JP3704422B2 - Steering bush - Google Patents

Steering bush Download PDF

Info

Publication number
JP3704422B2
JP3704422B2 JP22078597A JP22078597A JP3704422B2 JP 3704422 B2 JP3704422 B2 JP 3704422B2 JP 22078597 A JP22078597 A JP 22078597A JP 22078597 A JP22078597 A JP 22078597A JP 3704422 B2 JP3704422 B2 JP 3704422B2
Authority
JP
Japan
Prior art keywords
cylinder
peripheral surface
steering
bush
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22078597A
Other languages
Japanese (ja)
Other versions
JPH1148988A (en
Inventor
一成 中原
勝敏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP22078597A priority Critical patent/JP3704422B2/en
Publication of JPH1148988A publication Critical patent/JPH1148988A/en
Application granted granted Critical
Publication of JP3704422B2 publication Critical patent/JP3704422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のステアリング装置において振動吸収のために装備されるステアリングブッシュに関する。
【0002】
【従来の技術】
従来、自動車のステアリング装置においては、路面側からステアリングシャフトを介してステアリングホイールに伝達される振動を吸収するための種々のものが提案され、実用化されており、以下にその代表的な3種類のものについて説明する。
【0003】
第1のものは、例えば実開昭62−104024号公報に開示されるように、ステアリングシャフト系の軸部材と該軸部材に遊嵌する管状部材との間に介設されるステアリングブッシュである。この種のブッシュは、軸部材の外周面又は軸部材が貫通する内筒の外周面と管状部材内に嵌着される外筒の内周面との間にラバーブッシュを充填し、かつ該ラバーブッシュを軸部材又は内筒の外周面及び外筒の内周面にそれぞれ固着してなる。
【0004】
第2のものは、例えば特公平7−11292号公報に開示されるように、ステアリングシャフト系の二つの軸部材同士の間に介設されるステアリングラバーカップリングである。この種のラバーカップリングは、一般的には補強帯を埋設したラバーからなる盤体と、該盤体の軸芯周りに保持された偶数個の取付け具とで構成され、使用時には上記偶数個の取付け具のうち、盤体の軸芯周りに一つ置きのものを一方の軸部材に取り付け、残りのものを他方の軸部材に取り付けるようになっている(上記例示の公報の第6図及び第7図参照)。
【0005】
第3のものは、例えば実開昭56−152771号公報に開示されるように、ステアリングシャフト自体に振動吸収機能を待たせた振動吸収ステアリングシャフトである。この種のシャフトは、断面太鼓形の嵌合孔を内腔に有する管軸と、該管軸の嵌合孔よりも適宜小さい断面太鼓形に形成されかつ嵌合孔に挿通される中実軸と、該中実軸の外周面と上記管軸の嵌合孔の内周面との間に充填されかつそれらの面にそれぞれ固着されたラバーブッシュとで構成されている。
【0006】
【発明が解決しようとする課題】
ところで、ステアリング装置の振動吸収手段としては、振動吸収性と操舵安定性とを両立させる必要があるために、軸方向のばね定数を小さくし、捩り方向のばね定数を大きくすることが望ましい。
【0007】
しかるに、上記従来のステアリングブッシュでは、ラバーブッシュの硬さにより軸方向のばね定数と捩り方向のばね定数とが共に定まり、両ばね定数の比を適宜設定することができない。
【0008】
これに対し、ラバーカップリングでは、上記例示の公報(特公平7−11292号)に開示するように、盤体を樹脂や金属等の剛性を有する材質で形成する一方、該盤体の各取付け具を保持する貫通孔の内周面と各取付け具の外周面と間に弾性スリーブを介設することにより、軸方向のばね定数を小さくし、捩り方向のばね定数を大きくすることができる。しかし、この場合、部品点数が多くなり、コストが高くなるという問題がある。また、ラバーカップリングは径が比較的大きなものであるため、その配置に関し制約を受け、汎用性に欠けるという問題もある。
【0009】
また、振動吸収ステアリングシャフトでは、管軸の嵌合孔及び中実軸の断面形状が太鼓形であり、操舵力等が作用したときの両軸の軸回りの相対的変位が規制されることから、その両軸間に充填されるラバーブッシュの硬さを低くして軸方向のばね定数を小さくした場合でも操舵力等が作用したときの捩り方向のばね定数を大きくすることができる。しかし、操舵力等が作用して両軸の軸回りの相対的変位が規制されているとき、つまり中実軸の外周面と管軸の嵌合孔の内周面とがその間のラバーブッシュを圧縮して互いに押圧し合っているときには、ラバーブッシュの弾性変形が抑制されるため、軸方向のばね定数が大きくなり、振動吸収機能が損なわれる欠点がある。
【0010】
本発明はかかる諸点に鑑みてなされたものであり、その課題とするところは、特に従来のステアリングブッシュの利点つまりコンパクトで汎用性に優れた点を維持しつつ、その軸方向のばね定数を小さく、捩り方向のばね定数を大きくし得るようにして、振動吸収性と操舵安定性との両立を図ることができ、また操舵力等が作用しているときでも軸方向のばね定数が大きくなるのを防止して振動吸収性を良好に維持し得るステアリングブッシュを提供するものである。
【0011】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に係る発明は、ステアリングホイールの操舵力をステアリングギヤボックスに伝達するステアリングシャフト系の軸部材と該軸部材に遊嵌する管状部材との間に介設されるステアリングブッシュとして、上記軸部材が貫通し該軸部材と結合される内筒と、該内筒の外周に同心状に配置されかつ上記管状部材内に嵌着される外筒と、上記内筒と外筒との間でこれら両筒と同心状に配置されかつ軸方向の長さが内筒及び外筒のそれよりも短い中間筒と、少なくとも上記中間筒の外周面と外筒の内周面との間及び中間筒が存在しない軸方向の位置における内筒の外周面と外筒の内周面との間に充填されかつそれらの面にそれぞれ固着されたラバーブッシュとを備える構成とする。また、上記中間筒の内周面と内筒の外周面とを、円周方向全周に亘って該両筒の軸方向の相対的変位を許容し得る略一定の隙間を隔てて近接して対向させるとともに、両筒の軸回りの相対的変位を規制するように断面の輪郭を真円以外の形状に形成する。
【0012】
これにより、ステアリングブッシュに対し軸方向の振動が入力するとき、つまり内筒と外筒との間で軸方向の相対的変位が生じるときには、内筒と中間筒との間の軸方向の相対的変位が許容されることから、ラバーブッシュのうち、内筒の外周面と外筒の内周面との間に充填された部分のみが弾性変形を生じることになり、その結果、軸方向のばね定数は小さく、振動が効果的に吸収される。一方、ステアリングブッシュに対し操舵力等の捩り力が入力するとき、つまり内筒と外筒との間で軸回りの相対的変位が生じるときには、内筒と中間筒との間の軸回りの相対的変位が規制され、両筒が一体となって外筒に対し軸回りに相対変位することから、ラバーブッシュは、内筒の外周面と外筒の内周面との間に充填された部分のみならず中間筒の外周面と外筒の内周面との間に充填された部分も弾性変形を生じることになり、その結果、捩り方向のばね定数は大きく、操舵力等の伝達が確実にかつ迅速に行われて操舵安定性が良好なものとなる。しかも、操舵力等の捩り力が入力しているときでも、内筒の外周面と外筒の内周面との間の間隔が変化することはないので、その間のラバーブッシュの弾性変形により軸方向のばね定数は小さいままであり、振動吸収性は良好に維持される。さらに、ステアリングブッシュは、ステアリングシャフト系の軸部材と該軸部材に遊嵌する管状部材との間に介設されるコンパクトなもので、他の部品の配置レイアウトを変更することなく使用することができ、汎用性に優れる。ここで、ステアリングシャフト系とは、ステアリングホイールとステアリングギヤボックスとの間の一連の部材を意味し、ステアリングギヤボックスの軸部材等も含む。
【0013】
請求項2に係る発明は、請求項1記載のステアリングブッシュにおいて、上記中間筒の内周面と内筒の外周面との間にもラバーブッシュを充填する構成とする。これにより、中間筒と内筒とが直接接触することはなく、騒音の発生が防止される。但し、この場合、ラバーブッシュは中間筒の内周面と内筒の外周面の両方に固着されるものではない。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0015】
図1ないし図3は本発明の第1の実施形態に係わるステアリングブッシュAを示す。ステアリングブッシュAは、図示していないがステアリングホイールの操舵力をステアリングギヤボックスに伝達するステアリングシャフト系の軸部材と該軸部材が遊嵌する管状部材との間に介設されるものであり、その大きさは、車種や介設される個所により異なるが、通常は外径が32〜35mm、軸方向長さが25mm程度である。
【0016】
上記ステアリングブッシュAは、中空円筒状の内筒1と、該内筒1の外周に同心状に配置されかつ軸方向の長さが内筒1のそれと同一である中空円筒状の外筒2と、上記内筒1と外筒2との間でこれら両筒1,2と同心状に配置されかつ軸方向の長さが内筒1及び外筒2のそれよりも短い中空円筒状の中間筒3と、これら三つの筒1〜3の間つまり中間筒3が存在しない軸方向の位置における内筒1の外周面と外筒2の内周面との間、中間筒3の外周面と外筒2の内周面との間及び内筒1の外周面と中間筒3の内周面との間に充填されたラバーブッシュ4とからなる。上記内筒1、外筒2及び中間筒3はいずれも鉄鋼等の金属又は樹脂からなり、内筒1はその中空内をステアリングシャフト系の軸部材が貫通し該軸部材と結合され、外筒2はステアリングシャフト系の管状部材に嵌着される。上記ラバーブッシュ4は内筒1の外周面、外筒2の内周面及び中間筒3の外周面にそれぞれ接着剤により固着されているが、中間筒3の内周面には固着されていない。尚、以下の説明では、ラバーブッシュ4のうち、中間筒3が存在しない軸方向の位置における内筒1の外周面と外筒2の内周面との間に充填された部分を4a、中間筒3の外周面と外筒2の内周面との間に充填された部分を4b、内筒1の外周面と中間筒3の内周面との間に充填された部分を4cとして区別して説明する。
【0017】
上記中間筒3の内周面と内筒1の外周面とは、円周方向全周に亘って該両筒1,3の軸方向の相対的変位を許容し得る略一定(具体的には0.2〜1.0mm)の隙間eを隔てて近接して対向しているとともに、両筒1,3の軸回りの相対的変位を規制するように断面の輪郭が略楕円形状に形成されている。内筒1の内周面、中間筒3の外周面、外筒2の内周面及び外周面はいずれも断面の輪郭が真円形状に形成されている。
【0018】
次に、上記第1の実施形態の作用・効果について説明するに、ステアリングブッシュAに対し軸方向の振動が入力するとき、つまり内筒1と外筒2との間で軸方向の相対的変位が生じるときには、内筒1と中間筒3との間に軸方向の相対的変位を許容し得る隙間eが形成され、かつその隙間eに充填されたラバーブッシュ4cは内筒1の外周面に固着されているが中間筒3の内周面には固着されていないので、ラバーブッシュ4のうち、内筒1の外周面と外筒2の内周面との間に充填された部分4aのみが弾性変形を生じることになる。その結果、ステアリングブッシュAにおける軸方向のばね定数は小さく、自動車の加速時及び悪路走行時におけるステアリングシャフト方向の振動を効果的に吸収することができる。
【0019】
一方、ステアリングブッシュAに対し捩り力が入力するとき、つまり内筒1と外筒2との間で軸回りの相対的変位が生じるときには、内筒1の外周面及び中間筒3の内周面は、その間の隙間eが極僅かでありかつ断面の輪郭が真円以外の略楕円形状に形成されているため、両筒1,3の軸回りの相対的変位が規制され、両筒1,3が一体となって外筒2に対し軸回りに相対変位する。そのため、ラバーブッシュ4は、内筒1の外周面と外筒2の内周面との間に充填された部分4aのみならず中間筒3の外周面と外筒2の内周面との間に充填された部分4bも弾性変形を生じることになり、ステアリングブッシュAにおける捩り方向のばね定数は大きくなる。その結果、ステアリングホイールの操舵力がステアリングギヤボックス側に迅速かつ確実に伝達され、また操舵輪に外力が作用したときステアリングブッシュAの軸回りの弾性変形に起因して操舵輪が操舵方向に変位するのを防止することができ、操舵安定性を高めることができる。
【0020】
その上、ステアリングブッシュAにおける軸方向のばね定数と捩り方向のばね定数との比は、中間筒3の外周面と外筒2の内周面との間に充填されたラバーブッシュ4bの長さ(つまり中間筒3の軸方向長さ)及び肉厚(つまり中間筒3の外周面と外筒2の内周面との間の間隔)によって容易にかつ適切に調節することができる。また、ステアリングブッシュAに操舵力等の捩り力が入力しているときでも、内筒1の外周面と外筒2の内周面との間の間隔が変化することはないので、その間のラバーブッシュ4aの弾性変形により軸方向のばね定数は小さいままであり、振動吸収性を良好に維持できる。さらに、上記中間筒3の内周面と内筒1の外周面との間にラバーブッシュ4cが充填されているため、捩り力が入力しているときでも該両筒1,3が直接接触することはなく、騒音の発生を防止することができる。
【0021】
加えて、ステアリングブッシュAは、ステアリングシャフト系の軸部材と該軸部材に遊嵌する管状部材との間に介設されるコンパクトなもので、他の部品の配置レイアウトを変更することなく使用することができるので、小型車等にも適用することができ、汎用性に優れる。
【0022】
尚、上記第1の実施形態では、内筒1と中間筒3との軸回りの相対的変位を規制するために、内筒1の外周面及び中間筒3の内周面を、断面の輪郭が略楕円形状になるように形成したが、本発明は、これらの断面の輪郭を真円以外の形状にすればよく、図4ないし図6はそれぞれ別の実施形態を示す。
【0023】
すなわち、図4に示す第2の実施形態では、中間筒3の内周面には軸芯を挟んで対向する2個所にそれぞれ半径方向外方に凹陥してなる凹部5,5が形成され、内筒1の外周面には該凹部5,5に対応して半径方向外方に突出する凸部6,6が形成されている。図5に示す第3の実施形態では、内筒1の外周面及び中間筒3の内周面は、円周方向に凹部と凸部を交互に形成して断面の輪郭が波を打った形状に形成されている。図6に示す第4の実施形態では、内筒1の外周面及び中間筒3の内周面は、軸芯に対称な二つの円弧面と二つの平坦面とからなる断面の輪郭が太鼓形に形成されている。尚、第2〜第4の実施形態の場合、いずれもステアリングブッシュAのその他の構成は、第1の実施形態のそれと同じであり、同一部材には同一符号を付してその説明は省略する。
【0024】
そして、上記第2〜第4のいずれの実施形態においても、第1の実施形態の場合と同様の作用効果を奏することができるのは勿論である。
【0025】
また、上記第1〜第4の実施形態では、ステアリングブッシュAの製造方法としては、内筒1の外周面、外筒2の内周面及び中間筒3の外周面にそれぞれ接着剤を塗布し、これらを成形型内に所定状態でセットした後、型閉じをし溶融したラバー材料を型内に注入するいわゆる一体成形法が用いられるが、図7に示す第5の実施形態では、ステアリングブッシュBの製造方法は、別体成形と圧入とを用いてなる。
【0026】
すなわち、上記ステアリングブッシュBは、中空円筒状の内筒11と、該内筒11の外周に同心状に配置されかつ軸方向の長さが内筒11のそれと同一である中空円筒状の外筒12と、上記内筒11と外筒12との間でこれら両筒11,12と同心状に配置されかつ軸方向の長さが内筒11及び外筒12のそれよりも短い中空円筒状の中間筒13と、上記外筒12の内周面に外周面が接触した状態で該外筒12と中間筒13との間に配置されかつ軸方向の長さが中間筒13のそれと同一である中空円筒状のシールスリーブ14と、上記中間筒13及びシールスリーブ14が存在しない軸方向の位置における内筒11の外周面と外筒12の内周面との間に充填されかつそれらの面にそれぞれ固着された第1のラバーブッシュ15と、上記中間筒13の外周面とシールスリーブ14の内周面との間に充填されかつそれらの面にそれぞれ固着された第2のラバーブッシュ16とからなる。
【0027】
上記中間筒13の内周面と内筒11の外周面とは、第1の実施形態の場合と同様に、円周方向全周に亘って該両筒11,13の軸方向の相対的変位を許容し得る略一定の隙間eを隔てて近接して対向しているとともに、両筒11,13の軸回りの相対的変位を規制するように断面の輪郭が真円以外の形状、例えば第1の実施形態の如く楕円形状等に形成されている。但し、中間筒13の内周面と内筒11の外周面との間には、第1の実施形態の場合のようにラバーブッシュは充填されていない。尚、図7中、C.L.はステアリングブッシュBの中心線であり、図ではステアリングブッシュBの下半分を省略している。
【0028】
そして、ステアリングブッシュBの製造方法としては、先ず、内筒11の外周面と外筒12の内周面との間に第1のラバーブッシュ15を充填してなる第1の組体を一体成形法により形成する。続いて、中間筒13の外周面とシールスリーブ14の内周面との間に第2のラバーブッシュ16を充填してなる第2の組体を同じく一体成形法により形成する。しかる後、上記第1の組体における内筒11の外周面と外筒12の内周面との間で第1のラバーブッシュ15が存在しない空間内に、上記第2の組体を圧入し、以上によって、ステアリングブッシュBが製造される。
【0029】
図8は本発明のステアリングブッシュ及び従来技術1〜3について、それぞれ捩り方向の静ばね定数と軸方向の静ばね定数との関係を示す特性図であり、図9は本発明のステアリングブッシュ及び従来技術1,2について、それぞれ捩り方向の動ばね定数と軸方向の動ばね定数との関係を示す特性図である。ここで、従来技術1は従来の技術の項で述べたステアリングブッシュに属するものであり、従来技術2は同じくステアリングラバーカップリングに属するものであり、従来技術3は同じく振動吸収ステアリングシャフトに属するものである。
【0030】
図8及び図9から分かるように、本発明のステアリングブッシュは、従来のステアリングブッシュ及び振動吸収ステアリングシャフトに比べて、軸方向のばね定数(K1)と捩り方向のばね定数(K2)との比(K1/K2)が小さく、ステアリングラバーカップリングのそれに近い値となる。
【0031】
図10は本発明のステアリングブッシュA,Bのうち、内筒1,11の外周面と中間筒3,13の内周面との間の隙間eの異なる2種類のものについて、捩り角度と捩りトルクとの関係を示す特性図であり、図中実線は上記隙間eが大きいものの特性線を示し、破線は隙間eが小さいものの特性線を示す。この図からは、捩り角度が小さい範囲で生じるリニア領域(捩りトルクが殆どゼロの領域)R1,R2(R1>R2)が内筒1,11の外周面と中間筒3,13の内周面との間の隙間eに応じて変化することが分かる。
【0032】
【発明の効果】
以上のように、本発明のステアリングブッシュによれば、ブッシュ本来のコンパクトで汎用性に優れるという利点を有しながら、軸方向のばね定数を小さくし、捩り方向のばね定数を大きくすることができるので、振動吸収性と操舵安定性との両立を有効に図ることができる。しかも、操舵力等が作用しているときでも軸方向のばね定数が変化することはなく、振動吸収性を良好に維持することができる。
【0033】
特に、請求項2に係る発明では、中間筒と内筒との接触による騒音の発生を防止できるという効果をも併有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るステアリングブッシュの一部を切開した側面図である。
【図2】図1のX−X線における断面図である。
【図3】図1のY−Y線における断面図である。
【図4】本発明の第2の実施形態を示す図3相当図である。
【図5】同じく第3の実施形態を示す図3相当図である。
【図6】同じく第4の実施形態を示す図3相当図である。
【図7】本発明の第5の実施形態に係るステアリングブッシュの縦断側面図である。
【図8】本発明のステアリングブッシュ及び従来技術についての捩り方向の静ばね定数と軸方向の静ばね定数との関係を示す特性図である。
【図9】同じく捩り方向の動ばね定数と軸方向の動ばね定数との関係を示す特性図である。
【図10】本発明のステアリングブッシュにおける捩り角度と捩りトルクとの関係を示す特性図である。
【符号の説明】
A,B ステアリングブッシュ
1,11 内筒
2,12 外筒
3,13 中間筒
4,15,16 ラバーブッシュ
e 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steering bush provided for vibration absorption in an automobile steering device.
[0002]
[Prior art]
Conventionally, various automobile steering devices for absorbing vibration transmitted from the road surface side to the steering wheel via the steering shaft have been proposed and put into practical use. Will be described.
[0003]
The first one is a steering bush interposed between a shaft member of a steering shaft system and a tubular member loosely fitted to the shaft member as disclosed in, for example, Japanese Utility Model Publication No. 62-104024. . In this type of bush, a rubber bush is filled between the outer peripheral surface of the shaft member or the outer peripheral surface of the inner cylinder through which the shaft member passes and the inner peripheral surface of the outer cylinder fitted into the tubular member, and the rubber The bush is fixed to the outer peripheral surface of the shaft member or the inner cylinder and the inner peripheral surface of the outer cylinder.
[0004]
The second one is a steering rubber coupling interposed between two shaft members of a steering shaft system, as disclosed in, for example, Japanese Patent Publication No. 7-11292. This type of rubber coupling is generally composed of a disc body made of rubber with an embedded reinforcing band and an even number of fixtures held around the axis of the disc body. Of these attachments, every other one around the axis of the panel is attached to one shaft member, and the remaining ones are attached to the other shaft member (FIG. 6 of the above-mentioned publication). And FIG. 7).
[0005]
The third one is a vibration absorbing steering shaft in which the steering shaft itself waits for a vibration absorbing function, as disclosed in, for example, Japanese Utility Model Publication No. 56-152771. This type of shaft includes a tube shaft having a drum-shaped fitting hole in its inner cavity, and a solid shaft that is formed in a drum shape that is appropriately smaller than the fitting hole of the tube shaft and is inserted into the fitting hole. And a rubber bush filled between the outer peripheral surface of the solid shaft and the inner peripheral surface of the fitting hole of the tube shaft and fixed to each of the surfaces.
[0006]
[Problems to be solved by the invention]
By the way, as the vibration absorbing means of the steering device, since it is necessary to achieve both vibration absorption and steering stability, it is desirable to reduce the spring constant in the axial direction and increase the spring constant in the torsion direction.
[0007]
However, in the above-described conventional steering bush, both the spring constant in the axial direction and the spring constant in the torsional direction are determined depending on the hardness of the rubber bush, and the ratio between the two spring constants cannot be set as appropriate.
[0008]
On the other hand, in the rubber coupling, as disclosed in the above-mentioned official gazette (Japanese Patent Publication No. 7-11292), the panel body is formed of a material having rigidity such as resin or metal, and each mounting of the panel body is performed. By inserting an elastic sleeve between the inner peripheral surface of the through hole holding the tool and the outer peripheral surface of each fixture, the spring constant in the axial direction can be reduced and the spring constant in the torsional direction can be increased. However, in this case, there is a problem that the number of parts increases and the cost increases. In addition, since the rubber coupling has a relatively large diameter, there is a problem that the arrangement is restricted and the versatility is lacking.
[0009]
Further, in the vibration absorbing steering shaft, the fitting shape of the tube shaft and the cross-sectional shape of the solid shaft are drum-shaped, and the relative displacement around the shafts of both shafts when the steering force is applied is restricted. Even when the hardness of the rubber bush filled between the two shafts is lowered to reduce the spring constant in the axial direction, the spring constant in the torsional direction when a steering force or the like is applied can be increased. However, when the relative displacement about the axis of both shafts is restricted by the action of the steering force, etc., that is, the outer peripheral surface of the solid shaft and the inner peripheral surface of the fitting hole of the pipe shaft are When compressed and pressed against each other, elastic deformation of the rubber bushing is suppressed, so that the spring constant in the axial direction increases and the vibration absorbing function is impaired.
[0010]
The present invention has been made in view of such various points, and the object of the present invention is to reduce the axial spring constant while maintaining the advantage of the conventional steering bush, that is, the compact and excellent versatility. The torsional spring constant can be increased to achieve both vibration absorption and steering stability, and the axial spring constant increases even when steering force is applied. And a steering bush that can maintain good vibration absorption.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is provided between a shaft member of a steering shaft system that transmits a steering force of a steering wheel to a steering gear box and a tubular member loosely fitted to the shaft member. An inner cylinder through which the shaft member penetrates and is coupled to the shaft member; an outer cylinder that is concentrically disposed on the outer periphery of the inner cylinder and fitted into the tubular member; An intermediate cylinder that is concentrically disposed between the cylinder and the outer cylinder and has an axial length shorter than that of the inner cylinder and the outer cylinder, and at least the outer peripheral surface of the intermediate cylinder and the inner cylinder A rubber bush that is filled between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder at a position in the axial direction between the peripheral surface and in the absence of the intermediate cylinder, and is fixed to each of the surfaces. To do. Further, the inner peripheral surface of the intermediate cylinder and the outer peripheral surface of the inner cylinder are brought close to each other with a substantially constant gap that allows the relative displacement in the axial direction of both cylinders over the entire circumference. The contour of the cross section is formed in a shape other than a perfect circle so as to oppose each other and restrict relative displacement around the axis of both cylinders.
[0012]
Thereby, when axial vibration is input to the steering bush, that is, when relative displacement in the axial direction occurs between the inner cylinder and the outer cylinder, relative axial movement between the inner cylinder and the intermediate cylinder is caused. Since the displacement is allowed, only the portion of the rubber bush filled between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder is elastically deformed. As a result, the axial spring The constant is small and vibrations are effectively absorbed. On the other hand, when a torsional force such as a steering force is input to the steering bush, that is, when relative displacement about the axis occurs between the inner cylinder and the outer cylinder, the relative rotation about the axis between the inner cylinder and the intermediate cylinder The rubber bush is a portion filled between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder because the two cylinders are integrated and relatively displaced about the axis relative to the outer cylinder. In addition to this, the portion filled between the outer peripheral surface of the intermediate cylinder and the inner peripheral surface of the outer cylinder also undergoes elastic deformation. As a result, the spring constant in the torsion direction is large, and transmission of steering force and the like is ensured. And the steering stability is good. In addition, even when a torsional force such as a steering force is input, the distance between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder does not change. The spring constant in the direction remains small and the vibration absorption is well maintained. Furthermore, the steering bush is a compact one interposed between a shaft member of the steering shaft system and a tubular member loosely fitted to the shaft member, and can be used without changing the layout of other components. And versatility. Here, the steering shaft system means a series of members between the steering wheel and the steering gear box, and includes a shaft member of the steering gear box and the like.
[0013]
According to a second aspect of the present invention, in the steering bush according to the first aspect, a rubber bush is also filled between the inner peripheral surface of the intermediate cylinder and the outer peripheral surface of the inner cylinder. As a result, the intermediate cylinder and the inner cylinder are not in direct contact with each other, and the generation of noise is prevented. However, in this case, the rubber bush is not fixed to both the inner peripheral surface of the intermediate cylinder and the outer peripheral surface of the inner cylinder.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
1 to 3 show a steering bush A according to a first embodiment of the present invention. Although not shown, the steering bush A is interposed between a shaft member of a steering shaft system that transmits the steering force of the steering wheel to the steering gear box and a tubular member in which the shaft member is loosely fitted. The size varies depending on the type of vehicle and the location where it is installed, but usually the outer diameter is 32 to 35 mm and the axial length is about 25 mm.
[0016]
The steering bush A includes a hollow cylindrical inner cylinder 1 and a hollow cylindrical outer cylinder 2 that is disposed concentrically on the outer periphery of the inner cylinder 1 and has an axial length identical to that of the inner cylinder 1. A hollow cylindrical intermediate cylinder disposed concentrically with the cylinders 1 and 2 between the inner cylinder 1 and the outer cylinder 2 and having an axial length shorter than that of the inner cylinder 1 and the outer cylinder 2 3 and between the three cylinders 1 to 3, that is, between the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the outer cylinder 2 at an axial position where the intermediate cylinder 3 does not exist, and between the outer peripheral surface of the intermediate cylinder 3 and the outer The rubber bush 4 is filled between the inner peripheral surface of the tube 2 and between the outer peripheral surface of the inner tube 1 and the inner peripheral surface of the intermediate tube 3. The inner cylinder 1, the outer cylinder 2 and the intermediate cylinder 3 are all made of a metal such as steel or resin, and the inner cylinder 1 is coupled with the shaft member through the shaft member of the steering shaft system through the hollow. 2 is fitted to the tubular member of the steering shaft system. The rubber bush 4 is fixed to the outer peripheral surface of the inner cylinder 1, the inner peripheral surface of the outer cylinder 2, and the outer peripheral surface of the intermediate cylinder 3 with an adhesive, but is not fixed to the inner peripheral surface of the intermediate cylinder 3. . In the following description, a portion of the rubber bush 4 filled between the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the outer cylinder 2 at an axial position where the intermediate cylinder 3 does not exist is indicated as 4a. A portion filled between the outer peripheral surface of the cylinder 3 and the inner peripheral surface of the outer tube 2 is defined as 4b, and a portion filled between the outer peripheral surface of the inner tube 1 and the inner peripheral surface of the intermediate tube 3 is defined as 4c. It explains separately.
[0017]
The inner circumferential surface of the intermediate cylinder 3 and the outer circumferential surface of the inner cylinder 1 are substantially constant (specifically, the axial displacement of both the cylinders 1 and 3 can be allowed over the entire circumference in the circumferential direction. 0.2 to 1.0 mm), and the cross-sectional outline is formed in a substantially elliptical shape so as to restrict the relative displacement around the axes of the cylinders 1 and 3. ing. The inner peripheral surface of the inner cylinder 1, the outer peripheral surface of the intermediate cylinder 3, and the inner peripheral surface and outer peripheral surface of the outer cylinder 2 are all formed in a perfect circle shape in cross section.
[0018]
Next, the operation and effect of the first embodiment will be described. When axial vibration is input to the steering bush A, that is, relative displacement between the inner cylinder 1 and the outer cylinder 2 in the axial direction. Is formed between the inner cylinder 1 and the intermediate cylinder 3, and a rubber bush 4 c filled in the gap e is formed on the outer peripheral surface of the inner cylinder 1. Since it is fixed but not fixed to the inner peripheral surface of the intermediate cylinder 3, only the portion 4a of the rubber bush 4 filled between the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the outer cylinder 2 is used. Will cause elastic deformation. As a result, the axial spring constant of the steering bush A is small, and vibrations in the steering shaft direction when the vehicle is accelerating and traveling on rough roads can be effectively absorbed.
[0019]
On the other hand, when a torsional force is input to the steering bush A, that is, when a relative displacement around the axis occurs between the inner cylinder 1 and the outer cylinder 2, the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the intermediate cylinder 3 Since the gap e between them is very small and the cross-sectional outline is formed in a substantially elliptical shape other than a perfect circle, the relative displacement around the axis of both cylinders 1 and 3 is restricted, and both cylinders 1 and 1 are restricted. 3 is integrally displaced relative to the outer cylinder 2 around the axis. Therefore, the rubber bush 4 is not only between the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the outer cylinder 2 but also between the outer peripheral surface of the intermediate cylinder 3 and the inner peripheral surface of the outer cylinder 2. The portion 4b filled in the cylinder also undergoes elastic deformation, and the spring constant of the steering bush A in the torsion direction increases. As a result, the steering force of the steering wheel is quickly and reliably transmitted to the steering gear box, and when an external force is applied to the steering wheel, the steering wheel is displaced in the steering direction due to elastic deformation around the axis of the steering bush A. Can be prevented, and the steering stability can be improved.
[0020]
In addition, the ratio of the spring constant in the axial direction to the spring constant in the torsional direction in the steering bush A is such that the length of the rubber bush 4 b filled between the outer peripheral surface of the intermediate cylinder 3 and the inner peripheral surface of the outer cylinder 2. (That is, the axial length of the intermediate cylinder 3) and the thickness (that is, the distance between the outer peripheral surface of the intermediate cylinder 3 and the inner peripheral surface of the outer cylinder 2) can be easily and appropriately adjusted. Even when a torsional force such as a steering force is input to the steering bush A, the distance between the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the outer cylinder 2 does not change. Due to the elastic deformation of the bush 4a, the spring constant in the axial direction remains small, and the vibration absorption can be maintained well. Further, since the rubber bush 4c is filled between the inner peripheral surface of the intermediate tube 3 and the outer peripheral surface of the inner tube 1, both the tubes 1 and 3 are in direct contact even when a torsional force is input. This can prevent the generation of noise.
[0021]
In addition, the steering bush A is a compact one interposed between a shaft member of the steering shaft system and a tubular member loosely fitted to the shaft member, and is used without changing the layout of other components. Therefore, it can be applied to a small car or the like, and is excellent in versatility.
[0022]
In the first embodiment, the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the intermediate cylinder 3 are contoured in cross section in order to regulate the relative displacement of the inner cylinder 1 and the intermediate cylinder 3 around the axis. However, in the present invention, the outline of these cross sections may be a shape other than a perfect circle, and FIGS. 4 to 6 show different embodiments.
[0023]
That is, in the second embodiment shown in FIG. 4, recesses 5 and 5 are formed on the inner peripheral surface of the intermediate cylinder 3, which are respectively recessed outward in the radial direction at two opposing positions across the axis. Convex portions 6 and 6 projecting outward in the radial direction are formed on the outer peripheral surface of the inner cylinder 1 corresponding to the concave portions 5 and 5. In the third embodiment shown in FIG. 5, the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the intermediate cylinder 3 are formed in such a manner that the concave and convex portions are alternately formed in the circumferential direction and the profile of the cross section is waved. Is formed. In the fourth embodiment shown in FIG. 6, the outer peripheral surface of the inner cylinder 1 and the inner peripheral surface of the intermediate cylinder 3 have a drum-shaped cross section consisting of two arc surfaces symmetrical to the axis and two flat surfaces. Is formed. In the second to fourth embodiments, the other configuration of the steering bush A is the same as that of the first embodiment, and the same members are denoted by the same reference numerals and the description thereof is omitted. .
[0024]
In any of the second to fourth embodiments, it is needless to say that the same effects as those of the first embodiment can be obtained.
[0025]
In the first to fourth embodiments, the steering bush A is manufactured by applying an adhesive to the outer peripheral surface of the inner cylinder 1, the inner peripheral surface of the outer cylinder 2, and the outer peripheral surface of the intermediate cylinder 3. A so-called integral molding method is used in which these are set in a mold in a predetermined state, and then the mold is closed and a molten rubber material is injected into the mold. In the fifth embodiment shown in FIG. The manufacturing method of B uses separate molding and press-fitting.
[0026]
That is, the steering bush B includes a hollow cylindrical inner cylinder 11 and a hollow cylindrical outer cylinder that is arranged concentrically on the outer periphery of the inner cylinder 11 and has the same axial length as that of the inner cylinder 11. 12 and the inner cylinder 11 and the outer cylinder 12 are arranged concentrically with both the cylinders 11 and 12 and have a hollow cylindrical shape whose axial length is shorter than that of the inner cylinder 11 and the outer cylinder 12. The intermediate cylinder 13 is disposed between the outer cylinder 12 and the intermediate cylinder 13 with the outer peripheral surface being in contact with the inner peripheral surface of the outer cylinder 12, and the axial length is the same as that of the intermediate cylinder 13. A hollow cylindrical seal sleeve 14 is filled between the outer peripheral surface of the inner cylinder 11 and the inner peripheral surface of the outer cylinder 12 at an axial position where the intermediate cylinder 13 and the seal sleeve 14 do not exist, and these surfaces are filled. The first rubber bush 15 fixed to each other and the intermediate cylinder Of 3 of the outer peripheral surface and is filled between the inner peripheral surface of the sealing sleeve 14 and the second rubber bushing 16 for secured respectively to their surface.
[0027]
As in the case of the first embodiment, the inner peripheral surface of the intermediate tube 13 and the outer peripheral surface of the inner tube 11 are relatively displaced in the axial direction of both the tubes 11 and 13 over the entire circumference. The cross-sectional outline is a shape other than a perfect circle, for example, a first shape so as to restrict the relative displacement around the axis of both the cylinders 11 and 13 with a substantially constant gap e that can be It is formed in an elliptical shape or the like as in the first embodiment. However, the rubber bush is not filled between the inner peripheral surface of the intermediate cylinder 13 and the outer peripheral surface of the inner cylinder 11 as in the case of the first embodiment. In FIG. L. Is the center line of the steering bush B, and the lower half of the steering bush B is omitted in the figure.
[0028]
As a method of manufacturing the steering bush B, first, a first assembly formed by filling the first rubber bush 15 between the outer peripheral surface of the inner cylinder 11 and the inner peripheral surface of the outer cylinder 12 is integrally formed. Form by the method. Subsequently, a second assembly formed by filling the second rubber bush 16 between the outer peripheral surface of the intermediate cylinder 13 and the inner peripheral surface of the seal sleeve 14 is also formed by the integral molding method. Thereafter, the second assembly is press-fitted into a space where the first rubber bush 15 does not exist between the outer peripheral surface of the inner cylinder 11 and the inner peripheral surface of the outer cylinder 12 in the first assembly. Thus, the steering bush B is manufactured.
[0029]
FIG. 8 is a characteristic diagram showing the relationship between the static spring constant in the torsional direction and the static spring constant in the axial direction for the steering bushing of the present invention and the prior arts 1 to 3, respectively. FIG. It is a characteristic view which shows the relationship between the dynamic spring constant of a torsion direction, and the dynamic spring constant of an axial direction about the techniques 1 and 2, respectively. Here, the prior art 1 belongs to the steering bush described in the section of the prior art, the prior art 2 also belongs to the steering rubber coupling, and the prior art 3 also belongs to the vibration absorbing steering shaft. It is.
[0030]
As can be seen from FIGS. 8 and 9, the steering bush according to the present invention has a ratio of the spring constant (K1) in the axial direction to the spring constant (K2) in the torsional direction as compared with the conventional steering bush and vibration absorbing steering shaft. (K1 / K2) is small and close to that of the steering rubber coupling.
[0031]
FIG. 10 shows two types of steering bushes A and B according to the present invention having different clearances e between the outer peripheral surface of the inner cylinders 1 and 11 and the inner peripheral surface of the intermediate cylinders 3 and 13. FIG. 4 is a characteristic diagram showing a relationship with torque, in which a solid line indicates a characteristic line with a large gap e and a broken line indicates a characteristic line with a small gap e. From this figure, it can be seen that the linear regions R1 and R2 (R1> R2) generated in the range where the twist angle is small are the outer peripheral surfaces of the inner cylinders 1 and 11 and the inner peripheral surfaces of the intermediate tubes 3 and 13. It turns out that it changes according to the clearance gap e between.
[0032]
【The invention's effect】
As described above, according to the steering bush of the present invention, the spring constant in the axial direction can be reduced and the spring constant in the torsional direction can be increased while having the advantage that the bush is inherently compact and excellent in versatility. Therefore, it is possible to effectively achieve both vibration absorption and steering stability. Moreover, even when a steering force or the like is acting, the axial spring constant does not change, and vibration absorption can be maintained well.
[0033]
In particular, the invention according to claim 2 also has the effect of preventing the generation of noise due to contact between the intermediate cylinder and the inner cylinder.
[Brief description of the drawings]
FIG. 1 is a side view in which a part of a steering bushing according to a first embodiment of the present invention is cut open.
FIG. 2 is a cross-sectional view taken along line XX in FIG.
FIG. 3 is a cross-sectional view taken along line YY in FIG.
FIG. 4 is a view corresponding to FIG. 3, showing a second embodiment of the present invention.
FIG. 5 is a view corresponding to FIG. 3 showing a third embodiment.
FIG. 6 is a view corresponding to FIG. 3 and showing a fourth embodiment.
FIG. 7 is a longitudinal side view of a steering bush according to a fifth embodiment of the present invention.
FIG. 8 is a characteristic diagram showing the relationship between the static spring constant in the torsional direction and the static spring constant in the axial direction for the steering bush of the present invention and the prior art.
FIG. 9 is a characteristic diagram showing the relationship between the dynamic spring constant in the torsional direction and the dynamic spring constant in the axial direction.
FIG. 10 is a characteristic diagram showing a relationship between a twist angle and a twist torque in the steering bush of the present invention.
[Explanation of symbols]
A, B Steering bush 1,11 Inner cylinder 2,12 Outer cylinder 3,13 Intermediate cylinder 4,15,16 Rubber bush e Gap

Claims (2)

ステアリングホイールの操舵力をステアリングギヤボックスに伝達するステアリングシャフト系の軸部材と該軸部材に遊嵌する管状部材との間に介設されるステアリングブッシュであって、
上記軸部材が貫通し該軸部材と結合される内筒と、
該内筒の外周に同心状に配置されかつ上記管状部材内に嵌着される外筒と、
上記内筒と外筒との間でこれら両筒と同心状に配置されかつ軸方向の長さが内筒及び外筒のそれよりも短い中間筒と、
少なくとも上記中間筒の外周面と外筒の内周面との間及び中間筒が存在しない軸方向の位置における内筒の外周面と外筒の内周面との間に充填されかつそれらの面にそれぞれ固着されたラバーブッシュとを備えており、
上記中間筒の内周面と内筒の外周面とは、円周方向全周に亘って該両筒の軸方向の相対的変位を許容し得る略一定の隙間を隔てて近接して対向しているとともに、両筒の軸回りの相対的変位を規制するように断面の輪郭が真円以外の形状に形成されていることを特徴とするステアリングブッシュ。
A steering bushing interposed between a shaft member of a steering shaft system that transmits a steering force of a steering wheel to a steering gear box and a tubular member loosely fitted to the shaft member,
An inner cylinder through which the shaft member passes and is coupled to the shaft member;
An outer cylinder disposed concentrically on the outer periphery of the inner cylinder and fitted into the tubular member;
An intermediate cylinder disposed concentrically with the two cylinders between the inner cylinder and the outer cylinder and having an axial length shorter than that of the inner cylinder and the outer cylinder;
At least between the outer peripheral surface of the intermediate cylinder and the inner peripheral surface of the outer cylinder and between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder at an axial position where the intermediate cylinder does not exist and those surfaces With rubber bushes fixed to each,
The inner peripheral surface of the intermediate cylinder and the outer peripheral surface of the inner cylinder are opposed to each other with a substantially constant gap that allows the relative displacement in the axial direction of both cylinders over the entire circumference. And a steering bushing characterized in that the contour of the cross section is formed in a shape other than a perfect circle so as to restrict relative displacement about the axis of both cylinders.
上記中間筒の内周面と内筒の外周面との間にもラバーブッシュが充填されている請求項1記載のステアリングブッシュ。The steering bush according to claim 1, wherein a rubber bush is also filled between the inner peripheral surface of the intermediate cylinder and the outer peripheral surface of the inner cylinder.
JP22078597A 1997-08-01 1997-08-01 Steering bush Expired - Fee Related JP3704422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22078597A JP3704422B2 (en) 1997-08-01 1997-08-01 Steering bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22078597A JP3704422B2 (en) 1997-08-01 1997-08-01 Steering bush

Publications (2)

Publication Number Publication Date
JPH1148988A JPH1148988A (en) 1999-02-23
JP3704422B2 true JP3704422B2 (en) 2005-10-12

Family

ID=16756540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22078597A Expired - Fee Related JP3704422B2 (en) 1997-08-01 1997-08-01 Steering bush

Country Status (1)

Country Link
JP (1) JP3704422B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464214B1 (en) * 2000-09-07 2002-10-15 Paulstra Crc Anti-vibration mounting for clip-fit connection means and vehicle fitted with this mounting
KR101263471B1 (en) 2008-11-24 2013-05-10 주식회사 만도 Rubber bush shock absorber
KR101450319B1 (en) * 2012-01-17 2014-10-21 주식회사 만도 Mounting Bush of Gear Housing for Steering Apparatus
CN109131638A (en) * 2018-10-08 2019-01-04 深圳市今天国际智能机器人有限公司 AGV steering wheel stabilising arrangement and AGV steering wheel
JP2022052088A (en) * 2020-09-23 2022-04-04 山下ゴム株式会社 Torque rod
CN115059732B (en) * 2022-07-13 2024-01-26 中国舰船研究设计中心 Stern bearing vibration reduction structure for reducing transverse vibration of ship shafting and design method

Also Published As

Publication number Publication date
JPH1148988A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US7357379B2 (en) Vibration isolating bushing
US5261748A (en) Structure for bushing
JP2004322688A (en) Elastic shaft coupling
JP3704422B2 (en) Steering bush
US11473646B2 (en) Bushing and vehicle suspension device
KR20120012205A (en) Mount bush of stabilizer bar for vehicle
JPH10184792A (en) Stabilizer bush for vehicle
KR101322426B1 (en) Pillow ball bush for vehicle
JP5038377B2 (en) bush
JPH08128483A (en) Cylindrical vibration control mount
JPH0256532B2 (en)
JPS6217440A (en) Fluid contained vibration isolating supporting device
JPH09280314A (en) Vibration isolating device
JPH10252795A (en) Vibration control device
JP4665546B2 (en) Steering bush and manufacturing method thereof
JP3609145B2 (en) Bush for suspension arm
JPH08128482A (en) Cylindrical type vibration control mount
JPH08189532A (en) Elastic shaft coupling
JPH0681970B2 (en) Bush assembly
JPS63176842A (en) Vibro-isolating support device for fluid sealed
JP3456286B2 (en) Cylindrical anti-vibration mount
KR100280628B1 (en) Suspension of automobile
JP2000074117A (en) Vibration isolating mount
KR100227384B1 (en) Bushing for automobiles
JPH0544594Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees