JP3702787B2 - Washing water discharge device - Google Patents

Washing water discharge device Download PDF

Info

Publication number
JP3702787B2
JP3702787B2 JP2000509911A JP2000509911A JP3702787B2 JP 3702787 B2 JP3702787 B2 JP 3702787B2 JP 2000509911 A JP2000509911 A JP 2000509911A JP 2000509911 A JP2000509911 A JP 2000509911A JP 3702787 B2 JP3702787 B2 JP 3702787B2
Authority
JP
Japan
Prior art keywords
bubble
water
cleaning
cleaning water
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000509911A
Other languages
Japanese (ja)
Inventor
登 新原
隆弘 大橋
清 藤野
浩史 岡野
久人 原賀
祐二 槻田
広典 鳩野
康一 丸山
稔 佐藤
稔 高塩
実 古小路
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Application granted granted Critical
Publication of JP3702787B2 publication Critical patent/JP3702787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/08Devices in the bowl producing upwardly-directed sprays; Modifications of the bowl for use with such devices ; Bidets; Combinations of bowls with urinals or bidets; Hot-air or other devices mounted in or on the bowl, urinal or bidet for cleaning or disinfecting
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/08Jet regulators or jet guides, e.g. anti-splash devices
    • E03C1/084Jet regulators with aerating means

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)

Description

【技術分野】
【0001】
本発明は洗浄水吐出装置に関するものである。
【背景技術】
【0002】
特許文献1、特許文献2に、洗浄水吐出手段と、洗浄水吐出手段に洗浄水を供給する給水手段と、洗浄水流路を流れる洗浄水に気泡を混入させる気泡混入手段とを備え、気泡を含む洗浄水を吐出して洗浄水の洗浄力を高め、或いはソフトな洗浄感を与える人体局部洗浄装置が開示されている。
特許文献3に、洗浄水中に多量の空気を混入させ洗浄水の噴出速度を増加させて、大幅な節水を図った人体洗浄装置が開示されている。
【特許文献1】
特開昭56−70338号
【特許文献2】
特開平5−33377号
【特許文献3】
特開平10−18391号
【発明の開示】
【発明が解決しようとする課題】
【0003】
気泡を含む洗浄水を吐出して洗浄力を高め、或いはソフトな洗浄感を与えることができるためには、被洗浄面に到達した洗浄水の噴流中に実際に気泡が多量に含まれている必要がある。特許文献1、特許文献2に開示された技術は、被洗浄面に到達した洗浄水の噴流中に実際に気泡が多量に含まれていることを保証するものではなかった。
大幅な節水を実現するためには、空気の混入によって洗浄水が確実に増速される必要がある。特許文献3に開示された技術は、空気の混入によって洗浄水が確実に増速されることを保証するものではなく、従って大幅な節水の実現を保証するものではなかった。
本発明は上記課題に鑑みてなされたものであり、気泡を多量に含む洗浄水の噴流を被洗浄面に到達させることができ、且つ大幅な節水を実現できる洗浄水吐出装置を提供することを目的とする。
【課題を解決するための手段】
【0004】
上記課題を解決するために、本発明においては、洗浄水吐出手段と、洗浄水吐出手段に洗浄水を供給する給水手段と、洗浄水流路を流れる洗浄水に気泡を混入させる気泡混入手段と、混入した気泡を微細気泡に破砕する気泡破砕手段と、気泡混入手段に気体を強制的に供給する強制給気手段とを備え、気泡混入手段は洗浄水流路を形成する配管と当該配管に交わり当該配管の側壁内面に開口する細管とにより構成され、気泡破砕手段は気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられた開口を有する邪魔板とにより構成されており、多量の微細気泡が洗浄水中に分散する気泡流を吐出することを特徴とする洗浄水吐出装置を提供する。
本発明の発明者は、鋭意研究の結果、洗浄水流路を流れる気液二相流の流動様式を最適化することにより、被洗浄面に到達した洗浄水の噴流中に実際に気泡を多量に含ませることができ、且つ空気の混入によって洗浄水を確実に増速できることを見出した。以下本発明の発明者が得た知見を詳述する。
【0005】
(1)気液二相流の流動様式
洗浄水流路を流れる気液二相流に関し、以下の事実が存在する。
1.洗浄水に単に多量の空気を混入させただけでは、洗浄水流路を流れる気液二相流の流動様式は、第1(b)図に示すような柱状の空気層と柱状の液体層とが交互に連なったスラグ流や、第1(c)図に示すようなスラグ流の空気層と液体層の形状が崩れたフロス流や、第1(d)図に示すような、霧状の水滴を含有する柱状の空気層の周囲を洗浄水の層が環状に取り巻く環状噴霧流となり易い。
スラグ流やフロス流や環状噴霧流が洗浄水ノズルから吐出すると、柱状の空気層や形状が崩れた柱状の空気層や霧状の水滴を含有する柱状の空気層が直ちに大気中に霧散するので、被洗浄面に衝突する洗浄水中には僅かな気泡が残存するのみとなり、洗浄水の洗浄力が失われ、或いはソフトな洗浄感が失われる。
スラグ流やフロス流や環状噴霧流では、柱状の空気層が洗浄水流路端部の洗浄水吐出口まで略連続して延在するので、洗浄水に混入させた空気の大部分は洗浄水と混ざり合うことなく柱状の空気流路を通って吐出する。この結果、洗浄水中に多量の空気を混入させても、空気が柱状の空気流路を高速で通過するのみであり、洗浄水の流速を大幅に増加させることはできず、大幅な節水を実現することはできない。
【0006】
2.洗浄水に微細な気泡を多量に分散混入させると、洗浄水流路を流れる気液二相流の流動様式は、第1(a)図に示すような多量の微細な気泡が洗浄水中に分散する気泡流となる。
気泡流が洗浄水ノズルから吐出すると、洗浄水中に分散した気泡は大気中に霧散しないので、被洗浄面に衝突する洗浄水中に多量の気泡が残存し、洗浄水の洗浄力が高められ、或いはソフトな洗浄感が得られる。
気泡流では、洗浄水に混入させた空気は洗浄水と混ざり合い洗浄水と一体的に運動するので、混入させた空気の流量分だけ洗浄水流路を流れる流体の流量が増加し、洗浄水の流速が増加する。従って、洗浄水流路内の気液二相流の流動様式が気泡流であると、洗浄水中に多量に空気を混入させて、洗浄水の流速を大幅に増加させることができ、大幅な節水を実現できる。
【0007】
(2)気泡流の噴流の洗浄力
気泡流の噴流の洗浄力に関し、以下に理論的考察を述べる。
洗浄水の噴流が被洗浄面に衝突する際に被洗浄面に発生する圧力の平均値Psは式1で表される。

Figure 0003702787
上式において、△Wは被洗浄面に衝突することによる洗浄水の噴流の運動量変化である。ρは洗浄水の密度である。第2図に示すように、S は洗浄水の噴流の断面積であり、S は被洗浄面積であり、V は洗浄水の噴流の流速である。
式1において、(S /S )は、洗浄水の種類、温度、S 等が極端に変化しない限り略一定とみなすことができる。従って、式1を式2に変形することができる。
Figure 0003702787
上式において、C=S /S であり、略一定値である。
洗浄水の噴流が、気泡流の噴流である場合、洗浄水の密度ρは式3で表される。
Figure 0003702787
上式において、ρ は気泡を構成する気体の密度、ρ は気泡を含まない洗浄水の密度、Q は気泡を構成する気体の体積流量、Q は気泡を含まない洗浄水の体積流量、ηはQ /Q であり、気泡を構成する気体の体積流量と気泡を含まない洗浄水の体積流量との比、すなわち気液比である。ここで、ρ ≪ρ である。同一直径の球形の気泡が洗浄水中に最密立方格子状に充填されると仮定すると、気液比ηの理論上の最大値は約2.85となる。気泡の形状が球よりも更に密に詰め込める多面体であれば、気液比ηは更に大となるが、気液比が過大になると気泡が合体して大径となり、噴流中に留まることができなくなる可能性を生ずるので、気液比ηを過大にすることはできない。従って上式の中段の式において、ρ ηはρ に対して無視できると考えられる。この結果、上式の中段の式から、下段の式3が得られる。
式2、3に基づいて、気泡流の噴流が被洗浄面に衝突する場合のPsを求める。
式3を式2に代入する。
Figure 0003702787
式5より、気泡を含まない洗浄水の流量Q が一定であれば、気液比ηが増大する程、すなわち気体混入量が増大する程、気泡流の噴流が被洗浄面に衝突する際に被洗浄面に発生する平均圧力Psが増大し、ひいては洗浄力が増大することが分かる。
が一定であるとして、式5から求めたζ=Ps(η)/Ps(η=0)を第3図に示す。第3図中に、Q 一定の条件下で水道水を用いて行った実験から得られたζとηとの相関を示す。第3図から、式5から求めたζとηとの相関と実験から得られたζとηとの相関が良く一致することが分かる。第3図から、気液比の増大に伴って気泡流の噴流の洗浄力が増大することが、実験的にも確認されることが分かる。
式5より、Psを一定に保持する場合、気液比ηを増大させることにより、気泡を含まない洗浄水の流量Q を減少させられること、すなわち節水を図れることが分かる。式4から分かるように、気液比ηが増大すれば、すなわち気体混入量が増大すれば、洗浄水の噴流の流速V が増大するので、洗浄水の流量Qを減少させても、洗浄水の噴流の運動量は一定に保持され、被洗浄面に衝突することによる洗浄水の噴流の運動量変化も一定に保持され、結局Psが一定に保持されると考えられる。
Psが一定であるとして、式5から求めたψ=Q (η)/Q (η=0)を第4図に示す。第4図中に、Ps一定の条件下で水道水を用いて行った実験から得られたψとηとの相関を示す。第4図から、式5から求めたψとηとの相関と実験から得られたψとηとの相関が良く一致することが分かる。第4図から、Psを一定に保持する場合、気液比ηを増大させることにより、気泡を含まない洗浄水の流量Q を減少させられることが、実験的にも確認されることが分かる。
本発明は上記知見に基づくものであり、洗浄水流路を流れる気液二相流を気泡流とすることにより、気泡を多量に含む洗浄水の噴流を被洗浄面に到達させ、且つ大幅な節水を実現するものである。
洗浄水に気泡を混入した後、気泡を微細気泡に破砕することにより、洗浄水流路を流れる気液二相流を気泡流とすることができ、気泡流を吐出することができる。
気泡混入手段に気体を強制給気することにより、多量の気泡を洗浄水へ混入させることができる。
【0008】
本発明においては、洗浄水吐出手段と、洗浄水吐出手段に洗浄水を供給する給水手段と、洗浄水流路を流れる洗浄水に気泡を混入させる気泡混入手段と、混入した気泡を微細気泡に破砕する気泡破砕手段と、気泡混入手段に気体を強制的に供給する強制給気手段とを備え、気泡混入手段は洗浄水流路を形成する配管と当該配管に交わり当該配管の側壁内面に開口する細管とにより構成され、気泡破砕手段は気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられたメッシュとにより構成されており、多量の微細気泡が洗浄水中に分散する気泡流を吐出することを特徴とする洗浄水吐出装置を提供する。
【0009】
本発明に係る洗浄水吐出装置が備える気泡破砕手段は、気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられた開口を有する邪魔板とにより構成されても良く、或いは、気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられたメッシュとにより構成されても良い。邪魔板が有する開口は単数でも複数でも良い。
【0010】
本発明においては、前記何れかの洗浄水吐出装置を備えることを特徴とする人体局部洗浄装置を提供する。
本発明に係る人体局部洗浄装置においては、気泡流が吐出されることにより、高い洗浄力が得られ、且つ大幅な節水効果が得られる。
【0011】
本発明の好ましい態様においては、人体局部洗浄装置は更に、所定時間間隔で、給水手段と強制給気手段とを駆動する制御装置を備える。
所定時間間隔で、給水手段と強制給気手段とを駆動することにより、人体局部洗浄装置を自動的に保守し、人体局部洗浄装置の機能を長期に亘って維持することができる。
【発明の効果】
【0012】
洗浄水流路を流れる気液二相流を気泡流とすることにより、気泡を多量に含む洗浄水の噴流を被洗浄面に到達させ、且つ大幅な節水を実現することができ。
洗浄水に気泡を混入した後、気泡を微細気泡に破砕することにより、洗浄水流路を流れる気液二相流を気泡流とすることができ、気泡流を吐出することができる。
気泡混入手段に気体を強制給気することにより、多量の気泡を洗浄水へ混入させることができる。
【発明を実施するための最良の形態】
【0013】
本発明の実施例を説明する。
【実施例1】
【0014】
(A)洗浄水吐出装置の構成
本発明の第1実施例に係る洗浄水吐出装置を説明する。
第5図に示すように、本発明の第1実施例に係る洗浄水吐出装置Aは、洗浄水吐出ノズル1と、洗浄水吐出ノズル1に至る洗浄水流路を形成する配管2と、配管2の途上に配設された気泡混入装置3と、気泡混入装置3ヘ強制給気する強制給気装置4と、配管2の途上に且つ気泡混入装置3の上流に配設された定流量弁5とを備えている。配管2の上流端は図示しない水道の水栓金具に接続されている。
気泡混入装置3は洗浄水流路を形成する多孔質材料から成る筒状の気泡生成部材3aを有している。筒状の気泡生成部材3aの内周面は、前後の洗浄水流路の囲壁と面一に延在している。気泡生成部材3aの内周面には、多数の独立開孔が形成されている。気泡生成部材3a内の洗浄水流路の断面積は、上流端から下流端へ向けて漸次拡大している。気泡生成部材3aの周囲に圧力室3bが形成されている。
強制給気装置4は、気泡混入装置3の圧力室3bに接続する配管4aを有している。配管4aの途上に、下流側から順に逆止弁4b、空気ポンプ4c、除塵用のエアフィルター4dが配設されている。エアフィルター4dより上流の配管4aは大気開放されている。空気ポンプ4cの作動を制御する制御装置4eが配設されている。
気泡生成部材3aと気泡生成部材3aよりも下流域の配管2と洗浄水吐出ノズル1とによって構成される洗浄水流路の断面積は、気泡生成部材3aによって洗浄水流路を流れる洗浄水に混入される気泡の平均体積から求められる平均直径に等しい直径を有する球体の投影面積より大に設定されている。また、気泡生成部材3aより下流域の洗浄水流路の断面積は、気泡生成部材3aの下流端の断面積以上に設定されている。
上記構成を有する洗浄水吐出装置Aにおいては、図示しない水道の水栓金具が開かれると、水道水が配管2へ流入し、定流量弁5を通って流量が所定値に絞られる。所定流量の水道水が、配管2を通って気泡混入装置3の気泡生成部材3aへ流入する。
制御装置4eの電源を投入すると、制御装置4eの制御の下に空気ポンプ4cが作動する。空気が配管4aへ吸入され、エアフィルター4dを通って除塵される。除塵された空気は、空気ポンプ4cと逆止弁4bとを通って、圧力室3bへ圧送される。圧力室3bへ流入した加圧空気は、多孔質材料から成る気泡生成部材3aの細孔を通り、気泡生成部材3aの内周面に形成された多数の独立開孔でそれぞれ独立気泡を形成する。気泡は、所定の気泡径となるまで成長した後、気泡生成部材3aの内周面が形成する洗浄水流路を流れる水道水に連行され、独立開孔から離脱し、微細気泡となって水道水中に分散混入する。
大量の空気が微細気泡となって水道水中に分散混入して、水道水の流れは気泡流となる。気泡流は配管2を通り、洗浄水吐出ノズル1から噴流となって吐出する。気泡流の噴流は、高い洗浄力を有し、被洗浄面に衝突して該面を十分に洗浄する。気泡流が吐出することにより、高い節水効果が得られる。
第6図に洗浄水吐出装置Aと同様の洗浄水吐出装置から吐出した気泡流の図を示す。洗浄水中に微細な気泡が大量に含まれているのが分かる。気泡は洗浄水によって守られているので、吐出後も大気と干渉せず、確実に被洗浄面へ到達する。
洗浄水吐出装置Aにおいては、気泡生成部材3aの内周面に多数形成された独立開孔のそれぞれにおいて、単一の独立気泡が生成される。気泡生成部材3aの内周面に多数形成された開孔が、複数の開孔が連結した連続開口であると、各開孔で複数の気泡が生成され易く、これらが合体して気泡が大径化し易い。洗浄水吐出装置Aにおいては、気泡生成部材3aの内周面に多数形成された開孔が独立開孔なので、気泡生成時の気泡同志の合体が阻止され、気泡の大径化が阻止される。気泡生成部材3aの内周面は洗浄水流路の囲壁を形成しているので、気泡生成部材3aの内周面に形成された開孔で生成する気泡は、洗浄水流の方向と略直交する方向へ成長する。この結果、生成中の気泡に洗浄水の流水から剪断力が加わり、気泡は成長初期の段階で洗浄水に連行されて開孔を離れ、洗浄水中に分散混入する。この結果微細気泡が洗浄水中に分散混入する。
洗浄水吐出装置Aにおいては、気泡生成部材3aの内周面の全体から水道水の流水中に略均一に気泡が放出されるので、微細気泡は水道水の流水中に略均一に分散して混入する。
従って、洗浄水吐出装置Aにおいては、洗浄水流路を流れる水道水に多量の微細気泡が略均一に分散して混入し、気泡流を形成する。
洗浄水吐出装置Aにおいては、気泡生成部材3aと気泡生成部材3aよりも下流域の配管2と洗浄水吐出ノズル1とによって構成される洗浄水流路の断面積は、気泡生成部材3aによって洗浄水流路を流れる水道水に混入される気泡の平均体積から求められる平均直径に等しい直径を有する球体の投影面積より大に設定されている。係る構成は、気泡生成部材3aを構成する多孔質材料の細孔径、ひいては内周面に形成される独立開孔の径を制御し、或いは水道水の見かけ流速(水道水のみの体積流量を流路の断面積で除した値)を制御し、或いは後述するように多孔質材料の濡れ性を制御し、水道水に混入させる気泡の平均体積を制御することにより実現可能である。
洗浄水吐出装置Aにおいては、気泡生成部材3aの内周面が形成する洗浄水流路の断面積は、上流端から下流端へ向けて漸次拡大している。また、気泡生成部材3aより下流域の洗浄水流路の断面積は、気泡生成部材3aの下流端の断面積以上に設定されている。
従って、洗浄水吐出装置Aにおいては、多数の微細気泡が分散して混入された水道水は、微細気泡が多量に分散混入した状態を維持したまま洗浄水吐出ノズル1から吐出し被洗浄面まで到達する。
上記説明から分かるように、洗浄水吐出装置Aは、微細気泡が多量に分散混入した水道水の気泡流の噴流を洗浄水吐出ノズル1から吐出することができる。
洗浄水吐出装置Aにおいては、制御装置4eは、気液比ηの範囲が0.5乃至4.0になるように、空気ポンプ4cの印加電圧を制御する。ポンプを用いて加圧した空気を水道水中に混入させる場合、気液比ηを、球形気泡を最密立方格子状に充填した場合の気液比の理論上の最大値である2.85以上に上昇させることができる。しかし、気液比ηが過大になると、水道水中に混入した気泡が合体して気液二相流の流動様式がスラグ流やフロス流となる可能性がある。そこで、洗浄水吐出装置Aにおいては、スラグ流やフロス流の発生を防止する観点から、気液比ηの最大値を4.0に設定した。また、気液比ηが過少であると噴流の洗浄力を高め、高い節水効果を得ることができないので、気液比の最小値を0.5に設定した。
気液比について説明を補足する。
洗浄水の気泡流が被洗浄面に衝突する際に発生する刺激感は、気液比ηが増加すると増加する。軽い汚れを落とす洗浄水流量の少ない洗浄モードにおいては、強い洗浄力を必要とせず、節水の必要性も低いので、気液比ηを1.0以下に設定して刺激感を弱めるのが好ましい。
強い汚れを落とす洗浄水流量の多い洗浄モードにおいては、強い洗浄力を得るために、また高い節水効果を得るために、気液比ηを1.6以上に設定するのが好ましい。しかし、洗浄水流量が多いと、洗浄水流速の増加によって洗浄水流の乱れが大きくなるので、気泡同志が合体して大径化し、気泡流の安定性が損なわれスラグ流やフロス流が発生する可能性が高まる。従って、気泡流の安定性確保のために気液比ηを2.3以下に設定するのが好ましい。
気泡流における気液比ηの理論上の最大値は、球形気泡を最密立方格子状に充填した場合に達成される2.85である。気液比ηが2.85を超えると、理論上気泡同志が互いに接触し合体して大径化し、気泡流の安定性が損なわれる。しかし、気泡は変形可能なので、実際には、気泡同志が接触しても互いに変形することにより気泡同志の合体が抑制され、気泡流の安定性が維持される。また、気泡流に含まれる気泡の気泡径分布はある程度分散しているので、相対的に大径の気泡の間に、相対的に小径の気泡を押し込むことが可能である。従って、実際には気泡流の安定性を維持しつつ気液比ηを4.0程度まで高めることができる。気泡流の安定性が得易い中程度の洗浄水流量の洗浄モードにおいては、気液比ηの設定値を4.0程度まで高めて、強い洗浄力と高い節水効果とを実現するのは好ましい。
洗浄水吐出装置Aにおいては、定流量弁5によって気泡生成部材3aの洗浄水流路を流れる水道水の流量が定流量に制御されているので、空気ポンプ4cの印加電圧を制御するだけで、気液比ηを容易に制御し、ひいては洗浄水ノズル1から吐出する気泡流の噴流の洗浄力を容易に制御することができる。
洗浄水吐出装置Aにおいては、洗浄水流路を構成する多孔質材料から成る筒状の気泡生成部材3aに空気ポンプ4cを使用して強制給気するので、洗浄水流路を流れる水道水に多量の微細気泡を容易に混入させることができる。
洗浄水吐出装置Aにおいては、筒状の気泡生成部材3aの周囲に圧力室3bを形成したので、圧力室3bに強制給気することにより、気泡生成部材3a内の洗浄水流路を流れる水道水に、気泡生成部材3aを介して容易に気泡を混入させることができる。
洗浄水吐出装置Aにおいては、筒状の気泡生成部材3aの内周面が、前後の洗浄水流路の囲壁と面一に延在しているので、気泡生成部材3aによる水道水流の乱れや淀みは発生しない。水道水流が乱れると気泡が合体する可能性が増大し、水道水が淀むと気泡が洗浄水流路内に滞留する時間が増加して気泡が合体する可能性が増大する。洗浄水吐出装置Aにおいては、水道水流に乱れや淀みは発生しないので、気泡が合体する可能性が低く、良好な気泡流が吐出される。
洗浄水吐出装置Aにおいては、筒状の気泡生成部材3aから空気ポンプ4cへの水道水の逆流を防止する逆止弁4bを配設し、空気ポンプ4cに水道水が流入してポンプ4cの機能が低下する事態の発生を防止している。
洗浄水吐出装置Aにおいては、空気ポンプ4cの上流にエアフィルター4dを配設して、気泡生成部材3aの塵埃による目詰まりを防止し、気泡生成部材3aの機能低下を防止している。
【0015】
(B)独立開孔を形成するための具体的方策
気泡生成部材3aの内周面に独立開孔を形成するための具体的方策に就いて記述する。
(1)加熱溶融性材料の微粒子の加熱成形
第7図に、超高分子量ポリエチレンの略球形の微粒子を金型に充填し、加熱して形成した加熱成形品の表面の電子顕微鏡拡大図を示す。第7図から分かるように、加熱成形品の表面に多数の独立開孔が形成されている。略球形の微粒子の集合体は、粒子の充填率を高めやすく、開孔の形状を均一化できるので、開孔同志が連結した連続開孔が発生し難く、独立開孔が形成され易い。微粒子径を均一化すれば、開孔を格子状に規則的に配置することができる。開孔を格子状に規則的に配置することにより、発生する気泡間の距離を均一に保つことができ、気泡生成時の気泡同志の合体を阻止できる。また、開孔を格子状に規則的に配置することにより、開孔密度を高めることができ、気泡生成部材3aを小型化でき、洗浄水吐出装置を小型化できる。
超高分子量ポリエチレンはメルトインデックス(MI)が低く且つ溶融時の性状がゴムに近いので溶融状態で流れ難い。超高分子量ポリエチレンの略球形微粒子を金型に充填し、融点を僅かに上回る温度で加熱成形すると、粒子と粒子とが形状を変えずに接点のみが溶融接着される。従って、超高分子量ポリエチレンの略球形微粒子を使用し、粒子径と充填率とを制御することにより、気泡生成部材3aの内周面に形成する独立開孔の径を自由に制御できる。超高分子量ポリエチレンは化学的に安定なので、塩素、酸塩基、有機溶媒等を含有する洗浄液に適しており、吸水性がほとんど無いので水から成る洗浄液にも適している。
第8図に、アクリル樹脂の略球形微粒子を金型に充填し、加熱して形成した加熱成形品の表面の電子顕微鏡拡大図を示す。第8図から分かるように、加熱成形品の表面に、略網目状に多数の独立開孔が形成されている。アクリル樹脂は表面張力が低く水との親和性が高いので、後述するように微細気泡の生成に適している。
ブロンズ、ステンレス等の金属、ガラス、各種セラミック等の加熱溶融性材料の微粒子を加熱成形して気泡生成部材3aを形成しても良い。
加熱溶融性材料の微粒子や粉体を加熱成形すると、粒子同志が融合するので、水圧や空気圧に対して十分な強度を有する気泡生成部材3aが得られる。
加熱溶融性材料の略球形微粒子の平均粒径は、50μm乃至300μmとするのが望ましい。略球形微粒子の平均粒径が、50μm乃至300μmであれば、略球形微粒子を最密立方格子状に充填すると、略球形微粒子間の隙間である独立開孔の平均直径が50μm乃至300μmとなる。平均直径が50μm乃至300μmの独立開孔から生成分散する気泡の平均直径は100μm乃至1000μmとなる。平均直径が100μm乃至1000μmの微細気泡は、剛性が大きく変形し難いので合体し難い。平均直径が100μm乃至1000μmの微細気泡を洗浄水に混入することにより、安定した気泡流を得ることができる。洗浄水吐出装置Aを人体局部洗浄装置に装着する場合、配管寸法やノズル寸法等を勘案すると、気泡流を支障なく洗浄水流路に流すために、気泡流中の気泡の平均直径は1000μm以下とするのが望ましい。他方、過度に微細な気泡を発生させるのは技術的に難しい。これらを勘案すると、人体局部洗浄装置に装着された洗浄水吐出装置から吐出される気泡流中の気泡の平均直径は100μm乃至1000μmであるのが好ましい。
加熱溶融性材料の略球形微粒子の充填率は70%以上とするのが望ましい。
同一直径の球形粒子を最密立方格子状に充填すると、理論上の最大充填率は74%となる。静電気の発生等により、最密立方格子状に充填するのは困難であることを勘案しても、独立開孔を得るためには、前記集合体を形成する略球形の粒子の充填率を70%以上とするのが望ましい。
(2)織布、不織布
ナイロン等の繊維材料を織り、編み、或いは重ねて、織布、不織布とすることにより網目構造を形成できる。網目構造は独立開孔を形成する。繊維の太さ、間隔を略均一にすれば、略格子状の規則的な開孔配置を得ることができる。繊維の太さ、間隔、配向を制御して容易に開孔形状、開孔間距離等を調整できる。織布、不織布は十分な強度を有さないので、支持体に固定することが望ましい。織布、不織布を複数枚重ねることにより、織布、不織布の振動を抑制し、気泡混入動作を安定させることができる。
(3)その他
転相ガラスを用いて連続気孔を形成しても良い。
【0016】
(C)撥水処理、親水処理
洗浄水吐出装置Aにおいて、多孔質材料から成る筒状の気泡生成部材3aの全部又は一部をPTFE、ETEF等の撥水性材料によって構成し、或いは多孔質材料から成る筒状の気泡生成部材3aの流路表面にパラフィン、カルナバ等を用いて撥水処理を施しても良い。洗浄水として水道水を使用する場合、水道水中に多量に含まれるカルシウムイオンが多孔質材料の細孔内で炭酸カルウシム等の形で析出し、細孔が目詰まりして気泡生成部材3aが劣化する可能性がある。また多孔質材料表面での毛細管現象による浸透圧によって、気泡生成部材3aの機能が低下する可能性がある。多孔質材料から成る筒状の気泡生成部材3aの全部又は一部をPTFE、ETEF等の撥水性材料によって構成し、或いは多孔質材料から成る筒状の気泡生成部材3aの流路表面にパラフィン、カルナバ等を用いて撥水処理を施して、多孔質材料の細孔への水の進入を防ぎ、多孔質材料表面での毛細管現象による浸透圧を下げることにより、気泡生成部材3aの劣化、機能の低下を防止することができる。
洗浄水吐出装置Aにおいて、多孔質材料から成る筒状の気泡生成部材3aの全部又は一部をHDPE、LDPE、PP、PA、PET、MMA、ガラス、ポリオレフィン、セルロース等の親水性材料によって構成し、或いは多孔質材料から成る筒状の気泡生成部材3aの流路表面にアクリル酸等を用いて親水処理を施し、又はプラズマ処理、クロム酸処理、シリカコート等によって親水処理を施しても良い。
多孔質材料表面の濡れ性が気泡径に影響を及ぼす。多孔質材料が濡れにくい(撥水性が高い)場合、細孔から流出した気体が多孔質材料表面に滞留し易く、気泡径が大きくなり易い。多孔質材料が濡れ易い(親水性が高い)場合、細孔から流出した気体は多孔質材料表面に滞留し難く、気泡径は大きくなり難い。多孔質材料から成る筒状の気泡生成部材3aの全部又は一部をHDPE、LDPE、PP、PA、PET、MMA、ガラス、ポリオレフィン、セルロース等の親水性材料によって構成し、或いは多孔質材料から成る筒状の気泡生成部材3aの流路表面にアクリル酸等を用いて親水処理を施し、又はプラズマ処理、クロム酸処理、シリカコート等によって親水処理を施すことにより、気泡径を小さくし、スラグ流やフロス流の発生を防止することができる。
【0017】
(D)各種機能の付加
洗浄水吐出装置Aにおいて、定流量弁5と気泡混入装置3との間の配管2に水道水を所定温度まで加熱する温度制御装置を接続し、或いは、水道水に所定濃度まで薬剤、界面活性剤等の溶質を溶解させる溶質濃度制御装置を接続しても良い。
洗浄対象に応じて、洗浄水を所定温度まで加熱し、或いは洗浄水に所定濃度まで薬剤、界面活性剤等の溶質を溶解させるのは好ましい。洗浄水吐出装置Aにおいては、定流量弁5によって気泡生成部材3aの洗浄水流路を流れる水道水の流量が定流量に制御されているので、水道水の加熱制御、水道水への溶質の溶解制御は容易である。
洗浄水吐出装置Aにおいて、空気ポンプ4cと制御装置4eとを除去し、気泡生成部材3aの洗浄水流路を流れる水道水の負圧を利用して気泡生成部材3aに空気を吸引給気しても良い。この場合、気液比は0.5程度となる。
洗浄水吐出装置Aにおいて、気泡生成部材3aを、上流端から下流端まで断面積が一定の筒状に形成しても良い。気泡生成部材3aの形状が、上流端から下流端まで断面積が一定の筒状であっても、気泡生成部材3aの洗浄水流路内の気液二相流の流動様式は環状噴霧流とはならない。従って、気泡生成部材3aを、上流端から下流端まで断面積が一定の筒状に形成しても良い。
気泡生成部材3aは洗浄水流路の囲壁の全周に亘って延在する筒状部材であったが、洗浄水流路の囲壁の周方向の一部を多孔質材料からなる気泡生成部材で形成しても良い。この場合でも、微細気泡を洗浄水中に分散混入させることができる。
【実施例2】
【0018】
本発明の第2実施例に係る洗浄水吐出装置を説明する。
第9図に示すように、本発明の第2実施例に係る洗浄水吐出装置Bは、洗浄水吐出ノズル11と、洗浄水吐出ノズル11に至る洗浄水流路を形成する配管12と、配管12の途上に配設された気泡混入装置13と、気泡混入装置13に強制給気する強制給気装置14と、配管12の上流に配設された洗浄水タンク15とを備えている。
気泡混入装置13は洗浄水流路を構成する多孔質材料から成る筒状の気泡生成部材13aを有している。気泡生成部材13aの内周面には多数の独立開孔が形成されている。気泡生成部材13aの洗浄水流路の断面積は、上流端から下流端へ向けて漸次拡大している。気泡生成部材13aを包囲して圧力室13bが形成されている。
強制給気装置14は気泡混入装置13の圧力室13bに接続する配管14aを備えている。配管14aの途上に、下流側から順に圧力調整弁14b、空気ポンプ14c、除塵用のエアフィルター14dが配設されている。エアフィルター14dより上流の配管14aは大気開放されている。空気ポンプ14cの作動を制御する制御装置14eが配設されている。空気ポンプ14cから延びる配管14a′が、圧力調整弁14b′を介して、洗浄水タンク15の上部に接続されている。
気泡生成部材13aと気泡生成部材13aよりも下流域の配管12と洗浄水吐出ノズル11とによって構成される洗浄水流路の断面積は、気泡生成部材13aによって洗浄水流路を流れる洗浄水に混入される気泡の平均体積から求められる平均直径に等しい直径を有する球体の投影面積より大に設定されている。また、気泡生成部材13aより下流域の洗浄水流路の断面積は、気泡生成部材13aの下流端の断面積以上に設定されている。
洗浄水吐出装置Bの寸法、重量、消費電力は携帯に適した値に設定されている。
上記構成を有する洗浄水吐出装置Bにおいては、制御装置14eの電源を投入すると、制御装置14eの制御の下に空気ポンプ14cが作動する。空気が配管14aへ吸入され、エアフィルター14dを通って除塵される。除塵された空気は、空気ポンプ14cと圧力調整弁14b′とを通って、洗浄水タンク15ヘ圧送される。洗浄水タンク15内の洗浄水が加圧され、洗浄水タンク15から吐出し、配管12を通って気泡混入装置13の気泡生成部材13aへ流入する。
空気ポンプ14cを通った空気は、圧力調整弁14bを通って、圧力室13bへ圧送される。圧力室13bへ流入した加圧空気は、多孔質材料から成る気泡生成部材13aの細孔を通り、内周面に形成された多数の独立開孔を経て、気泡生成部材13aの内部に形成された洗浄水流路を流れる洗浄水に、微細気泡となって略均一に分散して混入する。
大量の空気が微細気泡となって洗浄水中に分散混入して、洗浄水の流れは気泡流となる。気泡流は配管12を通り、洗浄水吐出ノズル11から噴流となって吐出する。気泡流の噴流は、高い洗浄力を有し、被洗浄面に衝突して該面を十分に洗浄する。気泡流が吐出することにより、高い節水効果が得られる。
洗浄水タンクを備える洗浄水吐出装置Bは、携帯用の各種洗浄装置に広く応用できる。強制給気装置14の空気ポンプ14cを、気体の圧送のみならず洗浄水の圧送にも使用することにより、洗浄水の圧送用に別途ポンプを設ける場合に比べて部品数が減少し、洗浄水吐出装置Bの製造コストが低減する。滞留する洗浄水に気泡生成部材13aを介して気泡を混入させる場合には、気泡径がある程度まで大きくならないと、気泡は気泡生成部材13aから離れず、洗浄水に混入しない。洗浄水の流水に気泡生成部材13aを介して気泡を混入させる場合には、気泡径が小さくても、流水によって気泡は気泡生成部材13aから離され、洗浄水に混入する。洗浄水吐出装置Bは、滞留する洗浄水に気泡を混入させるのではなく、洗浄水の流水に気泡を混入させるので、微細な気泡を洗浄水中に多量に混入させることができ、洗浄水の洗浄効果を高めることができる。
配管14aに圧力調整弁14bを設け、圧力室13bへ流入する空気の圧力を調整して気泡生成部材13aからの気泡生成量を調整し、また、配管14a′に圧力調整弁14b′を設け、洗浄水タンク15へ流入する空気の圧力を調整して気泡生成部材13aの内部に形成された洗浄水流路を流れる洗浄水の流量を調整することにより、洗浄水への気泡混入量を制御することができる。圧力調整弁14b、14b′の何れか一方のみでも、洗浄水への気泡混入量を制御することができる。
洗浄水吐出装置Bの寸法、重量、消費電力は携帯に適した値に設定されているので、洗浄水吐出装置Bを備えるシャワー、人体局部洗浄装置、手洗浄装置、口蓋洗浄装置等の各種洗浄装置を携帯可能にすることができる。
【0019】
第10(a)図乃至第10(c)図に、気泡生成部材内面に付着した汚れの自動除去装置の一例を示す。
洗浄水吐出ノズル21に洗浄水を供給する配管22の途上に、第1実施例の気泡混入装置3、第2実施例の気泡混入装置13と同様の、気泡混入装置の気泡生成部材23a、圧力室23bが配設されている。配管22は気泡生成部材23aの上流位置で略直角に屈曲している。上記諸部材は一体化されており、図示しない駆動装置により、第10(a)図乃至第10(c)図で左右方向へ駆動される。
配管22の屈曲部に、開口22aが形成されている。棒状部材25が、開口22aを通って配管22、気泡生成部材23a内へ挿入されている。棒状部材25の開口22a外ヘ延びる部分の端部は不動の支持部材に固定されている。棒状部材25の固定端近傍部に第1蓋部材26aが固定され、他端に第2蓋部材26bが固定されている。棒状部材25の他端近傍部にブラシ27が固定されている。
配管22へ洗浄水が供給されず、洗浄水吐出ノズル21が作動を停止している時、一体化された上記諸部材は、図示しない駆動装置により第10(a)図乃至第10(c)図で右方ヘ駆動され、第10(b)図に示すように、第1蓋部材26aが配管22の開口22aを閉鎖している。
配管22へ洗浄水が供給される前に、一体化された上記諸部材が、図示しない駆動装置により第10(c)図に示すように左方へ駆動される。この時、固定されて不動のブラシ27が気泡生成部材23aの内面を擦り、気泡生成部材23aの内面に付着した汚れを除去する。第2蓋部材26bが配管22の開口22aを閉鎖する。
配管22へ洗浄水が供給され、気泡生成部材23aから発生する気泡が洗浄水の流水に混入し、気泡流が洗浄水吐出ノズル21から吐出する。
洗浄水吐出ノズル21からの気泡流の吐出が終了すると、一体化された上記諸部材が、図示しない駆動装置により第10(b)図に示すように右方へ駆動される。この時、固定されて不動のブラシ27が気泡生成部材23aの内面を擦り、気泡生成部材23aの内面に付着した汚れを除去する。第1蓋部材26bが配管22の開口22aを閉鎖する。
上述のような、気泡生成部材内面に付着した汚れの自動除去装置を、カルシウムイオン、マグネシウムイオン等の析出し易いイオンを多く含む水を使用する洗浄水吐出装置に用いることにより、洗浄水吐出装置の保守を容易化し、洗浄水吐出装置の機能を長期に亘って維持することができる。
【実施例3】
【0020】
本発明の第3実施例に係る洗浄水吐出装置を説明する。
本実施例に係る洗浄水吐出装置Cは便器に取り付けられる人体局部洗浄装置に組み込まれている。第11図に示すように、水道水が圧力調整機能を有する電磁止水弁30を経由し熱交換器31に供給される。熱交換器31内に、ヒーター32と、熱交換器内の水位を検知し空焚き等を防止するための第1水位センサー33、第2水位センサー34と、熱交換器内の水温を監視するための温度センサー35とが設けられている。適温まで昇温した水道水は大気開放弁36を経由し水流路切替弁37に導かれる。水流路切替弁37で、使用者による操作部38の操作に基づいて、流量が調節され、流路が切替えられ、ノズル39内に配設された複数の水流路中の選択された流路へ、流量調節された水道水が供給される。空気ポンプ40により加圧された空気が、空気流路切替弁41に導かれる。空気流路切替弁41で、使用者による操作部38の操作に基づいて、流路が切替えられ、ノズル39内に配設された複数の空気流路中の選択された流路へ、加圧空気が供給される。
第12図、第13図に示すように、ノズル39の先端部は、着脱可能なノズルヘッド39aを構成している。ノズルヘッド39aの上面に、尻洗浄用の吐出口42、43と、ビデ洗浄用の吐出口44、45とが形成されている。吐出口44の直下に、気泡混入装置46が配設されている。気泡混入装置46は、多孔質材料である樹脂加熱焼結材から成る直筒状の気泡生成部材46aを有している。気泡生成部材46aの内周面には、多数の独立開孔が形成されている。気泡生成部材46aは、両端部がノズルヘッド39aに圧入されることにより、ノズルヘッド39aに固定されている。気泡生成部材46aの何れか一方の端部の内径が、他の部位の内径に比べて大きな値に設定されている。気泡生成部材46aの内周面は洗浄水流路を形成している。気泡生成部材46aは、内周面が形成する洗浄水流路の下流側端を斜め上方へ差し向けて配設されている。気泡生成部材46aの内周面が形成する洗浄水流路の下流側端は、ノズルヘッド39aに形成され、斜め上方へ延在する直線状の洗浄水流路47を介して、吐出口44に連通している。気泡生成部材46aの内周面が形成する洗浄水流路の上流側端は、ノズルヘッド39aの内部に形成された洗浄水流路48に連通している。洗浄水流路48は、気泡生成部材46aを超えてノズルヘッド39aの端部まで延び、ノズルヘッド39aに形成され、斜め上方へ延在する略直線状の洗浄水流路49に連通している。洗浄水流路49は吐出口45に連通している。浄水流路48の上流端はノズル39内に配設された図示しない洗浄水配管に接続されている。気泡生成部材46aの周囲に、圧力室46bが形成されている。圧力室46bは、ノズルヘッド39aの内部に形成された空気流路50に連通している。空気流路50の上流端はノズル39内に配設された図示しない空気配管に接続されている。
吐出口42、43の直下にも、気泡混入装置46と同様の、気泡混入装置が配設されている。ノズル39内に、吐出口42の直下に配設された気泡混入装置に連通する洗浄水配管、空気配管と、吐出口43の直下に配設された気泡混入装置に連通する洗浄水配管、空気配管とが配設されている。
水流路切替弁37よりも下流側の部材が洗浄水吐出装置Cを構成している。
第11図において、参照番号51は、人体局部洗浄装置の制御装置であり、52は電源投入部であり、主電源の操作部である。参照番号53は、便器の使用を検知する使用検知装置である。
本人体局部洗浄装置においては、通常は、使用検知手段53により便器の使用を自動的に検知して、待機状態を解除する。使用者が操作部38を操作して、吐出口44、45からの洗浄水の吐出を選択すると、水流路切替弁37と、ノズル39内に配設された図示しない洗浄水配管とを介して、洗浄水流路48に水道水が供給され、空気流路切替弁41と、ノズル39内に配設された図示しない空気配管とを介して、空気流路50に加圧空気が供給される。気泡混入装置46において、水道水中に多量の微細気泡が略均一に分散して混入され、気泡流が生成される。気泡流は吐出口44から吐出する。気泡が混入されない水道水が吐出口45から吐出する。気泡流と気泡が混入しない水道水とが被洗浄部に当たり、被洗浄部を洗浄する。
使用者が操作部38を操作して、吐出口42又は43からの洗浄水の吐出を選択すると、水流路切替弁37と、ノズル39内に配設された図示しない洗浄水配管とを介して、吐出口42又は43の直下に配設された気泡混入装置に洗浄水が供給され、空気流路切替弁41と、ノズル39内に配設された図示しない空気配管とを介して、吐出口42又は43の直下に配設された気泡混入装置に加圧空気が供給される。吐出口42又は43の直下に配設された気泡混入装置において、水道水中に多量の微細気泡が略均一に分散して混入され、気泡流が生成される。気泡流は、吐出口42又は43から吐出し、被洗浄部を洗浄する。
洗浄水吐出装置Cにおいては、気泡生成部材46aよりも下流の洗浄水流路47が略直線状に延在している。洗浄水流路47が湾曲していると、気泡流が当該湾曲部を流れる際に、分散した微細気泡が遠心力を受けて集合合体し、気泡流がスラグ流やフロス流となるおそれがある。洗浄水流路47を略直線状に延在させれば、遠心力による微細気泡の集合合体は起こらず、気泡流が維持される。
洗浄水吐出装置Cにおいては、気泡混入装置46が、ノズルヘッド39a内に、より具体的にはノズルヘッド39aに形成された吐出口44の直下に配設されているので、気泡流が洗浄水流路内に滞留する時間が短縮される。この結果、水道水中に分散した微細気泡が、吐出前に合体する可能性が減少し、吐出時まで気泡流が維持される可能性が増大する。
洗浄水吐出装置Cにおいては、気泡混入装置46が取り付けられたノズルヘッド39aが、ノズル39に着脱可能に取り付けられているので、ノズルヘッド39aをノズル39から取り外して、気泡生成部材46aの内周面を容易に洗浄することができる。従って、洗浄水吐出装置Cにおいては、気泡混入装置46の保守が容易である。
洗浄水吐出装置Cにおいては、気泡生成部材46aがノズルヘッド39aに圧入固定されているので、固定部の隙間を介して加圧空気が水道水に混入し、予定外の大径の気泡が水道水中に混入するのを防止できる。
洗浄水吐出装置Cにおいては、気泡生成部材46aの圧入部の内径が他の部位の内径に比べて大に設定されているので、圧入後の圧入部の内径が他の部位の内径と同一になり、水道水流の乱れの発生が防止され、気泡の合体による大径化が防止される。
洗浄水吐出装置Cにおいては、気泡生成部材46aの両端部が圧入部であり、何れか一方の圧入部の内径が他の部位の内径に比べて大に設定されている。気泡生成部材46aの両端部を圧入固定することにより、気泡生成部材46aをノズルヘッド39aに堅固に固定できる。気泡生成部材46aは一般に粉末成形されるが、金型の関係で、気泡生成部材46aの両端部の内径を他の部位の内径に比べて大にすると、一方にバリができる。従って、何れか一方の端部の内径を他の部位の内径に比べて大に設定するのが望ましい。
洗浄水吐出装置Cにおいては、気泡生成部材46aは、ノズルヘッド39a内に且つ吐出口44の直下に且つ内面が形成する洗浄水流路の下流側端を上方へ差し向けて配設されているので、気泡生成部材46aより下流の洗浄水流路47を略直線状に延在させることができ、気泡の合体を防止することができる。
本実施例に係る人体局部洗浄装置においては、水流路切替弁37、空気流路切替弁41はそれぞれモーターにより同期して駆動される。水流路切替弁37、空気流路切替弁41を1つのモーターで駆動しても良い。空気ポンプ40はローリングポンプであるが、ベーンポンプ、ロータリーポンプ、リニアポンプ等であっても良い。熱交換器31は温度変化や温度むらの少ない貯湯式であるが、小型で連続出湯が可能な瞬間式や、貯湯式と瞬間式の長所を兼ね備えるセミ貯湯式としても良い。セミ貯湯式は貯湯部分は従来の貯湯式熱交換器に比べて小さく、ヒーター容量は大きいので、瞬間式同様に温度上昇能力が高く且つ温度むらは少ない。セミ貯湯式では、熱交換器の下流側に設置された小型の貯湯部分が、温度むらを少なくするために一定時間洗浄水を滞留させる温度緩衝体として機能する。セミ貯湯式熱交換器は、省エネ効果に優れると共に人体局部洗浄装置の使用性の向上にも寄与する。空気混入率を制御して使用感を使用者が任意に制御できるように構成しても良い。この場合には、水勢制御とは独立して空気混入率を制御できるようにするのが望ましい。空気ポンプ40内にヒーターを配設し、加熱した空気を気泡混入装置46へ供給しても良い。この場合は、熱交換器31で生成する温水を例えば25℃乃至30℃程度のぬるま湯とし、ぬるま湯に加熱空気を混入して、吐出する気泡流の温度を体温程度にしても良い。熱交換器31で生成する温水を例えば25℃乃至30℃程度のぬるま湯とすることにより、熱交換器31に設ける防熱材を薄肉にすることができ、人体局部洗浄装置を小型化できる。熱交換器31を除去し、冷水と加熱空気とを気泡混入装置46へ供給して、温水の気泡流を生成しても良い。
第14図に、洗浄水吐出装置Cでの、洗浄水流速と気泡生成直後の気泡径との関係の一例を示す。第14図から、洗浄水流速を制御して生成気泡径を制御できることが分かる。洗浄水流速が大きいと生成中の気泡に加わる洗浄水からの剪断力が大きいので、気泡は成長の初期段階で洗浄水に連行されて洗浄水中に分散混入する。従って洗浄水流速が大きいと気泡径は小さい。洗浄水流速が一定の場合には、生成気泡径は気泡生成部材の洗浄水に接する面に形成する独立開孔の開孔面積に略比例して増減する。従って、洗浄水流速が一定の場合には、前記独立開孔の開孔径を制御して、生成気泡径を制御できる。
第15図に、洗浄水吐出装置Cでの、気泡の洗浄水流路内滞留時間と気泡成長度との関係の一例を示す。図中Dbは生成直後の気泡径を示し、Dは滞留後の気泡径を示す。第15図から、滞留時間が増加すると共に、気泡同志が合体して気泡が成長し、気泡径が増加することが分かる。滞留時間を制御して気泡径を制御することかできる。洗浄水流量を制御することにより滞留時間を制御し、気泡径を制御することができる。洗浄水流量が小さい時は、洗浄水流速が小さく、滞留時間が長いので、大きな気泡径が得られ、ソフトな感触を与える気泡流が得られる。洗浄水流量が大きい時は、洗浄水流速が大きく、滞留時間が短いので、小さな気泡径が得られ、ハードな感触を与える気泡流が得られる。
【実施例4】
【0021】
本発明の第4実施例に係る洗浄水吐出装置を説明する。
第16図、第17図に示すように、本実施例に係る洗浄水吐出装置Dは、洗浄水吐出ノズル60を備えている。洗浄水吐出ノズル60の先端部は、着脱可能なノズルヘッド60aを構成している。ノズルヘッド60aには、第1吐出口61と第2吐出口62とが形成されている。洗浄水吐出ノズル60、ノズルヘッド60aには、第1吐出口61に接続する洗浄水流路63と、第2吐出口62に接続する洗浄水流路64とが形成されている。洗浄水流路64の断面積は、洗浄水流路63の断面積より大きな値に設定されている。浄水吐出ノズル60の基部に、可動の気泡混入装置65が配設されている。気泡混入装置65は、洗浄水流路を形成する多孔質材料から成る筒状の気泡生成部材65aを有している。気泡生成部材65aの内周面には多数の独立開孔が形成されている。気泡生成部材65a内の洗浄水流路の断面積は、上流端から下流端へ向けて漸次拡大している。気泡生成部材65aの周囲に圧力室65bが形成されている。気泡混入装置65は、気泡生成部材65a内の洗浄水流路の上流端に接続するニップル66と、圧力室65bに連通する逆L型のニップル67とを有している。ニップル66は図示しないフレキシブルチューブを介して、洗浄水の供給源に接続し、ニップル67は図示しないフレキシブルチューブを介して加圧空気供給源に接続している。気泡混入装置65は洗浄水吐出ノズル60の基部に固定された案内部材68内に摺動可動に収容されている。案内部材68に形成された開孔69が洗浄水流路63に連通し、開孔70が洗浄水流路64に連通している。案内部材68に、図示しない駆動ベルトとの係合部71が形成されている。案内部材68内に、気泡混入装置65を付勢するバネ72が配設されている。洗浄水吐出装置Dは、図示しない便器に取り付けられる人体局部洗浄装置に組み込まれている。
洗浄水吐出装置Dにおいては、図示しない洗浄水供給源から気泡混入装置65ヘ洗浄水が供給され、図示しない加圧空気供給源から気泡混入装置65へ加圧空気が供給される。気泡生成部材65aの内周面が形成する洗浄水流路を流れる洗浄水中に、気泡生成部材65aの内周面に形成された多数の独立開孔を介して、多量の微細気泡が略均一に分散して混入され、気泡流が形成される。生成された気泡流は、第16図から分かるように、案内部材68の開孔69、洗浄水流路
63を通り、第1吐出口61から吐出する。
図示しない駆動ベルトを作動させ、案内部材68の係合部71を押すと、洗浄水吐出ノズル60が、第17図で矢印で示す方向、即ちノズルヘッド60aの方向へ移動する。洗浄水吐出ノズル60がノズルヘッド60aの方向ヘ移動すると、ニップル67が、固定の突起部材73と係合し、気泡混入装置65は、バネ72の付勢力に逆らって移動する。この結果、第17図から分かるように、気泡生成部材65aの内周面が形成する洗浄水流路が、案内部材68の開孔70に連通する。気泡混入装置65で生成された気泡流は、第17図から分かるように、案内部材68の開孔70、洗浄水流路64を通り、第2吐出口62から吐出する。
洗浄水流路64の断面積は洗浄水流路63の断面積より大きいので、両者を流れる洗浄水の流量を略同一とした場合、洗浄水流路64を流れる洗浄水の流速は洗浄水流路63を流れる洗浄水の流速よりも小さい。洗浄水流路63と洗浄水流路64とは略同一長さなので、気泡流が洗浄水流路64内に滞留する時間は、気泡流が洗浄水流路63内に滞留する時間よりも長い。この結果、吐出口62から吐出する気泡流に含まれる気泡の径は、吐出口61から吐出する気泡流に含まれる気泡の径よりも大となり、吐出口62から吐出する気泡流は吐出口61から吐出する気泡流に比べてソフトな洗浄感を生む。吐出口61をお尻洗浄用とし、吐出口62をビデ用とし、上述のように、流路切換手段を介して、選択的に何れかの吐出口へ気泡流を供給すれば、人体局部洗浄装置の使用性が向上する。
洗浄水吐出装置Dの作動中に空気の供給が停止すると、水の浸透圧や管路抵抗等による圧力により洗浄水の一部が気泡生成部材65aの細孔を通って圧力室65b、空気流路等へ進入する可能性があるので、気泡を含まない洗浄水を吐出する場合でも、圧力室に少量の加圧空気を供給し、気泡生成部材65aを通して微量の空気が洗浄水中に混入するように構成するのが望ましい。洗浄水の吐出停止後に、洗浄水吐出ノズル60内の残水を除去するために一定時間空気のみを吐出させると、吐出口61、62の周辺に付着した水滴やゴミなども除去することができる。
第18図に、洗浄水吐出装置Dで得られる、気泡ポンプ効果の一例を示す。
図中、Et/Ewはエネルギー増幅効果を示している。Etは気泡流の気泡混入装置65の直近下流域における出力エネルギーをあらわし、Ewは気泡混入装置65の直近上流域の洗浄水のエネルギーである。効率はEt/(Ew+Ea)であらわされ、出力エネルギーEtをすべての入力エネルギーで除したポンプとしての総合効率である。Eaは、混入された空気のエネルギーである。Et、Ew、Eaは下式で表される。
=P+(ρ/2)Q
=P+(ρ/2)Q
=P
上式において、Pは圧力、Qは体積流量、ρは密度、Vは速度をあらわし、添え字wは気泡混入装置65直近上流域における気体未混入時の洗浄水をあらわし、添え字tは気泡混入装置65直近下流域における気体混入後の二相流となった洗浄水をあらわし、添え字aは空気をあらわす、Paは気泡混入装置65の通過圧力損失を除外した空気混入圧力である。多量の微細気泡の生成、洗浄水の流水への略均一に分散した混入を同時に行うと、混入した気泡は気泡ポンプとして機能し、直ちに洗浄水を増速させ、洗浄水のエネルギーを増加させる。混入気泡の気泡径が小さいと、気泡の剛性が高く、洗浄水中で不要な変形や振動を起こさないので、気泡が洗浄水中に在ることによるエネルギー損失も少ない。
気泡ポンプとして機能する気泡混入装置65を用いれば、高層マンションの最上階や一般家庭の二階等水圧の低い場所に、エネルギー消費量の少ない人体局部洗浄装置を設置することが可能となる。水圧の低い場所に人体局部洗浄装置を設置すべく水ポンプ等を配設する場合においても、気泡混入装置65を用いれば、ポンプの小型化が図れる。ポンプアップのため水道配管に水ポンプを接続する際には、水ポンプの作動が水道圧力に影響を与えることによる汚水の逆流を防ぐために水道配管と水ポンプの間に大気開放された貯水槽を設ける必要がある。気泡混入装置65により構成される気泡ポンプは、従来の水ポンプとは全く作動原理が異なり、気泡ポンプを作動させても水道圧力に影響を与えないので、水道配管と直接接続することが可能であり、水圧の低い場所に人体局部洗浄装置を設置する際に、人体局部洗浄装置の大幅な簡略化を図れる。
気泡ポンプ機能を有する気泡混入装置65を用いれば、水道水の水圧を低くできるので、空気混入に必要な圧力も低くできる。
気泡混入装置65を、水の硬度が高い地域で使用する場合には、気泡生成部材65aの内周面に形成した独立開孔が、炭酸カルシウム等の硬度成分の化合物により閉塞する可能性がある。独立開孔が閉塞すると混入空気流量が減少する。気泡混入装置65を、水の硬度が高い地域で使用する場合には、気泡混入装置65よりも上流側の洗浄水流路に、酸性水溶液を流すための、通常は封鎖された開孔を設けておくことが望ましい。酸性水溶液を流すことにより気泡生成部材65aの内周面に付着した硬度成分の化合物を容易に溶解して除去することができる。必要時に酸性水溶液を生成できるように酸性水溶液生成装置を設けてもよい。酸性水溶液生成装置は、洗浄水を電気分解して酸性水を生成する装置であっても良く、洗浄水中に溶解すると酸性を示す物質を投入する装置であっても良い。酸性水溶液生成装置を、所定の時間間隔で作動させて気泡生成部材65aの内周面を洗浄するように構成しても良く、使用者が必要に応じて作動させるように構成しても良い。
第19図にナイロンメッシュにより独立開孔を形成した気泡生成部材65a′を示す。気泡生成部材65a′においては、網目状の独立開孔を有するナイロン製のメッシュ74が筒状且つ格子状の支持体75に加熱溶着されている。気泡生成部材65a′は、十分な強度を有している。メッシュ74の開孔形状は使用する繊維の太さや間隔や配向を変えることにより任意に調整可能である。
【0022】
洗浄水吐出装置A、B、C、Dにおける気泡発生部材3a、13a、46a、65aの内周面への炭酸カルシウムの析出を抑制し、気泡発生部材3a、13a、46a、65aの経時的な機能低下を抑制する方策を試験に基づいて検討した。
(1)スケールの主成分の同定
円筒状の多孔質体に水道水を通水し、多孔質体の周囲に加圧空気を供給して、多孔質体内を流れる水道水に気泡を混入させ、気泡が混入した水道水を多孔体から吐出させた。通水を継続した結果、多孔質体の流路表面にスケールが付着し、水道水への気泡の混入が妨げられた。X線回折により、スケールの主成分が炭酸カルシウムであると同定した。
(2)気泡を混入させない通水試験
アクリル多孔質体の細管の長さの半分を以下の3種類のコーティング剤中に浸漬し、引き上げた後乾燥させた。
ポリエチレン多孔質体の細管の長さの半分を以下の3種類のコーティング剤中に浸漬し、引き上げた後乾燥させた。
1.アクリルとシリコーンとを混合したコーティング剤(三井東圧化学(株)製アクリル主剤Q166、日本油脂(株)製シリコーンFS710、三井東圧化学(株)製硬化剤P53−70S、トルエン溶剤を混合した。配合は主剤5重量部に対して硬化剤1重量部とした。シリコーンと溶剤とは適量加えた。)
2.アルキルポリシロキサンが主成分のコーティング剤(日本合成ゴム(株)製グラスカ(A剤、B剤)、イソプロピルアルコール溶剤を混合した。配合はA剤3重量部に対してB剤1重量部とした。イソプロピルアルコール溶剤は、適量加えた。)
3.常温で硬化しガラスとなるコーティング剤((株)日興製GO−100−SX(主剤、硬化剤)を使用した。配合は主剤10重量部に対して硬化剤1重量部とした。)
アクリル多孔質体の細管、ポリエチレン多孔質体の細管に、気泡を混入させることなく、硬度を300に調整した水道水を0.5dm3 /分の流量で循環して通水した。
所定時間通水を継続した後、アクリル多孔質体の細管、ポリエチレン多孔質体の細管の流路表面を目視観察した。試験結果を第20図に示す。
第20図から以下が分かる。
1.アクリル多孔質体の細管に対しては、アクリルとシリコーンとを混合したコーティング剤、常温で硬化してガラスとなるコーティング剤が、炭酸カルシウムの析出抑制に効果的である。
2.ポリエチレン多孔質体の細管に対しては、アクリルとシリコーンとを混合したコーティング剤、アルキルポリシロキサンが主成分のコーティング剤が、炭酸カルシウムの析出抑制に効果的である。
3.アクリルとシリコーンとを混合したコーティング剤、アルキルポリシロキサンが主成分のコーティング剤、常温で硬化してガラスとなるコーティング剤は、何れもシロキサン結合(Si−O結合)を有する成分を含有する。従って、シロキサン結合を有する成分を含有するコーティング剤は、炭酸カルシウムの析出抑制に効果的である。
(3)気泡を混入させた通水試験
1.炭酸カルシウムの析出に対する通水態様の影響の確認試験
表面処理を施していないポリエチレン多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=26μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、ポリエチレン多孔質体の細管に硬度を300に調整した水道水を0.5dm /分の流量で通水し、ポリエチレン多孔質体の細管から気泡流を吐出させた。試験装置を第21図に示す。
連続通水した場合と、1分間通水後5秒間通水停止(空気の供給は継続)を繰り返した場合と、1分間通水後30秒間通水停止(空気の供給は継続)を繰り返した場合とにつき、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第22図に示す。
第22図から、ポリエチレン多孔質体の細管への通水を断続的に停止した場合、連続通水する場合に比べて、圧力室ヘ流入する空気の圧力上昇速度が低下することが分かり、ひいてはポリエチレン多孔質体の細管の流路表面への炭酸カルシウムの析出が抑制されることが分かる。通水停止時に流路表面の細孔から噴出する空気によって流路表面に付着したスケールが引き剥がされるものと考えられる。また、1分間通水後5秒間通水停止を繰り返した場合と、1分間通水後30秒間通水停止を繰り返した場合とでは、炭酸カルシウムの析出抑制効果に大差無いことが分かる。
第21図の試験装置を用い、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、ポリエチレン多孔質体の細管に硬度を150に調整した水道水を0.5dm /分の流量で通水し、ポリエチレン多孔質体の細管から気泡流を吐出させた。
連続通水した場合と、1分間通水後5秒間通水停止を繰り返した場合とにつき、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第23図に示す。
第23図から、通水する水道水の硬度が変わっても、ポリエチレン多孔質体の細管への通水を断続的に停止することにより、ポリエチレン多孔質体の細管の流路表面への炭酸カルシウムの析出が抑制されることが分かる。
2.コーティング剤の炭酸カルシウム析出抑制効果確認試験
第21図と同様の試験装置を用い、アクリル、シリコーン、フッ素樹脂の混合体(三井東圧化学(株)製アクリル主剤Q166、日本油脂(株)製シリコーンFS710、日本油脂(株)製フッ素F200、三井東圧化学(株)製硬化剤P53−70S、トルエン溶剤を混合した。配合は主剤5重量部に対して硬化剤1重量部とした。シリコーンとフッ素と溶剤とは適量加えた。)を内面に塗布したアクリル多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=40μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、アクリル多孔質体の細管に硬度を300に調整した水道水を0.5dm /分の流量で通水し、アクリル多孔質体の細管から気泡流を吐出させた。1分間通水後5秒間通水停止を繰り返しながら、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第24図に示す。第24図に、表面処理を施していない同一寸法のアクリル多孔質体の細管を用いて同様の試験を行った結果を併記する。
第24図から、アクリル、シリコーン、フッ素樹脂の混合体を用いて表面処理を施すことにより、圧力室ヘ流入する空気の圧力上昇速度が低下すること、ひいてはアクリル多孔質体の細管の内面への炭酸カルシウムの析出が抑制されることが分かる。
第21図と同様の試験装置を用い、アクリル、シリコーンの混合体(三井東圧化学(株)製アクリル主剤Q166、日本油脂(株)製シリコーンFS710、三井東圧化学(株)製硬化剤P53−70S、トルエン溶剤を混合した。配合は主剤5重量部に対して硬化剤1重量部とした。シリコーンの配合は、0重量%、0.3重量%、3重量%の3種類とした。溶剤は適量加えた。)を内面に塗布したアクリル多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=36μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、アクリル多孔質体の細管に硬度を300に調整した水道水を0.5dm /分の流量で通水し、アクリル多孔質体の細管から気泡流を吐出させた。1分間通水後5秒間通水停止を繰り返しながら、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第25図に示す。
第25図から、フッ素樹脂を含まないアクリル、シリコーンの混合体を用いて表面処理を施した場合でも、アクリル多孔質体の細管の内面への炭酸カルシウムの析出が抑制されることが分かる。また、フッ素樹脂を含まないアクリル、シリコーンの混合体を用いる場合、シリコーンの配分を0.3重量%とするのが効果的であることが分かる。
第21図と同様の試験装置を用い、常温で硬化してガラスとなるコーティング剤((株)日興製GO−100−SX(主剤、硬化剤)を使用した。配合は主剤10重量部に対して硬化剤1重量部とした。)を内面に塗布したアクリル多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=30μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、アクリル多孔質体の細管に硬度を150に調整した水道水を0.5dm /分の流量で通水し、アクリル多孔質体の細管から気泡流を吐出させた。1分間通水後5秒間通水停止を繰り返しながら、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第26図に示す。第26図に、表面処理を施していない同一寸法のアクリル多孔質体の細管を用いて同様の試験を行った結果を併記する。
第26図から、常温で硬化してガラスとなるコーティング剤を用いて表面処理を施すことにより、アクリル多孔質体の細管の内面への炭酸カルシウムの析出が抑制されることが分かる。
第21図と同様の試験装置を用い、アクリル、シリコーンの混合体(三井東圧化学(株)製アクリル主剤Q166、日本油脂(株)製シリコーンFS710、三井東圧化学(株)製硬化剤P53−70S、トルエン溶剤を混合した。配合は主剤5重量部に対して硬化剤1重量部とした。シリコーンの配合は0.3重量%とした。溶剤は適量加えた。)を内面に塗布したポリエチレン多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=25μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、ポリエチレン多孔質体の細管に硬度を150に調整した水道水を0.5dm /分の流量で通水し、ポリエチレン多孔質体の細管から気泡流を吐出させた。1分間通水後5秒間通水停止を繰り返しながら、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。試験結果を第27図に示す。
第27図から、アクリル、シリコーンの混合体を用いて表面処理を施すことにより、ポリエチレン多孔質体の細管の内面への炭酸カルシウムの析出が抑制されることが分かる。
第21図と同様の試験装置を用い、アルキルポリシロキサンが主成分のコーティング剤(日本合成ゴム(株)製グラスカ(A剤、B剤)、イソプロピルアルコール溶剤を混合した。配合はA剤3重量部に対してB剤1重量部とした。イソプロピルアルコール溶剤は適量加えた。)を内面に塗布したポリエチレン多孔質体の細管(外径×内径×長さ=8mm×2mm×10mm、平均細孔径=25〜
30μm)を圧力室内に収納し、エアポンプを介して圧力室に空気を1dm /分の流量で供給しつつ、ポリエチレン多孔質体の細管に硬度を150、300に調整した水道水を0.5dm /分の流量で通水し、ポリエチレン多孔質体の細管から気泡流を吐出させた。1分間通水後5秒間通水停止を繰り返しながら、圧力室ヘ流入する空気の経時的な圧力上昇を測定した。硬度が150の水道水に対する試験結果を第28図に、硬度が300の水道水に対する試験結果を第29図に示す。
第28図、第29図から、アルキルポリシロキサンが主成分のコーティング剤を用いて表面処理を施すことにより、ポリエチレン多孔質体の細管の内面への炭酸カルシウムの析出が抑制されることが分かる。
【0023】
第5図に示す洗浄水吐出装置Aを便器に取り付けられる人体局部洗浄装置に適用しても良い。洗浄水吐出装置Aが組み込まれた人体局部洗浄装置においては、定流量弁5よりも上流の配管2の途上に開閉弁が配設され、定流量弁5と気泡混入装置3の間の配管2の途上に洗浄水を加熱する加熱装置が配設され、洗浄水ノズル1を進退させる駆動装置が配設される。係る人体局部洗浄装置においては、気泡流が吐出されることにより、高い洗浄力が得られ、ソフトな洗浄感が得られ、高い節水効果が得られる。
洗浄水吐出装置Aを備える人体局部洗浄装置において、制御装置4eに空気ポンプ4cの印加電圧を可変制御させても良い。空気ポンプ4cの印加電圧を可変制御し、洗浄水への空気混入量、ひいては気泡混入量を周期的に、或いは無作為に可変制御することにより、洗浄水の洗浄力、洗浄感を可変制御することができる。この結果、人体局部洗浄装置の使用性が向上する。
洗浄水吐出装置Aを備える人体局部洗浄装置において、空気ポンプ4cより下流の配管4aに圧力センサーを設け、圧力センサーの出力に基づいて制御装置4eに空気ポンプ4cの印加電圧を可変制御させても良い。或いは、空気ポンプ4cの回転数を検知する回転数検知装置を設け、回転数検知装置の出力に基づいて制御装置4eに空気ポンプ4cの印加電圧を可変制御させても良い。或いは、空気ポンプ4cより下流の配管4aに大気開放弁を設け、制御装置4eに大気開放弁の開閉制御を行わせても良い。空気ポンプ4cより下流の配管4a内の圧力に基づいて空気ポンプ4cの印加電圧を制御し、或いは空気ポンプ4cの回転数に基づいて空気ポンプ4cの印加電圧を制御し、或いは空気ポンプ4cより下流の配管4aに設けた大気開放弁を開閉制御することにより、洗浄水への空気混入量、ひいては気泡混入量を制御し、洗浄水の洗浄力、洗浄感を可変制御することができる。この結果、人体局部洗浄装置の使用性が向上する。
洗浄水吐出装置Aを備える人体局部洗浄装置において、制御装置4eに定流量弁5より上流の配管2の途上に配設される開閉弁を所定時間間隔で開放させて洗浄水吐出装置Aに洗浄水を流し、或いは制御装置4eに所定時間間隔で空気ポンプ4cを駆動させるようにしても良い。所定時間間隔で、洗浄水吐出装置Aに洗浄水を流し、空気ポンプ4cを駆動して気泡生成部材3aに加圧空気を供給することにより、気泡生成部材3aを自動的に保守し、局部洗浄装置の機能を長期に亘って維持することができる。
洗浄水吐出装置Aを備える人体局部洗浄装置において、制御装置4eに空気ポンプ4cの作動中に定流量弁5より上流の配管2の途上に配設される開閉弁を断続的に閉鎖させ,洗浄水流路への通水を断続的に停止させるようにしても良い。空気ポンプ4cの作動中に洗浄水流路への通水を断続的に停止させ、気泡生成部材3aから空気を吐出させて内周面に付着したカルシウムを剥離させることにより、気泡発生部材3aの流路表面へのカルシウムの析出が効果的に抑制される。
洗浄水吐出装置Aを備える人体局部洗浄装置において、運転スイッチ投入後、洗浄水吐出ノズル1を所定位置ヘ駆動する前に、制御装置4eに定流量弁5より上流の配管2の途上に配設される開閉弁を開放させて洗浄水吐出装置Aに洗浄水を流し、或いは制御装置4eに空気ポンプ4cを駆動させるようにしても良い。係る予備的作動をさせておくことにより、所定位置ヘ移動した洗浄水吐出ノズル1から確実に気泡流を吐出させることができる。
洗浄水吐出装置Aを備える人体局部洗浄装置において、空気ポンプ4cより下流の配管4aの途上に、揮発成分混入装置を接続しても良い。消臭剤、芳香剤等の揮発成分を洗浄水に混入する気泡内の気体に混入させることにより、人体局部洗浄装置の使用性が向上する。
【0024】
第5図に示す洗浄水吐出装置Aを給湯装置に適用しても良い。第30図に示すように、配管2に、上流から下流へ向けて順次、流量センサー80、水温センサー81、水加熱装置82、湯温センサー83、湯水混合装置84、混合水温センサー85、流量制御弁86が配設されている。流量制御弁の下流に、洗浄水吐出装置Aが配設されている。洗浄水吐出装置Aの洗浄水吐出ノズル1は、浴室に配設されたシャワーノズル、水栓器具、洗面所に配設された水栓器具等を構成している。洗浄水吐出装置Aの制御装置4eは、水加熱装置82、湯水混合装置84、流量制御弁86等の作動をも制御するように構成されている。
上記構成を有する給湯装置においては、流量センサー80が検知した給水流量と水温センサー81が検知した水温と湯温センサー83が検知した湯温とに基づいて、制御装置4eが水加熱装置82の作動を制御し、所望温度の湯を生成する。制御装置4eは、湯温センサー83が検知した湯温と混合水温センサー85が検知した混合水温とに基づき、湯水混合装置84の作動を制御し、湯と水とを適宜混合して適正温度の混合水を生成する。装置4eは、流量制御弁86の作動を制御して、適正温度且つ適正流量の混合水を配管2に流す。制御装置4eは、洗浄水吐出装置Aの空気ポンプ4cの作動を制御し、配管2を流れる適温の混合水に、多量の微細気泡を分散混入させる。水吐出装置Aの洗浄水吐出ノズル1が構成する、浴室に配設されたシャワーノズル、水栓器具、洗面所に配設された水栓器具等から、温水の気泡流が吐出する。シャワーノズルの直近上流又は水栓器具の直近上流に流量センサーを配設し、水栓器具から温水を吐出する場合には空気ポンプ4cを停止させ、気泡の混入しない温水を吐出するように構成しても良い。
洗浄水吐出装置Aを備える給湯装置においては、洗浄水吐出装置Aの節水効果により、湯の使用量が減少する。この結果、水加熱装置82の小型化が可能となり、ひいては給湯装置の小型化、省エネルギー化が可能となる。
【0025】
第5図に示す洗浄水吐出装置Aをシャワー装置に適用しても良い。シャワー装置に適用される洗浄水吐出装置Aにおいては、第31(a)図、第31(b)図に示すように、洗浄水吐出ノズル1はシャワーノズルを構成しており、気泡混入装置3は洗浄水吐出ノズル1内に配設されている。気泡生成部材3aは、多孔質材料から成る円柱体3a と、円柱体3a の両端面をシールする端板3a とにより構成されている。円柱体3a と端板3a とには、多数の貫通孔3a が形成されている。円柱体3a に形成された貫通孔3a の周面には多数の微細独立開口が形成されている。気泡生成部材3aは洗浄水吐出ノズル1に圧入固定されている。洗浄水吐出ノズル1の先端部に、分散板1aが着脱可能に取り付けられている。分散板1aには、気泡生成部材3aの貫通孔3a に連通する多数の吐出孔1a が形成されている。気泡生成部材3aの周囲に圧力室3bが形成されている。洗浄水吐出ノズル1には、気泡生成部材3aの貫通孔3a に連通する洗浄水流路1bと圧力室3bに連通する空気流路1cとが形成されている。洗浄水流路1bは配管2に接続し、空気流路1cは配管4aに接続している。洗浄水吐出ノズル1がシャワーノズルを構成していること、気泡混入装置3が洗浄水吐出ノズル1内に配設されていることを除き、本シャワー装置は第30図の給湯装置と同一の構成を有する。
本シャワー装置においては、適温の湯と加圧空気とが洗浄水吐出ノズル1へ供給される。湯は洗浄水流路1bを通り、気泡生成部材3aの貫通孔3a へ流入する。加圧空気は空気流路1cを通り、圧力室3bへ流入する。加圧空気は気泡生成部材3aを介して多量の微細気泡となり、貫通孔3a を流れる湯に分散混入する。多量の微細気泡が湯に分散混入した気泡流が、分散板1aを通り、気泡流のシャワーとなって吐出する。
洗浄水吐出装置Aを備えるシャワー装置においては、強い洗浄力と高い節水効果とが得られる。
【0026】
第5図に示す洗浄水吐出装置Aを、洗髪装置に適用しても良い。第32図乃至第34図に示すように、ボール90の底壁に排水穴90aが形成され、ボール90の側壁に複数の側頭部及び後頭部用のシャワーノズル91、複数のシャンプーノズル92、前頭部用のシャワーノズル93が取り付けられている。ボール90は図示しない台に取り付けられている。シャワーノズル91、93を有する洗浄水吐出装置は、第31(a)図、第31(b)図に示すシャワー装置に適用された洗浄水吐出装置Aによって構成されている。但し、本洗髪装置に適用される洗浄水吐出装置Aにおいては、複数の洗浄水吐出ノズルに洗浄水と加圧空気とが供給される。図示しない供給装置からシャンプーノズル92にシャンプーが供給される。
本洗髪装置の利用者は、仰向けの状態で後頭部をボール90に載せる。図示しないカバーをボール90に載せて、前頭部と頂頭部とを覆う。図示しない制御スイッチを押し、シャンプーノズル92からシャンプー液を吐出させて洗髪し、次いでシャワーノズル91、93から洗浄水の気泡流を吐出させて洗髪した髪を濯ぐ。廃水は排水穴90aから排出される。図示しないカバーによって洗髪中のシャンプー液、洗浄水の飛散が防止される。
洗浄水吐出装置Aを備える洗髪装置においては、強い洗浄力と高い節水効果とが得られる。洗浄水吐出装置Aを備える洗髪装置においては、多量の微細気泡が洗浄水中に分散混入しているので、洗浄水と空気との接触面積が非常に大きい。この結果、洗浄水(水道水)中に含まれる塩素が迅速に脱気される。洗浄水から塩素が脱気されることにより、反応性に富む塩素による頭髪の損傷が防止される。塩素の脱気を促進するために、水への吸収速度の速い炭酸ガス等の気体を洗浄水に混入させても良い。塩素の脱気は洗浄水の吐出の直前に行われるので、塩素の脱気によって洗浄水中に雑菌が繁殖するおそれは無い。洗浄水吐出装置Aを人体の皮膚を洗浄する洗浄装置に適用する場合にも、同様に塩素の脱気による皮膚の損傷防止効果が得られる。
【0027】
第5図に示す洗浄水吐出装置Aを水栓器具に適用しても良い。水栓器具に適用される洗浄水吐出装置Aにおいては、第35図乃至第37図に示すように、洗浄水吐出ノズル1は水栓器具の吐水ヘッドを構成しており、気泡混入装置3は洗浄水吐出ノズル1内に配設されている。洗浄水吐出ノズル1には、気泡生成部材3aに連通する洗浄水流路1dと、圧力室3bに連通する空気流路1eとが形成されている。洗浄水吐出ノズル1は、水栓器具本体100の回転自在の吐水管101に螺子固定されている。洗浄水吐出ノズル1の洗浄水流路1dは、吐水管101に形成された図示しない配管を介して配管2に接続し、洗浄水吐出ノズル1の空気流路1eは吐水管101に形成された図示しない配管を介して配管4aに接続している。第35図乃至第37図に示すように、洗浄水吐出ノズル1が吐水ヘッドを構成していること、気泡混入装置3が洗浄水吐出ノズル1内に配設されていること、水栓器具本体100、吐水管101を有することを除き、本水栓器具は第30図の給湯装置と同一の構成を有する。
本水栓器具においては、水栓器具本体100の操作部100aにより、水流量と空気流量とを調整する。
洗浄水吐出装置Aを備える水栓器具においては、強い洗浄力と高い節水効果とが得られる。
【0028】
第5図に示す洗浄水吐出装置Aを、洗顔装置に適用しても良い。洗顔装置の具体的構成は第32図乃至第34図の洗髪装置と同様で良い。
洗浄水吐出装置Aを備える洗顔装置においては、強い洗浄力と高い節水効果とが得られる。
【0029】
第5図に示す洗浄水吐出装置Aを、洗眼装置に適用しても良い。洗顔装置の具体的構成は、第5図の洗浄水吐出装置Aの空気混入装置3より下流の配管2をフレキシブル配管とし、洗浄水吐出ノズル1をハンディサイズにして、洗眼作業を容易にするようにしたもので良い。
洗浄水吐出装置Aを備える洗眼装置においては、気液比を較的低く設定することにより、ソフトな洗浄感と十分な洗浄力とを得ることができる。
【0030】
第5図に示す洗浄水吐出装置Aを、口蓋洗浄装置に適用しても良い。口蓋洗浄の具体的構成は、第5図の洗浄水吐出装置Aの空気混入装置3より下流の配管2をフレキシブル配管とし、洗浄水吐出ノズル1を細身且つハンディサイズにして、口蓋洗浄を容易にするようにしたもので良い。
洗浄水吐出装置Aを備える口蓋洗浄装置においては、強い洗浄力と高い節水効果とが得られる。
【0031】
第5図に示す洗浄水吐出装置Aを、手洗浄装置に適用しても良い。手洗浄装置の具体的構成は第35図乃至第37図の水栓器具と同一でも良く、第35図乃至第37図の水栓器具の近傍に温風吐出装置を設けて洗浄後の乾燥を行えるようにしたものでも良い。
洗浄水吐出装置Aを備える手洗浄装置においては、強い洗浄力と高い節水効果とが得られる。
【0032】
第5図に示す洗浄水吐出装置Aを、浴槽に適用しても良い。浴槽の具体的構成は、第5図の洗浄水吐出装置Aの洗浄水吐出ノズル1を浴槽の側壁に取付けたもので良い。
洗浄水吐出装置Aを備える浴槽においては、気泡流を体に当てることにより、マッサージ効果が得られる。
【0033】
洗浄水吐出装置Aを、超音波洗浄装置に適用しても良い。
気泡流の噴流が被洗浄面に衝突すると、密度が小さく運動エネルギーの小さな気泡と、密度が大きく運動エネルギーの大きな気泡間の水とが、短周期で交互に被洗浄面に衝突する。この結果、被洗浄面に圧力変動、すなわち振動が発生する。振動の周波数は単位時間当たりに衝突する気泡数を変えることにより制御できるので、特に洗浄力の高い超音波振動を発生することも可能である。超音波振動は波長が短いので、例えば人体表面のしわや凹凸の中に入り込んだ汚れにまで到達し洗浄することが可能であり、洗浄力は格段に高い。
高周波振動は波長が短く、細かい凹凸の中まで洗浄できるが、振動の減衰が速く洗浄面積は小さい。低周波振動は波長が長く、局所的な洗浄力は低いが、振動の減衰が遅く洗浄面積は広い。同一空気量のもとで気泡径を制御し、単位時間当たりに被洗浄面に衝突する気泡数を制御し、被洗浄面に発生する振動の周波数を制御することができる。すなわち気泡径を制御することで洗浄力の及ぶ範囲や強さを制御することが可能である。気泡径が大きいときには振動周波数が低いので、広い範囲をまんべんなく洗浄することができ、気泡径が小さいときには振動周波数が高いので、局所的な強い汚れを落とすことが可能である。また振動周波数が高いと減衰が速いので、人体表面で振動が減衰し、皮膚の表面での刺激を強く感じ、振動周波数が低いと皮膚表面での刺激を弱めることができる。5ヘルツから30ヘルツ程度の周波数領域は、人体の皮膚表面近傍部の自由振動の周波数と概略一致するためにマッサージ効果が高く、少ない洗浄水量で高い水量感を与えるので非常に好適である。
【0034】
上記実施例に係る洗浄水吐出装置は、いずれも多孔質材料からなる気泡生成部材を用いて、微細気泡を生成し洗浄水中に分散混入させるものであったが、単に気泡を洗浄水中に混入させた後、混入気泡を破砕して微細化しても良い。
第38図に示すように、洗浄水吐出装置Eにおいては、洗浄水流路を形成する配管110の途上に、上流から順に、定流量弁111、気泡混入装置112、気泡破砕装置113が取り付けられ、配管110の下流端に、洗浄水吐出ノズル114が取り付けられている。
気泡混入装置112は、洗浄水流路を形成する配管112aと、配管112aに略直交し配管112aの側壁内面に開口する細管112bとにより構成されている。
気泡破砕装置113は、第39(a)図示すように、洗浄水流路を形成する配管113aと、配管113a内に取り付けられた単一の開口113b を有する邪魔板113bとにより構成され、或いは第39(b)図示すように、洗浄水流路を形成する配管113aと、配管113a内に取り付けられた複数の開口113c を有する邪魔板113cとにより構成され、或いは第39(c)図示すように、洗浄水流路を形成する配管113aと、配管113a内に取り付けられたメッシュ113dとにより構成されている。メッシュ113dは、合成樹脂繊維や金属繊維の織布、不織布を複数枚重ねたものにより構成されている。
空気ポンプ115aを有する強制給気装置115が気泡混入装置112の細管112bに接続されている。
洗浄水吐出装置Eにおいては、強制給気装置115から供給された加圧空気が細管112bを介して、配管112a内を流れる洗浄水中に混入する。細管112bは配管112aの側壁内面に開口しているので、細管112bの端部で生成する気泡は、洗浄水流と略直交する方向へ成長する。この結果、気泡は配管112aを流れる洗浄水から剪断力を受け、成長の初期段階で細管112bの端部を離れ洗浄水中へ連行される。従って、比較的小径の気泡が洗浄水中に混入する。小径の気泡が混入した洗浄水が気泡破砕装置113の邪魔板113bの開口113b を通過する際に、或いは小径の気泡が混入した洗浄水が気泡破砕装置113の邪魔板113cの開口113c を通過する際に、流路断面積が減少し、洗浄水流の流速が増加し、小径気泡に加わる洗浄水からの剪断力が増加して、小径気泡は破砕され微細気泡となる。小径の気泡が混入した洗浄水が気泡破砕装置113のメッシュ113dを通過する際に、小径気泡がメッシュ113dによって破砕され微細気泡となる。多量の微細気泡が分散混入した洗浄水の気泡流が洗浄水吐出ノズル114から吐出する。洗浄水の気泡流が吐出することにより、洗浄水の洗浄力が増加し、且つ節水効果が得られる。
【産業上の利用可能性】
【0035】
本発明により、気泡流を吐出して、洗浄水の洗浄力を高め、ソフトな洗浄感を実現し、且つ大幅な節水を実現することができる洗浄水吐出装置が提供される。
【図面の簡単な説明】
【0036】
【図1】第1(a)図乃至第1(d)図は気液二相流の流動様式を示す図である。第1(a)図は気泡流を示し、1(b)図はスラグ流を示し、1(c)図はフロス流を示し、1(d)図は環状噴霧流を示す。
【図2】第2図は噴流が被洗浄面に衝突する様子を表す図である。
【図3】第3図は気泡流が被洗浄面に衝突する際に発生する圧力と気液比との関係を示す図である。
【図4】第4図は気泡流が被洗浄面に衝突する際に発生する圧力を一定値に維持した時の洗浄水量と気液比との関係を示す図である。
【図5】第5図は本発明の第1実施例に係る洗浄水吐出装置の構成図である。
【図6】第6図は気泡流の吐出状況を示す図である。
【図7】第7図は超高分子量ポリエチレンの略球形粒子の加熱成形体の表面の電子顕微鏡拡大図である。
【図8】第8図はアクリル樹脂の略球形粒子の加熱成形体の表面の電子顕微鏡拡大図である。
【図9】第9図は本発明の第2実施例に係る洗浄水吐出装置の構成図である。
【図10】第10(a)図乃至第10(c)図は気泡発生部材内面に付着した汚れの自動除去装置の一例を示す図である。第10(a)図は全体構成図であり、第10(b)図、第10(c)図は第10(a)図中の破線で囲んだ部分の拡大図である。
【図11】第11図は本発明の第3実施例に係る洗浄水吐出装置が組み込まれた人体局部洗浄装置の構成図である。
【図12】第12図は本発明の第3実施例に係る洗浄水吐出装置の洗浄水吐出ノズルの上面図である。
【図13】第13図は第12図の線A−A′に沿った断面図である。
【図14】第14図は気泡生成時の気泡直径と水流速との関係を示す図である。
【図15】第15図は気泡成長度と気泡滞留時間との関係を示す図である。
【図16】第16図は本発明の第4実施例に係る洗浄水吐出装置が備える洗浄水吐出ノズルの断面図である。
【図17】第17図は本発明の第4実施例に係る洗浄水吐出装置が備える流路切替装置の断面図である。
【図18】第18図は気泡ポンプの空気混入率とエネルギー増幅率との関係、及び空気混入率と総合効率との関係を示す図である。
【図19】第19図は気泡生成部材の変形例を示す図である。
【図20】第20図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図21】第21図は表面処理剤の炭酸カルシウム析出抑制効果確認試験に用いた試験装置の構成図である。
【図22】第22図は炭酸カルシウムの析出に対する通水態様の影響の確認試験の結果を示す図である。
【図23】第23図は炭酸カルシウムの析出に対する通水態様の影響の確認試験の結果を示す図である。
【図24】第24図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図25】第25図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図26】第26図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図27】第27図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図28】第28図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図29】第29図は表面処理剤の炭酸カルシウム析出抑制効果確認試験の結果を示す図である。
【図30】第30図は本発明の第1実施例に係る洗浄水吐出装置が組み込まれた給湯装置の構成図である。
【図31】第31(a)図は本発明の第1実施例に係る洗浄水吐出装置が組み込まれたシャワー装置の構成図であり、第31(b)図は気泡生成部材の断面図である。
【図32】第32図は本発明の第1実施例に係る洗浄水吐出装置が組み込まれた洗髪装置の上面図である。
【図33】第33図は第32図のA−A矢視図である。
【図34】第34図は第32図のB−B矢視図である。
【図35】第35図は本発明の第1実施例に係る洗浄水吐出装置が組み込まれた水栓器具の構成図である。
【図36】第36図は第35図の水栓器具の上面図である。
【図37】第37図は第35図の水栓器具の側面図である。
【図38】第38図は、気泡破砕装置を有する洗浄水吐出装置の構成図である。
【図39】第39(a)図、第39(b)図、第39(c)図は、第38図の洗浄水吐出装置が有する気泡破砕装置の断面図である。
【符号の説明】
【0037】
A、B、C、D 洗浄水吐出装置
1、11、60 洗浄水吐出ノズル
2、12 配管
3、13、46、65 気泡混入装置
4、14 強制給気装置 【Technical field】
[0001]
The present invention relates to a cleaning water discharge device.
[Background]
[0002]
Patent Documents 1 and 2 each include a cleaning water discharge unit, a water supply unit that supplies cleaning water to the cleaning water discharge unit, and a bubble mixing unit that mixes bubbles into the cleaning water flowing through the cleaning water flow path. A human body local cleaning device is disclosed in which cleaning water is discharged to increase the cleaning power of the cleaning water or to provide a soft cleaning feeling.
Patent Document 3 discloses a human body washing apparatus that saves a large amount of water by mixing a large amount of air into the washing water to increase the ejection speed of the washing water.
[Patent Document 1]
JP 56-70338 A
[Patent Document 2]
JP-A-5-33377
[Patent Document 3]
Japanese Patent Laid-Open No. 10-18391
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0003]
In order to enhance the cleaning power by discharging the cleaning water containing bubbles or give a soft cleaning feeling, the jet of cleaning water that has reached the surface to be cleaned actually contains a large amount of bubbles. There is a need. The techniques disclosed in Patent Document 1 and Patent Document 2 do not guarantee that a large amount of bubbles are actually contained in the jet of cleaning water that has reached the surface to be cleaned.
In order to realize significant water saving, it is necessary to increase the washing water reliably by mixing air. The technique disclosed in Patent Document 3 does not guarantee that the washing water is reliably accelerated by the mixing of air, and therefore does not guarantee the realization of significant water saving.
The present invention has been made in view of the above problems, and provides a cleaning water discharge device capable of causing a jet of cleaning water containing a large amount of bubbles to reach the surface to be cleaned and realizing significant water saving. Objective.
[Means for Solving the Problems]
[0004]
In order to solve the above problems, in the present invention, a cleaning water discharge means, a water supply means for supplying cleaning water to the cleaning water discharge means, a bubble mixing means for mixing bubbles into the cleaning water flowing through the cleaning water flow path, Equipped with bubble crushing means for crushing mixed bubbles into fine bubbles, and forced air supply means for forcibly supplying gas to the bubble mixing meansThe bubble mixing means is composed of a pipe that forms a washing water flow path and a thin tube that intersects the pipe and opens on the inner surface of the side wall of the pipe, and the bubble crushing means is a pipe that forms a washing water flow path downstream of the bubble mixing means. It is constituted by a baffle plate having an opening attached in the pipe,There is provided a washing water discharge device which discharges a bubble flow in which a large amount of fine bubbles are dispersed in washing water.
As a result of earnest research, the inventor of the present invention has optimized the flow mode of the gas-liquid two-phase flow that flows through the cleaning water flow path, thereby actually generating a large amount of bubbles in the jet of cleaning water that has reached the surface to be cleaned. It was found that the washing water can be reliably increased by mixing with air. Hereinafter, the knowledge obtained by the inventors of the present invention will be described in detail.
[0005]
(1) Flow pattern of gas-liquid two-phase flow
The following facts exist regarding the gas-liquid two-phase flow that flows through the washing water flow path.
1.By simply mixing a large amount of air into the wash water, the flow mode of the gas-liquid two-phase flow that flows through the wash water flow path is such that the columnar air layer and the columnar liquid layer as shown in FIG. 1 (b). Alternating slag flow, floss flow in which the shape of the air layer and liquid layer of the slag flow is broken as shown in Fig. 1 (c), and mist-like water droplets as shown in Fig. 1 (d) It becomes easy to become an annular spray flow in which a layer of washing water surrounds the periphery of a columnar air layer containing.
When a slag flow, floss flow, or annular spray flow is discharged from the washing water nozzle, a columnar air layer, a columnar air layer that has collapsed in shape, or a columnar air layer that contains mist-like water droplets immediately mists into the atmosphere. Only a few bubbles remain in the cleaning water colliding with the surface to be cleaned, and the cleaning power of the cleaning water is lost or the soft cleaning feeling is lost.
In the slag flow, floss flow, and annular spray flow, the columnar air layer extends substantially continuously to the cleaning water discharge port at the end of the cleaning water flow path, so that most of the air mixed in the cleaning water is separated from the cleaning water. It discharges through a columnar air flow path without mixing. As a result, even if a large amount of air is mixed in the wash water, the air only passes through the columnar air flow path at a high speed, and the flow rate of the wash water cannot be significantly increased. I can't do it.
[0006]
2.When a large amount of fine bubbles are dispersed and mixed in the washing water, the flow mode of the gas-liquid two-phase flow flowing through the washing water flow path is such that a large amount of fine bubbles are dispersed in the washing water as shown in Fig. 1 (a). It becomes a bubble flow.
When the bubble flow is discharged from the cleaning water nozzle, the bubbles dispersed in the cleaning water do not scatter in the atmosphere, so that a large amount of bubbles remain in the cleaning water that collides with the surface to be cleaned, and the cleaning power of the cleaning water is increased, or A soft cleaning feeling is obtained.
In the bubbling flow, the air mixed in the cleaning water mixes with the cleaning water and moves integrally with the cleaning water, so the flow rate of the fluid flowing through the cleaning water flow path is increased by the flow rate of the mixed air, and the cleaning water The flow rate increases. Therefore, if the flow mode of the gas-liquid two-phase flow in the wash water flow path is a bubbly flow, a large amount of air can be mixed in the wash water, and the flow rate of the wash water can be greatly increased. realizable.
[0007]
(2) Detergency of bubble jet
Theoretical considerations are given below for the detergency of a jet of bubble flow.
The average value Ps of the pressure generated on the surface to be cleaned when the cleaning water jet collides with the surface to be cleaned is expressed by Equation 1.
Figure 0003702787
In the above equation, ΔW is the change in momentum of the jet of cleaning water due to collision with the surface to be cleaned. ρ is the density of the washing water. As shown in FIG.1 Is the cross-sectional area of the washing water jet, SS Is the area to be cleaned, V1 Is the flow velocity of the washing water jet.
In Equation 1, (S1 / SS ) Is the type of washing water, temperature, S1 Can be regarded as substantially constant as long as they do not change extremely. Therefore, Formula 1 can be transformed into Formula 2.
Figure 0003702787
Where C = S1 / SS It is a substantially constant value.
When the washing water jet is a bubbling jet, the density ρ of the washing water is expressed by Equation 3.
Figure 0003702787
Where ρG Is the density of the gas composing the bubble, ρL Is the density of cleaning water without bubbles, QG Is the volume flow rate of the gas composing the bubble, QL Is the volumetric flow rate of cleaning water without bubbles, and η is QG / QL It is the ratio of the volume flow rate of the gas constituting the bubbles and the volume flow rate of the washing water not containing bubbles, that is, the gas-liquid ratio. Where ρG ≪ρL It is. Assuming that spherical bubbles of the same diameter are packed in the close-packed cubic lattice in the wash water, the theoretical maximum value of the gas-liquid ratio η is about 2.85. If the bubble shape is a polyhedron that can be packed more densely than a sphere, the gas-liquid ratio η will be even larger, but if the gas-liquid ratio is excessive, the bubbles will coalesce and become a large diameter and stay in the jet. Since the possibility of disappearing occurs, the gas-liquid ratio η cannot be excessively increased. Therefore, in the middle equation above, ρG η is ρL Can be ignored. As a result, the lower expression 3 is obtained from the upper expression.
Based on Equations 2 and 3, Ps is calculated when the jet of the bubble flow collides with the surface to be cleaned.
Substituting Equation 3 into Equation 2.
Figure 0003702787
From Equation 5, the flow rate Q of cleaning water without bubblesL If the gas-liquid ratio η increases, that is, the amount of gas mixture increases, the average pressure Ps generated on the surface to be cleaned when the jet of the bubble flow collides with the surface to be cleaned increases. As a result, it turns out that a cleaning power increases.
QL FIG. 3 shows ζ = Ps (η) / Ps (η = 0) obtained from Equation 5, assuming that is constant. In FIG. 3, QL The correlation between ζ and η obtained from experiments conducted using tap water under certain conditions is shown. From FIG. 3, it can be seen that the correlation between ζ and η obtained from Equation 5 and the correlation between ζ and η obtained from the experiment agree well. It can be seen from FIG. 3 that it is confirmed experimentally that the cleaning power of the jet of the bubble flow increases as the gas-liquid ratio increases.
From Equation 5, when Ps is kept constant, the flow rate Q of cleaning water not containing bubbles is increased by increasing the gas-liquid ratio η.L It can be seen that the amount of water can be reduced, that is, water can be saved. As can be seen from Equation 4, if the gas-liquid ratio η increases, that is, if the gas mixing amount increases, the flow velocity V of the jet of washing water1 The flow rate Q of cleaning waterLEven if the flow rate is decreased, the momentum of the jet of cleaning water is kept constant, the change in the momentum of the jet of cleaning water due to collision with the surface to be cleaned is also kept constant, and eventually Ps is held constant. .
Assuming that Ps is constant, ψ = Q obtained from Equation 5L (Η) / QL FIG. 4 shows (η = 0). FIG. 4 shows the correlation between ψ and η obtained from an experiment conducted using tap water under a constant Ps condition. From FIG. 4, it can be seen that the correlation between ψ and η obtained from Equation 5 and the correlation between ψ and η obtained from the experiment agree well. From FIG. 4, when Ps is kept constant, the flow rate Q of cleaning water not containing bubbles is increased by increasing the gas-liquid ratio η.L It can be seen that it is confirmed experimentally that the value can be reduced.
The present invention is based on the above knowledge, and by making the gas-liquid two-phase flow flowing in the washing water flow path into a bubbly flow, the jet of washing water containing a large amount of bubbles reaches the surface to be washed, and drastically saves water. Is realized.
After the bubbles are mixed into the washing water, the bubbles are crushed into fine bubbles, whereby the gas-liquid two-phase flow flowing through the washing water flow path can be changed to the bubble flow, and the bubble flow can be discharged.
By forcibly supplying gas to the bubble mixing means, a large amount of bubbles can be mixed into the cleaning water.
[0008]
In the present invention, the cleaning water discharge means, the water supply means for supplying cleaning water to the cleaning water discharge means, the bubble mixing means for mixing bubbles into the cleaning water flowing through the cleaning water flow path, and the mixed bubbles are crushed into fine bubbles. A bubble crushing means and a forced air supply means for forcibly supplying gas to the bubble mixing means, the bubble mixing means intersecting the pipe forming the washing water flow path and the pipe and opening on the inner surface of the side wall of the pipe The bubble crushing means is constituted by a pipe that forms a washing water flow path downstream of the bubble mixing means and a mesh attached in the pipe, and a large amount of fine bubbles are dispersed in the washing water. Provided is a cleaning water discharge device which discharges a flow.
[0009]
The bubble crushing means provided in the washing water discharge device according to the present invention may be constituted by a pipe that forms a washing water flow path downstream of the bubble mixing means and a baffle plate having an opening attached in the pipe. Or you may be comprised by the piping which forms the washing water flow path downstream from a bubble mixing means, and the mesh attached in the said piping. The baffle plate may have a single opening or a plurality of openings.
[0010]
According to the present invention, there is provided a human body local cleaning device comprising any one of the cleaning water discharge devices.
In the human body local cleaning apparatus according to the present invention, a high detergency can be obtained and a significant water saving effect can be obtained by discharging a bubble flow.
[0011]
In a preferred embodiment of the present invention, the human body local cleaning device further comprisesAnd a control device for driving the water supply means and the forced air supply means at predetermined time intervals.
By driving the water supply means and the forced air supply means at predetermined time intervals, the human body local cleaning device can be automatically maintained, and the function of the human body local cleaning device can be maintained over a long period of time.
【The invention's effect】
[0012]
By making the gas-liquid two-phase flow flowing through the washing water flow path into a bubbly flow, a jet of washing water containing a large amount of bubbles can reach the surface to be cleaned, and significant water saving can be realized.
After the bubbles are mixed into the washing water, the bubbles are crushed into fine bubbles, whereby the gas-liquid two-phase flow flowing through the washing water flow path can be changed to the bubble flow, and the bubble flow can be discharged.
By forcibly supplying gas to the bubble mixing means, a large amount of bubbles can be mixed into the cleaning water.
BEST MODE FOR CARRYING OUT THE INVENTION
[0013]
Examples of the present invention will be described.
[Example 1]
[0014]
(A)Structure of cleaning water discharge device
A cleaning water discharge apparatus according to a first embodiment of the present invention will be described.
As shown in FIG. 5, the cleaning water discharge device A according to the first embodiment of the present invention includes a cleaning water discharge nozzle 1, a pipe 2 that forms a cleaning water passage leading to the cleaning water discharge nozzle 1, and a pipe 2. The air bubble mixing device 3 disposed in the middle of the air supply device, the forced air supply device 4 forcibly supplying air to the air bubble mixing device 3, and the constant flow valve 5 disposed in the middle of the pipe 2 and upstream of the air bubble mixing device 3. And. The upstream end of the pipe 2 is connected to a faucet fitting (not shown).
The bubble mixing device 3 has a cylindrical bubble generating member 3a made of a porous material that forms a washing water flow path. The inner peripheral surface of the cylindrical bubble generating member 3a extends flush with the surrounding walls of the front and rear washing water flow paths. A large number of independent holes are formed on the inner peripheral surface of the bubble generating member 3a. The cross-sectional area of the washing water flow path in the bubble generating member 3a gradually increases from the upstream end toward the downstream end. A pressure chamber 3b is formed around the bubble generating member 3a.
The forced air supply device 4 has a pipe 4 a connected to the pressure chamber 3 b of the bubble mixing device 3. A check valve 4b, an air pump 4c, and an air filter 4d for dust removal are disposed in order from the downstream side along the pipe 4a. The pipe 4a upstream from the air filter 4d is open to the atmosphere. A control device 4e for controlling the operation of the air pump 4c is provided.
The cross-sectional area of the cleaning water flow path constituted by the bubble generation member 3a, the pipe 2 downstream of the bubble generation member 3a and the cleaning water discharge nozzle 1 is mixed into the cleaning water flowing through the cleaning water flow path by the bubble generation member 3a. It is set to be larger than the projected area of a sphere having a diameter equal to the average diameter obtained from the average volume of bubbles. Moreover, the cross-sectional area of the washing water flow path in the downstream area from the bubble generating member 3a is set to be equal to or larger than the cross-sectional area of the downstream end of the bubble generating member 3a.
In the washing water discharge apparatus A having the above configuration, when a tap faucet (not shown) is opened, tap water flows into the pipe 2 and the flow rate is reduced to a predetermined value through the constant flow valve 5. A predetermined amount of tap water flows into the bubble generating member 3 a of the bubble mixing device 3 through the pipe 2.
When the power of the control device 4e is turned on, the air pump 4c is operated under the control of the control device 4e. Air is sucked into the pipe 4a and removed through the air filter 4d. The dust-removed air is pumped to the pressure chamber 3b through the air pump 4c and the check valve 4b. The pressurized air that has flowed into the pressure chamber 3b passes through the pores of the bubble generating member 3a made of a porous material, and forms independent bubbles by a large number of independent openings formed on the inner peripheral surface of the bubble generating member 3a. . After the bubbles grow to a predetermined bubble diameter, they are entrained in the tap water flowing through the washing water flow path formed by the inner peripheral surface of the bubble generating member 3a, detached from the independent openings, and become fine bubbles to form the tap water. Disperse and mix.
A large amount of air becomes fine bubbles and is dispersed and mixed in tap water, and the tap water flow becomes a bubble flow. The bubble flow passes through the pipe 2 and is discharged as a jet from the cleaning water discharge nozzle 1. The jet of the bubbling flow has a high cleaning power and collides with the surface to be cleaned to sufficiently clean the surface. By discharging the bubble flow, a high water-saving effect can be obtained.
FIG. 6 shows a bubble flow discharged from a cleaning water discharge device similar to the cleaning water discharge device A. FIG. It can be seen that the washing water contains a large amount of fine bubbles. Since the bubbles are protected by the cleaning water, they do not interfere with the atmosphere even after discharge and reliably reach the surface to be cleaned.
In the cleaning water discharge device A, a single independent bubble is generated in each of the independent openings formed in large numbers on the inner peripheral surface of the bubble generation member 3a. If a large number of apertures formed on the inner peripheral surface of the bubble generating member 3a are continuous apertures in which a plurality of apertures are connected, a plurality of bubbles are easily generated at each aperture, and these are combined to create a large bubble. Easy to diameter. In the cleaning water discharge device A, since a large number of openings formed on the inner peripheral surface of the bubble generating member 3a are independent openings, coalescence of the bubbles at the time of generating the bubbles is prevented, and the enlargement of the bubbles is prevented. . Since the inner peripheral surface of the bubble generating member 3a forms the surrounding wall of the cleaning water flow path, the bubbles generated by the openings formed in the inner peripheral surface of the bubble generating member 3a are substantially perpendicular to the direction of the cleaning water flow. Grow to. As a result, a shearing force is applied to the bubbles being generated from the flowing water of the washing water, and the bubbles are entrained in the washing water at an early stage of growth, leave the opening, and are dispersed and mixed in the washing water. As a result, fine bubbles are dispersed and mixed in the washing water.
In the washing water discharge device A, since the bubbles are discharged almost uniformly into the running water of the tap water from the entire inner peripheral surface of the bubble generating member 3a, the fine bubbles are dispersed almost uniformly in the running water of the tap water. Mixed.
Therefore, in the cleaning water discharge device A, a large amount of fine bubbles are dispersed and mixed in the tap water flowing through the cleaning water flow path substantially uniformly to form a bubble flow.
In the cleaning water discharge device A, the cross-sectional area of the cleaning water flow path constituted by the bubble generating member 3a, the pipe 2 downstream of the bubble generating member 3a and the cleaning water discharging nozzle 1 is changed by the bubble generating member 3a. It is set to be larger than the projected area of a sphere having a diameter equal to the average diameter obtained from the average volume of bubbles mixed in tap water flowing through the passage. Such a configuration controls the pore diameter of the porous material constituting the bubble generating member 3a, and consequently the diameter of the independent opening formed in the inner peripheral surface, or the apparent flow rate of tap water (flowing only the volume flow of tap water). This can be realized by controlling the average volume of the bubbles mixed in the tap water by controlling the wettability of the porous material as will be described later.
In the cleaning water discharge device A, the cross-sectional area of the cleaning water flow path formed by the inner peripheral surface of the bubble generating member 3a gradually increases from the upstream end toward the downstream end. Moreover, the cross-sectional area of the washing water flow path in the downstream area from the bubble generating member 3a is set to be equal to or larger than the cross-sectional area of the downstream end of the bubble generating member 3a.
Accordingly, in the cleaning water discharge device A, tap water mixed with a large number of fine bubbles dispersed is discharged from the cleaning water discharge nozzle 1 while maintaining a state where a large amount of fine bubbles are dispersed and mixed up to the surface to be cleaned. To reach.
As can be seen from the above description, the cleaning water discharge device A can discharge from the cleaning water discharge nozzle 1 a jet of tap water bubbles in which a large amount of fine bubbles are dispersed and mixed.
In the cleaning water discharge device A, the control device 4e controls the applied voltage of the air pump 4c so that the range of the gas-liquid ratio η is 0.5 to 4.0. When mixing air pressurized using a pump into tap water, the gas-liquid ratio η is 2.85 or more, which is the theoretical maximum value of the gas-liquid ratio when spherical bubbles are packed in a close-packed cubic lattice. Can be raised. However, if the gas-liquid ratio η is excessive, bubbles mixed in tap water may be combined and the gas-liquid two-phase flow may become a slag flow or a floss flow. Therefore, in the washing water discharge apparatus A, the maximum value of the gas-liquid ratio η is set to 4.0 from the viewpoint of preventing the generation of the slag flow or the floss flow. Further, if the gas-liquid ratio η is too small, the cleaning power of the jet flow is increased and a high water-saving effect cannot be obtained, so the minimum value of the gas-liquid ratio is set to 0.5.
It supplements explanation about a gas-liquid ratio.
The feeling of irritation generated when the bubbling water flow of the cleaning water collides with the surface to be cleaned increases as the gas-liquid ratio η increases. In the washing mode with a small washing water flow rate that removes light dirt, it does not require strong washing power and the need for water saving is low, so it is preferable to set the gas-liquid ratio η to 1.0 or less to weaken the sense of irritation. .
In a washing mode with a large washing water flow rate that removes strong dirt, it is preferable to set the gas-liquid ratio η to 1.6 or more in order to obtain a strong detergency and a high water-saving effect. However, if the washing water flow rate is high, the turbulence of the washing water flow increases due to the increase in the washing water flow velocity, so that the bubbles merge and become large in diameter, and the stability of the bubble flow is impaired and slag flow and floss flow occur The possibility increases. Therefore, it is preferable to set the gas-liquid ratio η to 2.3 or less in order to ensure the stability of the bubble flow.
The theoretical maximum value of the gas-liquid ratio η in the bubbling flow is 2.85 achieved when the spherical bubbles are filled in a close-packed cubic lattice. When the gas-liquid ratio η exceeds 2.85, the bubbles are theoretically brought into contact with each other and coalesced to increase in diameter, thereby impairing the stability of the bubble flow. However, since the bubbles can be deformed, in fact, even if the bubbles come into contact with each other, they are deformed to suppress the coalescence of the bubbles and maintain the stability of the bubble flow. In addition, since the bubble diameter distribution of the bubbles contained in the bubble flow is dispersed to some extent, it is possible to push relatively small diameter bubbles between relatively large diameter bubbles. Therefore, in practice, the gas-liquid ratio η can be increased to about 4.0 while maintaining the stability of the bubble flow. In the washing mode with a medium washing water flow rate at which bubbly flow stability is easily obtained, it is preferable to increase the set value of the gas-liquid ratio η to about 4.0 to achieve a strong washing power and a high water-saving effect. .
In the washing water discharge apparatus A, the flow rate of tap water flowing through the washing water flow path of the bubble generating member 3a is controlled to a constant flow rate by the constant flow valve 5, so that the air flow rate can be controlled only by controlling the applied voltage of the air pump 4c. It is possible to easily control the liquid ratio η and thus easily control the cleaning power of the jet of the bubble flow discharged from the cleaning water nozzle 1.
In the cleaning water discharge device A, the air supply is forcedly supplied to the cylindrical bubble generating member 3a made of a porous material constituting the cleaning water flow path using the air pump 4c, so that a large amount of tap water flowing through the cleaning water flow path is contained. Fine bubbles can be easily mixed.
In the cleaning water discharge device A, since the pressure chamber 3b is formed around the cylindrical bubble generating member 3a, the tap water flowing through the cleaning water flow path in the bubble generating member 3a by forcibly supplying air to the pressure chamber 3b. In addition, bubbles can be easily mixed through the bubble generating member 3a.
In the cleaning water discharge device A, the inner peripheral surface of the cylindrical bubble generating member 3a extends flush with the surrounding walls of the front and rear cleaning water flow paths. Does not occur. When the tap water flow is disturbed, the possibility that bubbles will merge increases, and when tap water stagnates, the time that bubbles stay in the washing water flow path increases and the possibility that bubbles merge will increase. In the washing water discharge device A, since the tap water flow is not disturbed or stagnation, there is a low possibility that the bubbles are united, and a good bubble flow is discharged.
In the washing water discharge device A, a check valve 4b for preventing the backflow of tap water from the cylindrical bubble generating member 3a to the air pump 4c is provided, and tap water flows into the air pump 4c so that the pump 4c The occurrence of a situation where the function deteriorates is prevented.
In the cleaning water discharge device A, an air filter 4d is disposed upstream of the air pump 4c to prevent clogging of the bubble generating member 3a due to dust and to prevent the function of the bubble generating member 3a from being deteriorated.
[0015]
(B)Specific strategies for forming independent apertures
A specific policy for forming an independent hole on the inner peripheral surface of the bubble generating member 3a will be described.
(1) Heat molding of fine particles of heat-meltable material
FIG. 7 shows an electron microscope enlarged view of the surface of a thermoformed product formed by filling an approximately spherical fine particle of ultrahigh molecular weight polyethylene into a mold and heating. As can be seen from FIG. 7, a number of independent holes are formed on the surface of the thermoformed product. The aggregate of substantially spherical fine particles can easily increase the filling rate of the particles and can make the shape of the openings uniform, so that it is difficult to generate continuous openings in which the openings are connected to each other, and independent openings are easily formed. If the particle diameter is made uniform, the apertures can be regularly arranged in a lattice shape. By arranging the openings regularly in a lattice shape, the distance between the generated bubbles can be kept uniform, and coalescence of the bubbles at the time of bubble generation can be prevented. Moreover, by arranging the holes regularly in a lattice shape, the hole density can be increased, the bubble generating member 3a can be reduced in size, and the cleaning water discharge device can be reduced in size.
Ultra high molecular weight polyethylene has a low melt index (MI) and has a property similar to that of rubber when melted, so it is difficult to flow in a molten state. When substantially spherical fine particles of ultrahigh molecular weight polyethylene are filled in a mold and thermoformed at a temperature slightly above the melting point, only the contacts are melt bonded without changing the shape of the particles. Therefore, by using substantially spherical fine particles of ultrahigh molecular weight polyethylene and controlling the particle diameter and filling rate, the diameter of the independent openings formed on the inner peripheral surface of the bubble generating member 3a can be freely controlled. Since ultra high molecular weight polyethylene is chemically stable, it is suitable for cleaning liquids containing chlorine, acid bases, organic solvents, and the like.
FIG. 8 shows an electron microscope enlarged view of the surface of a thermoformed product formed by filling substantially spherical fine particles of acrylic resin into a mold and heating. As can be seen from FIG. 8, a large number of independent openings are formed in a substantially mesh shape on the surface of the thermoformed product. Since the acrylic resin has a low surface tension and a high affinity with water, it is suitable for generating fine bubbles as described later.
The bubble generating member 3a may be formed by thermoforming fine particles of a heat-meltable material such as a metal such as bronze or stainless steel, glass, or various ceramics.
When the heat-meltable material fine particles and powder are thermoformed, the particles merge with each other, so that the bubble generating member 3a having sufficient strength against water pressure and air pressure can be obtained.
The average particle diameter of the substantially spherical fine particles of the heat-meltable material is preferably 50 μm to 300 μm. When the average particle diameter of the substantially spherical fine particles is 50 μm to 300 μm, when the substantially spherical fine particles are filled in a close-packed cubic lattice, the average diameter of the independent openings, which are the gaps between the substantially spherical fine particles, is 50 μm to 300 μm. The average diameter of bubbles generated and dispersed from independent pores having an average diameter of 50 μm to 300 μm is 100 μm to 1000 μm. Microbubbles having an average diameter of 100 μm to 1000 μm are difficult to coalesce because they have a large rigidity and are difficult to deform. By mixing fine bubbles having an average diameter of 100 μm to 1000 μm into the washing water, a stable bubble flow can be obtained. When the cleaning water discharge device A is attached to the human body local cleaning device, the average diameter of the bubbles in the bubble flow is 1000 μm or less in order to allow the bubble flow to flow into the washing water flow path without hindering the piping and nozzle dimensions. It is desirable to do. On the other hand, it is technically difficult to generate excessively fine bubbles. Considering these, it is preferable that the average diameter of the bubbles in the bubble flow discharged from the cleaning water discharge device mounted on the human body local cleaning device is 100 μm to 1000 μm.
The filling rate of the substantially spherical fine particles of the heat-meltable material is preferably 70% or more.
When spherical particles of the same diameter are packed in a close-packed cubic lattice, the theoretical maximum packing ratio is 74%. Even in consideration of the fact that it is difficult to fill in a close-packed cubic lattice due to the generation of static electricity or the like, in order to obtain independent holes, the filling rate of substantially spherical particles forming the aggregate is set to 70. % Or more is desirable.
(2) Woven fabric, non-woven fabric
A network structure can be formed by weaving, knitting, or overlapping fiber materials such as nylon to form a woven fabric or a non-woven fabric. The network structure forms independent apertures. If the thickness and interval of the fibers are made substantially uniform, a regular lattice-like arrangement of apertures can be obtained. It is possible to easily adjust the aperture shape, the distance between apertures, etc. by controlling the thickness, interval and orientation of the fibers. Since woven fabrics and nonwoven fabrics do not have sufficient strength, it is desirable to fix them to a support. By stacking a plurality of woven and non-woven fabrics, vibrations of the woven and non-woven fabrics can be suppressed and the bubble mixing operation can be stabilized.
(3) Other
Continuous pores may be formed using phase inversion glass.
[0016]
(C)Water repellent treatment, hydrophilic treatment
In the cleaning water discharge device A, the cylindrical bubble generating member 3a made of a porous material is entirely or partially made of a water repellent material such as PTFE or ETEF, or the cylindrical bubble generating member 3a made of a porous material. A water repellent treatment may be performed on the surface of the flow path using paraffin, carnauba or the like. When tap water is used as the washing water, calcium ions contained in a large amount in the tap water precipitate in the form of carbonic acid carbonate or the like in the pores of the porous material, the pores are clogged, and the bubble generating member 3a is deteriorated. there's a possibility that. In addition, the function of the bubble generating member 3a may be reduced by osmotic pressure due to capillary action on the surface of the porous material. All or part of the cylindrical bubble generating member 3a made of a porous material is made of a water-repellent material such as PTFE or ETEF, or paraffin is formed on the flow path surface of the cylindrical bubble generating member 3a made of a porous material. By applying water repellent treatment using carnauba or the like to prevent water from entering the pores of the porous material and reducing the osmotic pressure due to capillary action on the surface of the porous material, the deterioration and function of the bubble generating member 3a Can be prevented.
In the washing water discharge apparatus A, all or part of the cylindrical bubble generating member 3a made of a porous material is made of a hydrophilic material such as HDPE, LDPE, PP, PA, PET, MMA, glass, polyolefin, cellulose, and the like. Alternatively, the flow path surface of the cylindrical bubble generating member 3a made of a porous material may be subjected to hydrophilic treatment using acrylic acid or the like, or may be subjected to hydrophilic treatment by plasma treatment, chromic acid treatment, silica coating, or the like.
The wettability of the porous material surface affects the bubble diameter. When the porous material is difficult to wet (high water repellency), the gas flowing out from the pores tends to stay on the surface of the porous material, and the bubble diameter tends to increase. When the porous material is easily wetted (highly hydrophilic), the gas flowing out from the pores hardly stays on the surface of the porous material, and the bubble diameter does not easily increase. All or part of the cylindrical bubble generating member 3a made of a porous material is made of a hydrophilic material such as HDPE, LDPE, PP, PA, PET, MMA, glass, polyolefin, cellulose, or made of a porous material. The surface of the flow path of the cylindrical bubble generating member 3a is subjected to a hydrophilic treatment using acrylic acid or the like, or is subjected to a hydrophilic treatment by plasma treatment, chromic acid treatment, silica coating, etc. And floss flow can be prevented.
[0017]
(D)Addition of various functions
In the washing water discharge device A, a temperature control device that heats tap water to a predetermined temperature is connected to the pipe 2 between the constant flow valve 5 and the bubble mixing device 3, or the tap water is charged with a chemical and a surface activity. A solute concentration control device for dissolving a solute such as an agent may be connected.
Depending on the object to be cleaned, it is preferable to heat the cleaning water to a predetermined temperature or dissolve a solute such as a drug or a surfactant in the cleaning water to a predetermined concentration. In the washing water discharge device A, the flow rate of tap water flowing through the washing water flow path of the bubble generating member 3a is controlled to a constant flow rate by the constant flow valve 5, so that the heating control of the tap water and the dissolution of the solute in the tap water are performed. Control is easy.
In the cleaning water discharge device A, the air pump 4c and the control device 4e are removed, and air is sucked and supplied to the bubble generating member 3a using the negative pressure of tap water flowing through the cleaning water flow path of the bubble generating member 3a. Also good. In this case, the gas-liquid ratio is about 0.5.
In the cleaning water discharge device A, the bubble generating member 3a may be formed in a cylindrical shape having a constant cross-sectional area from the upstream end to the downstream end. Even if the shape of the bubble generating member 3a is a cylinder having a constant cross-sectional area from the upstream end to the downstream end, the flow mode of the gas-liquid two-phase flow in the washing water flow path of the bubble generating member 3a is an annular spray flow. Don't be. Therefore, the bubble generating member 3a may be formed in a cylindrical shape having a constant cross-sectional area from the upstream end to the downstream end.
The bubble generating member 3a was a cylindrical member extending over the entire circumference of the surrounding wall of the cleaning water flow path, but a part of the circumferential direction of the surrounding wall of the cleaning water flow path was formed of a bubble generating member made of a porous material. May be. Even in this case, fine bubbles can be dispersed and mixed in the washing water.
[Example 2]
[0018]
A cleaning water discharge apparatus according to a second embodiment of the present invention will be described.
As shown in FIG. 9, the cleaning water discharge device B according to the second embodiment of the present invention includes a cleaning water discharge nozzle 11, a pipe 12 that forms a cleaning water passage leading to the cleaning water discharge nozzle 11, and a pipe 12. The air bubble mixing device 13 provided in the middle of the air supply device, the forced air supply device 14 for forcibly supplying air to the air bubble mixing device 13, and a washing water tank 15 provided upstream of the pipe 12 are provided.
The bubble mixing device 13 has a cylindrical bubble generating member 13a made of a porous material that constitutes the washing water flow path. A large number of independent openings are formed on the inner peripheral surface of the bubble generating member 13a. The cross-sectional area of the cleaning water flow path of the bubble generating member 13a gradually increases from the upstream end toward the downstream end. A pressure chamber 13b is formed surrounding the bubble generating member 13a.
The forced air supply device 14 includes a pipe 14 a connected to the pressure chamber 13 b of the bubble mixing device 13. A pressure regulating valve 14b, an air pump 14c, and an air filter 14d for dust removal are arranged in this order from the downstream side along the pipe 14a. The pipe 14a upstream from the air filter 14d is open to the atmosphere. A control device 14e for controlling the operation of the air pump 14c is provided. A pipe 14a 'extending from the air pump 14c is connected to the upper portion of the washing water tank 15 via a pressure regulating valve 14b'.
The cross-sectional area of the cleaning water flow path constituted by the bubble generation member 13a, the pipe 12 downstream of the bubble generation member 13a, and the cleaning water discharge nozzle 11 is mixed into the cleaning water flowing through the cleaning water flow path by the bubble generation member 13a. It is set to be larger than the projected area of a sphere having a diameter equal to the average diameter obtained from the average volume of bubbles. Moreover, the cross-sectional area of the washing water flow path downstream from the bubble generating member 13a is set to be equal to or larger than the cross-sectional area of the downstream end of the bubble generating member 13a.
The dimensions, weight, and power consumption of the cleaning water discharge device B are set to values suitable for carrying.
In the cleaning water discharge device B having the above configuration, when the control device 14e is turned on, the air pump 14c is operated under the control of the control device 14e. Air is sucked into the pipe 14a and removed through the air filter 14d. The dust-removed air passes through the air pump 14c and the pressure adjustment valve 14b 'and is sent to the washing water tank 15 by pressure. The washing water in the washing water tank 15 is pressurized, discharged from the washing water tank 15, flows into the bubble generation member 13 a of the bubble mixing device 13 through the pipe 12.
The air that has passed through the air pump 14c passes through the pressure regulating valve 14b and is pumped to the pressure chamber 13b. The pressurized air that has flowed into the pressure chamber 13b passes through the pores of the bubble generating member 13a made of a porous material, and is formed inside the bubble generating member 13a through a number of independent openings formed on the inner peripheral surface. In the washing water flowing through the washing water flow path, fine bubbles are formed and dispersed almost uniformly.
A large amount of air becomes fine bubbles and is dispersed and mixed in the cleaning water, and the flow of the cleaning water becomes a bubble flow. The bubble flow passes through the pipe 12 and is discharged as a jet from the cleaning water discharge nozzle 11. The jet of the bubbling flow has a high cleaning power and collides with the surface to be cleaned to sufficiently clean the surface. By discharging the bubble flow, a high water-saving effect can be obtained.
The cleaning water discharge device B including the cleaning water tank can be widely applied to various portable cleaning devices. By using the air pump 14c of the forced air supply device 14 not only for gas pumping but also for cleaning water pumping, the number of parts is reduced as compared with a case where a separate pump is provided for pumping cleaning water, and cleaning water is supplied. The manufacturing cost of the discharge device B is reduced. When bubbles are mixed into the staying cleaning water via the bubble generating member 13a, the bubbles do not leave the bubble generating member 13a and are not mixed into the cleaning water unless the bubble diameter is increased to some extent. When bubbles are mixed into the flowing water of the cleaning water via the bubble generating member 13a, the bubbles are separated from the bubble generating member 13a by the flowing water and mixed into the cleaning water even if the bubble diameter is small. The cleaning water discharge device B does not mix bubbles in the staying cleaning water, but mixes bubbles in the running water of the cleaning water, so that a large amount of fine bubbles can be mixed in the cleaning water. The effect can be enhanced.
A pressure adjusting valve 14b is provided in the pipe 14a, the pressure of air flowing into the pressure chamber 13b is adjusted to adjust the amount of bubbles generated from the bubble generating member 13a, and a pressure adjusting valve 14b 'is provided in the pipe 14a'. By adjusting the pressure of the air flowing into the washing water tank 15 and adjusting the flow rate of the washing water flowing through the washing water passage formed inside the bubble generating member 13a, the amount of bubbles mixed into the washing water is controlled. Can do. Only one of the pressure regulating valves 14b and 14b 'can control the amount of bubbles mixed into the cleaning water.
Since the dimensions, weight, and power consumption of the cleaning water discharge device B are set to values suitable for carrying, various types of cleaning such as showers equipped with the cleaning water discharge device B, local body cleaning devices, hand cleaning devices, palatal cleaning devices, etc. The device can be made portable.
[0019]
FIG. 10 (a) to FIG. 10 (c) show an example of an automatic removal device for dirt attached to the inner surface of the bubble generating member.
In the middle of the pipe 22 for supplying the cleaning water to the cleaning water discharge nozzle 21, the bubble generating member 23 a of the bubble mixing apparatus, the pressure is the same as the bubble mixing apparatus 3 of the first embodiment and the bubble mixing apparatus 13 of the second embodiment. A chamber 23b is provided. The pipe 22 is bent at a substantially right angle at the upstream position of the bubble generating member 23a. The above-mentioned members are integrated, and are driven in the left-right direction in FIGS. 10 (a) to 10 (c) by a driving device (not shown).
An opening 22 a is formed in the bent portion of the pipe 22. The rod-like member 25 is inserted into the pipe 22 and the bubble generating member 23a through the opening 22a. The end of the portion of the rod-like member 25 extending to the outside of the opening 22a is fixed to an immobile support member. The first lid member 26a is fixed to the vicinity of the fixed end of the rod-shaped member 25, and the second lid member 26b is fixed to the other end. A brush 27 is fixed to the vicinity of the other end of the rod-shaped member 25.
When the cleaning water is not supplied to the pipe 22 and the operation of the cleaning water discharge nozzle 21 is stopped, the integrated members are driven by a driving device not shown in FIGS. 10 (a) to 10 (c). Driven to the right in the figure, the first lid member 26a closes the opening 22a of the pipe 22 as shown in FIG. 10 (b).
Before the cleaning water is supplied to the pipe 22, the integrated members are driven to the left as shown in FIG. 10 (c) by a driving device (not shown). At this time, the fixed and stationary brush 27 rubs the inner surface of the bubble generating member 23a to remove the dirt attached to the inner surface of the bubble generating member 23a. The second lid member 26 b closes the opening 22 a of the pipe 22.
The cleaning water is supplied to the pipe 22, the bubbles generated from the bubble generating member 23 a are mixed into the cleaning water flow, and the bubble flow is discharged from the cleaning water discharge nozzle 21.
When the discharge of the bubble flow from the cleaning water discharge nozzle 21 is finished, the integrated members are driven rightward as shown in FIG. 10 (b) by a driving device (not shown). At this time, the fixed and stationary brush 27 rubs the inner surface of the bubble generating member 23a to remove the dirt attached to the inner surface of the bubble generating member 23a. The first lid member 26 b closes the opening 22 a of the pipe 22.
By using the apparatus for automatically removing dirt adhered to the inner surface of the bubble generating member as described above for a cleaning water discharging apparatus that uses water that contains a large amount of ions such as calcium ions and magnesium ions, the cleaning water discharging apparatus The maintenance of the cleaning water discharge device can be maintained over a long period of time.
[Example 3]
[0020]
A cleaning water discharge apparatus according to a third embodiment of the present invention will be described.
The washing water discharge device C according to the present embodiment is incorporated in a human body local washing device attached to a toilet. As shown in FIG. 11, tap water is supplied to a heat exchanger 31 via an electromagnetic water stop valve 30 having a pressure adjusting function. In the heat exchanger 31, a heater 32, a first water level sensor 33 and a second water level sensor 34 for detecting the water level in the heat exchanger and preventing air blown, and the water temperature in the heat exchanger are monitored. A temperature sensor 35 is provided. The tap water whose temperature has been raised to an appropriate temperature is led to the water flow path switching valve 37 via the air release valve 36. The flow rate is adjusted by the water flow path switching valve 37 based on the operation of the operation unit 38 by the user, the flow path is switched, and the selected flow path is selected from the plurality of water flow paths disposed in the nozzle 39. The tap water whose flow rate is adjusted is supplied. The air pressurized by the air pump 40 is guided to the air flow path switching valve 41. The air flow path switching valve 41 switches the flow path based on the operation of the operation unit 38 by the user, and pressurizes the selected flow path among the plurality of air flow paths disposed in the nozzle 39. Air is supplied.
As shown in FIGS. 12 and 13, the tip of the nozzle 39 constitutes a detachable nozzle head 39a. Discharge ports 42 and 43 for tail cleaning and discharge ports 44 and 45 for bidet cleaning are formed on the upper surface of the nozzle head 39a. A bubble mixing device 46 is disposed immediately below the discharge port 44. The bubble mixing device 46 has a straight cylindrical bubble generating member 46a made of a resin heat sintered material that is a porous material. A large number of independent holes are formed on the inner peripheral surface of the bubble generating member 46a. The bubble generating member 46a is fixed to the nozzle head 39a by press-fitting both ends into the nozzle head 39a. The inner diameter of one end of the bubble generating member 46a is set to a larger value than the inner diameter of the other part. The inner peripheral surface of the bubble generating member 46a forms a washing water flow path. The bubble generating member 46a is disposed with the downstream end of the washing water flow path formed by the inner peripheral surface thereof facing obliquely upward. The downstream end of the cleaning water flow path formed by the inner peripheral surface of the bubble generating member 46a is communicated with the discharge port 44 via a linear cleaning water flow path 47 formed in the nozzle head 39a and extending obliquely upward. ing. The upstream end of the cleaning water channel formed by the inner peripheral surface of the bubble generating member 46a communicates with the cleaning water channel 48 formed inside the nozzle head 39a. The washing water channel 48 extends beyond the bubble generating member 46a to the end of the nozzle head 39a, is formed in the nozzle head 39a, and communicates with a substantially linear washing water channel 49 that extends obliquely upward. The washing water channel 49 communicates with the discharge port 45. The upstream end of the purified water channel 48 is connected to a cleaning water pipe (not shown) disposed in the nozzle 39. A pressure chamber 46b is formed around the bubble generating member 46a. The pressure chamber 46b communicates with an air flow path 50 formed inside the nozzle head 39a. The upstream end of the air flow path 50 is connected to an air pipe (not shown) disposed in the nozzle 39.
A bubble mixing device similar to the bubble mixing device 46 is also provided immediately below the discharge ports 42 and 43. In the nozzle 39, a washing water pipe and an air pipe communicating with the bubble mixing device arranged immediately below the discharge port 42, and a washing water pipe and an air communicating with the bubble mixing device arranged directly under the discharge port 43 And piping.
The member on the downstream side of the water flow path switching valve 37 constitutes the cleaning water discharge device C.
In FIG. 11, reference numeral 51 is a control device for the human body local cleaning device, 52 is a power-on unit, and an operation unit for the main power source. Reference numeral 53 is a usage detection device that detects the use of the toilet.
In the human body local washing apparatus, normally, the use detecting means 53 automatically detects the use of the toilet and releases the standby state. When the user operates the operation unit 38 to select discharge of the wash water from the discharge ports 44 and 45, the water flow switching valve 37 and a wash water pipe (not shown) disposed in the nozzle 39 are used. Then, tap water is supplied to the washing water channel 48, and pressurized air is supplied to the air channel 50 through the air channel switching valve 41 and an air pipe (not shown) disposed in the nozzle 39. In the bubble mixing device 46, a large amount of fine bubbles are dispersed in the tap water almost uniformly and mixed to generate a bubble flow. The bubble flow is discharged from the discharge port 44. Tap water in which bubbles are not mixed is discharged from the discharge port 45. The bubble stream and tap water in which bubbles do not enter the portion to be cleaned, and the portion to be cleaned is cleaned.
When the user operates the operation unit 38 to select discharge of the wash water from the discharge port 42 or 43, the water flow switching valve 37 and a wash water pipe (not shown) provided in the nozzle 39 are used. The cleaning water is supplied to the bubble mixing device disposed immediately below the discharge port 42 or 43, and the discharge port is connected via the air flow path switching valve 41 and an air pipe (not shown) disposed in the nozzle 39. Pressurized air is supplied to the bubble mixing device arranged immediately below 42 or 43. In the bubble mixing device disposed immediately below the discharge port 42 or 43, a large amount of fine bubbles are dispersed in the tap water in a substantially uniform manner to generate a bubble flow. The bubble flow is discharged from the discharge port 42 or 43 to clean the portion to be cleaned.
In the cleaning water discharge device C, the cleaning water flow path 47 downstream of the bubble generating member 46a extends substantially linearly. If the washing water flow path 47 is curved, when the bubble flow flows through the curved portion, the dispersed fine bubbles are subjected to a centrifugal force to be combined and the bubble flow may become a slag flow or a floss flow. If the washing water channel 47 is extended substantially linearly, the coalescence of fine bubbles due to centrifugal force does not occur, and the bubble flow is maintained.
In the cleaning water discharge device C, the bubble mixing device 46 is disposed in the nozzle head 39a, more specifically, directly below the discharge port 44 formed in the nozzle head 39a. The time to stay in the road is shortened. As a result, the possibility that the fine bubbles dispersed in the tap water will coalesce before the discharge is reduced, and the possibility that the bubble flow is maintained until the discharge is increased.
In the washing water discharge device C, the nozzle head 39a to which the bubble mixing device 46 is attached is detachably attached to the nozzle 39. Therefore, the nozzle head 39a is detached from the nozzle 39, and the inner periphery of the bubble generation member 46a is removed. The surface can be easily cleaned. Therefore, in the cleaning water discharge device C, maintenance of the bubble mixing device 46 is easy.
In the washing water discharge device C, since the bubble generating member 46a is press-fitted and fixed to the nozzle head 39a, the pressurized air is mixed into the tap water through the gap of the fixed portion, and the unscheduled large-diameter bubbles are generated in the tap water. Prevents entry into water.
In the cleaning water discharge device C, the inner diameter of the press-fitting part of the bubble generating member 46a is set larger than the inner diameter of the other part, so that the inner diameter of the press-fitted part after press-fitting is the same as the inner diameter of the other part. Thus, the turbulence of the tap water flow is prevented, and the increase in diameter due to the coalescence of bubbles is prevented.
In the washing water discharge device C, both end portions of the bubble generating member 46a are press-fitting portions, and the inner diameter of one of the press-fitting portions is set larger than the inner diameter of the other portion. By press-fitting and fixing both ends of the bubble generating member 46a, the bubble generating member 46a can be firmly fixed to the nozzle head 39a. The bubble generating member 46a is generally powder-molded. However, if the inner diameter of both ends of the bubble generating member 46a is made larger than the inner diameters of other portions due to the mold, burrs are formed on one side. Therefore, it is desirable to set the inner diameter of one of the end portions to be larger than the inner diameter of the other part.
In the cleaning water discharge device C, the bubble generating member 46a is disposed in the nozzle head 39a, directly below the discharge port 44 and with the downstream end of the cleaning water flow path formed by the inner surface facing upward. In addition, the washing water channel 47 downstream from the bubble generating member 46a can be extended substantially linearly, and the coalescence of bubbles can be prevented.
In the human body local cleaning device according to the present embodiment, the water flow path switching valve 37 and the air flow path switching valve 41 are driven in synchronization with each other by a motor. The water flow path switching valve 37 and the air flow path switching valve 41 may be driven by one motor. The air pump 40 is a rolling pump, but may be a vane pump, a rotary pump, a linear pump, or the like. The heat exchanger 31 is a hot water storage type with little temperature change and temperature unevenness, but may be a small instantaneous type capable of continuous hot water discharge, or a semi-hot water storage type that combines the advantages of a hot water storage type and an instantaneous type. The semi-hot water storage type has a smaller hot water storage portion than a conventional hot water storage type heat exchanger, and has a large heater capacity. In the semi-hot water storage type, a small hot water storage portion installed on the downstream side of the heat exchanger functions as a temperature buffer that retains wash water for a certain period of time to reduce temperature unevenness. The semi-hot water storage heat exchanger is excellent in energy saving effect and contributes to the improvement of the usability of the human body local cleaning device. You may comprise so that a user can control a feeling of use arbitrarily by controlling an air mixing rate. In this case, it is desirable to be able to control the air mixing rate independently of the water flow control. A heater may be provided in the air pump 40 and the heated air may be supplied to the bubble mixing device 46. In this case, the warm water generated by the heat exchanger 31 may be, for example, warm water of about 25 ° C. to 30 ° C., and heated air may be mixed into the warm water so that the temperature of the bubble stream to be discharged is about the body temperature. The warm water generated in the heat exchanger 31 is, for example, warm water of about 25 ° C. to 30 ° C., so that the heat insulating material provided in the heat exchanger 31 can be thinned, and the human body local cleaning device can be downsized. The heat exchanger 31 may be removed, and cold water and heated air may be supplied to the bubble mixing device 46 to generate a bubble flow of hot water.
FIG. 14 shows an example of the relationship between the cleaning water flow velocity and the bubble diameter immediately after the bubble generation in the cleaning water discharge device C. From FIG. 14, it can be seen that the bubble diameter can be controlled by controlling the washing water flow rate. When the washing water flow rate is large, the shearing force from the washing water applied to the bubbles being generated is large, so that the bubbles are entrained in the washing water and dispersed and mixed in the washing water in the initial stage of growth. Therefore, the bubble diameter is small when the washing water flow rate is large. When the cleaning water flow rate is constant, the generated bubble diameter increases or decreases substantially in proportion to the opening area of the independent opening formed on the surface of the bubble generating member in contact with the cleaning water. Therefore, when the washing water flow rate is constant, the diameter of the generated bubbles can be controlled by controlling the diameter of the independent holes.
FIG. 15 shows an example of the relationship between the bubble residence time in the washing water flow path and the bubble growth rate in the washing water discharge device C. In the figure, Db represents the bubble diameter immediately after generation, and D represents the bubble diameter after retention. From FIG. 15, it can be seen that as the residence time increases, the bubbles grow together and bubbles grow, and the bubble diameter increases. The bubble size can be controlled by controlling the residence time. By controlling the washing water flow rate, the residence time can be controlled, and the bubble diameter can be controlled. When the washing water flow rate is small, the washing water flow rate is small and the residence time is long, so that a large bubble diameter is obtained and a bubble flow giving a soft feel is obtained. When the washing water flow rate is large, the washing water flow rate is large and the residence time is short, so that a small bubble diameter is obtained and a bubble flow giving a hard feel is obtained.
[Example 4]
[0021]
A cleaning water discharge apparatus according to a fourth embodiment of the present invention will be described.
As shown in FIGS. 16 and 17, the cleaning water discharge device D according to this embodiment includes a cleaning water discharge nozzle 60. The tip of the cleaning water discharge nozzle 60 constitutes a detachable nozzle head 60a. A first discharge port 61 and a second discharge port 62 are formed in the nozzle head 60a. The cleaning water discharge nozzle 60 and the nozzle head 60 a are formed with a cleaning water flow path 63 connected to the first discharge port 61 and a cleaning water flow path 64 connected to the second discharge port 62. The cross-sectional area of the cleaning water channel 64 is set to a value larger than the cross-sectional area of the cleaning water channel 63. A movable bubble mixing device 65 is disposed at the base of the purified water discharge nozzle 60. The bubble mixing device 65 has a cylindrical bubble generating member 65a made of a porous material that forms the washing water flow path. A large number of independent holes are formed on the inner peripheral surface of the bubble generating member 65a. The cross-sectional area of the washing water flow path in the bubble generating member 65a gradually increases from the upstream end toward the downstream end. A pressure chamber 65b is formed around the bubble generating member 65a. The bubble mixing device 65 has a nipple 66 connected to the upstream end of the cleaning water flow path in the bubble generating member 65a, and an inverted L-shaped nipple 67 communicating with the pressure chamber 65b. The nipple 66 is connected to a supply source of cleaning water via a flexible tube (not shown), and the nipple 67 is connected to a pressurized air supply source via a flexible tube (not shown). The bubble mixing device 65 is slidably accommodated in a guide member 68 fixed to the base of the cleaning water discharge nozzle 60. An opening 69 formed in the guide member 68 communicates with the washing water channel 63, and an opening 70 communicates with the washing water channel 64. The guide member 68 is formed with an engagement portion 71 with a drive belt (not shown). A spring 72 that biases the bubble mixing device 65 is disposed in the guide member 68. The washing water discharge device D is incorporated in a human body local washing device attached to a toilet (not shown).
In the cleaning water discharge device D, cleaning water is supplied from a cleaning water supply source (not shown) to the bubble mixing device 65, and pressurized air is supplied from a pressurized air supply source (not shown) to the bubble mixing device 65. A large amount of fine bubbles are dispersed substantially uniformly in the cleaning water flowing through the cleaning water flow path formed by the inner peripheral surface of the bubble generating member 65a through a large number of independent openings formed on the inner peripheral surface of the bubble generating member 65a. In this way, a bubble flow is formed. As can be seen from FIG. 16, the generated bubble flow is the opening 69 of the guide member 68, the washing water flow path.
It passes through 63 and is discharged from the first discharge port 61.
When a driving belt (not shown) is operated and the engaging portion 71 of the guide member 68 is pushed, the cleaning water discharge nozzle 60 moves in the direction indicated by the arrow in FIG. 17, that is, in the direction of the nozzle head 60a. When the cleaning water discharge nozzle 60 moves in the direction of the nozzle head 60 a, the nipple 67 engages with the fixed projection member 73, and the bubble mixing device 65 moves against the urging force of the spring 72. As a result, as can be seen from FIG. 17, the washing water flow path formed by the inner peripheral surface of the bubble generating member 65 a communicates with the opening 70 of the guide member 68. As can be seen from FIG. 17, the bubble flow generated by the bubble mixing device 65 passes through the opening 70 of the guide member 68 and the washing water flow path 64 and is discharged from the second discharge port 62.
Since the cross-sectional area of the cleaning water flow path 64 is larger than the cross-sectional area of the cleaning water flow path 63, the flow rate of the cleaning water flowing through the cleaning water flow path 64 flows through the cleaning water flow path 63 when the flow rates of the cleaning water flowing through both are substantially the same. Less than the washing water flow rate. Since the cleaning water flow path 63 and the cleaning water flow path 64 are substantially the same length, the time that the bubble flow stays in the cleaning water flow path 64 is longer than the time that the bubble flow stays in the cleaning water flow path 63. As a result, the bubble diameter included in the bubble flow discharged from the discharge port 62 is larger than the bubble diameter included in the bubble flow discharged from the discharge port 61, and the bubble flow discharged from the discharge port 62 is discharged from the discharge port 61. Produces a softer cleaning feeling compared to the bubble flow discharged from If the discharge port 61 is used for butt cleaning, the discharge port 62 is used for bidet, and a bubble flow is selectively supplied to any of the discharge ports via the flow path switching means as described above, the human body local cleaning is performed. The usability of the device is improved.
When the supply of air is stopped during the operation of the cleaning water discharge device D, a part of the cleaning water passes through the pores of the bubble generating member 65a due to the pressure of water osmotic pressure, pipe resistance, etc. Since there is a possibility of entering a road or the like, even when discharging cleaning water that does not contain bubbles, a small amount of pressurized air is supplied to the pressure chamber so that a small amount of air is mixed into the cleaning water through the bubble generating member 65a. It is desirable to configure. If only air is discharged for a certain period of time to remove residual water in the cleaning water discharge nozzle 60 after stopping the discharge of the cleaning water, water droplets and dust adhering to the periphery of the discharge ports 61 and 62 can also be removed. .
FIG. 18 shows an example of the bubble pump effect obtained by the cleaning water discharge device D.
In the figure, Et / Ew indicates the energy amplification effect. Et represents the output energy in the immediate downstream region of the bubble mixing device 65 in the bubble flow, and Ew is the energy of the washing water in the immediate upstream region of the bubble mixing device 65. The efficiency is expressed as Et / (Ew + Ea), and is the total efficiency as a pump obtained by dividing the output energy Et by all input energies. Ea is the energy of the mixed air. Et, Ew, and Ea are represented by the following formulas.
EW= PWQW+ (ΡW/ 2) QWVW 2
Et= PtQt+ (Ρt/ 2) QtVt 2
Ea= PaQa
In the above equation, P represents pressure, Q represents volume flow rate, ρ represents density, V represents velocity, subscript w represents cleaning water when no gas is mixed immediately upstream of the bubble mixing device 65, and subscript t represents bubbles. The washing water that has become a two-phase flow after gas mixing in the immediate downstream region of the mixing device 65 is represented, the subscript a represents air, and Pa is the air mixing pressure excluding the passage pressure loss of the bubble mixing device 65. When a large amount of fine bubbles are generated and mixed into the running water in a substantially uniform manner at the same time, the mixed bubbles function as a bubble pump, immediately increasing the speed of the washing water and increasing the energy of the washing water. If the bubble diameter of the mixed bubbles is small, the rigidity of the bubbles is high and unnecessary deformation or vibration does not occur in the washing water, so that there is little energy loss due to the bubbles existing in the washing water.
If the bubble mixing device 65 that functions as a bubble pump is used, it becomes possible to install a human body local cleaning device with low energy consumption in a place with low water pressure such as the top floor of a high-rise apartment or the second floor of a general household. Even in the case where a water pump or the like is installed to install a human body local cleaning device in a place where the water pressure is low, if the bubble mixing device 65 is used, the pump can be downsized. When connecting a water pump to a water pipe for pumping up, a water tank that is open to the atmosphere is installed between the water pipe and the water pump in order to prevent backflow of sewage due to the water pump's operation affecting the water pressure. It is necessary to provide it. The bubble pump configured by the bubble mixing device 65 has a completely different operating principle from the conventional water pump, and does not affect the water pressure even if the bubble pump is operated, so it can be directly connected to the water pipe. In addition, when installing the local body cleaning device in a place where the water pressure is low, the human body local cleaning device can be greatly simplified.
If the bubble mixing device 65 having a bubble pump function is used, the water pressure of tap water can be lowered, so that the pressure required for air mixing can also be lowered.
When the bubble mixing device 65 is used in an area where the hardness of water is high, the independent opening formed in the inner peripheral surface of the bubble generating member 65a may be blocked by a compound of a hardness component such as calcium carbonate. . When the independent opening is closed, the mixed air flow rate is reduced. When the bubble mixing device 65 is used in an area where the hardness of the water is high, a normally closed opening is provided in the washing water flow channel upstream of the bubble mixing device 65 to allow the acidic aqueous solution to flow. It is desirable to keep it. By flowing an acidic aqueous solution, the compound of the hardness component adhering to the inner peripheral surface of the bubble generating member 65a can be easily dissolved and removed. An acidic aqueous solution generator may be provided so that an acidic aqueous solution can be generated when necessary. The acidic aqueous solution generation device may be a device that generates acidic water by electrolyzing the cleaning water, or may be a device that inputs a substance that exhibits acidity when dissolved in the cleaning water. The acidic aqueous solution generator may be configured to operate at predetermined time intervals to clean the inner peripheral surface of the bubble generating member 65a, or may be configured to be operated by the user as needed.
FIG. 19 shows a bubble generating member 65a ′ in which an independent hole is formed by a nylon mesh. In the bubble generating member 65 a ′, a nylon mesh 74 having a mesh-like independent opening is heat-welded to a cylindrical and lattice-like support body 75. The bubble generating member 65a ′ has sufficient strength. The opening shape of the mesh 74 can be arbitrarily adjusted by changing the thickness, interval and orientation of the fibers used.
[0022]
In the cleaning water discharge devices A, B, C and D, the precipitation of calcium carbonate on the inner peripheral surface of the bubble generating members 3a, 13a, 46a and 65a is suppressed, and the bubble generating members 3a, 13a, 46a and 65a over time Measures to suppress functional decline were examined based on tests.
(1) Identification of principal components of scale
Tap water is passed through a cylindrical porous body, pressurized air is supplied around the porous body, air bubbles are mixed into the tap water flowing through the porous body, and the tap water mixed with bubbles is porous. It was discharged from. As a result of continuing the water flow, the scale adhered to the surface of the porous body channel, preventing the bubbles from being mixed into the tap water. The main component of the scale was identified as calcium carbonate by X-ray diffraction.
(2) Water flow test without air bubbles
Half of the length of the acrylic porous tube was immersed in the following three types of coating agents, pulled up and dried.
Half of the length of the polyethylene porous body was immersed in the following three types of coating agents, pulled up and dried.
1.Coating agent (Mitsui Toatsu Chemical Co., Ltd. acrylic main agent Q166, Nippon Oil & Fats Co., Ltd. silicone FS710, Mitsui Toatsu Chemical Co., Ltd. curing agent P53-70S, Toluene solvent was mixed. The blending amount was 1 part by weight of the curing agent with respect to 5 parts by weight of the main ingredient. Appropriate amounts of silicone and solvent were added.
2.A coating agent mainly composed of alkylpolysiloxane (Glaska made by Nippon Synthetic Rubber Co., Ltd., A agent and B agent) and isopropyl alcohol solvent were mixed. The composition was 1 part by weight of B agent with respect to 3 parts by weight of A agent. (An appropriate amount of isopropyl alcohol solvent was added.)
3.Coating agent that hardens at room temperature to become glass (Nikko Corporation GO-100-SX (main agent, hardener) was used. The formulation was 1 part by weight of hardener with respect to 10 parts by weight of main agent.)
0.5 dm of tap water adjusted to a hardness of 300 without mixing air bubbles into the capillary tube of acrylic porous material and the capillary tube of polyethylene porous materialThreeThe water was circulated at a flow rate of / min.
After the water flow was continued for a predetermined time, the flow channel surfaces of the acrylic porous thin tube and the polyethylene porous thin tube were visually observed. The test results are shown in FIG.
The following can be seen from FIG.
1.For thin acrylic acrylic tubes, a coating agent in which acrylic and silicone are mixed and a coating agent that is cured at room temperature to become glass are effective in suppressing the precipitation of calcium carbonate.
2.A coating agent in which acrylic and silicone are mixed and a coating agent mainly composed of alkylpolysiloxane are effective for suppressing the precipitation of calcium carbonate.
3.A coating agent in which acrylic and silicone are mixed, a coating agent mainly composed of alkylpolysiloxane, and a coating agent that is cured at room temperature to become glass contain a component having a siloxane bond (Si—O bond). Therefore, the coating agent containing a component having a siloxane bond is effective for suppressing precipitation of calcium carbonate.
(3) Water flow test with air bubbles mixed
1.Confirmation test of influence of water flow mode on precipitation of calcium carbonate
Non-surface-treated polyethylene porous thin tubes (outer diameter x inner diameter x length = 8 mm x 2 mm x 10 mm, average pore diameter = 26 μm) are housed in a pressure chamber, and air is introduced into the pressure chamber via an air pump at 1 dm3 Tap water adjusted to a hardness of 300 to a thin tube of polyethylene porous body while supplying at a flow rate of / min.3 Water was passed at a flow rate of / min and a bubble stream was discharged from a thin tube of polyethylene porous body. The test apparatus is shown in FIG.
When water was continuously passed, when water flow was stopped for 5 seconds after passing water for 1 minute (air supply was continued), and when water was stopped for 1 second, water flow was stopped for 30 seconds (air supply was continued). In some cases, the pressure rise over time of the air flowing into the pressure chamber was measured. The test results are shown in FIG.
From FIG. 22, it can be seen that when the water flow to the thin tube of the polyethylene porous body is intermittently stopped, the pressure increase rate of the air flowing into the pressure chamber is lower than the case of continuous water flow. It can be seen that precipitation of calcium carbonate on the surface of the flow path of the polyethylene porous body is suppressed. It is considered that the scale adhering to the channel surface is peeled off by the air ejected from the pores on the channel surface when the water flow is stopped. It can also be seen that there is no significant difference in the effect of suppressing the precipitation of calcium carbonate between the case where the water flow stop is repeated for 5 seconds after the water flow for 1 minute and the case where the water flow stop is repeated for 30 seconds after the water flow for 1 minute.
Using the test apparatus of FIG. 21, 1 dm of air is supplied to the pressure chamber via the air pump.3 Tap water adjusted to a hardness of 150 to a polyethylene porous thin tube with a flow rate of 0.5 dm / min.3 Water was passed at a flow rate of / min and a bubble stream was discharged from a thin tube of polyethylene porous body.
The pressure increase with time of the air flowing into the pressure chamber was measured for the case of continuous water flow and the case of repeated water flow stop for 5 seconds after water flow for 1 minute. The test results are shown in FIG.
From FIG. 23, even if the hardness of the tap water to be passed is changed, the calcium carbonate to the flow path surface of the polyethylene porous body capillary is stopped by intermittently stopping the water flow to the polyethylene porous body capillary. It can be seen that the precipitation of is suppressed.
2.Calcium carbonate precipitation inhibitory effect confirmation test of coating agent
A mixture of acrylic, silicone and fluororesin (Mitsui Toatsu Chemical Co., Ltd. acrylic main agent Q166, Nippon Oil & Fats Co., Ltd. Silicone FS710, Nippon Oil & Fats Co., Ltd. Fluorine F200, using the same test equipment as FIG. And a curing agent P53-70S manufactured by Mitsui Toatsu Chemical Co., Ltd. and a toluene solvent were mixed in. The blending amount was 1 part by weight of the curing agent with respect to 5 parts by weight of the main agent. Silicone, fluorine and solvent were added in appropriate amounts.) An acrylic porous thin tube (outer diameter x inner diameter x length = 8 mm x 2 mm x 10 mm, average pore diameter = 40 μm) coated on the inner surface is stored in a pressure chamber, and 1 dm of air is introduced into the pressure chamber via an air pump.3 0.5 dm of tap water with a hardness adjusted to 300 on a thin tube of acrylic porous material while supplying at a flow rate of / min.3 Water was passed at a flow rate of / min, and a bubble stream was discharged from a thin tube of an acrylic porous body. While the water flow was stopped for 5 seconds after the water flow for 1 minute, the pressure increase with time of the air flowing into the pressure chamber was measured. The test results are shown in FIG. FIG. 24 also shows the results of a similar test using thin acrylic tubes of the same size that have not been surface-treated.
From FIG. 24, by applying a surface treatment using a mixture of acrylic, silicone, and fluororesin, the pressure increase rate of the air flowing into the pressure chamber decreases, and as a result, the inner surface of the acrylic porous body narrow tube is reduced. It turns out that precipitation of calcium carbonate is suppressed.
A mixture of acrylic and silicone (acrylic main product Q166 manufactured by Mitsui Toatsu Chemical Co., Ltd., silicone FS710 manufactured by Nippon Oil & Fats Co., Ltd., and curing agent P53 manufactured by Mitsui Toatsu Chemical Co., Ltd. was used using the same test apparatus as in FIG. -70S and toluene solvent were mixed in. The blending was 1 part by weight of the curing agent with respect to 5 parts by weight of the main agent, and the silicone was blended in three types: 0% by weight, 0.3% by weight and 3% by weight. A suitable amount of solvent was added.) An acrylic porous thin tube (outer diameter × inner diameter × length = 8 mm × 2 mm × 10 mm, average pore diameter = 36 μm) coated on the inner surface was stored in a pressure chamber, and passed through an air pump. 1 dm of air into the pressure chamber3 0.5 dm of tap water with a hardness adjusted to 300 on a thin tube of acrylic porous material while supplying at a flow rate of / min.3 Water was passed at a flow rate of / min, and a bubble stream was discharged from a thin tube of an acrylic porous body. While the water flow was stopped for 5 seconds after the water flow for 1 minute, the pressure increase with time of the air flowing into the pressure chamber was measured. The test results are shown in FIG.
From FIG. 25, it can be seen that precipitation of calcium carbonate on the inner surface of the thin tube of the acrylic porous body is suppressed even when the surface treatment is performed using a mixture of acrylic and silicone not containing a fluororesin. In addition, when using a mixture of acrylic and silicone that does not contain a fluororesin, it can be seen that it is effective to make the silicone distribution 0.3% by weight.
The coating agent which hardens | cures at normal temperature and becomes glass using the test apparatus similar to FIG. 21 (GOKO-SX-SX (base agent, hardening | curing agent) by Nikko Co., Ltd.) was mix | blended with respect to 10 weight part of base agents. A porous tube of acrylic porous material (outer diameter × inner diameter × length = 8 mm × 2 mm × 10 mm, average pore diameter = 30 μm) coated on the inner surface with a hardener 1 part by weight) is housed in a pressure chamber, and an air pump 1 dm air into the pressure chamber via3 0.5 dm of tap water with a hardness adjusted to 150 on a thin tube of acrylic porous material while supplying at a flow rate of / min.3 Water was passed at a flow rate of / min, and a bubble stream was discharged from a thin tube of an acrylic porous body. While the water flow was stopped for 5 seconds after the water flow for 1 minute, the pressure increase with time of the air flowing into the pressure chamber was measured. The test results are shown in FIG. FIG. 26 also shows the results of a similar test using thin acrylic tubes of the same size that have not been surface-treated.
It can be seen from FIG. 26 that precipitation of calcium carbonate on the inner surface of the thin tube of the acrylic porous body is suppressed by applying a surface treatment using a coating agent that is cured at room temperature to become glass.
A mixture of acrylic and silicone (acrylic main product Q166 manufactured by Mitsui Toatsu Chemical Co., Ltd., silicone FS710 manufactured by Nippon Oil & Fats Co., Ltd., and curing agent P53 manufactured by Mitsui Toatsu Chemical Co., Ltd. was used using the same test apparatus as in FIG. -70S and a toluene solvent were mixed, the blending was 1 part by weight of the curing agent with respect to 5 parts by weight of the main agent, the blending of silicone was 0.3% by weight, and an appropriate amount of the solvent was added. A polyethylene porous thin tube (outer diameter x inner diameter x length = 8 mm x 2 mm x 10 mm, average pore diameter = 25 μm) is housed in a pressure chamber, and 1 dm of air is introduced into the pressure chamber via an air pump.3 Tap water adjusted to a hardness of 150 to a polyethylene porous thin tube with a flow rate of 0.5 dm / min.3 Water was passed at a flow rate of / min and a bubble stream was discharged from a thin tube of polyethylene porous body. While the water flow was stopped for 5 seconds after the water flow for 1 minute, the pressure increase with time of the air flowing into the pressure chamber was measured. The test results are shown in FIG.
From FIG. 27, it can be seen that the surface treatment using a mixture of acrylic and silicone suppresses the precipitation of calcium carbonate on the inner surface of the thin tube of the polyethylene porous body.
Using a test apparatus similar to that in Fig. 21, a coating agent mainly composed of alkylpolysiloxane (Glaska (A agent, B agent) manufactured by Nippon Synthetic Rubber Co., Ltd.) and isopropyl alcohol solvent were mixed. 1 part by weight of the B agent with respect to the part.A thin tube of a polyethylene porous body coated with an appropriate amount of isopropyl alcohol solvent (outer diameter × inner diameter × length = 8 mm × 2 mm × 10 mm, average pore diameter) = 25
30μm) is stored in the pressure chamber, and 1 dm of air is supplied to the pressure chamber via the air pump.3 Tap water with a hardness adjusted to 150, 300 in a polyethylene porous thin tube 0.5 dm3 Water was passed at a flow rate of / min and a bubble stream was discharged from a thin tube of polyethylene porous body. While the water flow was stopped for 5 seconds after the water flow for 1 minute, the pressure increase with time of the air flowing into the pressure chamber was measured. The test results for tap water having a hardness of 150 are shown in FIG. 28, and the test results for tap water having a hardness of 300 are shown in FIG.
From FIG. 28 and FIG. 29, it is understood that precipitation of calcium carbonate on the inner surface of the thin tube of the polyethylene porous body is suppressed by performing the surface treatment using a coating agent containing alkylpolysiloxane as a main component.
[0023]
The washing water discharge device A shown in FIG. 5 may be applied to a human body local washing device attached to a toilet. In the human body local cleaning device in which the cleaning water discharge device A is incorporated, an open / close valve is provided in the middle of the pipe 2 upstream from the constant flow valve 5, and the pipe 2 between the constant flow valve 5 and the bubble mixing device 3. A heating device for heating the cleaning water is disposed on the way, and a driving device for moving the cleaning water nozzle 1 back and forth is disposed. In such a human body local cleaning apparatus, a high detergency is obtained by discharging a bubble stream, a soft feeling of washing is obtained, and a high water-saving effect is obtained.
In the human body local cleaning device including the cleaning water discharge device A, the control device 4e may be configured to variably control the voltage applied to the air pump 4c. By variably controlling the voltage applied to the air pump 4c and variably controlling the amount of air mixed into the cleaning water and thus the amount of bubbles mixed periodically or randomly, the cleaning power and feeling of cleaning water are variably controlled. be able to. As a result, the usability of the human body local cleaning device is improved.
In the human body local cleaning device including the cleaning water discharge device A, a pressure sensor is provided in the pipe 4a downstream from the air pump 4c, and the control device 4e can variably control the applied voltage of the air pump 4c based on the output of the pressure sensor. good. Alternatively, a rotation speed detection device that detects the rotation speed of the air pump 4c may be provided, and the control device 4e may variably control the applied voltage of the air pump 4c based on the output of the rotation speed detection device. Alternatively, an air release valve may be provided in the pipe 4a downstream from the air pump 4c, and the control device 4e may perform opening / closing control of the air release valve. The applied voltage of the air pump 4c is controlled based on the pressure in the pipe 4a downstream from the air pump 4c, or the applied voltage of the air pump 4c is controlled based on the rotational speed of the air pump 4c, or downstream from the air pump 4c. By controlling the opening and closing of the air release valve provided in the pipe 4a, it is possible to control the amount of air mixed into the cleaning water, and hence the amount of bubbles mixed in, and variably control the cleaning power and feeling of cleaning water. As a result, the usability of the human body local cleaning device is improved.
In the human body local cleaning device including the cleaning water discharge device A, the cleaning water discharge device A is cleaned by causing the control device 4e to open an on-off valve disposed in the middle of the pipe 2 upstream from the constant flow valve 5 at predetermined time intervals. The air pump 4c may be driven at a predetermined time interval by flowing water or by the control device 4e. By supplying cleaning water to the cleaning water discharge device A at a predetermined time interval, driving the air pump 4c and supplying pressurized air to the bubble generating member 3a, the bubble generating member 3a is automatically maintained and cleaned locally. The function of the device can be maintained over a long period of time.
In the human body local cleaning device including the cleaning water discharge device A, the control device 4e intermittently closes the open / close valve disposed in the pipe 2 upstream from the constant flow valve 5 during the operation of the air pump 4c, You may make it stop the water flow to a water flow path intermittently. During the operation of the air pump 4c, the flow of the bubble generating member 3a is stopped by intermittently stopping the water flow to the washing water flow path and discharging the air from the bubble generating member 3a to separate the calcium adhering to the inner peripheral surface. Precipitation of calcium on the road surface is effectively suppressed.
In the human body local cleaning device including the cleaning water discharge device A, after the operation switch is turned on, before the cleaning water discharge nozzle 1 is driven to a predetermined position, the control device 4e is arranged in the middle of the pipe 2 upstream from the constant flow valve 5. Alternatively, the on-off valve may be opened to allow the cleaning water to flow through the cleaning water discharge device A, or the control device 4e may drive the air pump 4c. By performing such a preliminary operation, it is possible to reliably discharge the bubble flow from the washing water discharge nozzle 1 moved to a predetermined position.
In the human body local cleaning device including the cleaning water discharge device A, a volatile component mixing device may be connected to the pipe 4a downstream from the air pump 4c. The usability of the human body local cleaning device is improved by mixing volatile components such as deodorant and fragrance into the gas in the bubbles mixed in the cleaning water.
[0024]
The cleaning water discharge device A shown in FIG. 5 may be applied to a hot water supply device. As shown in FIG. 30, a flow rate sensor 80, a water temperature sensor 81, a water heating device 82, a hot water temperature sensor 83, a hot water mixing device 84, a mixed water temperature sensor 85, and a flow rate control are sequentially provided in the pipe 2 from upstream to downstream. A valve 86 is provided. A washing water discharge device A is disposed downstream of the flow control valve. The cleaning water discharge nozzle 1 of the cleaning water discharge device A constitutes a shower nozzle, a faucet device disposed in a bathroom, a faucet device disposed in a bathroom, and the like. The control device 4e of the cleaning water discharge device A is configured to control operations of the water heating device 82, the hot and cold water mixing device 84, the flow rate control valve 86, and the like.
In the hot water supply apparatus having the above-described configuration, the control device 4e operates the water heating apparatus 82 based on the feed water flow rate detected by the flow sensor 80, the water temperature detected by the water temperature sensor 81, and the hot water temperature detected by the hot water temperature sensor 83. To produce hot water at a desired temperature. The control device 4e controls the operation of the hot and cold mixing device 84 based on the hot water temperature detected by the hot water temperature sensor 83 and the mixed water temperature detected by the mixed water temperature sensor 85, and appropriately mixes hot water and water. Produces mixed water. The device 4e controls the operation of the flow rate control valve 86 to flow mixed water with an appropriate temperature and an appropriate flow rate through the pipe 2. The control device 4e controls the operation of the air pump 4c of the cleaning water discharge device A, and disperses and mixes a large amount of fine bubbles in the mixed water having an appropriate temperature flowing through the pipe 2. A bubble stream of warm water is discharged from a shower nozzle, a faucet device, a faucet device provided in a bathroom, and the like, which are constituted by the washing water discharge nozzle 1 of the water discharge device A. A flow sensor is arranged in the immediate upstream of the shower nozzle or in the immediate upstream of the faucet appliance, and when discharging hot water from the faucet appliance, the air pump 4c is stopped and the hot water free of bubbles is discharged. May be.
In the hot water supply device provided with the cleaning water discharge device A, the amount of hot water used is reduced due to the water-saving effect of the cleaning water discharge device A. As a result, it is possible to reduce the size of the water heating device 82, and in turn, to reduce the size and energy of the hot water supply device.
[0025]
The cleaning water discharge device A shown in FIG. 5 may be applied to a shower device. In the cleaning water discharge device A applied to the shower device, as shown in FIGS. 31 (a) and 31 (b), the cleaning water discharge nozzle 1 constitutes a shower nozzle, and the bubble mixing device 3 Is disposed in the cleaning water discharge nozzle 1. The bubble generating member 3a is a cylindrical body 3a made of a porous material.1 And cylindrical body 3a1 End plate 3a for sealing both end faces of2 It is comprised by. Cylindrical body 3a1 And end plate 3a2 And a large number of through holes 3a3 Is formed. Cylindrical body 3a1 Through-hole 3a formed in3 A large number of fine independent openings are formed on the peripheral surface. The bubble generating member 3 a is press-fitted and fixed to the cleaning water discharge nozzle 1. A dispersion plate 1 a is detachably attached to the tip of the cleaning water discharge nozzle 1. The dispersion plate 1a has a through hole 3a of the bubble generating member 3a.3 A large number of discharge holes 1a communicating with1 Is formed. A pressure chamber 3b is formed around the bubble generating member 3a. The cleaning water discharge nozzle 1 has a through hole 3a of the bubble generating member 3a.3 A washing water channel 1b communicating with the pressure chamber 3b and an air channel 1c communicating with the pressure chamber 3b are formed. The washing water channel 1b is connected to the pipe 2, and the air channel 1c is connected to the pipe 4a. This shower apparatus has the same configuration as the hot water supply apparatus of FIG. 30 except that the cleaning water discharge nozzle 1 constitutes a shower nozzle and the bubble mixing device 3 is disposed in the cleaning water discharge nozzle 1. Have
In this shower apparatus, hot water and pressurized air of appropriate temperature are supplied to the washing water discharge nozzle 1. The hot water passes through the washing water channel 1b and passes through the through hole 3a of the bubble generating member 3a.3 Flow into. The pressurized air passes through the air flow path 1c and flows into the pressure chamber 3b. The pressurized air becomes a large amount of fine bubbles through the bubble generating member 3a, and the through holes 3a3 Disperse and mix in the flowing hot water. A bubble flow in which a large amount of fine bubbles are dispersed and mixed in hot water passes through the dispersion plate 1a and is discharged as a bubble flow shower.
In the shower device provided with the cleaning water discharge device A, a strong cleaning power and a high water saving effect are obtained.
[0026]
The washing water discharge device A shown in FIG. 5 may be applied to a hair washing device. As shown in FIGS. 32 to 34, a drain hole 90a is formed in the bottom wall of the ball 90, and a plurality of side and back shower nozzles 91, a plurality of shampoo nozzles 92, A shower nozzle 93 for the head is attached. The ball 90 is attached to a table (not shown). The washing water discharge device having the shower nozzles 91 and 93 is constituted by a washing water discharge device A applied to the shower device shown in FIGS. 31 (a) and 31 (b). However, in the washing water discharge apparatus A applied to the present hair washing apparatus, washing water and pressurized air are supplied to a plurality of washing water discharge nozzles. Shampoo is supplied to the shampoo nozzle 92 from a supply device (not shown).
A user of the hair washing apparatus places the back of the head on the ball 90 in a state of being on his back. A cover (not shown) is placed on the ball 90 to cover the forehead and the top. A control switch (not shown) is pressed to discharge the shampoo liquid from the shampoo nozzle 92 to wash the hair, and then the bubble of washing water is discharged from the shower nozzles 91 and 93 to rinse the washed hair. Waste water is discharged from the drain hole 90a. A cover (not shown) prevents shampoo liquid and washing water from being scattered during washing.
In the hair washing apparatus provided with the washing water discharging apparatus A, a strong washing power and a high water saving effect are obtained. In the hair washing apparatus provided with the washing water discharging apparatus A, a large amount of fine bubbles are dispersed and mixed in the washing water, so that the contact area between the washing water and the air is very large. As a result, chlorine contained in the wash water (tap water) is quickly degassed. By deaerating chlorine from the wash water, hair damage caused by highly reactive chlorine is prevented. In order to promote the deaeration of chlorine, a gas such as carbon dioxide gas having a high absorption rate in water may be mixed in the washing water. Since chlorine deaeration is performed immediately before the discharge of the washing water, there is no possibility that germs propagate in the washing water due to the chlorine deaeration. Similarly, when the cleaning water discharge device A is applied to a cleaning device that cleans the skin of a human body, the effect of preventing skin damage due to chlorine deaeration can be obtained.
[0027]
The washing water discharge device A shown in FIG. 5 may be applied to a faucet device. In the cleaning water discharge device A applied to the faucet device, as shown in FIGS. 35 to 37, the cleaning water discharge nozzle 1 constitutes the water discharge head of the faucet device, and the bubble mixing device 3 It is disposed in the cleaning water discharge nozzle 1. The cleaning water discharge nozzle 1 is formed with a cleaning water channel 1d communicating with the bubble generating member 3a and an air channel 1e communicating with the pressure chamber 3b. The washing water discharge nozzle 1 is screwed to a rotatable water discharge pipe 101 of the faucet instrument main body 100. The cleaning water flow path 1 d of the cleaning water discharge nozzle 1 is connected to the pipe 2 via a pipe (not shown) formed in the water discharge pipe 101, and the air flow path 1 e of the cleaning water discharge nozzle 1 is shown in the water discharge pipe 101. It is connected to the pipe 4a through a pipe that does not. As shown in FIGS. 35 to 37, the cleaning water discharge nozzle 1 constitutes a water discharge head, the bubble mixing device 3 is disposed in the cleaning water discharge nozzle 1, and the faucet body. 100 has the same structure as the hot-water supply apparatus of FIG.
In the faucet device, the water flow rate and the air flow rate are adjusted by the operation unit 100a of the faucet device body 100.
In the faucet device provided with the washing water discharge device A, a strong washing power and a high water-saving effect are obtained.
[0028]
The washing water discharge device A shown in FIG. 5 may be applied to a face washing device. The specific structure of the face washing apparatus may be the same as that of the hair washing apparatus shown in FIGS.
In the face washing device provided with the washing water discharge device A, a strong washing power and a high water saving effect are obtained.
[0029]
The washing water discharge device A shown in FIG. 5 may be applied to an eye washing device. The specific structure of the face washing device is such that the piping 2 downstream from the air mixing device 3 of the washing water discharge device A in FIG. 5 is a flexible piping, and the washing water discharge nozzle 1 is handy-sized to facilitate the eye washing work. What you have made is fine.
In an eyewash device provided with the washing water discharge device A, a soft feeling of washing and a sufficient washing power can be obtained by setting the gas-liquid ratio relatively low.
[0030]
The cleaning water discharge device A shown in FIG. 5 may be applied to a palate cleaning device. The specific configuration of the palate cleaning is that the piping 2 downstream of the air mixing device 3 of the cleaning water discharge device A of FIG. 5 is a flexible piping, and the cleaning water discharge nozzle 1 is slender and handy to facilitate palatal cleaning. What you have to do is fine.
In the palate cleaning device provided with the cleaning water discharge device A, a strong cleaning power and a high water-saving effect are obtained.
[0031]
The cleaning water discharge device A shown in FIG. 5 may be applied to a manual cleaning device. The specific configuration of the hand washing device may be the same as the faucet device of FIGS. 35 to 37, and a hot air discharge device is provided in the vicinity of the faucet device of FIGS. 35 to 37 to dry after washing. What can be done is also acceptable.
In the manual cleaning device provided with the cleaning water discharge device A, a strong cleaning power and a high water-saving effect are obtained.
[0032]
You may apply the washing water discharge apparatus A shown in FIG. 5 to a bathtub. The specific configuration of the bathtub may be that in which the cleaning water discharge nozzle 1 of the cleaning water discharge device A of FIG. 5 is attached to the side wall of the bathtub.
In a bathtub provided with the washing water discharge device A, a massage effect is obtained by applying a bubble flow to the body.
[0033]
The cleaning water discharge device A may be applied to an ultrasonic cleaning device.
When the jet of the bubble flow collides with the surface to be cleaned, bubbles having low density and small kinetic energy and water between bubbles having high density and large kinetic energy collide with the surface to be cleaned alternately in a short cycle. As a result, pressure fluctuation, that is, vibration occurs on the surface to be cleaned. Since the frequency of vibration can be controlled by changing the number of bubbles colliding per unit time, it is also possible to generate ultrasonic vibration with particularly high cleaning power. Since the ultrasonic vibration has a short wavelength, for example, it can reach and clean even the wrinkles and unevenness on the surface of the human body, and the cleaning power is remarkably high.
High-frequency vibration has a short wavelength and can be cleaned even in fine irregularities, but the vibration is attenuated quickly and the cleaning area is small. Low-frequency vibration has a long wavelength and a low local cleaning power, but the vibration is slowly damped and the cleaning area is large. The bubble diameter can be controlled under the same amount of air, the number of bubbles colliding with the surface to be cleaned per unit time can be controlled, and the frequency of vibration generated on the surface to be cleaned can be controlled. That is, it is possible to control the range and strength of the cleaning power by controlling the bubble diameter. Since the vibration frequency is low when the bubble diameter is large, a wide range can be washed evenly, and when the bubble diameter is small, the vibration frequency is high, so that it is possible to remove strong local dirt. Further, since the damping is fast when the vibration frequency is high, the vibration is attenuated on the surface of the human body, and the stimulation on the skin surface is felt strongly, and when the vibration frequency is low, the stimulation on the skin surface can be weakened. A frequency region of about 5 to 30 Hz is very suitable because it has a high massage effect because it substantially matches the frequency of free vibration near the skin surface of the human body and gives a high water volume feeling with a small amount of washing water.
[0034]
All of the cleaning water discharge devices according to the above-described embodiments generate fine bubbles using a bubble generating member made of a porous material and disperse and mix them in the cleaning water. After that, the mixed bubbles may be crushed and refined.
As shown in FIG. 38, in the washing water discharge device E, a constant flow valve 111, a bubble mixing device 112, and a bubble crushing device 113 are attached in order from the upstream along the pipe 110 that forms the washing water flow path. A cleaning water discharge nozzle 114 is attached to the downstream end of the pipe 110.
The bubble mixing device 112 includes a pipe 112a that forms a washing water flow path, and a narrow pipe 112b that is substantially orthogonal to the pipe 112a and opens to the inner surface of the side wall of the pipe 112a.
As shown in FIG. 39 (a), the bubble crushing device 113 includes a pipe 113a that forms a washing water flow path, and a single opening 113b attached in the pipe 113a.1 As shown in FIG. 39 (b), a baffle 113a forming a washing water flow path, and a plurality of openings 113c attached in the pipe 113a.1 Or a baffle 113a forming a washing water flow path and a mesh 113d attached in the pipe 113a, as shown in FIG. 39 (c). The mesh 113d is composed of a stack of a plurality of woven fabrics and nonwoven fabrics of synthetic resin fibers and metal fibers.
A forced air supply device 115 having an air pump 115 a is connected to the narrow tube 112 b of the bubble mixing device 112.
In the cleaning water discharge device E, the pressurized air supplied from the forced air supply device 115 is mixed into the cleaning water flowing in the pipe 112a through the thin tube 112b. Since the thin tube 112b is open on the inner surface of the side wall of the pipe 112a, the bubbles generated at the end of the thin tube 112b grow in a direction substantially perpendicular to the washing water flow. As a result, the bubbles receive a shearing force from the washing water flowing through the pipe 112a, and are entrained in the washing water by leaving the end of the thin tube 112b in the initial stage of growth. Therefore, bubbles having a relatively small diameter are mixed in the washing water. The cleaning water mixed with the small-diameter bubbles is the opening 113b of the baffle plate 113b of the bubble crushing device 113.1 Or the cleaning water mixed with small-diameter bubbles passes through the opening 113c of the baffle plate 113c of the bubble crushing device 113.1 When passing through, the flow passage cross-sectional area decreases, the flow rate of the cleaning water flow increases, the shearing force from the cleaning water applied to the small diameter bubbles increases, and the small diameter bubbles are crushed and become fine bubbles. When the washing water mixed with the small diameter bubbles passes through the mesh 113d of the bubble crushing device 113, the small diameter bubbles are crushed by the mesh 113d and become fine bubbles. A bubble flow of cleaning water in which a large amount of fine bubbles are dispersed and mixed is discharged from the cleaning water discharge nozzle 114. By discharging the bubbling flow of the cleaning water, the cleaning power of the cleaning water is increased and a water saving effect is obtained.
[Industrial applicability]
[0035]
According to the present invention, there is provided a cleaning water discharge device that discharges a bubbly flow, increases the cleaning power of cleaning water, realizes a soft cleaning feeling, and can realize significant water saving.
[Brief description of the drawings]
[0036]
FIG. 1 (a) to FIG. 1 (d) are diagrams showing a flow mode of a gas-liquid two-phase flow. 1 (a) shows a bubble flow, 1 (b) shows a slag flow, 1 (c) shows a floss flow, and 1 (d) shows an annular spray flow.
FIG. 2 is a diagram illustrating a state in which a jet collides with a surface to be cleaned.
FIG. 3 is a diagram showing a relationship between a pressure generated when a bubble flow collides with a surface to be cleaned and a gas-liquid ratio.
FIG. 4 is a diagram showing the relationship between the amount of cleaning water and the gas-liquid ratio when the pressure generated when the bubble flow collides with the surface to be cleaned is maintained at a constant value.
FIG. 5 is a block diagram of a cleaning water discharge apparatus according to a first embodiment of the present invention.
FIG. 6 is a diagram showing a discharge state of a bubble flow.
FIG. 7 is an electron microscope enlarged view of the surface of a thermoformed product of substantially spherical particles of ultrahigh molecular weight polyethylene.
FIG. 8 is an electron microscope enlarged view of the surface of a thermoformed article of substantially spherical particles of acrylic resin.
FIG. 9 is a block diagram of a cleaning water discharge apparatus according to a second embodiment of the present invention.
FIGS. 10 (a) to 10 (c) are diagrams showing an example of an automatic removal device for dirt attached to the inner surface of the bubble generating member. FIG. 10 (a) is an overall configuration diagram, and FIG. 10 (b) and FIG. 10 (c) are enlarged views of a portion surrounded by a broken line in FIG. 10 (a).
FIG. 11 is a block diagram of a human body local cleaning apparatus incorporating a cleaning water discharge apparatus according to a third embodiment of the present invention.
FIG. 12 is a top view of a cleaning water discharge nozzle of a cleaning water discharge apparatus according to a third embodiment of the present invention.
FIG. 13 is a cross-sectional view taken along line AA ′ of FIG.
FIG. 14 is a diagram showing the relationship between the bubble diameter and the water flow rate when bubbles are generated.
FIG. 15 is a graph showing the relationship between bubble growth and bubble retention time.
FIG. 16 is a sectional view of a cleaning water discharge nozzle provided in a cleaning water discharge apparatus according to a fourth embodiment of the present invention.
FIG. 17 is a cross-sectional view of a flow path switching device provided in a cleaning water discharge device according to a fourth embodiment of the present invention.
FIG. 18 is a diagram showing the relationship between the air mixing rate and the energy amplification factor of the bubble pump, and the relationship between the air mixing rate and the overall efficiency.
FIG. 19 is a view showing a modification of the bubble generating member.
FIG. 20 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 21 is a block diagram of a test apparatus used in a calcium carbonate precipitation inhibitory effect confirmation test of a surface treatment agent.
FIG. 22 is a diagram showing the results of a confirmation test of the influence of water flow mode on the precipitation of calcium carbonate.
FIG. 23 is a diagram showing the results of a confirmation test of the influence of water flow mode on the precipitation of calcium carbonate.
FIG. 24 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 25 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 26 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 27 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 28 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treatment agent.
FIG. 29 is a view showing the results of a test for confirming the effect of suppressing the precipitation of calcium carbonate by a surface treating agent.
FIG. 30 is a block diagram of a hot water supply apparatus incorporating a cleaning water discharge apparatus according to the first embodiment of the present invention.
FIG. 31 (a) is a block diagram of a shower apparatus incorporating a cleaning water discharge apparatus according to the first embodiment of the present invention, and FIG. 31 (b) is a sectional view of a bubble generating member. is there.
FIG. 32 is a top view of a hair washing apparatus incorporating a washing water discharging apparatus according to the first embodiment of the present invention.
FIG. 33 is a view on arrow AA in FIG. 32;
FIG. 34 is a view on arrow BB of FIG. 32.
FIG. 35 is a block diagram of a faucet device incorporating a cleaning water discharge apparatus according to the first embodiment of the present invention.
36 is a top view of the faucet device of FIG. 35. FIG.
FIG. 37 is a side view of the faucet device of FIG. 35.
FIG. 38 is a block diagram of a washing water discharge device having a bubble crushing device.
39 (a), 39 (b), and 39 (c) are cross-sectional views of the bubble crushing device included in the cleaning water discharge device of FIG. 38.
[Explanation of symbols]
[0037]
A, B, C, D Cleaning water discharge device
1, 11, 60 Washing water discharge nozzle
2,12 piping
3, 13, 46, 65 Bubble mixing device
4,14 Forced air supply device

Claims (4)

洗浄水吐出手段と、洗浄水吐出手段に洗浄水を供給する給水手段と、洗浄水流路を流れる洗浄水に気泡を混入させる気泡混入手段と、混入した気泡を微細気泡に破砕する気泡破砕手段と、気泡混入手段に気体を強制的に供給する強制給気手段とを備え、気泡混入手段は洗浄水流路を形成する配管と当該配管に交わり当該配管の側壁内面に開口する細管とにより構成され、気泡破砕手段は気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられた開口を有する邪魔板とにより構成されており、多量の微細気泡が洗浄水中に分散する気泡流を吐出することを特徴とする洗浄水吐出装置。Wash water discharge means, water supply means for supplying wash water to the wash water discharge means, bubble mixing means for mixing bubbles into the wash water flowing through the wash water flow path, and bubble crushing means for breaking the mixed bubbles into fine bubbles A forced air supply means for forcibly supplying gas to the bubble mixing means , the bubble mixing means is constituted by a pipe that forms a washing water flow path and a narrow tube that intersects with the pipe and opens on the inner surface of the side wall of the pipe, The bubble crushing means is composed of a pipe that forms a washing water flow path downstream of the bubble mixing means and a baffle plate having an opening attached in the pipe, and a bubble flow in which a large amount of fine bubbles are dispersed in the washing water. A cleaning water discharge device characterized by discharging water. 洗浄水吐出手段と、洗浄水吐出手段に洗浄水を供給する給水手段と、洗浄水流路を流れる洗浄水に気泡を混入させる気泡混入手段と、混入した気泡を微細気泡に破砕する気泡破砕手段と、気泡混入手段に気体を強制的に供給する強制給気手段とを備え、気泡混入手段は洗浄水流路を形成する配管と当該配管に交わり当該配管の側壁内面に開口する細管とにより構成され、気泡破砕手段は気泡混入手段よりも下流の洗浄水流路を形成する配管と当該配管内に取り付けられたメッシュとにより構成されており、多量の微細気泡が洗浄水中に分散する気泡流を吐出することを特徴とする洗浄水吐出装置。Wash water discharge means, water supply means for supplying wash water to the wash water discharge means, bubble mixing means for mixing bubbles into the wash water flowing through the wash water flow path, and bubble crushing means for breaking the mixed bubbles into fine bubbles A forced air supply means for forcibly supplying gas to the bubble mixing means, the bubble mixing means is constituted by a pipe that forms a washing water flow path and a narrow tube that intersects with the pipe and opens on the inner surface of the side wall of the pipe, The bubble crushing means is composed of a pipe that forms a washing water flow path downstream of the bubble mixing means and a mesh attached in the pipe, and discharges a bubble flow in which a large amount of fine bubbles are dispersed in the washing water. A cleaning water discharge device characterized by the above. 請求項1又は2に記載の洗浄水吐出装置を備えることを特徴とする人体局部洗浄装置。A human body local cleaning device comprising the cleaning water discharge device according to claim 1 . 所定時間間隔で、給水手段と強制給気手段とを駆動する制御装置を備えることを特徴とする請求項に記載の人体局部洗浄装置。4. The human body local cleaning apparatus according to claim 3 , further comprising a control device that drives the water supply means and the forced air supply means at predetermined time intervals.
JP2000509911A 1997-08-15 1998-08-14 Washing water discharge device Expired - Fee Related JP3702787B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22049997 1997-08-15
JP34884497 1997-12-18
JP10699098 1998-04-01
PCT/JP1998/003633 WO1999009265A1 (en) 1997-08-15 1998-08-14 Cleaning water discharge apparatus

Publications (1)

Publication Number Publication Date
JP3702787B2 true JP3702787B2 (en) 2005-10-05

Family

ID=27310879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000509911A Expired - Fee Related JP3702787B2 (en) 1997-08-15 1998-08-14 Washing water discharge device

Country Status (7)

Country Link
EP (1) EP1036889A4 (en)
JP (1) JP3702787B2 (en)
KR (1) KR20010022937A (en)
CN (1) CN1275180A (en)
AU (1) AU8649398A (en)
TW (1) TW387026B (en)
WO (1) WO1999009265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196154B1 (en) 2008-05-14 2012-10-30 파나소닉 주식회사 Nozzle device and sanitary washing device using the same
KR20140032108A (en) * 2012-09-06 2014-03-14 코웨이 주식회사 Hot water discharging structure
KR102060334B1 (en) * 2017-04-13 2019-12-30 도시바 라이프스타일 가부시키가이샤 A flush toilet device, a flushing water tank, and a local cleaning device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852411A1 (en) 1998-11-13 2000-05-18 Grohe Kg Hans Water jet aerator
KR20020004562A (en) * 2000-07-06 2002-01-16 강원석 Shower apparatus using ultrasonic vibrations
JP4915641B2 (en) * 2005-10-26 2012-04-11 パナソニック株式会社 Kitchen sink
JP3962074B2 (en) 2005-11-11 2007-08-22 資源開発株式会社 Microbubble generator and hair washing apparatus using the same
WO2010001611A1 (en) * 2008-07-03 2010-01-07 パナソニック株式会社 Sanitary cleaning device
EP2305903A1 (en) * 2009-09-28 2011-04-06 Toto Ltd. Washing device for user's private parts
US8381323B2 (en) * 2009-09-30 2013-02-26 Toto Ltd Sanitary washing apparatus
JP5534774B2 (en) * 2009-10-22 2014-07-02 パナソニック株式会社 Hot water supply system
PL2357423T3 (en) * 2009-12-24 2014-12-31 Geberit Int Ag Device for preparing shower water for a water closet with bidet and method for operating such a device
EP2407602B1 (en) * 2010-07-16 2020-02-12 Toto Ltd. Sanitary washing apparatus
EP2696004B1 (en) * 2011-04-06 2020-06-10 Toto Ltd. Hygienic washing device
KR101348651B1 (en) * 2011-07-27 2014-01-08 토토 가부시키가이샤 Water discharging device
TWI580846B (en) * 2013-03-13 2017-05-01 松下知識產權經營股份有限公司 Water tap
CN103405202B (en) * 2013-08-19 2016-06-22 深圳市润唐发明电器有限公司 A kind of shower nozzle and a kind of cleaning machine
JP6548140B2 (en) * 2014-10-14 2019-07-24 Toto株式会社 Sanitary cleaning device
WO2016177380A1 (en) * 2015-05-07 2016-11-10 Nyenstad Mønster Dan Wiperless cleaning system for transparent surfaces using air jets
JP6774618B2 (en) * 2016-03-28 2020-10-28 Toto株式会社 Sanitary cleaning equipment
JP6452000B2 (en) * 2016-05-23 2019-01-16 Toto株式会社 Bathtub equipment
JP7185390B2 (en) * 2017-04-13 2022-12-07 東芝ライフスタイル株式会社 Cleaning methods, washing machines, dishwashers, and toilet bowls
CN107235565A (en) * 2017-07-27 2017-10-10 中国地质大学(武汉) One kind is based on regulation CO2The apparatus and method of voltage division processing high rigidity underground water
CN107377252A (en) * 2017-08-22 2017-11-24 河北态及环保科技有限公司 A kind of foam-making apparatus and apply its odor suppressing agents flusher
CN108343130B (en) * 2018-01-31 2020-02-21 江苏大学 Rotary water cleaning device for toilet bowl
CN110403545A (en) * 2018-04-27 2019-11-05 七道水(厦门)环保科技有限公司 A kind of nano bubble Washing jet
CN108775057A (en) * 2018-08-10 2018-11-09 上海行恒科技有限公司 The method and apparatus that a kind of closestool bucket cylinder injects micro-nano bubble
KR102155599B1 (en) * 2019-12-09 2020-09-14 다로스 주식회사 System and method for water supply system based on microwave motion sensor
CN111549511A (en) * 2020-04-30 2020-08-18 佛山市顺德区美的电热电器制造有限公司 Steam generating system and steam equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1004105B (en) * 1954-01-13 1957-03-07 Triton Belco Ag Shower for sanitary purposes
US2929567A (en) * 1957-02-12 1960-03-22 Elie P Aghnides Liquid and gas mixing device
US3270965A (en) * 1963-02-05 1966-09-06 Elie P Aghnides Self-sealing and deposit-proof aerator
JPS58176177U (en) * 1982-05-19 1983-11-25 株式会社ノーリツ Scattering prevention equipment for water heaters
DE8717325U1 (en) * 1987-05-08 1988-08-18 Giebler, Rafaela, 8036 Herrsching Jet regulator
JPH0642856B2 (en) * 1990-04-20 1994-06-08 リンナイ株式会社 Bathroom floor heating method and apparatus
JP2891341B2 (en) * 1991-07-31 1999-05-17 東陶機器株式会社 Cleaning water supply mechanism and sanitary cleaning device using the same
JP2602006Y2 (en) * 1992-08-31 1999-12-20 東陶機器株式会社 Aerated shower equipment
JP3462283B2 (en) * 1994-12-07 2003-11-05 株式会社ヤスヰ Automatic chemical liquid dilution device for car washer
JP3186511B2 (en) * 1995-06-12 2001-07-11 松下電器産業株式会社 Cleaning nozzle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196154B1 (en) 2008-05-14 2012-10-30 파나소닉 주식회사 Nozzle device and sanitary washing device using the same
KR20140032108A (en) * 2012-09-06 2014-03-14 코웨이 주식회사 Hot water discharging structure
KR101936740B1 (en) * 2012-09-06 2019-01-11 코웨이 주식회사 Apparatus for discharging hot water
KR102060334B1 (en) * 2017-04-13 2019-12-30 도시바 라이프스타일 가부시키가이샤 A flush toilet device, a flushing water tank, and a local cleaning device

Also Published As

Publication number Publication date
TW387026B (en) 2000-04-11
WO1999009265A1 (en) 1999-02-25
EP1036889A4 (en) 2001-01-24
AU8649398A (en) 1999-03-08
KR20010022937A (en) 2001-03-26
CN1275180A (en) 2000-11-29
EP1036889A1 (en) 2000-09-20

Similar Documents

Publication Publication Date Title
JP3702787B2 (en) Washing water discharge device
JP4736672B2 (en) Shower equipment
JP4925310B2 (en) Shower equipment
JP4552930B2 (en) Washing water discharge device and flush toilet equipped with the same
JP5416336B2 (en) Microbubble generator and flush toilet apparatus using the same
US9546476B2 (en) Toilet cleaning apparatus having bubble supply mechanism and cleaning method of toilet cleaning apparatus
KR102068142B1 (en) Device for supplying bubble for toilet stool
BRPI0619062B1 (en) WASHING DEVICE AND METHOD OF OPERATING A WASHING DEVICE
JP2007117315A (en) Dishwasher
CN108323907A (en) A kind of washing device for hair
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP4710517B2 (en) Shower equipment
JP4552488B2 (en) Cleaning device
JP2006271797A (en) Washstand
JP2022172127A (en) bathroom
JP4882708B2 (en) Washing water discharge device and toilet device provided with the same
JP2000160645A (en) Sanitary washing device
JP7123301B2 (en) bathroom
JP2009225886A (en) Bathroom disinfection system
JP2001140323A (en) Human body washing device
JP5492068B2 (en) Washing water discharge device
JP3503489B2 (en) Local cleaning equipment
JP5751682B2 (en) Mist spraying equipment
JP7123300B2 (en) bathroom
JP7029658B2 (en) bathroom

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees