JP3705534B2 - Novel feather fine powder and method for producing the same - Google Patents

Novel feather fine powder and method for producing the same Download PDF

Info

Publication number
JP3705534B2
JP3705534B2 JP18133199A JP18133199A JP3705534B2 JP 3705534 B2 JP3705534 B2 JP 3705534B2 JP 18133199 A JP18133199 A JP 18133199A JP 18133199 A JP18133199 A JP 18133199A JP 3705534 B2 JP3705534 B2 JP 3705534B2
Authority
JP
Japan
Prior art keywords
feathers
feather
fine powder
powder
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18133199A
Other languages
Japanese (ja)
Other versions
JP2001011313A (en
Inventor
光敏 中嶋
浩志 鍋谷
雅之 水野
義剛 名達
Original Assignee
独立行政法人食品総合研究所
株式会社ジャニフ・テック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人食品総合研究所, 株式会社ジャニフ・テック filed Critical 独立行政法人食品総合研究所
Priority to JP18133199A priority Critical patent/JP3705534B2/en
Publication of JP2001011313A publication Critical patent/JP2001011313A/en
Application granted granted Critical
Publication of JP3705534B2 publication Critical patent/JP3705534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来、報告されているような単に羽毛を可溶化、低分子化してなる羽毛粉末体や機械的粉砕法により得られる羽毛微細粉末等の既存の羽毛微細化粉末とは本質的に区別される全く新しいタイプの羽毛微粉体に関するものである。更に詳しくは、本発明は、羽毛のβ構造を保持した微粉体であって、羽毛を微弱アルカリ処理により低分子化することなく微細化処理し、必要により粉砕処理してなる新規な羽毛微粉体、当該羽毛微粉体を簡便な操作で、低コスト、高効率に製造することを可能とする上記羽毛微粉体の製造方法、及び当該羽毛微粉体の加工品に関するものである。
本発明は、羽毛を、単にアルカリで可溶化、低分子化したり、機械的粉砕法で微粉化したりするのではなく、羽毛を微弱アルカリ処理により低分子化することなく微細化処理して、羽毛のβ構造を保持した微粉体に導くことを特徴とするものであり、本発明は、これにより、従来の羽毛処理技術のような大量の溶剤の使用による環境への負荷の恐れが全くなく、羽毛をいわゆる環境負荷ゼロ型の新素材として多角的に活用することを可能とする、新しい羽毛資源の高度有効利用技術を提供するものである。
【0002】
【従来の技術】
羽毛を構成している物質の一成分であるケラチンは、硬蛋白質の一種であり、水その他の有機溶媒に不溶で、物理・化学的に安定であり、強度、揆水性、保温性、耐光性などに優れており、羽毛の他、獣毛、羊毛、毛髪、爪、ひづめ、角、鱗、皮膚などに、高率で含有されている。
従来、羽毛の利用技術として、様々な方法が提案されているが、そのほとんどは、このケラチン蛋白質を可溶化、低分子化する方法に関するものである。
我が国で1年間に発生する羽毛の量は、ブロイラーを中心に約4万トンに達するが、その利用については、全く道が拓けていないというのが現状である。
食鳥処理場等から排出される羽毛には、血液をはじめとする大量の有機物を含む水溶液が抱合されており、これらは、野外に放置された場合には、厳寒期以外は、数日中に悪臭を放ち、公害の元凶の一とされている。ただし、この場合においても、悪臭の源は、抱合水に含まれる鶏由来の有機成分、即ち、血液、体液、内臓、排せつ物等の腐敗臭であり、羽毛自体は変化を受けず、現実的な処分方法として、羽毛のほぼ全量が産業廃棄物として埋め立てにより処理されているのが実状である。
【0003】
羽毛の他の利用方法として、フェザーミールがあり、当該フェザーミールは、羽毛の積極的な活用法として喧伝されているが、その生産性の低さ(羽毛からの歩留りは30%、原単位3.3、1万羽の鶏を処理しても、フェザーミールの収量は、約600kg)から、また、その市場性の低さもあって、妙味のある事業とは考え難い状況にある。
フェザーミールの組成は、水分4〜5%、粗蛋白90〜93%、人工消化率82〜84%、アミノ酸は、シスチン、ロイシンが多く、リジン、メチオニン、トリプトファンが少なく、アミノ酸バランスが悪いために、当該フェザーミールの飼料成分としての配合比率は、鶏の場合で2〜5%、豚の場合で5%が限界である。
フェザーミールは、国内における実際の使用量は明確ではないが、主として米国から輸入されている。ただし、飼料成分の表示義務に伴うイメージダウンへの懸念から、その需要は漸減傾向にあるといえる。
【0004】
近年、南米を中心とする海産物の漁獲高の中で、特に“いわし”の漁獲高の減少が続き、飼料用途の蛋白源の確保が困難となり、このことが、飼料価格、ひいては食肉製品の高騰につながっている。他方、生活水準の向上から、世界的な食肉製品への需要の増加がこの悪循環に拍車をかけ、これらの問題は、深刻な様相を呈してきている。
【0005】
これらの分野における先行技術として、例えば、羽毛の有効利用に関する報告は、科学文献、論文、特許文献等を含めて膨大な数にのぼるが、その技術内容を大別すると、概略、次のように分類される。
(羽毛の加工、利用技術)
・粉砕(機械的粉砕法による微細化) → 新機能素材・改質剤
・アルカリ溶剤 → リン酸中和 → 有機質肥料
・前処理 → 酵素処理 → 調味料、飼・肥料、化粧品
・前処理 → 蛋白・ペプチド → 新素材
【0006】
(1) 新機能素材・改質剤
この分野では、羽毛微粉末の粉体特性を利用した、新機能素材、表面改質剤としての活用が報告されている(特開平6−345976号公報、Chemistry Express,8,537−540(1993))。
上記羽毛微粉末は、粉砕機で粉砕して調製したものであり、調製プロセスが複雑になることが否めない。
【0007】
(2) 有機質肥料
この分野では、代表的なものとして、例えば、有機質肥料及びその製造方法が報告されている(特開平9−118576号公報)。羽毛を肥料化するには、羽毛を一旦溶解しなければならないという難点があるが、羽毛の肥料化は、羽毛の大量消費につながる可能性がある。
【0008】
(3) 調味料、飼・肥料、化粧品、新素材
この分野では、「蛋白・ペプチド」に導いて新素材として活用する方法を含め、羽毛を多様な手法で改質する方法が提案されており、例えば、酵素の組み合わせによる調味料の製造(特開平6−46871号公報)、羽毛蛋白とオイルから芳香油を製造する方法(特開平7−115902号公報)等の他、スキンケア、ヘアケアなどの化粧品基剤への活用の特許文献は、枚挙に暇がないほど存在している。しかし、いずれの場合も、素材の使用量が限られており、羽毛資源の有効利用という観点からは満足のいくものではない。
【0009】
羽毛資源の有効利用の前提となるのは、あくまでも「大量処理」であり、その意味では、大量処理を簡便かつ低コストで実現化できる新しい羽毛製品の生産技術の開発と、羽毛の固有の特質(物理・化学・生物学的安定性、保温・断熱・耐光・はっ水性等の特性)を生かした新しい用途開発こそ、今日の時代の要請に適う方向と考えられる。
【0010】
【発明が解決しようとする課題】
上記のとおり、羽毛は貴重な蛋白成分より成る重要な未利用資源でありながら、その安定性のゆえに、産業廃棄物として専ら埋め立てにより処理されてきた。そして、数多の先行する研究報告、特許文献の存在にも拘わらず、実体的な利用が未だ達成されていない現状は、先人の努力が、現実の用途に未だ結びついていない証しともいえる。
羽毛は多孔性を有し、その極めて優れた特性(物性)が鳥類全般の保護(例えば、保温、保冷、放熱、軽量、耐光、耐水など)に役立ってきた。そして、その微粉体が、素材として有用なことは、上記特許文献等においても明らかにされている。しかし、羽毛の“軽い”という特性が、その微粉化の大きな妨げとなってきた。
【0011】
従前の羽毛の粉砕は、主として石臼式回転磨砕とボールミル式磨砕によって行われている。しかし、これらの方法では、使用するグラインダー素材の磨耗分の混入が著しい(通常、重量ベースで粉砕物の10〜25%)こと、物理的な微細化工程を通過することにより、羽毛に固有の内部中空構造の部分的な破壊は避けえないこと、等から、羽毛本来の構造的特性を有する羽毛微粉末の大量取得は、極めて困難であった。そして、このような粉砕法による微粉体の製造には、制約条件が多く、対象物質の変成防止の観点から、低温で実施する場合には、湿式法によらざるを得ず、仕込み量・処理量が限定され、用いる溶媒が水以外の有機溶媒の場合には、爆発等の要因を加味した配慮が重要となる。また、乾式法による場合も、機械的強度に優れた物質を、無理やり粉砕することになるので、粉砕操作中の発熱を避けるためには、低速での運転が不可欠となる。このような制限因子の掛け合わせに由来する操作条件の制約から、従来の方法による羽毛の大量処理の困難さは容易に理解されるところである。したがって、得られた微粉体は、必然的に高価であり、仮に素材として必要な機能を保持していたとしても、その用途は極めて限定的にならざるを得ない。まさに、この点が、これまでの羽毛の微粉化方法の限界であったと言っても過言ではない。
【0012】
このような現状に鑑み、本発明者らは、産業廃棄物として埋め立てられている羽毛の有効利用は、未利用資源の多角的活用、廃棄物の量的減少化、公害防止の諸点から我国のみならず国際的にもきわめて重要な急務の課題であるとの認識に立って、羽毛の新しい有効利用に関する研究に取り組み、鋭意研究を積み重ねた結果、従来製品とは本質的に別異の新しい羽毛微粉体を開発することに成功して、本発明を完成するに至った。
即ち、本発明は、基本的コンセプトとして、特に、以下のような課題を解決する新技術を確立することを目標として完成されたものである。
(1)羽毛資源の大量処理技術として実用化が可能であること。
(2)従来の羽毛処理技術のように大量の溶剤の使用を伴うことがなく、環境汚染の問題のないいわゆる環境負荷ゼロ型の技術であること。
(3)操作が簡便でかつ低コストの生産方法であること。
(4)羽毛に固有のβ構造を保持した製品を開発すること。
(5)従来の酸化剤、還元剤、酸、アルカリ及び蛋白変性剤などによる化学的可溶化法のように、羽毛を可溶化、低分子化して、α構造とする方法によらない生産方法であること。
(6)羽毛を低分子化することなく微細化処理した微粉体を製造すること。
(7)適宜の粒径を有し、且つ不純物の少ない高品質の羽毛微粉体を製造すること。
【0013】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1) 羽毛のβ構造を保持した粒子径が5〜10×50〜200μmの微粉体を羽毛の微弱アルカリ処理により製造する方法であって、羽毛を0.1〜1%カセイソーダ溶液からなる微弱アルカリ溶液で処理して低分子化することなく微細化処理し、得られた固体生成物を乾燥し、必要により粉砕し、整粒することを特徴とする羽毛微粉体の製造方法。
(2)前記(1)に記載の方法で製造した羽毛微粉体を適宜の形状、構造に成型、加工してなる羽毛微粉体の加工品。
(3)前記(1)に記載の方法で製造した羽毛微粉体からなる紫外線吸収剤。
【0014】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、上記のように、羽毛のβ構造を保持した微粉体であって、羽毛を微弱アルカリ処理により低分子化することなく微細化処理し、必要により粉砕処理してなる羽毛微粉体である。ここで、微弱アルカリ処理とは、水溶液にしたときにアルカリ性を示す化合物、例えば、KOH、NaOH、Ca(OH)2 などの金属水酸化物、酢酸ソーダ、リン酸ソーダ、ソーダ灰(無水炭酸ソーダ)等の塩類等を用いて、これらの微弱アルカリ溶液で処理することを意味する。本発明における微弱アルカリ処理には、中でも、KOH、NaOHに代表される金属水酸化物が好適なものとして使用される。また、本発明における微弱アルカリ処理とは、羽毛を、希薄な金属水酸化物の水溶液、好適には、羽毛を約0.1〜1%のカセイソーダ溶液により低分子化することなく微細化処理することであり、本発明において、羽毛を低分子化することなく微細化処理するとは、後記する実施例に示したようにIR分析により羽毛のβ構造が保持されていることが確認できる範囲で微細化処理することを意味する。本発明は、微弱アルカリ処理により羽毛のβ構造を保持した微粉体を製造するものであり、従来法の化学的可溶化法により調製された粉末がα構造をとるのとは本質的に異なるものであり、また、機械的粉砕法により粉砕した微粉体とも本質的に異なるものである。
【0015】
羽毛原料としては、例えば、廃鶏処理場等より排出される羽毛が代表的なものとして例示されるが、特に制限はなく、羽毛をその前処理として、これを十分に洗浄した後、使用することが好ましい。羽毛の微弱アルカリ処理は、好適には、約0.1〜1%のカセイソーダ溶液で、必要により、適宜、加熱、振盪・攪拌等の機械的処理を施しながら、処理する。この場合、通常、0.1%未満では微弱アルカリ処理の効果が弱くなり、また、1%を上回ると低分子化される可能性が高くなるが、これらの処理条件は、羽毛原料、微弱アルカリ水溶液の種類、濃度、加熱、振盪・攪拌等の条件、β構造の保持等を総合的に勘案して適宜設定する。微弱アルカリ処理時に、加熱、振盪・攪拌等の機械的処理を組み合わせることにより、効率良く微細化処理を行うことができる。ここで重要なことは、後記する実施例に示したように、上記微弱アルカリ処理により羽毛を低分子化することなく微細化処理してIR分析による羽毛のβ構造の保持が確認された微粉体を調製するようにすることである。
【0016】
羽毛を微弱アルカリ溶液で処理して低分子化することなく微細化処理し、得られた固体生成物を、乾燥し、必要により仕上げ粉砕し、整粒を施し、目的の微細化された粒径が5〜10×200μm以下の微粉体を得る。上記生成物として、上記微弱アルカリ処理物の全体又は一部、固体部分を使用することができる。即ち、上記生成物としては、微弱アルカリ処理物の残渣(固体)の部分を用いることができる。次に、得られた生成物を乾燥し、必要により粉砕し、整粒するが、乾燥は、風乾によって行うことが可能であり、短時間に行う場合には、90℃以下で乾燥処理することが望ましい。粉砕、整粒は、例えば、ウイレー粉砕機に篩板(目の開き0.5ミリ以下)を付して行う。上記微弱アルカリ処理物は、その使用目的に応じて、適宜、粉砕、整粒の処理を施すが、上記微弱アルカリ処理物の特性として、当該粉砕、整粒の処理をきわめて容易に実施することが可能であり、上記微弱アルカリ処理物は、簡単な操作で、10μm以下の超微粉体に導くことができる。
本発明において、羽毛を微弱アルカリ処理して低分子化することなく微細化処理して得られた生成物は、製品の使用目的により、ほとんど粉砕処理をすることなく、比較的大きな粒子形態で使用することも適宜可能である。
このように、本発明は、羽毛のβ構造を保持した適宜の粒径の微粉体を羽毛の微弱アルカリ処理と必要により粉砕、整粒処理を組み合わせることにより簡便に製造することを可能にしたことを最大の特徴とするものである。
【0017】
羽毛が、アルカリ(NaOH,KOH)に加熱溶解すること、羽毛に多量に含まれる−S−S−結合を酸化又は還元する薬剤を併用すると、羽毛の溶解が容易になることは、豊田らによって、明らかにされてきた(例えば、豊田ら、皮革化学、12、117(1966))。
【0018】
しかし、これらは、羽毛をアルカリ処理して可溶化、低分子化し、羽毛を完全に溶解することを意図したものであり、従来のアルカリ処理法は、いわば羽毛の可溶化、低分子化の技術である点で、本発明の方法とは本質的に異なるものである。
上記のように、本発明によって得られる羽毛微粉体は、羽毛のβ構造を保持した微粉体であって、羽毛を微弱アルカリ処理により低分子化することなく微細化処理することによりはじめて得られる新規な製品である。
【0019】
天然素材の微粉化については、例えば、絹についてはシルクパウダーとして実用化が図られている。絹工業においては、衣料用に適しない短繊維が多量に副生するため、その非衣料分野への有効活用と用途開発が、絹工業の浮沈のカギを握るものとして注目されてきた。現在のところ、絹の非衣料用途への利用については、2つの流れが具体的に地歩を固めている。
【0020】
蚕・昆研−出光石化:蚕・昆研では、絹の粉末化が可能であることを見出している。当時、出光石化では、天然素材(牛皮、ゼラチン等)の微粉化法を開発しており、この両者の連携によって、「シルクパウダー」の大量供給が達成された。このシルクパウダーは、工業用素材としては、塗料原料を中心に用途開発が進められているほか、生体適合性ならびに環境適合性素材として、バイオポリマーという観点からも注目されている。
【0021】
「かやシルクパウダー21」は、絹フィブロイン加水分解物70%とデキストリン30%より成る白色微粉体(農工大・平林教授の指導の下、京都府、丹後半島の加悦町(加悦総合振興有限会社)が、製造・販売している)であり、グリシン、アラニン、セリン、チロシンを主成分とするそのアミノ酸組成から、健康食品として、脂肪肝・アルコール性肝炎、慢性肝炎、糖尿病、パーキンソン病、血糖コレステロール低下、高血圧・脳卒中の予防、皮膚障害の軽減、アトピーの改善に有効の由である。
【0022】
このように、天然素材の微粉化については、羽毛以外にも、例えば、絹の微粉化が行われているが、羽毛は、他の天然素材と異なる成分構成及び微細構造(β構造)を有しており、当該β構造を保持した本発明の微粉体と絹の微粉体とは本質的に別異のものである。
本発明により得られる羽毛微粉体は、粒径5〜10×200μm以下であること、羽毛のβ構造を保持した微粉体であること、不純物の少ない高品質の微粉体であること、簡単な操作で10μm以下の超微粉体に導くことができること、羽毛の微細構造に基づく特性を保持していること、高い紫外線吸収特性を有すること、後記する実施例に示すように、羽毛(未処理)のアミノ酸組成とは別異のアミノ酸組成を有した微粉体であること、機械的粉砕法による微粉体のように各種の夾雑物の混入がないこと、白色羽毛の場合、微弱アルカリ処理により漂白作用が得られること、純粋な羽毛微粉体を生産できること、格別の設備を必要とすることなく簡単なプロセスで大量生産が可能であること、等の利点を有する。
以上のことから、本発明の羽毛微粉体は、それらの特性を生かした各種の利用、例えば、適宜の粒径の新素材、新繊維素材、保湿材、保温材、断熱材、紫外線吸収剤、油回収剤(タンカー事故発生時の海域汚染対処等)、油汚染物の洗浄(補助)剤、シート状の油吸収剤、軽量多孔体の特性を生かしたコンクリート組成均一化維持剤(重い粒子の沈降を妨げ、均一な状態を維持する)、起泡剤(発泡剤)、多孔体の特性を生かした脱臭剤、等として多角的に使用することが可能である。
本発明の羽毛微粉体は、そのまま使用しても良く、また、他の製品に配合して使用しても良く、また、適宜の形状、構造に成型、加工した加工品として使用しても良く、その利用の分野及び使用形態等は特に限定されるものではない。
【0023】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、当該実施例は本発明の好適な例を示すものであり、本発明は以下の実施例によって何ら限定されるものではない。
実施例1
(1)羽毛の前処理
廃鶏処理場より取得した羽毛(白色レグホン系、羽毛は白色)を原料として使用し、その前処理として、当該羽毛から、肉片等の混入物を除去し、これを家庭用洗剤にて洗浄した後、十分に水洗して、風乾した。このようにして得た羽毛の組成について、水分をSartorius水分計で、また、全窒素をミクロケルダール法で分析した結果、次のとおりであった。
水分 13.7%
全窒素 15.0%
【0024】
(2)羽毛の微弱アルカリ処理
羽毛100gと1000mlのアルカリ(NaOH)水溶液を混ぜて、以下の条件で羽毛の微弱アルカリ処理を実施した。
浸漬(無攪拌)条件:2L容ビーカーを用いて、室温(25℃)で実施した。
攪拌条件:5L容三角フラスコを用い、所定温度に設定したロータリーシェーカー(80回転/分)による振盪下に実施した。
【0025】
(3)羽毛及び羽毛微弱アルカリ処理物の粉砕
羽毛(未処理品)及び微弱羽毛アルカリ処理物を、粉砕機(不二電機工業製、「Sample Mill KIII−1」)にて、仕上げ粉砕した。微弱アルカリ処理品は、未処理品に比して、粉砕がかなり容易であり、得られた微粉体の粒子径は、次の通りであった。
【0026】
【表1】

Figure 0003705534
【0027】
表1に見られるように、微弱アルカリ処理羽毛微粉体の粒子径は5〜10×50〜200μm以下であり、未処理品の方が、微弱アルカリ処理品に比して、その長径が大(〜10×500〜2000μm)であった。なお、微弱アルカリ処理微粉体では、アルカリ処理の程度が厳しいほど、長径が小さくなる傾向が認められた。
【0028】
鶏由来の羽毛(大羽)は次の部位と比率から成ることが知られている(豊田ら、皮革化学、15、180(1970))。
羽(ダウン部分) 羽枝部(Barbs) 83.9%
芯(羽の中心部) 羽軸部(Rachis) 9.8%
根(芯部の根元) 羽柄部(Calamus) 2.5%
羽毛の各部位毎に、その物性が異なることから、羽毛の部位により、微弱アルカリ処理の影響も異なり、微弱アルカリ処理による羽毛の溶解は羽枝部から始まり、羽軸部と羽柄部は、最後まで残ることになる。換言すれば、微弱アルカリ処理条件を選択することによって、例えば、羽枝部のみを選択的に溶解することが可能であり、本発明は、羽毛の各部位を選択的に微細化する方法としても適宜使用することができるといえる。
本実施例で試供した羽毛は、鶏全身からのものであり、多くの種類の羽毛の混合物であることから、そのデータは、大羽のみについての豊田らのデータとは必ずしも一致しないが、微弱アルカリ処理を攪拌条件下で実施した場合には、羽枝部と羽軸部・羽柄部が分離されるため、分別して洗浄・乾燥後、吸油量を測定した。その結果を表2に示す。
【0029】
【表2】
Figure 0003705534
【0030】
攪拌の有無によって、微弱アルカリ処理物の状態は、著しく異なった。すなわち、浸漬条件下では、微弱アルカリ処理後も、ほぼ、羽毛の原型が保たれていたが、攪拌下では、羽枝部(ダウン部分)が羽柄部・羽軸部からはく離して沈降し、羽柄部・羽軸部は、反応系の表面に浮遊するため、それぞれを、分別して取得することができた。それゆえ、攪拌条件下のものについては、部位別に、JIS吸油量の測定法に従って、吸油量を測定した。
表2の結果は、次のように、要約される。
(1)アルカリ処理条件が厳しいと、羽毛は、完全に溶解する。
(2)緩徐な条件下での処理物は、粒子相互の凝集が見られ、未処理羽毛粉砕物と似た外観を示す。
(3)吸油量は、未処理品粉砕物では、凝集が著しく、正確な測定ができなかったが、その最大値は、600(%)見当と考えられる。
(4)羽(羽枝部)と芯(羽柄部・羽軸部)では、吸油量に差があり、アルカリ処理条件が厳しくなると、羽のそれは、低下するが、芯については、著しい低下はない。
(5)浸漬処理でも、NaOH濃度が高いと、本来の「中空構造」が部分的に崩壊し、吸油量が低下する。
【0031】
表2、No.13の溶解液について、市販透析膜を用いて、内容物が中性になるまで、水道水に対して透析した。得られた内容物を、凍結乾燥して得た淡褐色多孔質粉末の吸油量は、300(%)であった。また、IR分析の結果は、そのβ−構造を裏付けるものであった(図1、Feather Powder)。
【0032】
(4)羽毛及び羽毛微弱アルカリ処理物のアミノ酸組成
羽毛及び羽毛微弱アルカリ処理物のアミノ酸組成分析した結果を、表3に示す。
表3の数値から、羽毛微弱アルカリ処理物のアミノ酸組成は、羽毛(未処理)のアミノ酸組成と明らかに相違しており、羽毛微弱アルカリ処理物は羽毛(未処理)と別異の構造を有するものであることが、裏付けられた。
【0033】
【表3】
Figure 0003705534
【0034】
(5)IR分析
河野ら(農芸化学会誌、48、7〜14、1974)は、「羽毛および羊毛ケラチン溶液よりユバ様皮膜の生成について」において、羽毛溶解物とその成型物(皮膜)のIR分析の結果を、以下の表4のように要約している。
【0035】
【表4】
Figure 0003705534
【0036】
β−構造を有する蛋白のIRスペクトルは、1630、1525cm-1に吸収極大を示すことが知られており(丹羽栄二:日本農芸化学会シンポジウム「食品の水と物性」、p.11(1971))、そのことから、河野らは、ケラチンのコンフォーメーションは、溶液中ではα−構造、皮膜ではβ−構造をとるものと判断している。
川口・伊ケ崎(日本畜産学会会報、66、564〜570、1995)も、その羽毛磨砕粉末が1630、1540cm-1に吸収極大を示したことから、磨砕粉末が、元の羽毛の高次構造を維持しているものと判断している。
羽毛並びに羽毛微弱アルカリ処理物(粉末)のIR分析結果を、表5及び図1に示す。
【0037】
【表5】
Figure 0003705534
【0038】
上記表5及び図1の結果より、羽毛微弱アルカリ処理物(羽枝部由来粉末)及び羽毛微弱アルカリ溶解物の透析残渣の凍結乾燥物は、羽毛本来のβ−構造を保持しているものと判断される。
【0039】
実施例2
上記実施例1(表2、No.1系)で得られた羽毛微弱アルカリ処理粉砕物(粒子径200μm以下、吸油量635)を、針葉樹漂白パルプ(NBPK)と混合して抄紙し、その吸油量を測定した。
羽毛微弱アルカリ処理粉砕物配合紙の吸油倍率は、抄紙した各試験片(10×10cm)を15秒間大豆油に浸漬し、引き上げて10秒後の重量を測定して、自重に対する倍率として算出した。
その結果を表6に示す。
【0040】
【表6】
Figure 0003705534
【0041】
実施例3
上記実施例1(表2、No.2系)で作製した羽毛微粉体に結合剤を混合し、手すき和紙作製の手順と同様にして、羽毛微粉体の不織シートを作製した。常法により、保温、断熱性の試験をした結果、保温材、断熱シート等として有用であることが分かった。
【0042】
実施例4
上記実施例1(表2、No.2系)で作製した羽毛微粉体と結合剤の懸濁液を調製し、これを基材の表面に薄く被覆し、羽毛微粉体のシートを作製した。
【0043】
参考
上記実施例1で得られた粉末(図1、Feather Powder)について、その紫外線吸収性評価を、対照として蒸留水、陽性対照として牛血清アルブミンを使用し、以下の試験法で実施した。
所定濃度の試料の蒸留水試験液3mlを含む1cm石英キュベットに、室温下10分間UVC(254nm)ランプ(市販品)を照射してその透過UVC量を測定した。
その結果、図2に示した様に、実施例1で得られたFeather Powderが、広い濃度範囲にわたって、陽性対照の牛血性アルブミンに比較して、紫外線の中で最も強力な(人体に有害)UVCを極めて高度に吸収する機能を有することが判明した。
この結果は、上記粉末は優れた紫外線吸収作用を有することを示すものである。
【0044】
実施例
上記実施例1(表2、No.2系)で得られた羽毛微粉体を、更に機械的に粉砕して超微粉体(粒子径5〜10μm)を作製し、紫外線(UVC)吸収・遮蔽機能を以下の方法で測定した。尚、対照として蒸留水、陽性対照として微粉化炭酸カルシウムを用いた。
254nmの吸光度が同一の所定試料の懸濁蒸留水を調製し、2%アガロースと混合してシート状に成形して試験片とした。参考と同様にUVC(0.6mW/cm2 )を室温下5分間照射して、その透過率を測定した。その結果を図3に示す。超微粉化羽毛(Feather Fine Powder)は、陽性対照に対して2倍の吸収・遮蔽効果(吸収性、散乱性)を示すことが判明した。
この結果は、本発明の羽毛微粉体は、高い紫外線吸収・遮蔽効果を有すること、そして、それ自身安全性が高く、且つ肌に優しい優れた紫外線(特に、有害なUVC)ケアー化粧品用新素材になり得ることを示するものである。
【0045】
【発明の効果】
以上詳述したとおり、本発明は、羽毛のβ構造を保持した微粉体であって、羽毛を微弱アルカリ処理により低分子化することなく微細化処理してなる羽毛微粉体であり、本発明により、1)羽毛のβ構造を保持した新規な微粉体を提供することができる、2)羽毛の特性を維持した微粉体を大量にしかも安価に供給することが可能となる、3)未利用資源として貴重な羽毛を、有用な新素材として、多角的に有効利用することが可能となる、4)産業廃棄物として、また、公害発生源として社会問題化している羽毛を、有効資源として利用することが可能となり、その埋め立てに要する場所・手間・保管場所・悪影響などの軽減ないし根絶が期待される、5)不純物の少ない高品質の新規な羽毛微粉体を提供することができる、6)上記羽毛微粉体は、新繊維素材、保湿材、断熱材、紫外線吸収剤、油回収剤(タンカー事故発生時の海域汚染対処等)、油汚染物の洗浄(補助)剤、シート状の油吸収剤、軽量多孔体の特性を生かしたコンクリート組成均一化維持剤(重い粒子の沈降を妨げ、均一な状態を維持する)、起泡剤(発泡剤)、多孔体の特性を生かした脱臭剤等としての多角的な利用が期待できる、等の格別の効果が奏される。
【図面の簡単な説明】
【図1】羽毛(無処理物)、羽毛微弱アルカリ処理物及び対照(ケラチンパウダー)のIRスペクトルの説明図を示す。
【図2】羽毛の微弱アルカリ溶解物を透析膜にて透析して得られた内容物の凍結乾燥物(淡褐色多孔質粉末、図1におけるFeather Powder)のUVC吸収性評価試験の結果を示す。
【図3】羽毛超微粉体(Feather Fine Powder)のUVC吸収性・遮蔽性評価試験の結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention is essentially different from existing feather refined powders such as a feather powder body simply solubilized and reduced in molecular weight as reported previously and feather fine powder obtained by a mechanical pulverization method. It relates to a completely new type of feather fine powder to be distinguished. More specifically, the present invention relates to a novel fine powder having a β structure of feathers, wherein the feathers are refined without being reduced in molecular weight by weak alkali treatment, and pulverized if necessary. The present invention relates to a method for producing the above-mentioned feather fine powder that enables the feather fine powder to be produced at low cost and high efficiency by a simple operation, and a processed product of the feather fine powder.
The present invention does not simply solubilize and reduce the molecular weight of the feathers, or pulverize the feathers by a mechanically pulverizing method. The present invention is characterized in that it is led to a fine powder retaining the β structure of the present invention, thereby, there is no fear of environmental burden due to the use of a large amount of solvent as in the conventional feather processing technology, The present invention provides a highly effective technology for utilizing new feather resources that makes it possible to use feathers in various ways as a so-called zero-environmental new material.
[0002]
[Prior art]
Keratin, a component of the material that makes up feathers, is a type of hard protein that is insoluble in water and other organic solvents, physically and chemically stable, and has strength, hydrophobicity, heat retention, and light resistance. In addition to feathers, it is contained in animal hair, wool, hair, nails, hooves, horns, scales, skin, etc. at a high rate.
Conventionally, various methods have been proposed as a technique for using feathers, most of which relate to methods for solubilizing and reducing the molecular weight of this keratin protein.
The amount of feathers generated in Japan per year reaches about 40,000 tons, mainly in broilers, but there is no way to use it at all.
Feathers discharged from poultry slaughterhouses are conjugated with aqueous solutions containing a large amount of organic substances such as blood, and these can be used for several days when left in the field, except during severe cold periods. It is considered one of the main causes of pollution. However, even in this case, the source of malodor is the organic component derived from chicken contained in the conjugated water, that is, the rotten odor of blood, body fluid, internal organs, excrement, etc. As a disposal method, almost all of the feathers are disposed of as industrial waste by landfill.
[0003]
Feather meal is another way to use feathers, and the feather meal has been promoted as an active use of feathers, but its productivity is low (yield from feathers is 30%, basic unit 3). .3 Even if 10,000 chickens are processed, the yield of feather meal is about 600 kg), and due to its low marketability, it is difficult to consider it as a business with good taste.
Feather meal is composed of 4-5% moisture, 90-93% crude protein, 82-84% artificial digestibility, amino acids are high in cystine and leucine, low in lysine, methionine, and tryptophan. The mixing ratio of the feather meal as a feed component is 2 to 5% in the case of chicken and 5% in the case of pig.
Feather meal is imported mainly from the United States, although the actual usage in the country is not clear. However, it can be said that the demand is gradually decreasing due to concerns about the image reduction accompanying the obligation to display feed ingredients.
[0004]
In recent years, the catch of “Iwashi” has continued to decline, especially in the catch of marine products, mainly in South America, and it has become difficult to secure protein sources for feed use. This has led to soaring feed prices and eventually meat products. Connected to. On the other hand, as the standard of living improves, the global demand for meat products has spurred this vicious circle, and these problems have become serious.
[0005]
As prior art in these fields, for example, there are a huge number of reports on the effective use of feathers, including scientific literature, papers, patent literature, etc., but the technical contents are roughly classified as follows. being classified.
(Processing and utilization of feathers)
・ Pulverization (miniaturization by mechanical pulverization method) → New functional materials and modifiers
・ Alkaline solvent → Phosphoric acid neutralization → Organic fertilizer
・ Pretreatment → Enzyme treatment → Seasoning, feeding / fertilizer, cosmetics
・ Pretreatment → Protein / Peptide → New material
[0006]
(1) New functional materials and modifiers
In this field, utilization as a new functional material and surface modifier utilizing the powder characteristics of feather fine powder has been reported (Japanese Patent Laid-Open No. 6-345976, Chemistry Express, 8, 537-540 (1993). )).
The feather fine powder is prepared by pulverization with a pulverizer, and the preparation process cannot be denied.
[0007]
(2) Organic fertilizer
In this field, for example, organic fertilizers and methods for producing the same have been reported (Japanese Patent Laid-Open No. 9-118576). In order to fertilize feathers, there is a drawback that the feathers must be dissolved once. However, fertilization of feathers may lead to a large consumption of feathers.
[0008]
(3) Seasonings, feeding / fertilizer, cosmetics, new materials
In this field, methods for modifying feathers by various methods, including a method of introducing them to “proteins / peptides” and utilizing them as new materials, have been proposed. In addition to methods for producing aromatic oils from feather protein and oil (Japanese Patent Laid-Open No. 7-115902), and other patent literatures for use in cosmetic bases such as skin care and hair care, etc. It exists so as not to exist. However, in any case, the amount of material used is limited, and it is not satisfactory from the viewpoint of effective use of feather resources.
[0009]
The premise of effective use of feather resources is `` mass processing '' to the last. In this sense, development of new feather product production technology that can realize mass processing easily and at low cost, and the unique characteristics of feathers Development of new applications that take advantage of (physical, chemical, biological stability, thermal insulation, thermal insulation, light resistance, water repellency, etc.) is considered to be the direction that meets the demands of today's era.
[0010]
[Problems to be solved by the invention]
As described above, feathers are an important unused resource consisting of valuable protein components, but because of their stability, they have been treated exclusively as landfills as industrial waste. In spite of the presence of numerous previous research reports and patent documents, the current situation where substantial use has not yet been achieved can be said to be proof that the efforts of the predecessors have not yet been linked to actual applications.
Feathers have porosity, and their extremely superior properties (physical properties) have been useful for protecting birds in general (for example, heat insulation, cold insulation, heat dissipation, light weight, light resistance, water resistance, etc.). And it is clarified also in the said patent document etc. that the fine powder is useful as a raw material. However, the “light” characteristic of feathers has greatly hindered its pulverization.
[0011]
Conventional crushing of feathers is mainly performed by a stone mill type rotary grinding and a ball mill type grinding. However, in these methods, the amount of wear contained in the grinder material to be used is remarkable (usually 10 to 25% of the pulverized product on a weight basis), and it passes through a physical refinement process. Due to the inevitable partial destruction of the internal hollow structure, it has been extremely difficult to obtain a large amount of feather fine powder having the original structural characteristics of feathers. In addition, there are many restrictions on the production of fine powders by such a pulverization method. From the viewpoint of preventing the transformation of the target substance, when it is carried out at a low temperature, the wet method must be used. When the amount is limited and the solvent to be used is an organic solvent other than water, consideration in consideration of factors such as explosion is important. Further, even in the case of the dry method, a material having excellent mechanical strength is forcibly pulverized, so that operation at a low speed is indispensable in order to avoid heat generation during the pulverization operation. The difficulty of mass processing of feathers by the conventional method is easily understood from the restriction of the operating conditions resulting from the multiplication of such limiting factors. Therefore, the obtained fine powder is inevitably expensive, and even if it retains a function necessary as a raw material, its use must be extremely limited. It is no exaggeration to say that this was the limit of the conventional feather pulverization method.
[0012]
In view of such a current situation, the present inventors have made effective use of feathers that are landfilled as industrial waste only in Japan from the viewpoints of multilateral utilization of unused resources, quantitative reduction of waste, and pollution prevention. Recognizing that this is an extremely important urgent issue even internationally, we have worked on research on new effective use of feathers, and as a result of earnest research, new feathers that are essentially different from conventional products The present invention was completed by successfully developing fine powders.
That is, the present invention has been completed as a basic concept, particularly with the goal of establishing a new technology that solves the following problems.
(1) It can be put to practical use as a mass processing technology for feather resources.
(2) It is a so-called zero environmental load type technology that does not involve the use of a large amount of solvent as in the conventional feather processing technology and has no problem of environmental pollution.
(3) The operation is a simple and low-cost production method.
(4) To develop products that retain the β structure unique to feathers.
(5) A production method that does not rely on the method of solubilizing and reducing the molecular weight of feathers to form an α structure, such as the conventional chemical solubilization method using oxidizing agents, reducing agents, acids, alkalis and protein denaturing agents. There is.
(6) Producing fine powder that has been refined without reducing the molecular weight of feathers.
(7) To produce high-quality feather fine powder having an appropriate particle size and few impurities.
[0013]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a fine powder having a β structure of feathers having a particle size of 5 to 10 × 50 to 200 μm by a weak alkali treatment of feathers, wherein the feathers are made of a 0.1% to 1% caustic soda solution. Treatment with an alkali solution and refinement without reducing the molecular weightLifeA method for producing feather fine powder, characterized in that the composition is dried, pulverized if necessary, and sized.
(2) A processed product of feather fine powder obtained by molding and processing the feather fine powder produced by the method described in (1) into an appropriate shape and structure.
(3) An ultraviolet absorber comprising feather fine powder produced by the method described in (1) above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The present invention, as described above, is a fine powder having a feather β structure, wherein the feather is refined without being reduced in molecular weight by weak alkali treatment, and pulverized if necessary. is there. Here, the weak alkali treatment is a compound that exhibits alkalinity when it is made into an aqueous solution, for example, KOH, NaOH, Ca (OH).2 It means to treat with these weak alkaline solutions using salts such as metal hydroxides such as sodium acetate, sodium phosphate, sodium ash (anhydrous sodium carbonate). In the weak alkali treatment in the present invention, metal hydroxides represented by KOH and NaOH are preferably used. Further, the weak alkali treatment in the present invention means that feathers are refined with a dilute metal hydroxide aqueous solution, preferably about 0.1 to 1% of caustic soda solution without reducing the molecular weight. In the present invention, the term “miniaturization treatment without reducing the molecular weight of feathers” means that the feather β structure can be confirmed by IR analysis as shown in the examples described later. It means to process. The present invention produces a fine powder retaining a feather β structure by a weak alkali treatment, and is essentially different from a powder prepared by a conventional chemical solubilization method having an α structure. Further, it is essentially different from fine powder pulverized by a mechanical pulverization method.
[0015]
As a feather material, for example, feathers discharged from a waste chicken processing plant and the like are exemplified, but there is no particular limitation, and the feathers are used as a pre-treatment after being thoroughly washed. It is preferable. The weakly alkaline treatment of feathers is preferably carried out with a caustic soda solution of about 0.1 to 1%, if necessary, while performing mechanical treatment such as heating, shaking and stirring as necessary. In this case, usually, the effect of the weak alkali treatment becomes weak if it is less than 0.1%, and the possibility that the molecular weight is lowered becomes higher if it exceeds 1%. It is appropriately set in consideration of the type and concentration of the aqueous solution, the conditions such as heating, shaking / stirring, the retention of β structure, etc. By combining mechanical treatments such as heating, shaking and stirring during the weak alkali treatment, the finer treatment can be performed efficiently. What is important here is that the fine powder in which the retention of the β structure of the feathers was confirmed by IR analysis after the fine alkali treatment without reducing the molecular weight of the feathers by the above weak alkali treatment as shown in the examples described later. Is to prepare.
[0016]
The feathers were treated with a weak alkaline solution and refined without reducing the molecular weight.LifeThe product is dried, finish-pulverized if necessary, and sized to obtain a fine powder having a desired refined particle size of 5 to 10 × 200 μm or less. As the product, the whole or a part of the weak alkali-treated product, a solidBodyMinutes can be used. That is, as the above-mentioned product, a residue (solid) part of a weak alkaline processed product is used.MinutesCan be used. Next, the obtained product is dried, pulverized if necessary, and sized, but drying can be performed by air drying, and when it is performed in a short time, it is dried at 90 ° C. or less. Is desirable. The pulverization and sizing is performed, for example, by attaching a sieve plate (opening of 0.5 mm or less) to a Wiley pulverizer. The weakly alkali-treated product is appropriately pulverized and sized according to the purpose of use. However, as a characteristic of the weakly alkali-treated product, the pulverized and sized product can be very easily carried out. It is possible, and the above-mentioned weak alkali-treated product can be led to an ultrafine powder of 10 μm or less by a simple operation.
In the present invention, a product obtained by subjecting feathers to a weak alkali treatment to reduce the molecular weight without reducing the molecular weight is used in a relatively large particle form with little pulverization depending on the intended use of the product. It is also possible to do as appropriate.
As described above, the present invention has made it possible to easily produce a fine powder having an appropriate particle size retaining the β structure of feathers by combining weak alkali treatment of feathers with pulverization and sizing treatment as necessary. Is the biggest feature.
[0017]
Toyoda et al. Have reported that feathers can be dissolved easily by heating in alkali (NaOH, KOH), and when used in combination with a chemical that oxidizes or reduces -SS- bonds contained in large amounts in feathers. (For example, Toyoda et al., Leather Chemistry, 12, 117 (1966)).
[0018]
However, these are intended to solubilize and lower the molecular weight of the feathers by alkali treatment, so that the feathers can be completely dissolved. So far, the conventional alkali treatment method is a technology for solubilizing and lowering feathers. Is essentially different from the method of the present invention.
As described above, the fine feather powder obtained by the present invention is a fine powder retaining the β structure of feathers, and is obtained only by refining feathers without reducing the molecular weight by weak alkali treatment. Product.
[0019]
As for pulverization of natural materials, for example, silk has been put to practical use as silk powder. In the silk industry, a large amount of short fibers that are not suitable for clothing are produced as a by-product, and its effective use in non-clothing fields and the development of applications have attracted attention as the key to the silk industry's rise and fall. At present, there are two specific trends in the use of silk for non-clothing applications.
[0020]
蚕 ・ Konken-Idemitsu Petrochemical: At 蚕 ・ Konken, we have found that silk can be powdered. At that time, Idemitsu Petrochemical Co., Ltd. was developing a method for pulverizing natural materials (cowhide, gelatin, etc.), and the cooperation between the two achieved a large supply of “silk powder”. This silk powder is being developed as an industrial material mainly for paint raw materials, and is also attracting attention from the viewpoint of a biopolymer as a biocompatible and environmentally compatible material.
[0021]
“Kaya Silk Powder 21” is a white fine powder consisting of 70% silk fibroin hydrolyzate and 30% dextrin (under the guidance of Prof. Hirabayashi, Kyoto University) ) Is manufactured and sold), and from its amino acid composition consisting mainly of glycine, alanine, serine and tyrosine, as a health food, fatty liver / alcoholic hepatitis, chronic hepatitis, diabetes, Parkinson's disease, blood sugar It is effective in lowering cholesterol, preventing high blood pressure and stroke, reducing skin disorders, and improving atopy.
[0022]
As described above, as for pulverization of natural materials, for example, silk is pulverized in addition to feathers, but feathers have a different component structure and fine structure (β structure) from other natural materials. Therefore, the fine powder of the present invention retaining the β structure and the fine powder of silk are essentially different.
The feather fine powder obtained by the present invention has a particle size of 5 to 10 × 200 μm or less, is a fine powder retaining the feather β structure, is a high-quality fine powder with few impurities, and simple operation Can be led to ultrafine powder of 10 μm or less, possess characteristics based on the fine structure of feathers, have high ultraviolet absorption characteristics, and as shown in the examples described later, feathers (untreated) It is a fine powder with an amino acid composition different from the amino acid composition of the above, there is no mixing of various impurities like fine powder by mechanical pulverization, and in the case of white feathers, bleaching action by weak alkali treatment And the like, that it is possible to produce pure feather fine powder, and that mass production is possible by a simple process without requiring special equipment.
From the above, the feather fine powder of the present invention can be used in various ways utilizing these characteristics, for example, new materials with appropriate particle sizes, new fiber materials, moisturizing materials, heat insulating materials, heat insulating materials, ultraviolet absorbers, Oil recovery agent (for dealing with marine pollution in the event of a tanker accident), cleaning (auxiliary) agent for oil contaminants, sheet-like oil absorbent, concrete composition homogenizing agent that takes advantage of lightweight porous materials (for heavy particles) It can be used in various ways as a foaming agent (foaming agent), a deodorizing agent taking advantage of the characteristics of the porous body, and the like.
The fine feather powder of the present invention may be used as it is, may be used in combination with other products, and may be used as a processed product molded and processed into an appropriate shape and structure. The field of use, usage pattern, etc. are not particularly limited.
[0023]
【Example】
Next, the present invention will be specifically described based on examples. However, the examples show preferred examples of the present invention, and the present invention is not limited to the following examples.
Example 1
(1) Feather pretreatment
Using feathers (white legphone system, feathers are white) obtained from waste chicken processing plant as a raw material, as a pre-treatment, contaminants such as meat pieces were removed from the feathers and washed with household detergent. Thereafter, it was thoroughly washed with water and air-dried. As a result of analyzing the feather composition thus obtained with a Sartorius moisture meter and the total nitrogen with a micro Kjeldahl method, the results were as follows.
Moisture 13.7%
Total nitrogen 15.0%
[0024]
(2) Weak alkaline treatment of feathers
Feather 100 g and 1000 ml of alkali (NaOH) aqueous solution were mixed, and the feather was subjected to a weak alkali treatment under the following conditions.
Immersion (no stirring) condition: It was carried out at room temperature (25 ° C.) using a 2 L beaker.
Stirring conditions: A 5 L Erlenmeyer flask was used, and the mixture was shaken with a rotary shaker (80 rpm) set to a predetermined temperature.
[0025]
(3) Pulverization of feathers and feathers with a weakly alkaline treated product
The feathers (untreated product) and the weakly feathered alkali-treated product were finish-pulverized with a pulverizer (“Sample Mill KIII-1” manufactured by Fuji Electric Industry Co., Ltd.). The weakly alkali-treated product was much easier to grind than the untreated product, and the particle size of the obtained fine powder was as follows.
[0026]
[Table 1]
Figure 0003705534
[0027]
As can be seen in Table 1, the particle diameter of the weakly alkali-treated feather fine powder is 5 to 10 × 50 to 200 μm or less, and the untreated product has a larger major diameter than the weakly alkali-treated product (510 × 500 to 2000 μm). In addition, in the weak alkali-treated fine powder, the tendency that the longer diameter becomes smaller as the degree of alkali treatment becomes severe was recognized.
[0028]
It is known that chicken-derived feathers (large feathers) are composed of the following parts and ratios (Toyoda et al., Leather Chemistry, 15, 180 (1970)).
Wings (down part) Wings (Barbs) 83.9%
Core (the center of the wing) Feather shaft (Rachis) 9.8%
Root (root of core) Feather pattern (Calamus) 2.5%
Each part of the feather has different physical properties, so the effect of the weak alkali treatment varies depending on the part of the feather, and the dissolution of the feather by the weak alkali treatment starts from the wing branch, It will remain until the end. In other words, by selecting the weak alkali treatment conditions, for example, it is possible to selectively dissolve only the wing branch, and the present invention can be used as a method for selectively miniaturizing each part of the feather. It can be said that it can be used appropriately.
The feathers tested in this example are from whole chickens and are a mixture of many types of feathers, so the data does not necessarily match the data of Toyota et al. When the treatment was carried out under stirring conditions, the wing branch part and the wing shaft part / feather part were separated. Therefore, the oil absorption was measured after separation, washing and drying. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0003705534
[0030]
Depending on the presence or absence of stirring, the state of the weakly alkaline treated product was remarkably different. In other words, under the immersion conditions, the original shape of the feathers was maintained even after the weak alkali treatment, but under stirring, the wings (down part) separated from the stalks and wing shafts and settled. Since the stalk portion and wing shaft portion float on the surface of the reaction system, each was able to be obtained separately. Therefore, the amount of oil absorption was measured according to the JIS oil absorption amount measurement method for each part under stirring conditions.
The results in Table 2 are summarized as follows:
(1) When the alkali treatment conditions are severe, feathers are completely dissolved.
(2) The treated product under a slow condition shows an agglomeration between particles and an appearance similar to that of an untreated feather pulverized product.
(3) The oil absorption amount of the untreated pulverized product was remarkably agglomerated and could not be measured accurately, but its maximum value is considered to be 600 (%).
(4) There is a difference in oil absorption between the wing (feather part) and the core (feather handle / feather part), and when the alkali treatment conditions become severe, that of the wing is reduced, but the core is significantly reduced. There is no.
(5) Even in the dipping treatment, if the NaOH concentration is high, the original “hollow structure” is partially collapsed and the oil absorption is reduced.
[0031]
Table 2, no. About 13 solution, it dialyzed with respect to tap water until the contents became neutral using the commercially available dialysis membrane. The oil absorption of the light brown porous powder obtained by freeze-drying the obtained contents was 300 (%). Moreover, the result of IR analysis supported the β-structure (FIG. 1, Feather Powder).
[0032]
(4) Amino acid composition of feathers and feathers treated with weak alkali
Table 3 shows the results of amino acid composition analysis of the feathers and feathers treated with weak alkali.
From the numerical values in Table 3, the amino acid composition of the feather weakly treated product is clearly different from the amino acid composition of feathers (untreated), and the feathered weakly alkaline treated product has a structure different from that of feathers (untreated). It was proved to be a thing.
[0033]
[Table 3]
Figure 0003705534
[0034]
(5) IR analysis
Kono et al. (Agricultural Chemistry Journal, 48, 7-14, 1974) described the results of IR analysis of a feather melt and its molded product (film) in "On the formation of a yuba-like film from feather and wool keratin solutions" Table 4 below summarizes.
[0035]
[Table 4]
Figure 0003705534
[0036]
The IR spectrum of a protein having a β-structure is known to show absorption maximums at 1630 and 1525 cm −1 (Eiji Niwa: Symposium “Agricultural Chemical Society of Japan,“ Water and Physical Properties of Foods ”, p. 11 (1971)). Therefore, Kono et al. Determined that the conformation of keratin takes an α-structure in the solution and a β-structure in the film.
Kawaguchi / Igasaki (Journal of the Livestock Society of Japan, 66, 564-570, 1995) also has 1630, 1540cm of feather ground powder.-1Therefore, it is judged that the ground powder maintains the higher-order structure of the original feather.
Table 5 and FIG. 1 show the IR analysis results of the feathers and the feather weakly alkaline treated product (powder).
[0037]
[Table 5]
Figure 0003705534
[0038]
From the results shown in Table 5 and FIG. 1, the freeze-dried dialysis residue of feather weakly alkaline treated product (powder-derived powder) and feather weakly alkaline lysate retained the original β-structure of feathers. To be judged.
[0039]
Example 2
The feather weak alkali-treated pulverized product (particle diameter 200 μm or less, oil absorption 635) obtained in Example 1 (Table 2, No. 1 system) was mixed with softwood bleached pulp (NBPK) to make paper, and the oil absorption The amount was measured.
The oil absorption ratio of the paper blended with the weakly feather-treated pulverized product was calculated as a ratio to its own weight by immersing each paper test piece (10 × 10 cm) in soybean oil for 15 seconds, measuring the weight after 10 seconds, and measuring the weight after 10 seconds. .
The results are shown in Table 6.
[0040]
[Table 6]
Figure 0003705534
[0041]
Example 3
A binder was mixed with the feather fine powder produced in Example 1 (Table 2, No. 2 series), and a nonwoven sheet of feather fine powder was produced in the same manner as the handmade Japanese paper production procedure. As a result of heat insulation and heat insulation tests by a conventional method, it was found that it is useful as a heat insulation material, a heat insulation sheet and the like.
[0042]
Example 4
A suspension of feather fine powder and binder prepared in Example 1 (Table 2, No. 2 system) was prepared, and this was coated thinly on the surface of the substrate to produce a sheet of feather fine powder.
[0043]
referenceExample1
The powder obtained in Example 1 (FIG. 1, Feather Powder) was evaluated for ultraviolet absorption using distilled water as a control and bovine serum albumin as a positive control by the following test method.
A 1 cm quartz cuvette containing 3 ml of a distilled water test solution having a predetermined concentration was irradiated with a UVC (254 nm) lamp (commercially available) for 10 minutes at room temperature, and the amount of transmitted UVC was measured.
As a result, as shown in FIG. 2, the Feather Powder obtained in Example 1 is the most powerful in ultraviolet rays (harmful to human body) compared with bovine blood albumin as a positive control over a wide concentration range. It has been found that it has a function of absorbing UVC very highly.
The result isAbove powderIndicates that it has an excellent ultraviolet-absorbing action.
[0044]
Example5
The feather fine powder obtained in Example 1 (Table 2, No. 2 series) was further mechanically pulverized to produce ultrafine powder (particle diameter of 5 to 10 μm), and ultraviolet (UVC) absorption / The shielding function was measured by the following method. Distilled water was used as a control, and micronized calcium carbonate was used as a positive control.
Suspended distilled water of a predetermined sample having the same absorbance at 254 nm was prepared, mixed with 2% agarose, molded into a sheet, and used as a test piece.referenceExample1As well as UVC (0.6 mW / cm2 ) Was irradiated at room temperature for 5 minutes, and the transmittance was measured. The result is shown in FIG. It was found that the ultra fine pulverized feather (Feather Fine Powder) exhibits a double absorption / shielding effect (absorbency, scattering) with respect to the positive control.
As a result, the feather fine powder of the present invention has a high ultraviolet absorption / shielding effect, and is a new material for cosmetics for excellent ultraviolet rays (especially harmful UVC) that is safe and gentle to the skin itself. It shows that it can be.
[0045]
【The invention's effect】
As described above in detail, the present invention is a fine powder retaining the β structure of feathers, and is a feather fine powder obtained by refining feathers without reducing the molecular weight by weak alkali treatment. 1) It is possible to provide a new fine powder retaining the β structure of feathers 2) It is possible to supply a large amount of fine powder maintaining the characteristics of feathers at low cost 3) Unused resources Valuable feathers can be effectively used in many ways as useful new materials. 4) Use feathers that are becoming a social problem as an industrial waste and as a source of pollution as an effective resource. It is possible to reduce or eradicate the location, labor, storage location, adverse effects, etc. required for landfill, 5) It is possible to provide a new high-quality feather fine powder with less impurities, 6) The above Fine feather Powders include new fiber materials, moisturizing materials, heat insulating materials, UV absorbers, oil recovery agents (for dealing with marine pollution in the event of a tanker accident), cleaning (auxiliary) agents for oil contaminants, sheet-like oil absorbers, Concrete composition homogenization maintenance agent that makes use of the characteristics of lightweight porous bodies (prevents sedimentation of heavy particles and maintains a uniform state), foaming agent (foaming agent), deodorant that makes use of the characteristics of porous bodies, etc. Special effects such as the expectation of multifaceted use can be achieved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of IR spectra of feathers (untreated product), feathers weakly alkaline treated product, and a control (keratin powder).
FIG. 2 shows the results of a UVC absorption evaluation test of a lyophilized product (light brown porous powder, Feather Powder in FIG. 1) obtained by dialysis of a weakly alkaline solution of feathers with a dialysis membrane. .
FIG. 3 shows the results of a UVC absorbability / shielding property evaluation test of feather fine powder (Feather Fine Powder).

Claims (3)

羽毛のβ構造を保持した粒子径が5〜10×50〜200μmの微粉体を羽毛の微弱アルカリ処理により製造する方法であって、羽毛を0.1〜1%カセイソーダ溶液からなる微弱アルカリ溶液で処理して低分子化することなく微細化処理し、得られた固体生成物を乾燥し、必要により粉砕し、整粒することを特徴とする羽毛微粉体の製造方法。A method for producing a fine powder having a β structure of feathers having a particle diameter of 5 to 10 × 50 to 200 μm by a weak alkali treatment of feathers, wherein the feathers are made of a weak alkaline solution made of 0.1 to 1% caustic soda solution. processed and treated miniaturized without lowering the molecular weight, and drying the solid body raw Narubutsu obtained was pulverized if necessary, the production method of feather fine powder which is characterized in that sizing. 請求項1に記載の方法で製造した羽毛微粉体を適宜の形状、構造に成型、加工してなる羽毛微粉体の加工品。A processed product of feather fine powder obtained by molding and processing the feather fine powder produced by the method according to claim 1 into an appropriate shape and structure. 請求項1に記載の方法で製造した羽毛微粉体からなる紫外線吸収剤。The ultraviolet absorber which consists of feather fine powder manufactured by the method of Claim 1.
JP18133199A 1999-06-28 1999-06-28 Novel feather fine powder and method for producing the same Expired - Lifetime JP3705534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18133199A JP3705534B2 (en) 1999-06-28 1999-06-28 Novel feather fine powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18133199A JP3705534B2 (en) 1999-06-28 1999-06-28 Novel feather fine powder and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001083516A Division JP2001322998A (en) 2001-03-22 2001-03-22 Novel feather fine powder and method of producing the same

Publications (2)

Publication Number Publication Date
JP2001011313A JP2001011313A (en) 2001-01-16
JP3705534B2 true JP3705534B2 (en) 2005-10-12

Family

ID=16098837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18133199A Expired - Lifetime JP3705534B2 (en) 1999-06-28 1999-06-28 Novel feather fine powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3705534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031436A (en) * 2008-07-02 2010-02-12 Umeda Jimusho:Kk Feather-containing sheet and feather-containing structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232875A1 (en) 2002-07-25 2005-10-20 Umeda Jimusho Ltd. Water-soluble keratin derivative and use thereof
JP2010031066A (en) * 2008-07-02 2010-02-12 Umeda Jimusho:Kk Feather powder, method for producing the same, soil improving material, and plant husbandry soil including the same
JP6940838B2 (en) * 2017-11-01 2021-09-29 カミ商事株式会社 Feather powder manufacturing method and feather powder manufacturing equipment
JP7325873B1 (en) * 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031436A (en) * 2008-07-02 2010-02-12 Umeda Jimusho:Kk Feather-containing sheet and feather-containing structure

Also Published As

Publication number Publication date
JP2001011313A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
Alahyaribeik et al. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin
Sharma et al. An efficient conversion of waste feather keratin into ecofriendly bioplastic film
Giteru et al. Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications
JPWO2005095439A1 (en) Method for producing solubilized keratin
Alashwal et al. Characterization of dehydrated keratin protein extracted from chicken feather
CN106367847B (en) Method for preparing chitin nanofibers by utilizing waste crayfish shells
JP5794604B2 (en) Method for removing protein from biological calcareous material
JP3705534B2 (en) Novel feather fine powder and method for producing the same
JP2527120B2 (en) Method for producing hard keratin substance powder
Han et al. Advances in eggshell membrane separation and solubilization technologies
Adil et al. Study of traditional and modern applications of feathers-a review
JPH1017310A (en) Collagen, production of hydroxyapatite and its product
CN101065420A (en) Method for producing a low reducing agent-containing keratin and products thereof
Pedrazzani et al. Black soldier fly as a New chitin source: Extraction, purification and molecular/structural characterization
Su et al. Zero-waste utilization and conversion of shrimp shell by mechanochemical method
CN101352397B (en) Attapulgite animal depilatory paste
JPWO2007023816A1 (en) Method for producing reduced keratin, reduced cuticle protein and mixtures thereof
CN101375828B (en) Attapulgite non-foam depilatory paste for animal
Hemashree et al. Synthesis of keratin nanoparticle and characterization using FTIR
JP2001322998A (en) Novel feather fine powder and method of producing the same
JP2004300142A (en) Method for producing functional polypeptide originating from silk protein, and its use
JPH03139291A (en) Method for treating shell of crustacea using enzyme
JP2001302800A (en) Novel minute powder derived from keratin and method for its manufacturing
JPH04312534A (en) Fine feather powder and its production
WO2018070382A1 (en) Konjac powder and production method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3705534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term