が確保出来る。
【0038】
また、画素のレイアウトを行う際に、隔壁の下に配線を配置し、配線の下に駆動用TFTを配置することで、駆動用TFTのサイズが大きくなっても開口率を稼ぐことが出来る。また、3トランジスタ型の場合スイッチング用TFTと消去用TFTを直線状に配置することで開口率を稼ぎ、シンプルな開口部にすることが出来る。ここで直線状とは必ずしも厳密に一直線でなくともよい。開口率を上げることによりEL素子を同じ輝度にしても電流密度が下がり、劣化速度が遅くなる。また、シンプルな開口部にすることでEL素子のシュリンクの影響を受けにくくなる。
【0039】
本発明の構成を以下に記す。
【0040】
本発明の発光装置は、
駆動用トランジスタと接続する発光素子と、スイッチング用TFTと、消去用TFTとを有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極と半導体層とそれらの間に設けられた絶縁膜によって設けられたことを特徴としている。
【0041】
本発明の発光装置は、
駆動用トランジスタと接続する発光素子と、スイッチング用TFTと、消去用TFTとを有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極とソース領域を形成する半導体層、あるいは前記駆動用トランジスタのゲート電極とドレイン領域を形成する半導体層と、前記ゲート電極と前記半導体層との間に設けられた絶縁膜によって設けられたことを特徴としている。
【0042】
本発明の発光装置は、
発光素子を備えた複数の画素を有し、
前記複数の画素はそれぞれ、ソース信号線と、第1および第2のゲート信号線と、電流供給線と、スイッチング用トランジスタと、消去用トランジスタと、駆動用トランジスタとを有する発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量は、前記駆動用トランジスタのゲート電極とチャネル形成領域との間の容量によって設けられたことを特徴としている。
【0043】
本発明の発光装置は、
発光素子を備えた複数の画素を有し、
前記複数の画素はそれぞれ、ソース信号線と、第1および第2のゲート信号線と、電流供給線と、スイッチング用トランジスタと、消去用トランジスタと、駆動用トランジスタとを有する発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量は、前記駆動用トランジスタのゲート電極とソース領域との間、あるいは前記駆動用トランジスタのゲート電極とドレイン領域との間の容量とによって設けられたことを特徴としている。
【0044】
本発明の発光装置は、
駆動用トランジスタと接続する発光素子と、スイッチング用TFTと、消去用TFTを有する画素を、複数個備えた発光装置であって、
前記ソース信号線と、前記電流供給線と、前記駆動用トランジスタとはいずれも、前記複数の画素の隣接する発光エリアを隔てる位置に形成された絶縁膜と重なり合う位置に配置されていることを特徴としている。
【0045】
本発明の発光装置は、
発光素子を備えた複数の画素を有し、
前記複数の画素はそれぞれ、ソース信号線と、第1および第2のゲート信号線と、電流供給線と、スイッチング用トランジスタと、駆動用トランジスタとを有する発光装置であって、
前記ソース信号線と、前記電流供給線と、前記駆動用トランジスタとはいずれも、前記複数の画素の隣接する発光エリアを隔てる位置に形成された絶縁膜と重なり合う位置に配置されていることを特徴としている。
【0046】
本発明の発光装置において、
前記スイッチング用トランジスタと前記消去用トランジスタとは、
前記スイッチング用トランジスタのソース領域におけるある一点とドレイン領域におけるある一点および、前記消去用トランジスタのソース領域におけるある一点とドレイン領域におけるある一点が、いずれも1つの直線上に含まれる位置に配置されていることを特徴としている。
【0047】
本発明の発光装置において、
前記駆動用トランジスタは、前記ソース信号線の一部あるいは、前記電流供給線の一部と重なり合う位置に配置されていることを特徴としている。
【0048】
本発明の発光装置において、
前記駆動用トランジスタのチャネル領域を形成する半導体層は、U字状、S字状、渦巻状、あるいはミアンダ状に形成されていることを特徴としている。
【0049】
本発明の発光装置において、
前記駆動用トランジスタのチャネル長がL、チャネル幅がWであるとき、
L×W>200μm2であることを特徴としている。
【0050】
本発明の発光装置において、
前記駆動用トランジスタのゲート・ソース間電圧がVGS、ソース・ドレイン間電圧がVDS、しきい値電圧がVthであるとき、
|VDS|<|VGS|−|Vth|となるように駆動されることを特徴としている。
【0051】
本発明の発光装置において、
前記駆動用トランジスタのゲート・ソース間電圧がVGS、ソース・ドレイン間電圧がVDS、しきい値電圧がVthであるとき、
|VDS|≧|VGS|−|Vth|となるように駆動されることを特徴としている。
【0052】
本発明の発光装置において、
前記駆動用トランジスタのゲート・ソース間電圧が、4V以上14V以下となるように駆動されることを特徴としている。
【0053】
本発明の発光装置において、
前記駆動用トランジスタのチャネル長がL、チャネル幅がWであるとき、
L>5Wであることを特徴としている。
【0054】
本発明の発光装置において、
前記駆動用のトランジスタのチャネル長がL、チャネル幅がWであるとき、
R、G、Bの発光色を呈するそれぞれの画素が有する前記駆動用トランジスタにおけるL/Wはそれぞれ異なることを特徴としている。
【0055】
【発明の実施の形態】
【0056】
[実施形態1]
まず図1を用いて説明する。ここでの発光装置は、フルカラー表示をするものとし、それぞれ、赤色を発光する画素(R)の駆動用TFTのソース領域とドレイン領域のうちの一方は赤色用の電流供給線に接続されていて、緑色を発光する画素(G)の駆動用TFTのソース領域とドレイン領域のうちの一方は緑色用の電流供給線に接続されていて、青色を発光する画素(B)の駆動用TFTのソース領域とドレイン領域のうちの一方は青色用の電流供給線に接続されている。RGBそれぞれのEL素子はストライプ状に塗り分けられる。
【0057】
図1では隔壁は発光エリア5007以外の領域を覆っていて、隔壁5020のうち、前記ストライプと平行な方向に設けられた隔壁が塗り分けマージンとなる。この時、塗り分けマージン用の隔壁がある場所は発光エリアに用いることができないので、隔壁の下にソース信号線5001と電流供給線5003を配置する。次に、ソース信号線5001と電流供給線5003の下に駆動用TFT5005を配置する。この時隣り合う画素が有するソース信号線や電流供給線の下であっても良い。
【0058】
このような配置としたとき、駆動用TFTのゲート電極は、電流供給線の一部と重なり合うように配置される。電流供給線は、常に一定電位に固定されているため、駆動用TFTのゲート電極と、電流供給線との間の容量を、Csの一部として利用することも出来る。
【0059】
駆動用TFT5005は保持容量を兼ね、更に特性バラツキも抑えるために、チャネル長×チャネル幅が大きくなっている。しかし、駆動用TFT5005を塗り分けマージン用隔壁の下に配置することでチャネル長×チャネル幅が大きくなっても開口率が低くなることを避けることが出来る。
【0060】
[実施形態2]
次に、画素を構成するTFTが3トランジスタ型の場合は、駆動用TFTを除く、スイッチング用TFTと消去用TFTの2つを直線状に配置することで開口率を稼ぎ、更にシンプルな開口部にすることが出来る。開口部をシンプルに、より長方形に近い形にすることでシュリンクの影響を少なくすることが出来る。
【0061】
[実施形態3]
また、駆動用TFTのチャネル長とチャネル幅を決める際は、なるべくチャネル長×チャネル幅を大きくとることを目標とし、駆動用TFTを飽和領域で動作させる場合はチャネル幅に比べチャネル長を長くし、VGSがしきい値電圧の影響を受けにくい値にする必要がある。チャネル長を大きくすることで駆動用TFTの飽和領域特性もよりフラットになる。この時、VGSを大きくしすぎると消費電力が大きくなる事や、駆動用TFTの耐圧が問題となるため、|VGS|を4V以上14V以下の間になるようにチャネル長・チャネル幅を調整すると良い。
【0062】
実施形態1〜3によって、駆動用TFTのサイズを大きくし、かつチャネル幅Wに対してチャネル長Lを大きくすることによって、飽和領域における電流特性の均一さに優れたTFTを、それぞれの画素の駆動用TFTとして用いることが出来、かつ駆動用TFTのばらつきがEL素子の発光輝度に影響しにくくすることが出来る。
【0063】
さらに、保持容量を、駆動用TFTのチャネル容量によってまかない、かつ発光エリア外の隔壁と重なり合う位置に配置することによって、高開口率化が期待出来る。
【0064】
[実施形態4]
EL素子においては、一般的にはR、G、Bそれぞれで発光効率が異なり、したがって均一な輝度を得るのに必要な電流値も異なる。因って駆動用TFTの電流能力が全て同一である場合、電流値に差をつけるにはVgsに差をつける必要がある。故にR、G、BそれぞれのEL素子の発光効率の差が大きい場合にはVgsの差が大きくなり電圧設定が困難になる場合がある。
【0065】
この場合は、R、G、Bそれぞれで、駆動用TFTのチャネル長/チャネル幅を変え、電流能力を調整すれば良い。またこの際、駆動用TFTチャネル長、チャネル幅を駆動用TFTが塗り分けマージン用隔壁の領域を出ない範囲で調整することでRGBで開口率が同一となる。また、RGBそれぞれの、チャネル長×チャネル幅が大きくなるよう調整することで、チャネル容量が十分に確保できる。
【0066】
【実施例】
以下に、本発明の実施例について記載する。
【0067】
[実施例1]
図13に、実測したPチャネル型TFTのゲート・ソース間容量、ゲート・ドレイン容量の値を示す。VGSは−6Vとし、VDSを16V〜−16Vまで変化させている。VDSがおよそ−5Vから、それよりも低くなる領域で、飽和領域となっている。図13(A)と(B)との和が駆動用TFTの容量となる。
【0068】
図17(C)で説明したように、駆動用TFTを線形領域で駆動させた場合、半導体全表面にチャネルが形成されるため、充分な容量が確保出来る。
【0069】
駆動用TFTを飽和領域で駆動させた場合は、図17(C)で説明したようにドレイン領域側にはチャネルが形成されず、図13(b)で見るようにゲート・ドレイン間容量は0に近い値となる。しかし、ソース領域側にはチャネルが形成されるため、図13(a)で見えるようにゲート・ソース間容量で充分まかなうことが出来る。したがって、駆動用TFTを飽和領域で駆動させたい場合は、駆動用TFTにPチャネル型を使うと充分なチャネル容量が確保出来る。
【0070】
上記説明から、各画素内で大きなCs部を設けず、駆動用TFTのチャネル容量を利用することで開口率を稼ぐことが出来る。また、チャネル長×チャネル幅が大きくなることで、駆動用TFTを構成する半導体の結晶性のバラツキが平均化されること等によって、素子自体のIonバラツキも低減される。
【0071】
また、駆動用TFTを飽和領域で駆動させる場合でも各画素での駆動用TFTのVgs−Ids特性のバラツキが問題となる。その場合、EL素子に流す電流はそのままでチャネル幅よりもチャネル長を充分大きくすることで、飽和領域の飽和特性も改善される。反面チャネル長を大きくしたことによって、ELに供給される電流値が減少するので、VGSを高くすることで、所望の電流をEL素子に供給するようにする。従ってVGSがしきい値を充分上回る値となることで、VGSがしきい値バラツキの影響を受けにくくなり、IDSバラツキをより低減することが出来る。チャネル長を長くすることで飽和特性が良いと飽和領域内ではIDSがほぼ一定になっているため、EL素子の劣化などにより抵抗が変化しても同じ電流量がEL素子に供給される。
【0072】
図14には、チャネル長×チャネル幅を大きくし、チャネル幅に対してチャネル長を充分大きくしたTFTの実測したIdsのバラツキを示す。
【0073】
|VGS|を5V、|VDS|を8Vと固定し、チャネル長・チャネル幅の異なる素子について、それぞれ複数の素子を用いてIDSを測定した。図14で分かるように、IDSのバラツキは、チャネル形成領域の面積(チャネル長×チャネル幅)を大きくすることによって抑えることが出来る。また、図14の|VGS|5Vと8Vを比較すると、VGSがVthを大きく上回ると、よりIDSのバラツキを抑えられることが分かる。
【0074】
[実施例2]
ここでは図1を用い、2トランジスタ型の画素の構成・レイアウトについて説明する。
【0075】
図1の画素はソース信号線5001、ゲート信号線5002、電流供給線5003、スイッチング用TFT5004、駆動用TFT5005、画素電極5006、発光エリア5007以外を覆う隔壁で構成されていて、スイッチング用TFT5004のゲート電極はゲート信号線5002と接続され、ソース側はソース信号線5001と接続され、ドレイン側は駆動用TFT5005のゲート電極と接続されている。また、駆動用TFT5005のソース側は電流供給線5003と接続され、ドレイン側は画素電極5006と接続されている。
【0076】
発光エリア5007以外を覆う隔壁のうち、隣接する左右の画素の間に設けられた隔壁は、RGBを塗り分ける際に必要とされる塗り分けマージンとなる。隣り合って隣接する左右の画素間に設けられる隔壁の幅は、30μm前後とするのが望ましい。
【0077】
この時、塗り分けマージン用の隔壁は発光エリアとしては用いることができないため、幅30μmの下にソース信号線5001と電流供給線5003を配置する。次に、ソース信号線5001と電流供給線5003の下に駆動用TFT5005を配置する。この時隣り合う画素が有するソース信号線や電流供給線の下であっても良い。
【0078】
また、保持容量は駆動用TFT5005の、半導体層5014とゲート電極5016の間にあるゲート絶縁膜5015で作られるチャネル容量で兼ねることが出来る。
【0079】
この時保持時間の短いデジタル階調で、保持時間が1ms、駆動用TFTのIoff=1pAとし、EL素子の発光輝度が1階調変化する時の駆動用TFTのVgsの変化量ΔVgsは0.02V程度とする。式(3)より、その時必要な保持容量は50fFとなる。ゲート絶縁膜5015の厚さを120nmとし、比誘電率を4とすると、チャネル長×チャネル幅=200μm2で約60fFのチャネル容量となる。したがって、充分な容量を作るため、駆動用TFT5005のチャネル長×チャネル幅は200μm2以上であることが望ましい。
【0080】
また、駆動用TFT5005のチャネル長×チャネル幅が大きい程、素子自体のバラツキも低減されるので、なるべく大きくなることを目標とすると良い。
【0081】
駆動用TFT5005を飽和領域で駆動させる場合は、チャネル幅に比べチャネル長を大きくし、Vgsがしきい値の影響を受けにくい値にすると良い。この時、チャネル長/チャネル幅が5以上であることが望ましい。チャネル長を大きくすることで駆動用TFTの飽和領域特性もよりフラットになる。しかし、VGSを大きくしすぎると消費電力が大きくなる事や、駆動用TFTの耐圧が問題となるため、|VGS|を4V以上14V以下の間になるようにチャネル長とチャネル幅を調整すると良い。
【0082】
駆動用TFT5005のチャネル長を長くするため、半導体層5014のように縦方向にまっすぐさせると良い。開口率を落とさず、駆動用TFT5005のチャネル長を長くでき、チャネル幅もある程度大きくすることが出来る。
【0083】
開口率が高いと、EL素子に対する電流密度が低くなり長寿命化に繋がり、開口部もシンプルな形になっているため、シュリンクの影響も受けにくくなる。
【0084】
スイッチング用TFT5004は図ではダブルゲートになっているが、シングルゲートでも良いし、3本以上のマルチゲートでも良い。
【0085】
図2(A)は図1(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図2(A)中、α‐α’間の断面を示したものが図2(B)である。駆動用TFT5105のように半導体層を縦方向に蛇行させても良い。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5105のチャネル長をより長くすることが出来る。
【0086】
図3(A)は図1(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図3(A)中、α‐α’間の断面を示したものが図3(B)である。駆動用TFT5205のように半導体層をU字型にしても良い。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5205のチャネル長をより長くし、チャネル幅もある程度大きくすることが出来る。
【0087】
図4(A)は図1(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図4(A)中、α‐α’間の断面を示したものが図4(B)である。駆動用TFT5305のように半導体層をミアンダ形状としても良い。ここで、ミアンダとは、「meander:曲がりくねって流れる」という意味を有し、ミアンダ形状とは、半導体層の形状が曲がりくねっている様子を指す。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5305のチャネル長をより長くし、チャネル幅もある程度大きくすることが出来る。
【0088】
[実施例3]
ここでは図5を用い、3トランジスタ型の画素の構成・レイアウトについて説明する。
【0089】
SES駆動をする場合の消去用トランジスタ5506を追加し、ゲート電極に消去用の信号を入力する第2のゲート信号線5503が接続され、ソース電極と電流供給線5504が接続され、ドレイン電極とスイッチング用TFT5505のドレイン電極・駆動用TFT5507のゲート電極が接続されている。
【0090】
3トランジスタ型の場合、スイッチング用TFT5505と消去用TFT5506の2つのTFTを、第1のゲート信号線5502と第2のゲート信号線5503の間に、横に並べ直線状に配置する。スイッチング用TFT5505のドレイン領域と消去用TFT5506のドレイン領域を重ねても良い。この時、スイッチング用TFT5505のソース領域のある一点とドレイン領域のある一点と消去用TFT5506のソース領域のある一点とドレイン領域のある一点が1つの直線上に並ぶように配置する。
【0091】
上記のように配置することで開口率を上げ、開口部もシンプルな形状にすることが出来る。
【0092】
図6(A)は図5(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図6(A)中、α‐α’間の断面を示したものが図6(B)である。駆動用TFT5607のように半導体層を縦方向に蛇行させても良い。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5607のチャネル長をより長くすることが出来る。
【0093】
図7(A)は図5(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図7(A)中、α‐α’間の断面を示したものが図7(B)である。駆動用TFT5707のように半導体層をU字型にしても良い。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5707のチャネル長をより長くし、チャネル幅もある程度大きくすることが出来る。
【0094】
図8(A)は図5(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図8(A)中、α‐α’間の断面を示したものが図8(B)である。駆動用TFT5807のように半導体層をミアンダ形状にしても良い。半導体層をこのような形状とすることで、開口率を落とさず、駆動用TFT5807のチャネル長をより長くし、チャネル幅もある程度大きくすることが出来る。
【0095】
図10(A)は図5(A)における半導体層に代えて、パターニング形状の異なる半導体層とした例である。図10(A)中、α‐α’間の断面を示したものが図10(B)である。駆動TFTの半導体層の大きさを5907のようにし、保持容量が駆動TFTのゲート容量だけでは充分でない場合は保持容量部5910を形成しても良い。保持容量5910を隔壁5920の下に形成することで、開口率を落とさず、充分な保持容量を得ることができる。
【0096】
さらに、実施例2および本実施例にて示した構成の画素においては、駆動用TFTを飽和領域で動作させることによって、駆動用TFTのソース・ドレイン間電圧に関係なく、駆動用TFTのゲート・ソース間電圧のみによって、EL素子に供給する電流値を制御することが出来る。この場合、駆動用TFTは定電流源として機能することが出来るため、発光装置の画素部周辺に一体形成、もしくは外付けで供給される駆動回路に電流源回路を追加する必要がないため、装置の省スペース化にも貢献出来る。
【0097】
[実施例4]
図9(A)に示すように、携帯電話等の電子機器の表示部として発光装置が使用される場合は、モジュール901という形で内蔵される。ここで、モジュール901とは、発光装置と、発光装置を駆動するための信号処理用LSI、メモリ等を実装した基板とを接続した形態を指す。
【0098】
モジュール901をブロック図として、図9(B)に示す。モジュール901は、電源部911、信号制御部912、FPC913、発光装置914を有する。電源部911は、外部バッテリーより供給される電源より、ソース信号線駆動回路、ゲート信号線駆動回路、発光素子等に、それぞれ所望の複数の電圧値の電源を生成し、供給する。信号制御部912には、映像信号、同期信号が入力され、発光装置901にて処理が出来るように、各種信号の変換を行う他、ソース信号線駆動回路、ゲート信号線駆動回路を駆動するためのクロック信号等を生成する。
【0099】
本実施例にて示したモジュール901は、発光装置914と、電源部911および信号制御部912とは独立して作成されているが、これらを基板上に一体形成して作製しても良い。
【0100】
続いて、図11に、図9にて示したモジュール901に含まれる発光装置914の詳細な構成について示す。
【0101】
発光装置は、基板1001上に画素部1003、ソース信号線駆動回路1004、ゲート信号線駆動回路1005、1006、FPC1007等によって構成される。対向基板1002は、ガラス等の透明材料でも良いし、金属材料でも良い。基板1001と対向基板1002との間は、充填材等によって密閉され、さらにEL素子の水分による劣化等を防止するための乾燥剤等が封入される場合もある。
【0102】
図11(B)に、上面図を示す。基板中央部には、画素部1003が配置され、その周辺部には、ソース信号線駆動回路1004、ゲート信号線駆動回路1005、1006が配置されている。ソース信号線駆動回路1004の周辺には、電流供給線1011、対向電極コンタクト1013等が配置されている。EL素子の対向電極は、画素部全面に形成されており、前記対向電極コンタクト1013によってFPC1007を通じ、対向電位が与えられる。ソース信号線駆動回路1004、ゲート信号線駆動回路1005、1006を駆動するための信号、および電源の供給は、FPC1007を通じて、外部より行われる。
【0103】
また、基板1001と対向基板1002とを貼り合わせるためのシール材1014は、図11(B)に示すように、ソース信号線駆動回路1004、ゲート信号線駆動回路1005、1006の一部に重なるように形成されていても良い。このようにすると、発光装置の狭額縁化が期待出来る。
【0104】
[実施例5]
本実施例では、本発明を用いて発光装置を作製した例について、図19を用いて説明する。
【0105】
図19は、TFTが形成された素子基板をシーリング材によって封止することによって形成された発光装置の上面図であり、図19(B)は、図19(A)のA−A’における断面図、図19(C)は図19(A)のB−B’における断面図である。
【0106】
基板4001上に設けられた画素部4002と、ソース信号線駆動回路4003と、第1及び第2のゲート信号線駆動回路4004a、4004bとを囲むようにして、シール材4009が設けられている。また画素部4002と、ソース信号線駆動回路4003と、第1及び第2のゲート信号線駆動回路4004a、4004bとの上にシーリング材4008が設けられている。よって画素部4002と、ソース信号線駆動回路4003と、第1及び第2のゲート信号線駆動回路4004a、4004bとは、基板4001とシール材4009とシーリング材4008とによって、充填材4210で密封されている。シール材4009は、ソース信号線駆動回路4003と、第1及び第2のゲート信号線駆動回路4004a、4004bとの一部と重なり合うように設けられていても良い。
【0107】
また基板4001上に設けられた画素部4002と、ソース信号線駆動回路4003と、第1及び第2のゲート信号線駆動回路4004a、4004bとは、複数のTFTを有している。図19(B)では代表的に、下地膜4010上に形成された、ソース信号線駆動回路4003に含まれるTFT(但し、ここではNチャネル型TFTとPチャネル型TFTを図示する)4201及び画素部4002に含まれるTFT4202を図示した。
【0108】
TFT4201及び4202上には層間絶縁膜(平坦化膜)4301が形成され、その上にTFT4202のドレインと電気的に接続する画素電極(陽極)4203が形成される。画素電極4203としては仕事関数の大きい透明導電膜が用いられる。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることが出来る。また、前記透明導電膜にガリウムを添加したものを用いても良い。
【0109】
そして、画素電極4203の上には絶縁膜4302が形成され、絶縁膜4302は画素電極4203の上に開口部が形成されている。この開口部において、画素電極4203の上には有機発光層4204が形成される。有機発光層4204は公知の有機発光材料または無機発光材料を用いることが出来る。また、有機発光材料には低分子系(モノマー系)材料と高分子系(ポリマー系)材料があるがどちらを用いても良い。
【0110】
有機発光層4204の形成方法は公知の蒸着技術もしくは塗布法技術を用いれば良い。また、有機発光層の構造は正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層を自由に組み合わせて積層構造または単層構造とすれば良い。
【0111】
有機発光層4204の上には遮光性を有する導電膜(代表的にはアルミニウム、銅もしくは銀を主成分とする導電膜またはそれらと他の導電膜との積層膜)からなる陰極4205が形成される。また、陰極4205と有機発光層4204の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、有機発光層4204を窒素または希ガス雰囲気で形成し、酸素や水分に触れさせないまま陰極4205を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。そして陰極4205は所定の電圧が与えられている。
【0112】
以上のようにして、画素電極(陽極)4203、有機発光層4204及び陰極4205からなる発光素子4303が形成される。そして発光素子4303を覆うように、絶縁膜4302上に保護膜4303が形成されている。保護膜4303は、発光素子4303に酸素や水分等が入り込むのを防ぐのに効果的である。
【0113】
4005aは電源線に接続された引き回し配線であり、TFT4202の第1の電極に接続されている。引き回し配線4005aはシール材4009と基板4001との間を通り、異方導電性フィルム4300を介してFPC4006が有するFPC用配線4301に電気的に接続される。
【0114】
シーリング材4008としては、ガラス材、金属材(代表的にはステンレス材)、セラミックス材、プラスチック材(プラスチックフィルムも含む)を用いることが出来る。プラスチック材としては、FRP(Fiberglass‐Reinforced‐Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることが出来る。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることも出来る。
【0115】
但し、発光素子からの光の放射方向がカバー材側に向かう場合にはカバー材は透明でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透明物質を用いる。
【0116】
また、充填材4103としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることが出来る。本実施例では充填材として窒素を用いた。
【0117】
また充填材4103を吸湿性物質(好ましくは酸化バリウム)もしくは酸素を吸着しうる物質にさらしておくために、シーリング材4008の基板4001側の面に凹部4007を設けて吸湿性物質または酸素を吸着しうる物質4207を配置する。そして、吸湿性物質または酸素を吸着しうる物質4207が飛び散らないように、凹部カバー材4208によって吸湿性物質または酸素を吸着しうる物質4207は凹部4007に保持されている。なお凹部カバー材4208は目の細かいメッシュ状になっており、空気や水分は通し、吸湿性物質または酸素を吸着しうる物質4207は通さない構成になっている。吸湿性物質または酸素を吸着しうる物質4207を設けることで、発光素子4303の劣化を抑制出来る。
【0118】
図19(C)に示すように、画素電極4203が形成されると同時に、引き回し配線4005a上に接するように導電性膜4203aが形成される。
【0119】
また、異方導電性フィルム4300は導電性フィラー4300aを有している。基板4001とFPC4006とを熱圧着することで、基板4001上の導電性膜4203aとFPC4006上のFPC用配線4301とが、導電性フィラー4300aによって電気的に接続される。
【0120】
[実施例6]
本実施例においては、実施例2、3にて示した構成の発光装置の作製工程について、図22を用いて説明する。なお、説明に際しては画素部のみについて説明するが、駆動回路部においては、作製工程はこの限りではなく、ここでは説明を省略する。
【0121】
まず、図22(A)に示すように、バリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラス等のガラスからなる基板上に、酸化珪素膜、窒化珪素膜、もしくは酸化窒化珪素膜でなる下地膜(図示せず)を形成する。その後、非晶質構造を有する半導体膜をレーザ結晶化法や公知の熱結晶化法を用いて結晶化した結晶質半導体膜を所望の形状にパターニングし、島状半導体層2201、2202を得る(図22(A))。
【0122】
続いて、島状半導体層2201、2202を覆うゲート絶縁膜(図示せず)を形成する。その後、Ta、W、Ti、Mo、Al、Cu等から選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料を用いて、ゲート電極を形成するための導電膜を形成する。その後、所望の形状にパターニングし、ゲート電極2203、2204(2203はゲート信号線を兼ねる)を得る(図22(B))。
【0123】
続いて、基板表面の平坦化を兼ねる絶縁膜(図示せず)を形成し、その上に画素電極2205を形成する。画素電極2205については、表示面が図の表側にあたる場合には反射電極とし、表示面が図の裏側にあたる場合には、光透過性のある透明電極とする。前者の反射電極の材料としては、MgAg等があり、後者の透明導電膜としては、ITO等が代表的である。画素電極2205もまた、前記材料でなる膜を形成した後、パターニングにより所望の形状を得る。
【0124】
その後、半導体層2201、2202、ゲート電極2204に達するコンタクトホール2206を開口し、配線2207〜2209(うち、2207はソース信号線、2208は電流供給線となる)を形成する。ここで、配線2209と、画素電極2206とは、互いに重なり合うようにして接点を取っている(図22(C))。
【0125】
続いて、隣接する画素の間に隔壁(図示せず)を形成し、発光エリア2210となる部分をエッチングにより開口する(図22(D))。その後、開口部分にEL層を形成して完成する。
【0126】
[実施例7]
発光素子を用いた発光装置は自発光型であるため、液晶ディスプレイに比べ、明るい場所での視認性に優れ、視野角が広い。従って、様々な電子機器の表示部に用いることが出来る。
【0127】
本発明の発光装置を用いた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。特に、斜め方向から画面を見る機会が多い携帯情報端末は、視野角の広さが重要視されるため、発光装置を用いることが望ましい。それら電子機器の具体例を図21に示す。
【0128】
図21(A)はELディスプレイであり、筐体3001、支持台3002、表示部3003、スピーカー部3004、ビデオ入力端子3005等を含む。本発明の発光装置は表示部3003に用いることが出来る。発光装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることが出来る。なお、発光素子表示装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。
【0129】
図21(B)はデジタルスチルカメラであり、本体3101、表示部3102、受像部3103、操作キー3104、外部接続ポート3105、シャッター3106等を含む。本発明の発光装置は表示部3102に用いることが出来る。
【0130】
図21(C)はノート型パーソナルコンピュータであり、本体3201、筐体3202、表示部3203、キーボード3204、外部接続ポート3205、ポインティングマウス3206等を含む。本発明の発光装置は表示部3203に用いることが出来る。
【0131】
図21(D)はモバイルコンピュータであり、本体3301、表示部3302、スイッチ3303、操作キー3304、赤外線ポート3305等を含む。本発明の発光装置は表示部3302に用いることが出来る。
【0132】
図21(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体3401、筐体3402、表示部A3403、表示部B3404、記録媒体(DVD等)読込部3405、操作キー3406、スピーカー部3407等を含む。表示部A3403は主として画像情報を表示し、表示部B3404は主として文字情報を表示するが、本発明の発光装置はこれら表示部A、B3403、3404に用いることが出来る。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0133】
図21(F)はゴーグル型ディスプレイ(ヘッドマウントディスプレイ)であり、本体3501、表示部3502、アーム部3503を含む。本発明の発光装置は表示部3502に用いることが出来る。
【0134】
図21(G)はビデオカメラであり、本体3601、表示部3602、筐体3603、外部接続ポート3604、リモコン受信部3605、受像部3606、バッテリー3607、音声入力部3608、操作キー3609等を含む。本発明の発光装置は表示部3602に用いることが出来る。
【0135】
図21(H)は携帯電話であり、本体3701、筐体3702、表示部3703、音声入力部3704、音声出力部3705、操作キー3706、外部接続ポート3707、アンテナ3708等を含む。本発明の発光装置は表示部3703に用いることが出来る。なお、表示部3703は黒色の背景に白色の文字を表示することで携帯電話の消費電流を抑えることが出来る。
【0136】
なお、将来的に有機発光材料の発光輝度が高くなれば、出力した画像情報を含む光をレンズ等で拡大投影してフロント型若しくはリア型のプロジェクターに用いることも可能となる。
【0137】
また、上記電子機器はインターネットやCATV(ケーブルテレビ)などの電子通信回線を通じて配信された情報を表示することが多くなり、特に動画情報を表示する機会が増してきている。有機発光材料の応答速度は非常に高いため、発光装置は動画表示に好ましい。
【0138】
また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響再生装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが望ましい。
【0139】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また、本実施例の電子機器は実施例1〜6に示したいずれの構成の発光装置を用いても良い。
【0140】
【発明の効果】
本発明のとおり、駆動用TFTのサイズを大きくし、かつチャネル幅Wに対してチャネル長Lを大きくすることによって、飽和領域における電流特性の均一さに優れたTFTを、それぞれの画素の駆動用TFTとして用いることが出来、かつ駆動用TFTのばらつきがEL素子の発光輝度に影響しにくくすることが出来る。また、保持容量を、駆動用TFTのチャネル容量によってまかない、かつ発光エリア外の隔壁と重なり合う位置に配置することによって、高開口率化が期待出来る。
【図面の簡単な説明】
【図1】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図2】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図3】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図4】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図5】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図6】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図7】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図8】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図9】 発光装置と周辺回路とがモジュール化されて電子機器に用いられている例を示す図。
【図10】 本発明を用いて作製される画素部のレイアウト例を示す図。
【図11】 発光装置の概略を示す図。
【図12】 従来方法によってレイアウトされた2トランジスタ型画素の例を示す図。
【図13】 実測したTFTのチャネル容量を示す図。
【図14】 実測したTFTのIDSバラツキを示す図。
【図15】 EL素子の動作点を説明する図。
【図16】 駆動用TFTの動作範囲が線形領域である場合と飽和領域である場合とにおける、EL素子の劣化と輝度への影響を説明する図。
【図17】 TFTの動作時における、チャネル周辺での電荷の振る舞いについて説明する図。
【図18】 TFTの各部における容量の要素について説明する図。
【図19】 発光装置の上面図および断面図。
【図20】 2トランジスタ型画素のマトリクスを示す図。
【図21】 本発明が適用可能な電子機器の例を示す図。
【図22】 画素部の作製工程を簡略に説明する図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving method of an electronic display device formed by forming an electroluminescence (EL) element and a thin film transistor (hereinafter referred to as TFT) on a substrate. In particular, the present invention relates to a light emitting device using a semiconductor element (an element using a semiconductor thin film). Further, the present invention relates to an electronic device using the light emitting device for a display portion.
[0002]
Note that in this specification, an EL element refers to both an element that uses light emission (fluorescence) from a singlet exciton and an element that uses light emission (phosphorescence) from a triplet exciton.
[0003]
[Prior art]
In recent years, light-emitting devices having EL elements as self-luminous elements have been actively developed. Unlike the liquid crystal display device, the light emitting device is a self-luminous type. The EL element has a structure in which an EL layer is sandwiched between a pair of electrodes (anode and cathode). There are two types of light-emitting devices: passive matrix type and active matrix type. The active matrix type is suitable for those that require high-speed operation because of the increase in the number of pixels and the display of moving images as resolution increases. ing.
[0004]
Each pixel of the active matrix organic EL panel is provided with a storage capacitor (Cs) section for holding a voltage. An actual pixel configuration example is shown in FIG. FIG. 12B shows an equivalent circuit. As disclosed in Patent Document 1, the Cs portion is large, and the light emission area of the organic EL is accordingly reduced. In addition to the Cs portion, the shape, number, and arrangement of TFTs, wirings, contacts, partition walls, etc. constituting the pixel are factors that reduce the light emitting area. By reducing the light emitting area, the current density is increased and the reliability of the organic EL is remarkably lowered.
[0005]
Further, if the aperture is made to have a complicated shape in order to forcibly increase the aperture ratio, shrinkage of the organic EL light emitting portion may be promoted. Here, the shrinkage of the EL light emitting part is not a state where the EL layer is physically contracted, but the effective area of the EL element (the area of the EL element emitting light) is gradually reduced from the end part. The state that goes. In other words, when the shape of the opening becomes complicated, the length of the end becomes longer with respect to the area of the opening, and thus the shrink is promoted.
[0006]
[Patent Document 1]
JP-A-8-234683
[0007]
[Problems to be solved by the invention]
FIG. 20 shows an example of a structure of a pixel portion of an active matrix EL display device. A portion surrounded by a dotted line frame 2300 is a pixel portion, and has a plurality of pixels therein. A portion surrounded by a dotted frame 2310 is one pixel.
[0008]
Gate signal lines (G1, G2,..., Gy) to which selection signals are input from the gate signal line driving circuit are connected to the gate electrode of the switching TFT 2301 included in each pixel. Further, one of the source region and the drain region of the switching TFT 2301 included in each pixel is connected to the source signal lines (S1 to Sx) to which signals are input from the source signal line driver circuit, and the other is connected to the gate electrode of the driving TFT 2302. Has been. One of a source region and a drain region of the driving TFT 2302 included in each pixel is connected to a current supply line (V1, V2,..., Vx), and the other is connected to one electrode of an EL element 2304 included in each pixel. Yes. Further, a capacitor 2303 for holding the gate-source voltage of the driving TFT 2302 may be provided in each pixel during the display period.
[0009]
The EL element 2304 includes an anode, a cathode, and an EL layer provided between the anode and the cathode. In the case where the anode of the EL element 2304 is connected to the source region or the drain region of the driving TFT 2302, the anode of the EL element 2304 serves as a pixel electrode and the cathode serves as a counter electrode. On the other hand, when the cathode of the EL element 2304 is connected to the source region or drain region of the driving TFT 2302, the cathode of the EL element 2304 serves as a pixel electrode and the anode serves as a counter electrode.
[0010]
Note that in this specification, the potential of the counter electrode is referred to as a counter potential. A power source that applies a counter potential to the counter electrode is referred to as a counter power source. A potential difference between the potential of the pixel electrode and the potential of the counter electrode is an EL drive voltage, and this EL drive voltage is applied to the EL layer sandwiched between the pixel electrode and the counter electrode.
[0011]
As a gradation display method of such a light emitting device, there are an analog gradation method and a digital gradation method. As the digital gradation method, there are an area gradation method and a time gradation method.
[0012]
A value when Cs is provided in each of the analog gradation method and the digital gradation method will be described.
[0013]
In the case of the analog gradation method, generally, an analog video signal is written to each pixel once in one frame period. An analog video signal is input to each pixel by an analog voltage or an analog current. In the case of an analog voltage, the written analog voltage is stored as it is in the holding capacity of each pixel, and one frame period (the length of one frame period is 16.66 ms when the frame frequency is 60 Hz) is not held. Must not. In the case of an analog current, the written current is once converted into an analog voltage in each pixel. The analog voltage must be held for one frame period.
[0014]
In the case of the digital gradation method, as described above, it is necessary to write a digital video signal a plurality (n) times in one frame period. For 4-bit gradation, n = 4 times or more, and for 6-bit gradation, n = 6 times or more. Therefore, it is necessary to hold for the longest subframe among n divided frame periods.
[0015]
Next, the relationship between the driving TFT and the EL element will be described.
[0016]
As shown in FIG. 15A, a driving TFT 1505 and an EL element 1506 are connected in series between the current supply line and the opposed power supply of each pixel. The current flowing through the EL element 1506 is an operating point at the intersection of the Vd-Id curve of the driving TFT in FIG. 15B and the VI curve of the EL element, and the source-drain voltage of the driving TFT 1505 at that time A current flows according to the voltage between both electrodes of the EL element 1505.
[0017]
Gate-source voltage of driving TFT 1505 (| V GS |) Is the source-drain voltage (| V DS If it is greater than the threshold voltage by |, the driving TFT 1505 operates in the linear region (constant voltage driving), and if smaller than that, the driving TFT 1505 operates in the saturation region (constant current driving).
[0018]
When the driving TFT 1505 is operated in the linear region, that is, when the operation of the driving TFT 1505 at the operating point is included in the linear region, | V of the driving TFT 1505 DS Is the voltage between both electrodes of the EL element 1506 (| V EL Compared with |), the characteristic variation of the driving TFT 1505 hardly affects the current flowing through the EL element 1506. However, if the resistance of the EL element 1506 changes due to a temperature change or a change over time, the current also changes under the influence. For example, as shown in FIG. 16A, when the EL element 1506 deteriorates and its voltage-current characteristic changes from 1601 to 1602, the operating point also changes from 1603 to 1604. At this time, if the driving TFT 1505 is operating in the linear region, ΔI is accompanied by the movement of the operating point. D As a result, the value of the current flowing through the EL element 1506 decreases. Accordingly, the luminance is lowered.
[0019]
On the other hand, when the driving TFT 1505 is operated in the saturation region, even if the voltage-current characteristics of the EL element 1506 change from 1611 to 1612 due to deterioration of the EL element, as shown in FIG. , Drain current of the driving TFT 1505 (I DS ) Is constant, a constant current flows through the EL element 1506 even if the operating point changes from 1613 to 1614. For this reason, the variation in luminance is smaller than when the driving TFT 1505 is operated in the linear region.
[0020]
Depending on the setting of the channel length and channel width of the driving TFT, the characteristics of the driving TFT and the EL element, and the driving voltage, all the operating points can be brought into the saturation region.
[0021]
However, when the driving TFT 1505 is operated in the saturation region, the value of the current flowing through the EL element 1506 is determined by the TFT V GS -I DS Since it depends only on the characteristics, if the characteristics of the driving TFT 1505 vary among the pixels, it is directly reflected in the variation in the light emission luminance of the EL element 1506. In addition, V during the retention period GS The change in current also greatly affects the flowing current. I in the saturation region DS Is represented by Formula (1).
[0022]
[Expression 1]
Figure 0003706107
[0023]
Due to the off-leakage current of the switching TFT 1504, the charge of the gate electrode of the driving TFT 1505 leaks to the source signal line 1501, and accordingly the | V of the driving TFT GS Because | changes, I DS Will also change. Therefore, V of the driving TFT due to charge leakage from the switching TFT 1504 GS Capacity to make up for the loss is required. This is called a holding capacity. The size of the storage capacitor is V of the driving TFT. GS -I DS Characteristic and the amount of change ΔI in current value as the luminance of the EL element 1506 changes by one gradation. EL Determined by the relationship. As can be seen from equation (1), I DS Is V GS Is proportional to the square of GS I for changes in | DS Is very sensitive. ΔI EL To V allowed for the driving TFT 1505 GS Change ΔV GS Ask for. The required storage capacitance is the off-leakage current value I of the switching TFT. off , And the retention time, using equations (2) and (3). Where Δt is a minute time, ΔV GS Is the increment of the gate-source voltage of the driving TFT 1505.
[0024]
[Expression 2]
Figure 0003706107
[0025]
[Equation 3]
Figure 0003706107
[0026]
Compared to the digital gradation method in which writing operation is performed a plurality of times in one frame period, the analog gradation method can be written only once in one frame, so the retention time becomes longer and a larger storage capacity is required.
[0027]
In addition, for the reasons described above, it is necessary to keep the channel length of the driving TFT of each pixel long, and the aperture ratio decreases as the driving TFT size increases.
[0028]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light-emitting device that realizes a high aperture ratio while variation in driving TFT hardly affects the image quality of an image.
[0029]
[Means for Solving the Problems]
In order to solve the problem, the present invention takes the following measures.
[0030]
In the light emitting device of the present invention, the pixel portion is not provided with a large Cs portion, the channel length and the channel width of the driving TFT are increased, and the capacitance (channel) between the gate electrode of the driving TFT and the channel formation region is increased. Capacity) is used as Cs.
[0031]
As shown in FIG. 18, the TFT electrode is composed of a gate electrode 1804, a source electrode 1807, and a drain electrode 1808 with a gate insulating film 1803 interposed therebetween. Therefore, gate-source capacitances 1811 and 1812 are provided between the terminals, between the gate electrode 1804, the source electrode 1807, and the source region 1802a, and between the gate electrode 1804, the drain electrode 1808, and the drain region 1802b, a gate-drain capacitance 1813, 1814 is essentially present.
[0032]
When a gate-source voltage necessary for turning on the TFT is applied between the gate electrode 1804 and the source region 1802a of the TFT, a channel 1810 is formed in the channel formation region 1809 and a drain current flows. At this time, a channel capacitance 1815 is generated between the gate electrode 1804 and the channel.
[0033]
Since the channel region changes depending on the voltage conditions of the gate electrode 1804, the source electrode 1807, and the drain electrode 1808, the channel capacitance also changes.
[0034]
The change of the channel region depending on the voltage condition will be described with reference to FIG. Here, a P-channel TFT is used as an example.
[0035]
As shown in FIG. 17B, when the TFT is in an OFF state, a channel is not formed in the channel formation region 1704, so that the channel capacity can be ignored.
[0036]
Next, as shown in FIG. 17C, when the TFT operates in a linear region, a channel 1706 is formed on the entire surface between the source and the drain, and holes are distributed so as to decrease linearly from the source to the drain. To do. Since holes exist on the entire surface of the semiconductor in the channel formation region, sufficient channel capacity can be secured.
[0037]
Next, as shown in FIG. 17D, when the TFT operates in the saturation region, the channel 1706 is formed, but there is no distribution of holes on the semiconductor surface on the drain side. However, since holes exist on the semiconductor surface on the source side, a sufficient capacity can be secured between the gate and the source.
[0038]
Further, when a pixel is laid out, a wiring is disposed under the partition and a driving TFT is disposed under the wiring, so that the aperture ratio can be increased even when the size of the driving TFT is increased. In the case of the three-transistor type, the switching TFT and the erasing TFT are arranged in a straight line, so that the aperture ratio can be increased and a simple opening can be obtained. Here, the linear shape does not necessarily have to be strictly a straight line. Even if the EL element has the same luminance by increasing the aperture ratio, the current density is lowered and the deterioration rate is slowed. In addition, the simple opening makes it less susceptible to EL element shrinkage.
[0039]
The configuration of the present invention will be described below.
[0040]
The light emitting device of the present invention is
A light emitting device including a plurality of pixels each having a light emitting element connected to a driving transistor, a switching TFT, and an erasing TFT,
The capacitor for holding the gate-source voltage of the driving transistor is provided by a gate electrode of the driving transistor, a semiconductor layer, and an insulating film provided therebetween.
[0041]
The light emitting device of the present invention is
A light emitting device including a plurality of pixels each having a light emitting element connected to a driving transistor, a switching TFT, and an erasing TFT,
The capacitor for holding the gate-source voltage of the driving transistor is a semiconductor layer that forms a gate electrode and a source region of the driving transistor, or a semiconductor that forms a gate electrode and a drain region of the driving transistor. And an insulating film provided between the layer and the gate electrode and the semiconductor layer.
[0042]
The light emitting device of the present invention is
Having a plurality of pixels with light emitting elements;
Each of the plurality of pixels is a light emitting device having a source signal line, first and second gate signal lines, a current supply line, a switching transistor, an erasing transistor, and a driving transistor,
The capacitor for holding the gate-source voltage of the driving transistor is provided by a capacitance between the gate electrode of the driving transistor and a channel formation region.
[0043]
The light emitting device of the present invention is
Having a plurality of pixels with light emitting elements;
Each of the plurality of pixels is a light emitting device having a source signal line, first and second gate signal lines, a current supply line, a switching transistor, an erasing transistor, and a driving transistor,
The capacitance for holding the gate-source voltage of the driving transistor depends on the capacitance between the gate electrode and the source region of the driving transistor or between the gate electrode and the drain region of the driving transistor. It is characterized by being provided.
[0044]
The light emitting device of the present invention is
A light-emitting device including a plurality of pixels each having a light-emitting element connected to a driving transistor, a switching TFT, and an erasing TFT,
The source signal line, the current supply line, and the driving transistor are all disposed at a position overlapping an insulating film formed at a position separating adjacent light emitting areas of the plurality of pixels. It is said.
[0045]
The light emitting device of the present invention is
Having a plurality of pixels with light emitting elements;
Each of the plurality of pixels is a light emitting device having a source signal line, first and second gate signal lines, a current supply line, a switching transistor, and a driving transistor,
The source signal line, the current supply line, and the driving transistor are all disposed at a position overlapping an insulating film formed at a position separating adjacent light emitting areas of the plurality of pixels. It is said.
[0046]
In the light emitting device of the present invention,
The switching transistor and the erasing transistor are:
A certain point in the source region of the switching transistor and a certain point in the drain region, and a certain point in the source region of the erasing transistor and a certain point in the drain region are arranged at positions included on one straight line. It is characterized by being.
[0047]
In the light emitting device of the present invention,
The driving transistor is arranged at a position overlapping a part of the source signal line or a part of the current supply line.
[0048]
In the light emitting device of the present invention,
The semiconductor layer forming the channel region of the driving transistor is formed in a U shape, an S shape, a spiral shape, or a meander shape.
[0049]
In the light emitting device of the present invention,
When the channel length of the driving transistor is L and the channel width is W,
L × W> 200μm 2 It is characterized by being.
[0050]
In the light emitting device of the present invention,
The gate-source voltage of the driving transistor is V GS , Source-drain voltage is V DS , Threshold voltage is V th When
| V DS | <| V GS |-| V th It is characterized by being driven to become |.
[0051]
In the light emitting device of the present invention,
The gate-source voltage of the driving transistor is V GS , Source-drain voltage is V DS , Threshold voltage is V th When
| V DS | ≧ | V GS |-| V th It is characterized by being driven to become |.
[0052]
In the light emitting device of the present invention,
The driving transistor is driven such that the gate-source voltage is 4 V or more and 14 V or less.
[0053]
In the light emitting device of the present invention,
When the channel length of the driving transistor is L and the channel width is W,
It is characterized by L> 5W.
[0054]
In the light emitting device of the present invention,
When the channel length of the driving transistor is L and the channel width is W,
It is characterized in that L / W in the driving transistor included in each pixel exhibiting R, G, and B emission colors is different.
[0055]
DETAILED DESCRIPTION OF THE INVENTION
[0056]
[Embodiment 1]
First, a description will be given with reference to FIG. Here, the light emitting device performs full color display, and one of the source region and the drain region of the driving TFT of the pixel (R) that emits red light is connected to the current supply line for red. One of the source region and the drain region of the driving TFT of the pixel (G) emitting green light is connected to the green current supply line, and the source of the driving TFT of the pixel (B) emitting blue light One of the region and the drain region is connected to the blue current supply line. The EL elements for RGB are separately applied in stripes.
[0057]
In FIG. 1, the partition wall covers a region other than the light emitting area 5007, and the partition wall provided in the direction parallel to the stripe in the partition wall 5020 serves as a coating margin. At this time, a place where there is a partition wall for the separate coating margin cannot be used for the light emitting area, so the source signal line 5001 and the current supply line 5003 are arranged under the partition wall. Next, a driving TFT 5005 is disposed under the source signal line 5001 and the current supply line 5003. At this time, it may be under a source signal line or a current supply line of an adjacent pixel.
[0058]
In such an arrangement, the gate electrode of the driving TFT is arranged so as to overlap a part of the current supply line. Since the current supply line is always fixed at a constant potential, the capacitance between the gate electrode of the driving TFT and the current supply line can be used as a part of Cs.
[0059]
The driving TFT 5005 also serves as a storage capacitor and further has a large channel length × channel width in order to suppress variation in characteristics. However, by disposing the driving TFT 5005 below the partitioning margin partition wall, it is possible to avoid a decrease in the aperture ratio even when the channel length × channel width is increased.
[0060]
[Embodiment 2]
Next, in the case where the TFT constituting the pixel is a three-transistor type, the aperture ratio can be increased by arranging the switching TFT and the erasing TFT in a straight line, excluding the driving TFT, and a simpler opening. Can be made. The effect of shrinkage can be reduced by making the openings simpler and more rectangular.
[0061]
[Embodiment 3]
Also, when determining the channel length and channel width of the driving TFT, the goal is to make the channel length x channel width as large as possible. When operating the driving TFT in the saturation region, the channel length should be longer than the channel width. , V GS Must be a value that is not easily affected by the threshold voltage. By increasing the channel length, the saturation region characteristic of the driving TFT becomes flatter. At this time, V GS If V is too large, power consumption increases and the breakdown voltage of the driving TFT becomes a problem. GS The channel length and the channel width may be adjusted so that | is between 4V and 14V.
[0062]
According to the first to third embodiments, by increasing the size of the driving TFT and increasing the channel length L with respect to the channel width W, TFTs with excellent current characteristics in the saturation region can be obtained for each pixel. It can be used as a driving TFT, and variations in the driving TFT can hardly affect the light emission luminance of the EL element.
[0063]
Furthermore, a high aperture ratio can be expected by disposing the storage capacitor at a position that is not covered by the channel capacitance of the driving TFT and overlaps with the partition wall outside the light emitting area.
[0064]
[Embodiment 4]
In EL elements, generally, the light emission efficiency is different for each of R, G, and B, and therefore the current value required to obtain uniform luminance is also different. Therefore, when the current capabilities of the driving TFTs are all the same, it is necessary to make a difference in Vgs in order to make a difference in the current value. Therefore, when the difference in light emission efficiency between the EL elements of R, G, and B is large, the difference in Vgs becomes large and voltage setting may be difficult.
[0065]
In this case, the current capability may be adjusted by changing the channel length / channel width of the driving TFT for each of R, G, and B. Also, at this time, the aperture ratio is the same for RGB by adjusting the drive TFT channel length and channel width in such a range that the drive TFT does not leave the area of the separate partition wall. Further, by adjusting the channel length × channel width of each of RGB, a sufficient channel capacity can be secured.
[0066]
【Example】
Examples of the present invention will be described below.
[0067]
[Example 1]
FIG. 13 shows measured values of the gate-source capacitance and the gate-drain capacitance of the P-channel TFT. V GS Is -6V, V DS Is changed from 16V to -16V. V DS Is a region where the voltage is lower than about -5V and is a saturated region. The sum of FIGS. 13A and 13B is the capacitance of the driving TFT.
[0068]
As described with reference to FIG. 17C, when the driving TFT is driven in a linear region, a channel is formed on the entire surface of the semiconductor, so that a sufficient capacitance can be secured.
[0069]
When the driving TFT is driven in the saturation region, a channel is not formed on the drain region side as described in FIG. 17C, and the gate-drain capacitance is 0 as shown in FIG. 13B. A value close to. However, since a channel is formed on the source region side, the gate-source capacitance can be sufficiently covered as shown in FIG. Accordingly, when it is desired to drive the driving TFT in the saturation region, a sufficient channel capacity can be secured by using a P-channel type for the driving TFT.
[0070]
From the above description, the aperture ratio can be increased by using the channel capacitance of the driving TFT without providing a large Cs portion in each pixel. In addition, since the channel length × channel width is increased, the variation in the crystallinity of the semiconductors constituting the driving TFT is averaged, thereby reducing the Ion variation in the element itself.
[0071]
Even when the driving TFT is driven in the saturation region, the Vgs-Ids characteristic variation of the driving TFT in each pixel becomes a problem. In that case, the saturation characteristic in the saturation region is improved by making the channel length sufficiently larger than the channel width while keeping the current flowing in the EL element. On the other hand, by increasing the channel length, the current value supplied to the EL decreases. GS Is increased so that a desired current is supplied to the EL element. Therefore V GS Becomes a value well above the threshold, V GS Is less susceptible to threshold variations and I DS Variations can be further reduced. If the saturation characteristics are good by increasing the channel length, I DS Is substantially constant, the same amount of current is supplied to the EL element even if the resistance changes due to deterioration of the EL element.
[0072]
FIG. 14 shows variations in measured Ids of TFTs in which channel length × channel width is increased and the channel length is sufficiently increased with respect to the channel width.
[0073]
| V GS | Is 5V, | V DS Is fixed at 8V, and elements with different channel lengths / channel widths are used by using a plurality of elements. DS Was measured. As can be seen in FIG. DS This variation can be suppressed by increasing the area of the channel formation region (channel length × channel width). In addition, | V in FIG. GS When comparing 5V and 8V, V GS Is V th If I greatly exceed DS It can be seen that the variation of can be suppressed.
[0074]
[Example 2]
Here, the configuration and layout of a two-transistor pixel will be described with reference to FIG.
[0075]
1 includes a source signal line 5001, a gate signal line 5002, a current supply line 5003, a switching TFT 5004, a driving TFT 5005, a pixel electrode 5006, and a partition wall other than the light emitting area 5007, and the gate of the switching TFT 5004 The electrode is connected to the gate signal line 5002, the source side is connected to the source signal line 5001, and the drain side is connected to the gate electrode of the driving TFT 5005. The source side of the driving TFT 5005 is connected to the current supply line 5003, and the drain side is connected to the pixel electrode 5006.
[0076]
Of the partition walls that cover areas other than the light emitting area 5007, the partition walls provided between the adjacent left and right pixels serve as a separate margin required for separately coloring RGB. The width of the partition provided between the adjacent left and right pixels is preferably about 30 μm.
[0077]
At this time, since the partition wall for the separate coating margin cannot be used as a light emitting area, the source signal line 5001 and the current supply line 5003 are arranged under a width of 30 μm. Next, a driving TFT 5005 is disposed under the source signal line 5001 and the current supply line 5003. At this time, it may be under a source signal line or a current supply line of an adjacent pixel.
[0078]
The storage capacitor can also serve as a channel capacitor formed of the gate insulating film 5015 between the semiconductor layer 5014 and the gate electrode 5016 of the driving TFT 5005.
[0079]
At this time, with a digital gradation with a short holding time, the holding time is 1 ms, the driving TFT Ioff = 1 pA, and the change amount ΔVgs of the driving TFT when the light emission luminance of the EL element changes by one gradation is 0. It is about 02V. From equation (3), the required storage capacity at that time is 50 fF. When the thickness of the gate insulating film 5015 is 120 nm and the relative dielectric constant is 4, channel length × channel width = 200 μm 2 The channel capacity is about 60 fF. Therefore, in order to make a sufficient capacity, the channel length × channel width of the driving TFT 5005 is 200 μm. 2 The above is desirable.
[0080]
Further, the larger the channel length × channel width of the driving TFT 5005 is, the smaller the variation of the element itself is. Therefore, it is preferable to aim to increase as much as possible.
[0081]
In the case where the driving TFT 5005 is driven in the saturation region, it is preferable that the channel length is made larger than the channel width so that Vgs is hardly affected by the threshold value. At this time, the channel length / channel width is desirably 5 or more. By increasing the channel length, the saturation region characteristic of the driving TFT becomes flatter. But V GS If V is too large, power consumption increases and the breakdown voltage of the driving TFT becomes a problem. GS It is preferable to adjust the channel length and the channel width so that | is between 4V and 14V.
[0082]
In order to increase the channel length of the driving TFT 5005, it is preferable that the driving TFT 5005 be straightened in a vertical direction like the semiconductor layer 5014. Without decreasing the aperture ratio, the channel length of the driving TFT 5005 can be increased and the channel width can be increased to some extent.
[0083]
If the aperture ratio is high, the current density for the EL element is lowered, leading to a longer life, and the opening has a simple shape, so that it is less susceptible to shrinkage.
[0084]
Although the switching TFT 5004 is a double gate in the drawing, it may be a single gate or three or more multi-gates.
[0085]
FIG. 2A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. FIG. 2B shows a cross section between α and α ′ in FIG. Like the driving TFT 5105, the semiconductor layer may meander in the vertical direction. By setting the semiconductor layer to such a shape, the channel length of the driving TFT 5105 can be further increased without decreasing the aperture ratio.
[0086]
FIG. 3A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. FIG. 3B shows a cross section between α and α ′ in FIG. The semiconductor layer may be U-shaped like the driving TFT 5205. With such a shape of the semiconductor layer, the channel length of the driving TFT 5205 can be increased and the channel width can be increased to some extent without decreasing the aperture ratio.
[0087]
FIG. 4A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. FIG. 4B shows a cross section between α and α ′ in FIG. The semiconductor layer may have a meander shape like the driving TFT 5305. Here, meander has the meaning of “meander: winding and flowing”, and meander shape refers to a state in which the shape of the semiconductor layer is winding. With such a shape of the semiconductor layer, the channel length of the driving TFT 5305 can be increased and the channel width can be increased to some extent without decreasing the aperture ratio.
[0088]
[Example 3]
Here, the configuration and layout of a three-transistor pixel will be described with reference to FIG.
[0089]
An erasing transistor 5506 for SES driving is added, a second gate signal line 5503 for inputting an erasing signal is connected to the gate electrode, a source electrode and a current supply line 5504 are connected, and a drain electrode is switched. The drain electrode of the TFT 5505 is connected to the gate electrode of the driving TFT 5507.
[0090]
In the case of the three-transistor type, two TFTs, a switching TFT 5505 and an erasing TFT 5506, are arranged side by side and linearly between the first gate signal line 5502 and the second gate signal line 5503. The drain region of the switching TFT 5505 and the drain region of the erasing TFT 5506 may be overlapped. At this time, one point of the source region of the switching TFT 5505, one point of the drain region, one point of the source region of the erasing TFT 5506, and one point of the drain region are arranged on one straight line.
[0091]
By arranging as described above, the aperture ratio can be increased, and the opening can also be made a simple shape.
[0092]
FIG. 6A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. FIG. 6B shows a cross section between α and α ′ in FIG. A semiconductor layer may meander in the vertical direction like the driving TFT 5607. When the semiconductor layer has such a shape, the channel length of the driving TFT 5607 can be further increased without decreasing the aperture ratio.
[0093]
FIG. 7A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. In FIG. 7A, FIG. 7B shows a cross section between α and α ′. The semiconductor layer may be U-shaped like the driving TFT 5707. With such a shape of the semiconductor layer, the channel length of the driving TFT 5707 can be increased and the channel width can be increased to some extent without decreasing the aperture ratio.
[0094]
FIG. 8A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. In FIG. 8A, FIG. 8B shows a cross section between α and α ′. A semiconductor layer may have a meander shape like the driving TFT 5807. With such a shape of the semiconductor layer, the channel length of the driving TFT 5807 can be increased and the channel width can be increased to some extent without decreasing the aperture ratio.
[0095]
FIG. 10A illustrates an example in which a semiconductor layer having a different patterning shape is used instead of the semiconductor layer in FIG. FIG. 10B shows a cross section between α and α ′ in FIG. If the size of the semiconductor layer of the driving TFT is set to 5907, and the storage capacitor is not sufficient only by the gate capacitance of the driving TFT, the storage capacitor portion 5910 may be formed. By forming the storage capacitor 5910 below the partition wall 5920, a sufficient storage capacitor can be obtained without decreasing the aperture ratio.
[0096]
Further, in the pixel having the configuration shown in Embodiment 2 and this embodiment, the driving TFT is operated in the saturation region, so that the gate TFT of the driving TFT can be connected regardless of the source-drain voltage of the driving TFT. The current value supplied to the EL element can be controlled only by the voltage between the sources. In this case, since the driving TFT can function as a constant current source, there is no need to add a current source circuit to the driving circuit that is integrally formed around the pixel portion of the light emitting device or supplied externally. Can also contribute to space saving.
[0097]
[Example 4]
As shown in FIG. 9A, when a light emitting device is used as a display portion of an electronic device such as a mobile phone, it is built in the form of a module 901. Here, the module 901 indicates a form in which a light emitting device is connected to a substrate on which a signal processing LSI, a memory, and the like for driving the light emitting device are mounted.
[0098]
The module 901 is shown as a block diagram in FIG. The module 901 includes a power supply unit 911, a signal control unit 912, an FPC 913, and a light emitting device 914. The power supply unit 911 generates and supplies power of a plurality of desired voltage values to the source signal line drive circuit, the gate signal line drive circuit, the light emitting element, and the like from the power supplied from the external battery. The signal control unit 912 receives a video signal and a synchronization signal, converts various signals so that the light emitting device 901 can process them, and drives a source signal line driver circuit and a gate signal line driver circuit. The clock signal is generated.
[0099]
Although the module 901 shown in this embodiment is formed independently of the light emitting device 914, the power supply unit 911, and the signal control unit 912, they may be formed integrally on a substrate.
[0100]
Next, FIG. 11 illustrates a detailed configuration of the light-emitting device 914 included in the module 901 illustrated in FIG.
[0101]
The light-emitting device includes a pixel portion 1003, a source signal line driver circuit 1004, gate signal line driver circuits 1005 and 1006, an FPC 1007, and the like over a substrate 1001. The counter substrate 1002 may be a transparent material such as glass or a metal material. A space between the substrate 1001 and the counter substrate 1002 may be sealed with a filler or the like, and a desiccant or the like may be sealed to prevent deterioration of the EL element due to moisture.
[0102]
FIG. 11B shows a top view. A pixel portion 1003 is disposed in the central portion of the substrate, and a source signal line driver circuit 1004 and gate signal line driver circuits 1005 and 1006 are disposed in the periphery thereof. Around the source signal line driver circuit 1004, a current supply line 1011, a counter electrode contact 1013, and the like are arranged. The counter electrode of the EL element is formed on the entire surface of the pixel portion, and a counter potential is applied through the FPC 1007 by the counter electrode contact 1013. Signals for driving the source signal line driver circuit 1004, the gate signal line driver circuits 1005 and 1006, and power supply are supplied from the outside through the FPC 1007.
[0103]
In addition, a sealant 1014 for attaching the substrate 1001 and the counter substrate 1002 overlaps part of the source signal line driver circuit 1004 and the gate signal line driver circuits 1005 and 1006 as shown in FIG. It may be formed. In this way, a narrow frame of the light emitting device can be expected.
[0104]
[Example 5]
In this example, an example in which a light-emitting device is manufactured using the present invention will be described with reference to FIGS.
[0105]
FIG. 19 is a top view of a light-emitting device formed by sealing an element substrate on which a TFT is formed with a sealing material, and FIG. 19B is a cross-sectional view taken along line AA ′ of FIG. FIG. 19C is a cross-sectional view taken along line BB ′ of FIG.
[0106]
A sealant 4009 is provided so as to surround the pixel portion 4002 provided over the substrate 4001, the source signal line driver circuit 4003, and the first and second gate signal line driver circuits 4004a and 4004b. In addition, a sealing material 4008 is provided over the pixel portion 4002, the source signal line driver circuit 4003, and the first and second gate signal line driver circuits 4004a and 4004b. Therefore, the pixel portion 4002, the source signal line driver circuit 4003, and the first and second gate signal line driver circuits 4004a and 4004b are sealed with the filler 4210 by the substrate 4001, the sealant 4009, and the sealant 4008. ing. The sealant 4009 may be provided so as to overlap with part of the source signal line driver circuit 4003 and the first and second gate signal line driver circuits 4004a and 4004b.
[0107]
The pixel portion 4002, the source signal line driver circuit 4003, and the first and second gate signal line driver circuits 4004a and 4004b provided over the substrate 4001 include a plurality of TFTs. In FIG. 19B, a TFT (note that an N-channel TFT and a P-channel TFT are shown here) 4201 and a pixel included in the source signal line driver circuit 4003 formed over the base film 4010 are typically shown. A TFT 4202 included in the portion 4002 is illustrated.
[0108]
An interlayer insulating film (planarization film) 4301 is formed on the TFTs 4201 and 4202, and a pixel electrode (anode) 4203 electrically connected to the drain of the TFT 4202 is formed thereon. As the pixel electrode 4203, a transparent conductive film having a large work function is used. As the transparent conductive film, a compound of indium oxide and tin oxide, a compound of indium oxide and zinc oxide, zinc oxide, tin oxide, or indium oxide can be used. Moreover, you may use what added the gallium to the said transparent conductive film.
[0109]
An insulating film 4302 is formed over the pixel electrode 4203, and an opening is formed over the pixel electrode 4203 in the insulating film 4302. In this opening, an organic light emitting layer 4204 is formed on the pixel electrode 4203. A known organic light emitting material or inorganic light emitting material can be used for the organic light emitting layer 4204. The organic light emitting material includes a low molecular (monomer) material and a high molecular (polymer) material, either of which may be used.
[0110]
As a method for forming the organic light emitting layer 4204, a known vapor deposition technique or coating technique may be used. The structure of the organic light emitting layer may be a laminated structure or a single layer structure by freely combining a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, or an electron injection layer.
[0111]
On the organic light emitting layer 4204, a cathode 4205 made of a light-shielding conductive film (typically a conductive film containing aluminum, copper or silver as a main component or a laminated film of these with another conductive film) is formed. The In addition, it is desirable to remove moisture and oxygen present at the interface between the cathode 4205 and the organic light emitting layer 4204 as much as possible. Therefore, it is necessary to devise a method in which the organic light emitting layer 4204 is formed in a nitrogen or rare gas atmosphere and the cathode 4205 is formed without being exposed to oxygen or moisture. In this embodiment, the above-described film formation can be performed by using a multi-chamber type (cluster tool type) film formation apparatus. The cathode 4205 is given a predetermined voltage.
[0112]
As described above, the light emitting element 4303 including the pixel electrode (anode) 4203, the organic light emitting layer 4204, and the cathode 4205 is formed. A protective film 4303 is formed over the insulating film 4302 so as to cover the light emitting element 4303. The protective film 4303 is effective in preventing oxygen, moisture, and the like from entering the light emitting element 4303.
[0113]
Reference numeral 4005a denotes a lead wiring connected to the power supply line, which is connected to the first electrode of the TFT 4202. The lead wiring 4005 a passes between the sealant 4009 and the substrate 4001 and is electrically connected to the FPC wiring 4301 included in the FPC 4006 through the anisotropic conductive film 4300.
[0114]
As the sealing material 4008, a glass material, a metal material (typically a stainless steel material), a ceramic material, or a plastic material (including a plastic film) can be used. As the plastic material, an FRP (Fiberglass-Reinforced-Plastics) plate, a PVF (polyvinyl fluoride) film, a mylar film, a polyester film, or an acrylic resin film can be used. A sheet having a structure in which an aluminum foil is sandwiched between PVF films or mylar films can also be used.
[0115]
However, when the light emission direction from the light emitting element is directed toward the cover material, the cover material must be transparent. In that case, a transparent material such as a glass plate, a plastic plate, a polyester film or an acrylic film is used.
[0116]
Further, as the filler 4103, in addition to an inert gas such as nitrogen or argon, an ultraviolet curable resin or a thermosetting resin can be used. PVC (polyvinyl chloride), acrylic, polyimide, epoxy resin, silicon resin, PVB (Polyvinyl butyral) or EVA (ethylene vinyl acetate) can be used. In this example, nitrogen was used as the filler.
[0117]
In order to expose the filler 4103 to a hygroscopic substance (preferably barium oxide) or a substance capable of adsorbing oxygen, a recess 4007 is provided on the surface of the sealing material 4008 on the substrate 4001 side to adsorb the hygroscopic substance or oxygen. A possible substance 4207 is placed. In order to prevent the hygroscopic substance or the substance 4207 capable of adsorbing oxygen from scattering, the concave part cover material 4208 holds the hygroscopic substance or the substance 4207 capable of adsorbing oxygen in the concave part 4007. Note that the concave cover material 4208 has a fine mesh shape, and is configured to allow air and moisture to pass therethrough but not a hygroscopic substance or a substance 4207 capable of adsorbing oxygen. By providing the hygroscopic substance or the substance 4207 capable of adsorbing oxygen, deterioration of the light-emitting element 4303 can be suppressed.
[0118]
As shown in FIG. 19C, the conductive film 4203a is formed so as to be in contact with the lead wiring 4005a at the same time as the pixel electrode 4203 is formed.
[0119]
The anisotropic conductive film 4300 has a conductive filler 4300a. By thermally pressing the substrate 4001 and the FPC 4006, the conductive film 4203a on the substrate 4001 and the FPC wiring 4301 on the FPC 4006 are electrically connected by the conductive filler 4300a.
[0120]
[Example 6]
In this example, a manufacturing process of the light-emitting device having the structure shown in Examples 2 and 3 will be described with reference to FIGS. Note that only the pixel portion will be described in the description, but the manufacturing process is not limited to this in the driver circuit portion, and description thereof is omitted here.
[0121]
First, as shown in FIG. 22A, a base film made of a silicon oxide film, a silicon nitride film, or a silicon oxynitride film over a substrate made of glass such as barium borosilicate glass or alumino borosilicate glass (see FIG. (Not shown). Thereafter, the crystalline semiconductor film obtained by crystallizing the semiconductor film having an amorphous structure using a laser crystallization method or a known thermal crystallization method is patterned into a desired shape to obtain island-shaped semiconductor layers 2201 and 2202 ( FIG. 22 (A)).
[0122]
Subsequently, a gate insulating film (not shown) that covers the island-like semiconductor layers 2201 and 2202 is formed. Thereafter, a conductive film for forming a gate electrode is formed using an element selected from Ta, W, Ti, Mo, Al, Cu, or the like, or an alloy material or a compound material containing the element as a main component. After that, patterning is performed in a desired shape to obtain gate electrodes 2203 and 2204 (2203 also serves as a gate signal line) (FIG. 22B).
[0123]
Subsequently, an insulating film (not shown) that also serves to planarize the substrate surface is formed, and a pixel electrode 2205 is formed thereon. The pixel electrode 2205 is a reflective electrode when the display surface is on the front side of the figure, and is a transparent electrode having light transmittance when the display surface is on the back side of the figure. The material of the former reflective electrode is MgAg or the like, and the latter transparent conductive film is typically ITO or the like. The pixel electrode 2205 also has a desired shape by patterning after a film made of the material is formed.
[0124]
Thereafter, contact holes 2206 reaching the semiconductor layers 2201 and 2202 and the gate electrode 2204 are opened, and wirings 2207 to 2209 (of which 2207 is a source signal line and 2208 is a current supply line) are formed. Here, the wiring 2209 and the pixel electrode 2206 are in contact with each other so as to overlap each other (FIG. 22C).
[0125]
Subsequently, a partition wall (not shown) is formed between adjacent pixels, and a portion to be the light emitting area 2210 is opened by etching (FIG. 22D). Thereafter, an EL layer is formed in the opening to complete.
[0126]
[Example 7]
Since a light-emitting device using a light-emitting element is a self-luminous type, it has excellent visibility in a bright place and a wide viewing angle compared to a liquid crystal display. Therefore, it can be used for display portions of various electronic devices.
[0127]
As an electronic device using the light emitting device of the present invention, a video camera, a digital camera, a goggle type display (head mounted display), a navigation system, a sound reproduction device (car audio, audio component, etc.), a notebook type personal computer, a game device, A portable information terminal (mobile computer, mobile phone, portable game machine, electronic book, etc.), an image playback device equipped with a recording medium (specifically, a recording medium such as a Digital Versatile Disc (DVD), etc.) A device provided with a display capable of displaying). In particular, it is desirable to use a light-emitting device for a portable information terminal that often has an opportunity to see a screen from an oblique direction because the wide viewing angle is important. Specific examples of these electronic devices are shown in FIGS.
[0128]
FIG. 21A illustrates an EL display including a housing 3001, a support base 3002, a display portion 3003, a speaker portion 3004, a video input terminal 3005, and the like. The light emitting device of the present invention can be used for the display portion 3003. Since the light-emitting device is a self-luminous type, a backlight is not necessary, and a display portion thinner than a liquid crystal display can be obtained. The light emitting element display device includes all information display devices such as a personal computer, a TV broadcast receiver, and an advertisement display.
[0129]
FIG. 21B shows a digital still camera, which includes a main body 3101, a display portion 3102, an image receiving portion 3103, operation keys 3104, an external connection port 3105, a shutter 3106, and the like. The light emitting device of the present invention can be used for the display portion 3102.
[0130]
FIG. 21C illustrates a laptop personal computer, which includes a main body 3201, a housing 3202, a display portion 3203, a keyboard 3204, an external connection port 3205, a pointing mouse 3206, and the like. The light emitting device of the present invention can be used for the display portion 3203.
[0131]
FIG. 21D illustrates a mobile computer, which includes a main body 3301, a display portion 3302, a switch 3303, operation keys 3304, an infrared port 3305, and the like. The light emitting device of the present invention can be used for the display portion 3302.
[0132]
FIG. 21E shows a portable image reproducing device (specifically, a DVD reproducing device) provided with a recording medium, which includes a main body 3401, a housing 3402, a display portion A3403, a display portion B3404, a recording medium (DVD or the like). A reading unit 3405, operation keys 3406, a speaker unit 3407, and the like are included. Although the display portion A 3403 mainly displays image information and the display portion B 3404 mainly displays character information, the light-emitting device of the present invention can be used for the display portions A, B 3403, and 3404. Note that an image reproducing device provided with a recording medium includes a home game machine and the like.
[0133]
FIG. 21F illustrates a goggle type display (head mounted display), which includes a main body 3501, a display portion 3502, and an arm portion 3503. The light emitting device of the present invention can be used for the display portion 3502.
[0134]
FIG. 21G shows a video camera, which includes a main body 3601, a display portion 3602, a housing 3603, an external connection port 3604, a remote control receiving portion 3605, an image receiving portion 3606, a battery 3607, an audio input portion 3608, operation keys 3609, and the like. . The light-emitting device of the present invention can be used for the display portion 3602.
[0135]
FIG. 21H illustrates a mobile phone, which includes a main body 3701, a housing 3702, a display portion 3703, an audio input portion 3704, an audio output portion 3705, operation keys 3706, an external connection port 3707, an antenna 3708, and the like. The light emitting device of the present invention can be used for the display portion 3703. Note that the display portion 3703 can suppress current consumption of the mobile phone by displaying white characters on a black background.
[0136]
If the light emission luminance of the organic light emitting material is increased in the future, the light including the output image information can be enlarged and projected by a lens or the like and used in a front type or rear type projector.
[0137]
In addition, the electronic devices often display information distributed through electronic communication lines such as the Internet and CATV (cable television), and in particular, opportunities to display moving image information are increasing. Since the organic light emitting material has a very high response speed, the light emitting device is preferable for displaying moving images.
[0138]
In addition, since the light emitting device consumes power in the light emitting portion, it is desirable to display information so that the light emitting portion is minimized. Therefore, when a light emitting device is used for a display unit mainly including character information, such as a portable information terminal, particularly a mobile phone or a sound reproduction device, it is driven so that character information is formed by the light emitting part with the non-light emitting part as the background. It is desirable to do.
[0139]
As described above, the applicable range of the present invention is so wide that it can be used for electronic devices in various fields. In addition, the electronic apparatus of this embodiment may use the light emitting device having any structure shown in Embodiments 1 to 6.
[0140]
【The invention's effect】
As in the present invention, by increasing the size of the driving TFT and increasing the channel length L with respect to the channel width W, a TFT having excellent current characteristics in the saturation region can be obtained for driving each pixel. It can be used as a TFT, and variations in the driving TFT can hardly affect the light emission luminance of the EL element. In addition, a high aperture ratio can be expected by arranging the storage capacitor at a position that is not covered by the channel capacitance of the driving TFT and overlaps with the partition outside the light emitting area.
[Brief description of the drawings]
FIG. 1 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 2 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 3 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 4 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 5 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 6 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 7 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 8 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 9 illustrates an example in which a light-emitting device and a peripheral circuit are modularized and used in an electronic device.
FIG. 10 is a diagram showing a layout example of a pixel portion manufactured using the present invention.
FIG. 11 is a schematic diagram of a light emitting device.
FIG. 12 is a diagram showing an example of a two-transistor pixel laid out by a conventional method.
FIG. 13 is a graph showing the channel capacity of an actually measured TFT.
FIG. 14 TFT I measured DS The figure which shows variation.
FIG 15 illustrates an operating point of an EL element.
FIGS. 16A and 16B are diagrams for explaining deterioration of an EL element and an influence on luminance when an operation range of a driving TFT is a linear region and a saturation region. FIGS.
FIG. 17 is a diagram for explaining the behavior of electric charges around a channel during TFT operation.
FIG. 18 is a diagram for explaining elements of capacitance in each part of a TFT.
FIGS. 19A and 19B are a top view and a cross-sectional view of a light-emitting device. FIGS.
FIG. 20 is a diagram showing a matrix of two-transistor pixels.
FIG. 21 illustrates an example of an electronic device to which the present invention can be applied.
FIG. 22 is a diagram for simply explaining a manufacturing process of a pixel portion.

Claims (8)

駆動用トランジスタと接続する発光素子を有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極と半導体層と、それらの間に設けられた絶縁膜によって設けられ、
前記ゲート電極と重なった位置における前記半導体層の形状は、U字状、S字状あるいはミアンダ状であることを特徴とする発光装置。
A light emitting device comprising a plurality of pixels each having a light emitting element connected to a driving transistor,
The capacitor for holding the gate-source voltage of the driving transistor is provided by a gate electrode and a semiconductor layer of the driving transistor, and an insulating film provided therebetween,
The light emitting device according to claim 1, wherein a shape of the semiconductor layer at a position overlapping with the gate electrode is U-shaped, S-shaped or meandered.
駆動用トランジスタと接続する発光素子を有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極とソース領域を形成する半導体層、あるいは前記駆動用トランジスタのゲート電極とドレイン領域を形成する半導体層と、前記ゲート電極と前記半導体層との間に設けられた絶縁膜によって設けられ、
前記ゲート電極と重なった位置における半導体層の形状は、U字状、S字状あるいはミアンダ状であることを特徴とする発光装置。
A light emitting device comprising a plurality of pixels each having a light emitting element connected to a driving transistor,
The capacitor for holding the gate-source voltage of the driving transistor is a semiconductor layer that forms a gate electrode and a source region of the driving transistor, or a semiconductor that forms a gate electrode and a drain region of the driving transistor. A layer, and an insulating film provided between the gate electrode and the semiconductor layer,
The light emitting device according to claim 1, wherein a shape of the semiconductor layer at a position overlapping with the gate electrode is U-shaped, S-shaped or meandered.
駆動用トランジスタと接続する発光素子を有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極と半導体層と、それらの間に設けられた絶縁膜によって設けられ、
前記駆動用トランジスタのチャネル領域の形状はU字状、S字状あるいはミアンダ状であることを特徴とする発光装置。
A light emitting device comprising a plurality of pixels each having a light emitting element connected to a driving transistor,
The capacitor for holding the gate-source voltage of the driving transistor is provided by a gate electrode and a semiconductor layer of the driving transistor, and an insulating film provided therebetween,
The light emitting device according to claim 1, wherein the channel region of the driving transistor is U-shaped, S-shaped, or meandered.
駆動用トランジスタと接続する発光素子を有する画素を、複数個備えた発光装置であって、
前記駆動用トランジスタのゲート・ソース間電圧を保持するための容量部は、前記駆動用トランジスタのゲート電極とソース領域を形成する半導体層、あるいは前記駆動用トランジスタのゲート電極とドレイン領域を形成する半導体層と、前記ゲート電極と前記半導体層との間に設けられた絶縁膜によって設けられ、
前記駆動用トランジスタのチャネル領域の形状はU字状、S字状あるいはミアンダ状であることを特徴とする発光装置。
A light emitting device comprising a plurality of pixels each having a light emitting element connected to a driving transistor,
The capacitor for holding the gate-source voltage of the driving transistor is a semiconductor layer that forms a gate electrode and a source region of the driving transistor, or a semiconductor that forms a gate electrode and a drain region of the driving transistor. A layer, and an insulating film provided between the gate electrode and the semiconductor layer,
The light emitting device according to claim 1, wherein the channel region of the driving transistor is U-shaped, S-shaped, or meandered.
請求項1乃至請求項4のいずれか1項において、
前記駆動用トランジスタのゲート・ソース間電圧がVGS、ソース・ドレイン間電圧がVDS、しきい値電圧がVthであるとき、
|VDS|<|VGS|−|Vth|となるように駆動されることを特徴とする発光装置。
In any one of Claims 1 thru | or 4,
When the gate-source voltage of the driving transistor is V GS , the source-drain voltage is V DS , and the threshold voltage is V th ,
A light-emitting device that is driven so that | V DS | <| V GS | − | V th |.
請求項1乃至請求項4のいずれか1項において、
前記駆動用トランジスタのゲート・ソース間電圧がVGS、ソース・ドレイン間電圧がVDS、しきい値電圧がVthであるとき、
|VDS|≧|VGS|−|Vth|、かつ|VGS|が、4V以上14V以下となるように駆動されることを特徴とする発光装置。
In any one of Claims 1 thru | or 4,
When the gate-source voltage of the driving transistor is V GS , the source-drain voltage is V DS , and the threshold voltage is V th ,
| V DS | ≧ | V GS | − | V th | and | V GS | are driven so as to be 4 V or more and 14 V or less.
請求項1乃至請求項6のいずれか1項において、
前記駆動用トランジスタのチャネル長がL、チャネル幅がWであるとき、
R、G、Bの発光色を有するそれぞれの画素が有する前記駆動用トランジスタにおけるL/Wは互いに異なることを特徴とする発光装置。
In any one of Claims 1 thru | or 6,
When the channel length of the driving transistor is L and the channel width is W,
L / W in the said drive transistor which each pixel which has the luminescent color of R, G, B differs from each other, The light-emitting device characterized by the above-mentioned.
請求項1乃至請求項7のいずれか1項に記載の発光装置を用いたことを特徴とする電子機器。An electronic apparatus using the light-emitting device according to claim 1.
JP2003008719A 2002-01-18 2003-01-16 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE Expired - Lifetime JP3706107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008719A JP3706107B2 (en) 2002-01-18 2003-01-16 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002010848 2002-01-18
JP2002-10848 2002-01-18
JP2002025065 2002-02-01
JP2002-25065 2002-02-01
JP2003008719A JP3706107B2 (en) 2002-01-18 2003-01-16 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003055899A Division JP3939666B2 (en) 2002-01-18 2003-03-03 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Publications (2)

Publication Number Publication Date
JP2003295793A JP2003295793A (en) 2003-10-15
JP3706107B2 true JP3706107B2 (en) 2005-10-12

Family

ID=29255079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008719A Expired - Lifetime JP3706107B2 (en) 2002-01-18 2003-01-16 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Country Status (1)

Country Link
JP (1) JP3706107B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1432984A (en) * 2002-01-18 2003-07-30 株式会社半导体能源研究所 Light emitting device
JP4720069B2 (en) 2002-04-18 2011-07-13 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP4530083B2 (en) * 2002-06-07 2010-08-25 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP4586997B2 (en) * 2003-02-20 2010-11-24 セイコーエプソン株式会社 Electro-optic device
JP3791618B2 (en) 2003-02-20 2006-06-28 セイコーエプソン株式会社 ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP3906930B2 (en) * 2003-02-20 2007-04-18 セイコーエプソン株式会社 ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP3945525B2 (en) * 2003-02-20 2007-07-18 セイコーエプソン株式会社 Electro-optic device
JP4562997B2 (en) 2003-03-26 2010-10-13 株式会社半導体エネルギー研究所 Element substrate and light emitting device
JP4574127B2 (en) 2003-03-26 2010-11-04 株式会社半導体エネルギー研究所 Element substrate and light emitting device
EP1607931B1 (en) 2003-03-26 2014-01-08 Semiconductor Energy Laboratory Co., Ltd. Device substrate and light-emitting device
JP4583732B2 (en) 2003-06-30 2010-11-17 株式会社半導体エネルギー研究所 Display device and driving method thereof
US8552933B2 (en) 2003-06-30 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method of the same
JP4942310B2 (en) * 2005-04-27 2012-05-30 三洋電機株式会社 Display device
JP2007148215A (en) * 2005-11-30 2007-06-14 Seiko Epson Corp Light-emitting device and electronic apparatus
JP4939045B2 (en) 2005-11-30 2012-05-23 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5114841B2 (en) * 2005-11-30 2013-01-09 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP4661557B2 (en) 2005-11-30 2011-03-30 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
US7863612B2 (en) 2006-07-21 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Display device and semiconductor device
KR101274037B1 (en) * 2006-09-25 2013-06-12 삼성디스플레이 주식회사 Display apparatus
US7977678B2 (en) * 2007-12-21 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
KR20220135256A (en) 2011-07-22 2022-10-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
KR20130089044A (en) * 2012-02-01 2013-08-09 삼성디스플레이 주식회사 Semiconductor device and flat panel display device having the same
KR101486038B1 (en) * 2012-08-02 2015-01-26 삼성디스플레이 주식회사 Organic light emitting diode display
TWI653755B (en) 2013-09-12 2019-03-11 日商新力股份有限公司 Display device, manufacturing method thereof, and electronic device
KR101968666B1 (en) * 2014-09-01 2019-04-15 삼성디스플레이 주식회사 Organic light emitting diode display device and manufacturing method thereof
US9941489B2 (en) 2014-09-01 2018-04-10 Samsung Display Co., Ltd. Organic light emitting diode display device and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680828B2 (en) * 1985-10-18 1994-10-12 株式会社日立製作所 Thin film transistor
JP2000223715A (en) * 1998-11-25 2000-08-11 Semiconductor Energy Lab Co Ltd Manufacture of thin film transistor and manufacture of active matrix substrate
JP3686769B2 (en) * 1999-01-29 2005-08-24 日本電気株式会社 Organic EL element driving apparatus and driving method
JP3904807B2 (en) * 1999-06-04 2007-04-11 株式会社半導体エネルギー研究所 Display device
JP2001196594A (en) * 1999-08-31 2001-07-19 Fujitsu Ltd Thin-film transistor, liquid-crystal display substrate, and manufacturing method therefor
JP2001109399A (en) * 1999-10-04 2001-04-20 Sanyo Electric Co Ltd Color display device
JP4854840B2 (en) * 1999-10-12 2012-01-18 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US6384427B1 (en) * 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP4776792B2 (en) * 2000-02-28 2011-09-21 株式会社半導体エネルギー研究所 Light emitting device and electric appliance
JP3794240B2 (en) * 2000-05-10 2006-07-05 セイコーエプソン株式会社 Active matrix substrate and manufacturing method thereof, electro-optical device and manufacturing method thereof, and electronic apparatus
JP4149168B2 (en) * 2001-11-09 2008-09-10 株式会社半導体エネルギー研究所 Light emitting device
JP2003195810A (en) * 2001-12-28 2003-07-09 Casio Comput Co Ltd Driving circuit, driving device and driving method for optical method

Also Published As

Publication number Publication date
JP2003295793A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP6239684B2 (en) Light emitting device
JP3706107B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
KR101324759B1 (en) Light emitting device
JP4034122B2 (en) Light emitting device and element substrate
JP3939666B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP4490403B2 (en) Light emitting device
JP2010160494A (en) Light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Ref document number: 3706107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term