JPH03139291A - Method for treating shell of crustacea using enzyme - Google Patents

Method for treating shell of crustacea using enzyme

Info

Publication number
JPH03139291A
JPH03139291A JP1275330A JP27533089A JPH03139291A JP H03139291 A JPH03139291 A JP H03139291A JP 1275330 A JP1275330 A JP 1275330A JP 27533089 A JP27533089 A JP 27533089A JP H03139291 A JPH03139291 A JP H03139291A
Authority
JP
Japan
Prior art keywords
chitin
calcium carbonate
protein
cuticle
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1275330A
Other languages
Japanese (ja)
Other versions
JP2870871B2 (en
Inventor
Akio Maekawa
前川 昭男
Masahiro Wada
政裕 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisan Kasei Co Ltd
Original Assignee
Daisan Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisan Kasei Co Ltd filed Critical Daisan Kasei Co Ltd
Priority to JP1275330A priority Critical patent/JP2870871B2/en
Publication of JPH03139291A publication Critical patent/JPH03139291A/en
Application granted granted Critical
Publication of JP2870871B2 publication Critical patent/JP2870871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To enable production of chitin obviating acid treatment process in chemical treating process by reacting a shell (cuticle) with an actinase which is an actinomyces-derived protease to remove protein and calcium. CONSTITUTION:A shell (cuticle) of Crustacea such as shrimp or crab is cut into chips of several cm<2> size. The cut shell and actinase which is an actinomyces-derived protease are added to water adjusted to pH5-7 and the mixture is stirred at 30-60 deg.C. Calcium carbonate is separated by filtration together with chitin from an aqueous solution of amino acids produced by decomposition of protein. Then, though a part of calcium carbonate is still attached to the separated chitin, the chitin completely removed calcium carbonate can be obtained by treating a partially calcium carbonate-attached chitin with hydrochloric acid or ethylene diamine tetraacetate(EDTA). Thereby nearly perfect removal of protein is also attained and the obtained chitin can be high molecular and the amount of acid used can be reduced.

Description

【発明の詳細な説明】 一上の下1 本発明は酵素を用いる甲殻類の甲殻(クチクラ)の処理
方法に関するもので、特にエビ、カニ等の甲殻類のクチ
クラ(甲殻外骨格)に放線菌由来のプロテアーゼである
アグチナーゼを作用させることによって蛋白質及び炭酸
カルシウムを分離したものを、さらに酸処理してキチン
を単離精製し甲殻の他の主構成成分たる蛋白質をアミノ
酸水溶液、炭酸カルシウムは天然のままの炭酸カルシウ
ムの沈殿として取得することでクチクラ申のすべての有
効成分を利用するためのクチクラの処理方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating crustacean shells (cuticles) using enzymes. Proteins and calcium carbonate are separated by the action of agtinase, a protease derived from the plant, and then acid-treated to isolate and purify chitin. The present invention relates to a method for processing cuticle in order to utilize all the active ingredients of the cuticle by obtaining it as a precipitate of intact calcium carbonate.

従」Lの」[夜 地球上にあって最も豊富かつ利用されているバイオマス
資源であるセルロースの自然界における生産量は、年間
1000億トンともいわれるが。
The natural production of cellulose, the most abundant and used biomass resource on earth, is said to be 100 billion tons per year.

キチンの年間生産量もまた100億、あるいはセルロー
スに匹敵する1000億トンともいわれている。キチン
は今までのところ、その脱アセチル生成物であるキトサ
ンに変換され凝集剤として水処理に利用されているほか
、近年になってキチンキトサンの持つ化学的あるいは生
物学的な特性機能が解明され、それに基づき食品、化粧
品、医薬、農薬等の分野において活発な利用研究が行わ
れ、特徴ある新製品が生み出されている。キチンはN−
7セチルーD−グルコサミン残基が多数β−(l、0結
合した多糖で、甲殻類並びに昆虫類の外皮骨格組成、菌
類の細胞壁の構成成分としてよく知られている。 エビ
、カニ等の甲殻類のクチクラは炭酸カルシウム、蛋白質
、キチンを主成分として構成され、一般にこの甲殻(ク
チクラ)の化学的処理によりキチンの工業的製造が行わ
れておりまた、実験的には微生物、酵素を用いた生物化
学的処理によるキチンの製造も検討されている。
The annual production of chitin is also said to be 10 billion tons, or 100 billion tons, which is comparable to cellulose. Until now, chitin has been converted to its deacetylated product, chitosan, and used as a flocculant in water treatment, and in recent years, the chemical and biological properties and functions of chitin and chitosan have been elucidated. Based on this, active research on its use in the fields of food, cosmetics, medicine, agrochemicals, etc. is being conducted, and unique new products are being created. Chitin is N-
It is a polysaccharide in which many 7cetyl-D-glucosamine residues are linked with β-(l,0), and it is well known as a component of the exoskeleton of crustaceans and insects, and of the cell wall of fungi. Crustaceans such as shrimp and crabs The cuticle of the human body is mainly composed of calcium carbonate, protein, and chitin, and chitin is generally produced industrially by chemically processing this carapace (cuticle). Production of chitin through chemical treatment is also being considered.

キチンの製造工程自体はそう複雑なものではないが、化
学処理法は製造工程で、酸処理とアルカリ処理を必要と
するため、洗浄等に大量の水を必要とし廃水の処理に多
額の費用がかかるほか、また、酸処理工程の温度が分子
量に影響する等、アルカリや酸の濃度、反応時間、反応
温度等の反応条件の違いによって、得られる製品の純度
や品質が異なってくるばかりでなく、更に熱アルカリや
酸によるグリコシド結合の加水分解による分子量低下を
避は得ない欠点がある。
Although the chitin production process itself is not very complicated, the chemical treatment method requires acid treatment and alkali treatment during the manufacturing process, which requires a large amount of water for cleaning etc., and wastewater treatment costs a lot of money. In addition to this, the temperature of the acid treatment process affects the molecular weight, and differences in reaction conditions such as concentration of alkali and acid, reaction time, and reaction temperature not only cause differences in the purity and quality of the resulting product. Furthermore, there is a disadvantage that molecular weight inevitably decreases due to hydrolysis of glycosidic bonds by hot alkalis or acids.

これらの化学処理法の欠点を解決すべく、微生物や酵素
を用いた生物化学的処理方法が研究されるようになり、
キチン製造における除蛋白工程にプロテアーゼを用いる
ことが試みられ、プロナーゼ、パパイン5ペプシンなど
種々のプロテアーゼを用いた実験が行われているほか、
最近ではプロテアーゼ生産菌を用いることも試みられて
いる。
In order to solve the drawbacks of these chemical treatment methods, research began on biochemical treatment methods using microorganisms and enzymes.
Attempts have been made to use proteases in the protein removal process in chitin production, and experiments have been conducted using various proteases such as pronase and papain-5-pepsin.
Recently, attempts have also been made to use protease producing bacteria.

これら生物化学的処理方法は従来のアルカリ処理法と比
較して脱アセチル、解重合などの副反応を起こさないた
め、変性の少ない比較的高分子量のキチンが得られるほ
か、処理温度が低いなどの利点があるものの、−貫した
生物化学処理による蛋白質の完全除去はいまだ達成され
てなく、あくまでも酸処理による除カルシウム工程を前
提にしたものであって、しかもキチン以外の甲殻(クチ
クラ)の主構成成分たる蛋白質や炭酸カルシウムの利用
に関しては何等の関心が持たれていない実態にある。
Compared to conventional alkali treatment methods, these biochemical treatment methods do not cause side reactions such as deacetylation and depolymerization, so chitin with a relatively high molecular weight and less denaturation can be obtained, and the processing temperature is low. Although there are advantages, complete removal of proteins by comprehensive biochemical treatment has not yet been achieved, and this method is based on the premise of a calcium removal process by acid treatment, and furthermore, the main constituent of the carapace (cuticle) other than chitin The reality is that there is no interest in the utilization of the protein and calcium carbonate components.

が  しようと る  占 従って本発明は生物化学的処理による高分子量キチン製
造に際し、化学処理工程を出来るだけ少なくするための
ものであり、特に化学処理工程における酸処理工程を不
要にする生物化学的処理によるキチンの製造法を提供す
るためのものであって、その際の蛋白質の完全除去と副
生成分の有効利用を計るためのものである 占    るための すなわち、本発明はエビ、カニ等の甲殻類の甲殻(クチ
クラ)に放線菌由来のプロテアーゼであるアクチナーゼ
を作用させることによって蛋白質及びカルシウムを除去
分離した後、キチン中の残存カルシウムを酸処理により
除去することを特徴とする甲殻類の甲殻(クチクラ)の
処理方法に関するもので、本発明の方法では先ず、甲殻
を数平方センチメーターの大きさのチップに切断するが
細かすぎると以下に述べる炭酸カルシウムとの分離が難
しくなる。勿論、酵素の作用に関しては如何に細かくし
ても不都合ということはない0次に、pH5〜7に調整
した水に、切断した甲殻と7クチナーゼを加える。この
場合最適pHは6である。アクチナーゼのカゼインに対
する最適PHは科研製薬(株)の試料では7.0〜9.
0であるが1本発明の最適PHが6であるのは甲殻に含
まれる炭酸カルシウムによる影響が考えられる。
Accordingly, the present invention is intended to reduce the number of chemical treatment steps as much as possible when producing high molecular weight chitin through biochemical treatment, and in particular, to reduce the number of chemical treatment steps as much as possible in the production of high molecular weight chitin through biochemical treatment. The purpose of the present invention is to provide a method for producing chitin using chitin, which completely removes proteins and makes effective use of by-products. A crustacean shell, characterized in that protein and calcium are removed and separated by acting on the cuticle of the crustacean with actinase, which is a protease derived from actinomycetes, and residual calcium in chitin is removed by acid treatment. In the method of the present invention, the carapace is first cut into chips several square centimeters in size, but if the chips are too small, it will be difficult to separate them from the calcium carbonate described below. Of course, there is no problem in terms of the action of the enzyme, no matter how finely divided it is.Next, the cut carapace and cutinase are added to water whose pH has been adjusted to 5 to 7. In this case the optimum pH is 6. The optimum pH of actinase for casein is 7.0 to 9.0 for samples from Kaken Pharmaceutical Co., Ltd.
0, but the optimum pH of the present invention is 6, which is considered to be due to the influence of calcium carbonate contained in the shell.

アクチナーゼはカルシウムイjンにより安定化すること
が知られ、特に耐熱性が増加することが示されている、
これらのことがら炭敢カルシウムを含む甲殻試料の蛋白
質分解にはアクチナーゼが極めて適しているものと考え
られる0次に試料を加えた液を30〜60°Cで攪はん
するが最適温度は50’Oであり、それから離れるにつ
れ蛋白分解速度は小さくなる0反応時間は夫々の条件に
おいて適宜定めるが蛋白質の分解につれ、炭酸カルシウ
ムが沈殿となってかなり除去される。これはキチンと共
に甲殻マトリクスを形成している蛋白質がいわば接着剤
的役割を果たして炭酸カルシウムをそのマトリクスの構
成成分としていたのが、蛋白質という接着剤の分解に伴
ない炭酸カルシウムが離脱するものと思われる。この炭
酸カルシウムは非常に微細な粒子であるがろ過により蛋
白質が分解して生成したアミノ酸水溶液からキチンと共
に分離される。この炭酸カルシウムとキチンは粒度の違
いによりろ過等の通常の物理的手段で容易に分離される
。ここで分離されたキチンにはまだ一部の炭酸力ルシウ
ムンが付着しているが、塩酸またはEDTAで処理する
ことで炭酸カルシウムを完全に除去したキチンを得るこ
とができる。
Actinase is known to be stabilized by calcium ion, and in particular has been shown to increase heat resistance.
Based on these facts, actinase is considered to be extremely suitable for proteolyzing shell samples containing calcium carbonate.The solution to which the sample was added is stirred at 30-60°C, but the optimum temperature is 50°C. The 0 reaction time, in which the proteolytic rate decreases with increasing distance from the 0 reaction time, is determined appropriately for each condition, but as the protein decomposes, a considerable amount of calcium carbonate is removed as a precipitate. This is because the protein that forms the shell matrix together with chitin plays a so-called adhesive role, and calcium carbonate is a component of the matrix, but as the protein adhesive decomposes, the calcium carbonate is released. It will be done. This calcium carbonate is a very fine particle, but it is separated along with chitin from the amino acid aqueous solution produced by protein decomposition through filtration. Due to the difference in particle size, calcium carbonate and chitin can be easily separated by ordinary physical means such as filtration. Although some lucium carbonate still adheres to the chitin separated here, chitin from which calcium carbonate has been completely removed can be obtained by treatment with hydrochloric acid or EDTA.

わI 以下に本発明の実施例を示すが、これは本発明の一例を
示すのみであって、これらの実施例により本発明が何等
限定されるものではないことは当然である。
Examples of the present invention are shown below, but these are only examples of the present invention, and it goes without saying that the present invention is not limited to these Examples in any way.

実施例1 1)試料 エピ:ノルウェー産(肉部分を除いた甲殻全体) 水分        10月 灰分        20.6 粗脂肪       11.O 粗蛋白質      23.9 炭水化物      34.4 2)操作 0.1Mクエン酸緩衝液500m1に7クチナーゼE(
高純度品)200万チロシン単位と10112程度に切
断したエビ試料20gを加え、50℃で60時間反応を
行い蛋白質の分解を行った。
Example 1 1) Sample epi: Norwegian (whole shell excluding meat) Moisture October Ash 20.6 Crude fat 11. O Crude protein 23.9 Carbohydrate 34.4 2) Procedure Add 7 cutinase E (
Highly purified product) 2 million tyrosine units and 20 g of a shrimp sample cut into approximately 10112 pieces were added and reacted at 50°C for 60 hours to decompose the protein.

キチンと炭酸カルシウムはろ過によりアミノ酸水溶液か
ら分離した。また、キチンと炭酸カルシウムは粒度の差
によって分けた。ここで得たキチンを2N塩酸中48時
間浸漬し無機塩を除去後、蒸留水、エタノール洗浄、乾
燥して精製キチンを得た。
Chitin and calcium carbonate were separated from the amino acid aqueous solution by filtration. Furthermore, chitin and calcium carbonate were separated based on the difference in particle size. The chitin obtained here was immersed in 2N hydrochloric acid for 48 hours to remove inorganic salts, washed with distilled water and ethanol, and dried to obtain purified chitin.

3)結果 a)アミノ酸:得られたアミノ酸組成を表1、表2(1
が一回目の酵素処理、2が二回目)に示し、表3には資
料の蛋白質を塩酸で加水分解したときのアミノ酸組成を
示した。
3) Results a) Amino acids: The obtained amino acid compositions are shown in Table 1 and Table 2 (1
Table 3 shows the amino acid composition when the protein of the sample was hydrolyzed with hydrochloric acid.

b)灰分:収量 2゜88g 分析の結果から、カルシウムの割合が多く、灰分のほと
んどが炭酸カルシウムであることが判明した。
b) Ash content: Yield 2°88g The analysis results revealed that the proportion of calcium was high and most of the ash content was calcium carbonate.

C)キチン:収量 1.43g 蛋白質含量     0,28% 除去率    99.2 % カルシウム含量   0.03% 除去率    99.7 % 表  l Am1no    acid Asparagine Threonlon et1n Glutamin@ Proline Gllctne Alanine C!5tins Va I in@ Methionins Isoleucine Leucine Tyrosine Phesylalanine ygine Histidine Tryptophan Arginine ル g/g 33.81 16.0B 14.12 37.80 11.40 21)、 14 22、Q5 2.04 1?、5Q 8.3B 14.85 2Q、8Q ts、os 15、Q2 20、?Q 6、B5 15.07 表  2 表  3 Amino   acid Asparagine Threor++on et 1n GlutaIIIine Proline Glyc+ne Alan+ne CysLine aline Methionine Isoleucine Leucine Tyrosine Phenylalanine Lヲs ine Histidine Tryptophan Arginine 弘 g/g 8.74 8.50 4.79 6.30 2.92 5.72 5.56 0.58 4.75 0.49 2.87 4.10 6.38 3.08 4.48 1.95 3.53 Amino    acid Asparagine Threonion etin GlutaIIIine Proline GlyCine Alanins Cystine alins Methionine Isoleucine Leucine T7rosine Phen71alanine Lツs ine Histidine Tr7ptaphan Arginins 弘 g/g 24.32 10.97 15.94 2B、80 12.18 1!11.41 14.47 14.83 3.42 7.52 12.0B 103.81 2B、52 8.62 6.46 18.32 実施例2 1)試料:北海道産毛かに、煮沸処理甲殻水分    
     6.41 % 灰分        40−00 粗脂肪        3.76 粗蛋白質      37.13 糖質        12.70 2)操作 酵素反応終了後の脱灰分操作以外は実施例1と同様の操
作を行った。脱灰分は0.1M  EDTA溶液(pH
7)中で24時間1回、48時間1回浸漬攪はんして行
った。
C) Chitin: Yield 1.43g Protein content 0.28% Removal rate 99.2% Calcium content 0.03% Removal rate 99.7% Table l Am1no acid Asparagine Threonlon et1n Glutamin @ Proline Gllctn e Alanine C! 5tins Va I in@ Methionins Isoleucine Leucine Tyrosine Phesylanine Ygine Histidine Tryptophan Arginine Le g/g 33.81 16.0 B 14.12 37.80 11.40 21), 14 22, Q5 2.04 1? , 5Q 8.3B 14.85 2Q, 8Q ts, os 15, Q2 20,? Q 6, B5 15.07 Table 2 Table 3 Amino acid Asparagine Threor++on et 1n GlutaIIIine Proline Glyc+ne Alan+ne CysLine aline Methionine Is Oleucine Leucine Tyrosine Phenylanine Lwasine Histidine Tryptophan Arginine Hiroshi g/g 8.74 8.50 4.79 6. 30 2.92 5.72 5.56 0.58 4.75 0.49 2.87 4.10 6.38 3.08 4.48 1.95 3.53 Amino acid Asparagine Threonion etin GlutaIIIine Prol ine GlyCine Alanins Cystine alins Methionine Isoleucine Leucine T7rosine Phen71alanine Ltsusine Histidine Tr7ptaphan Arginins Hiroshi g/g 24.32 10.97 15.9 4 2B, 80 12.18 1!11.41 14.47 14.83 3.42 7.52 12 .0B 103.81 2B, 52 8.62 6.46 18.32 Example 2 1) Sample: Hokkaido downy crab, boiled shell water
6.41% Ash 40-00 Crude fat 3.76 Crude protein 37.13 Carbohydrate 12.70 2) Operation The same operation as in Example 1 was performed except for the deashing operation after the enzyme reaction was completed. The deashing content was determined using a 0.1M EDTA solution (pH
7) by immersion stirring once for 24 hours and once for 48 hours.

3)結果 キチン: 収量 2.1g 蛋白質含量 除去率 カルシウム含量 除去率 絶対分子量 13 0 、38 % 98.8  % t  race 100.0   % 、07X105 なお、絶対分子量はキチンを塩化リチウムを含むジメチ
ルアセトアミドに溶解し、静的光散乱を利用した光散乱
光度計(大域電子(株)類ダイナミック光散乱光度計D
S L−700)を用いて測定した。
3) Results Chitin: Yield 2.1g Protein content removal rate Calcium content removal rate Absolute molecular weight 130, 38% 98.8% Trace 100.0%, 07X105 The absolute molecular weight is determined by converting chitin to dimethylacetamide containing lithium chloride. A light scattering photometer that uses dissolved and static light scattering (Daikyu Denshi Co., Ltd. class dynamic light scattering photometer D)
SL-700).

比較例 1)試料 実施例2に同じ 2)操作 試料(冷凍乾燥後粉砕したもの)44gに2N塩# 4
00 m lを加え、5時間室温に放置して灰分を除去
した。ろ過により甲殻を回収し、更に2N塩酸100m
1にて48時間、室温で連続攪はんし脱灰を行った。脱
灰終了後、水洗し沸騰水浴中で12時間、IN水酸化ナ
トリウムLoomlにて2回除蛋白を行った。後、水洗
、さらにエタノールにて24時間室温で攪はんし残存す
る色素を除去、エタノールで洗浄後、減圧乾燥してキチ
ンを単離精製した。
Comparative Example 1) Sample Same as Example 2 2) Operation Sample (freeze-dried and pulverized) 44g and 2N salt #4
00 ml was added thereto and left at room temperature for 5 hours to remove ash. Collect the shell by filtration and add 100ml of 2N hydrochloric acid.
1 for 48 hours at room temperature for continuous stirring and deashing. After the decalcification was completed, it was washed with water and deproteinized twice in IN sodium hydroxide Looml for 12 hours in a boiling water bath. Thereafter, the mixture was washed with water, and further stirred with ethanol at room temperature for 24 hours to remove the remaining pigment. After washing with ethanol, the mixture was dried under reduced pressure to isolate and purify chitin.

3)結果 絶対分子量      9.70X105分析方法は実
施例2と同じ の量を少なくできるため経済的であるばかりでなく、酸
による変性をも少なくすることができる。
3) Result: Absolute molecular weight: 9.70×105 The analysis method is not only economical because it allows the same amount as in Example 2 to be reduced, but also reduces denaturation by acid.

萌」Lり」L釆 本発明によれば、従来の酵素処理法で達成し得なかった
ほぼ完全な蛋白質の除去が達成できるばかりでなく得ら
れるキチンも従来得られなかった高分子量のものとなり
、また、原料の甲殻(クチクラ)を微粉末に粉砕する必
要がなく1このことは酵素処理の過程で沈殿する炭酸カ
ルシウムとキチンの分離を容易にする点で生産上非常に
重要な利点となるもので、今までの酵素処理では考えら
れなかったことである。また1本発明によれば、甲殻(
クチクラ)中の蛋白質はアミノ酸水溶液として回収され
肥料、飼料、食品原料等として。
According to the present invention, not only can almost complete protein removal, which could not be achieved with conventional enzyme treatment methods, be achieved, but also the obtained chitin has a high molecular weight, which could not be obtained conventionally. In addition, there is no need to grind the raw material, the cuticle, into a fine powder.1 This is a very important advantage in production, as it facilitates the separation of calcium carbonate and chitin that precipitate during the enzyme treatment process. This is something that would have been unimaginable with conventional enzyme treatments. According to one aspect of the present invention, the shell (
The protein in the cuticle is recovered as an aqueous amino acid solution and used as fertilizer, feed, food ingredients, etc.

Claims (1)

【特許請求の範囲】 (1)エビ、カニ等の甲殻類の甲殻(クチクラ)に放線
菌由来のプロテアーゼであるアクチナーゼを作用させる
ことによって蛋白質及びカルシウムを除去分離した後、
キチン中の残存カルシウムを酸処理により除去すること
を特徴とする甲殻類の甲殻(クチクラ)の処理方法。 (2)アクチナーゼをpH5〜7で作用させる特許請求
の範囲第1項記載の処理方法。 (3)処理温度が30〜60℃である特許請求の範囲第
1項乃至第2項記載の処理方法。(4)甲殻(クチクラ
)中の蛋白質をアミノ酸液として分離回収する特許請求
の範囲第1項乃至第3項記載の処理方法。 (5)甲殻(クチクラ)中の炭酸カルシウムをろ過等物
理的手段で沈殿として分離回収する特許請求の範囲第1
項乃至第3項記載の処理方法。 (6)酸処理が塩酸またはエチレンジアミンテトラ四酢
酸(以下、EDTA)によるものである特許請求の範囲
第1項乃至第3項記載の処理方法。
[Claims] (1) After removing and separating proteins and calcium by applying actinase, a protease derived from actinomycetes, to the cuticle of crustaceans such as shrimp and crabs,
A method for treating crustacean shells (cuticles), which comprises removing residual calcium in chitin by acid treatment. (2) The treatment method according to claim 1, in which actinase acts at a pH of 5 to 7. (3) The processing method according to claims 1 and 2, wherein the processing temperature is 30 to 60°C. (4) A treatment method according to claims 1 to 3, in which proteins in the cuticle are separated and recovered as an amino acid solution. (5) Claim 1, in which calcium carbonate in the cuticle is separated and recovered as a precipitate by physical means such as filtration.
The processing method described in items 3 to 3. (6) The treatment method according to any one of claims 1 to 3, wherein the acid treatment is performed using hydrochloric acid or ethylenediaminetetratetraacetic acid (hereinafter referred to as EDTA).
JP1275330A 1989-10-23 1989-10-23 A method for treating crustacean shells using enzymes Expired - Fee Related JP2870871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275330A JP2870871B2 (en) 1989-10-23 1989-10-23 A method for treating crustacean shells using enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275330A JP2870871B2 (en) 1989-10-23 1989-10-23 A method for treating crustacean shells using enzymes

Publications (2)

Publication Number Publication Date
JPH03139291A true JPH03139291A (en) 1991-06-13
JP2870871B2 JP2870871B2 (en) 1999-03-17

Family

ID=17553960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275330A Expired - Fee Related JP2870871B2 (en) 1989-10-23 1989-10-23 A method for treating crustacean shells using enzymes

Country Status (1)

Country Link
JP (1) JP2870871B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072140A2 (en) * 2000-03-25 2001-10-04 Cognis Deutschland Gmbh & Co. Kg Biopolymers and production thereof with coupled product recovery
JP2004189676A (en) * 2002-12-12 2004-07-08 Sansho Seiyaku Co Ltd External preparation for ameliorating damaged skin
WO2010030193A1 (en) * 2008-09-12 2010-03-18 Emerald Fisheries As Process for reducing the fluoride content when producing proteinaceous concentrates from krill
US8557297B2 (en) 2008-09-12 2013-10-15 Olympic Seafood, As Method for processing crustaceans and products thereof
CN103535781A (en) * 2013-10-23 2014-01-29 宁波大学 Method for preparing instant shrimp leisure food
CN104045741A (en) * 2013-09-29 2014-09-17 天津天狮生物发展有限公司 Chitosan preparation method
JP2018502203A (en) * 2014-12-31 2018-01-25 インセクト Enzymatic hydrolysis of chitin, hydrolysates, and insects to produce one or more desired products
US10499673B2 (en) 2008-09-12 2019-12-10 Rimfrost Technologies As Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
GB2612617A (en) * 2021-11-05 2023-05-10 Marine Bioenergy As Demineralisation of organic tissue

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958618B (en) * 2006-10-20 2010-10-06 宁波大学 Biological decalcification method in process for preparing chitin

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072140A3 (en) * 2000-03-25 2002-09-19 Cognis Deutschland Gmbh Biopolymers and production thereof with coupled product recovery
WO2001072140A2 (en) * 2000-03-25 2001-10-04 Cognis Deutschland Gmbh & Co. Kg Biopolymers and production thereof with coupled product recovery
JP4586178B2 (en) * 2002-12-12 2010-11-24 三省製薬株式会社 External preparation for improving skin damaged by burns
JP2004189676A (en) * 2002-12-12 2004-07-08 Sansho Seiyaku Co Ltd External preparation for ameliorating damaged skin
US9907321B2 (en) 2008-09-12 2018-03-06 Rimfrost Technologies As Separating crustacean polar phospholipid compositions without emulsification
US9480273B2 (en) 2008-09-12 2016-11-01 Rimfrost As Reduced flouride crustacean de-oiled protein-phospholipid complex compositions
AU2009292317B2 (en) * 2008-09-12 2013-09-12 Rimfrost Technologies As Process for reducing the fluoride content when producing proteinaceous concentrates from krill
US8557297B2 (en) 2008-09-12 2013-10-15 Olympic Seafood, As Method for processing crustaceans and products thereof
US10701954B2 (en) 2008-09-12 2020-07-07 Rimfrost Technologies As Reduced fluorine crustacean polar phospholipid compositions
US8758829B2 (en) 2008-09-12 2014-06-24 Emerald Fisheries As Reduced fluoride content phospholipids/peptide complex meal
US10499673B2 (en) 2008-09-12 2019-12-10 Rimfrost Technologies As Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
WO2010030193A1 (en) * 2008-09-12 2010-03-18 Emerald Fisheries As Process for reducing the fluoride content when producing proteinaceous concentrates from krill
US9167832B2 (en) 2008-09-12 2015-10-27 Emerald Fisheries As Low flouride crustacean concentrated hydrolysate fraction compositions
JP2012501675A (en) * 2008-09-12 2012-01-26 エメラルド フィッシェリーズ エーエス Process for reducing fluoride content when producing proteinaceous concentrates
CN104045741A (en) * 2013-09-29 2014-09-17 天津天狮生物发展有限公司 Chitosan preparation method
CN103535781B (en) * 2013-10-23 2014-11-05 宁波大学 Method for preparing instant shrimp leisure food
CN103535781A (en) * 2013-10-23 2014-01-29 宁波大学 Method for preparing instant shrimp leisure food
JP2018502203A (en) * 2014-12-31 2018-01-25 インセクト Enzymatic hydrolysis of chitin, hydrolysates, and insects to produce one or more desired products
US11891459B2 (en) 2014-12-31 2024-02-06 Ynsect Chitin, hydrolysate and method for the production of one or more desired products from insects by means of enzymatic hydrolysis
GB2612617A (en) * 2021-11-05 2023-05-10 Marine Bioenergy As Demineralisation of organic tissue
WO2023079104A1 (en) * 2021-11-05 2023-05-11 Marine Bioenergy As Demineralisation of organic tissue

Also Published As

Publication number Publication date
JP2870871B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
No et al. Preparation and characterization of chitin and chitosan—a review
Struszczyk Chitin and chitosan. Part I. Properties and production
CN104788584B (en) Novel process for cleanly producing chitosan and carboxymethyl chitosan by using crustacean raw materials
Benavente et al. Production of glucosamine hydrochloride from crustacean shell
JPH0310659A (en) Iron-rich hemoferrum and production thereof
JP2014522240A (en) Extraction of chitin in a single process using enzymatic hydrolysis in acidic media
JP3278629B2 (en) Method for separating and purifying chondroitin sulfate
CN113234181B (en) Preparation method of chondroitin sulfate
JP2004141007A (en) Method for producing gelatine peptide derived from fish
JPH03139291A (en) Method for treating shell of crustacea using enzyme
CN102732592A (en) Method for preparing freshwater fish bone gelatin by enzyme process
Novikov et al. Chitosan technology from crustacean shells of the northern seas
Lu et al. Highly efficient shrimp shell recovery by solid-state fermentation with Streptomyces sp. SCUT-3
Karthick Rajan et al. β‐Chitin and chitosan from waste shells of edible mollusks as a functional ingredient
CN109293766A (en) The method of collagen polypeptide is extracted from fish scale
Mariod Extraction, purification, and modification of natural polymers
KR100532153B1 (en) producing method of protein hydrolysates from fish scale
CN115368486A (en) Ternary eutectic solvent and application thereof in extraction of procambarus clarkia shell chitin
KR20200004145A (en) A preparation method of collagen peptide complex derived from fish
CN114014952A (en) Method for preparing chitosan by catalyzing shrimp and crab shells through hydrothermal method
CN110818791B (en) Preparation method of fish collagen
JPS6121102A (en) Preparation of chitosan oligosaccharide
CN108976113B (en) Method for producing calcium acetate, protein peptide and chitin by using shrimp and crab shells
KR100790007B1 (en) A method for purification glycosaminoglycans from ascidian tunic
EP1613662B1 (en) Novel method of obtaining chondroitin sulphuric acid and uses thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees