JP3701920B2 - Oven equipment - Google Patents

Oven equipment Download PDF

Info

Publication number
JP3701920B2
JP3701920B2 JP2002045520A JP2002045520A JP3701920B2 JP 3701920 B2 JP3701920 B2 JP 3701920B2 JP 2002045520 A JP2002045520 A JP 2002045520A JP 2002045520 A JP2002045520 A JP 2002045520A JP 3701920 B2 JP3701920 B2 JP 3701920B2
Authority
JP
Japan
Prior art keywords
heat source
heat
hot plate
oven
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045520A
Other languages
Japanese (ja)
Other versions
JP2003235437A (en
Inventor
啓司 小川
Original Assignee
キュウーハン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キュウーハン株式会社 filed Critical キュウーハン株式会社
Priority to JP2002045520A priority Critical patent/JP3701920B2/en
Publication of JP2003235437A publication Critical patent/JP2003235437A/en
Application granted granted Critical
Publication of JP3701920B2 publication Critical patent/JP3701920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、製菓、製パン、ピザ等の調理焼成加工等において使用される固定式、トンネル式等のガス・電気オーブンの改良に係り、特に熱源から発生する遠近赤外線を熱板上の生地材等の被加工物に満遍なく照射し、焼きムラが生ぜず、水分蒸発量を少なくして表面の焼き色の良好性、内部の柔軟性等が得られるようにし、またメンテナンスが容易なオーブン装置に関するものである。
【0002】
【従来の技術】
従来から、製菓、製パン、ピザ等の調理、焼成加工には一般的にガスオーブン装置が使用されており、例えば本出願人自身が提案した特開平12−116305号公報に開示されているように、オーブン窯内の熱板上方の左右に配した遠赤外線シュバンクバーナー等の上部熱源から発生した遠近赤外線をオーブン窯内の天井内側面に配した反射機構によって反射させて熱板上の被加工物に照射し、同時に熱板下方に配置した下部熱源によって熱板上の被加工物を直接加熱することで、熱板上のピザ、パン、カステラ、グラタン等の被加工物を加熱処理するようにしている。この反射部材は例えばアルミニウム製のパイプ材にて形成し、オーブン窯内の前後に配置した支持部材相互間に架け渡した支持棒材部分に挿通支持され、支持棒材を芯材として反射部材を支持することで二重管状に構成してある。また被加工物に対する反射の有無、反射率の調整、反射態様等を選定できるようにするために、例えば反射が強過ぎたり、反射の必要がない部位等を設定したりする場合には反射部材自体を取り外して配置しない等の反射部材の配列形態を適宜に選定するようにしたり、また反射部材の反射率を小さくする場合には反射部材自体の外表面を鏡面仕上げ状態に加工し、逆に反射率を大きくする場合には反射部材自体の外表面を粗面仕上げ状態に加工する等していた。
【0003】
【発明が解決しようとする課題】
しかしながらこのような従来提案のオーブン装置では、この反射機構による反射に際し、上部熱源自体は位置や方向を変えることができない固定式のものであって上部熱源による反射部材への照射領域を任意に変更することができないため、被加工物の全般のものに対して満遍なく照射することで焼きムラを微調整することは比較的に困難であった。しかも従来では被加工物に対する反射の有無、反射率の調整、反射態様等を選定できるようにするために、例えば反射が強過ぎたり、反射の必要がない部位等を設定したりする場合には反射部材自体を取り外して配置しない等の反射部材の配列形態を適宜に選定するようにしたり、また反射部材の反射率を小さくする場合には反射部材自体の外表面を鏡面仕上げ状態に加工し、逆に反射率を大きくする場合には反射部材自体の外表面を粗面仕上げ状態に加工したりする等の非常に手間が掛かり、しかも面倒な対策が採られていた。
【0004】
また、従来の反射部材は例えばアルミニウム製のパイプ材にて形成し、オーブン窯内の前後に配置した支持部材相互間に架け渡した支持棒材部分に挿通支持され、支持棒材を芯材として反射部材を支持することで二重管状に構成してあるため、反射部材の蓄熱率・輻射効率が共に低いものであった。
【0005】
さらに、従来では下部熱源からの輻射による対流熱をうまく調整することができないため熱板下方のみが極端に高温となり、これによって熱板上の被加工物の下面だけが極端に焦げてしまう等の問題点があった。
【0006】
加えて、従来においては上部熱源の裏側後方には何等の冷却システムもないために上部熱源の裏側が高温状態となったままでいることが多く、その結果、上部熱源である例えばヒーター部分自体の寿命が極端に短くなってしまう虞も生じるのであった。
【0007】
そこで本発明は叙上のような従来存した諸事情に鑑み創出されたもので、上部熱源による反射部材への照射領域を任意に変更すべく上部熱源の位置や方向を任意に微調整可能にすることで、被加工物の全般のものに対して焼きムラを生じることなく満遍なく照射できると共に、反射部材の蓄熱率・輻射効率を向上することができて被加工物の全般のものに対して効率良く照射することができ、さらに下部熱源からの輻射による対流熱を調整することができて熱板下方のみが極端に高温状態となるのを防止でき、これによって熱板上の被加工物の下面だけが局部的に焦げてしまうようなことが回避でき、また上部熱源の裏側後方に自然対流を利用した冷却システムを配置させて上部熱源の裏側部位を冷却可能にすることで当該上部熱源の寿命を延ばすことができるようにしたオーブン装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した課題を達成するため、本発明にあっては、オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、反射機構10は、オーブン窯1内の前後で対称的に配置形成した支持部材11によってオーブン窯1の前後に沿って支持される支持棒材16と、この支持棒材16外側に挿通されることで支持される反射部材17とを備え、反射部材17は、高蓄熱性・高輻射効率を付与すべく支持棒材16に比し熱伝導率が良好で且つ熱拡散率の大きなパイプ材にて形成され、その内周面には比熱が当該パイプ材より小さく且つ熱伝導率・熱拡散率が当該パイプ材より大きな蓄熱用パイプ材18が貫挿されて成るものである。
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、反射機構10の反射部材17に対する上部熱源3の照射領域を任意に選定するよう上部熱源3には摺動機構もしくは回転機構等による焼きムラ調整機構20、30を備えて成るものとできる。
摺動機構による焼きムラ調整機構20は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置した仕切壁部21の上端に装架固定させた固定基台22と、複数の上部熱源3が離間配設した状態で固定配置され且つ固定基台22の上で前後に摺動可能な摺動板23とを備えて成るものとできる。
回転機構による焼きムラ調整機構30は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置した左右の仕切壁部31の上端に蝶番33を介して回転可能となるように枢着され且つ一側片上に複数の上部熱源3が離間配設した状態で固定された回転基台32と、反射部材17から拡散放射してきた輻射熱を内側に反射させるべく回転基台32の一側片上の縁端部とオーブン窯1内部の天井箇所との間に複数に隣接した状態で連結配置された可撓性を有する仕切板36と、回転基台32の直角縁部内側において歯部が外側に向くようにしてネジ固定されたラックギヤ38と、ラックギヤ38の歯部が噛合されるピニオンギヤ39Aを有する駆動モータ39と、回転基台32の他側片上の縁端部に延設された突起片32Aと、回転基台32の回転に伴い突起片32Aが当接することで駆動モータ39の停止制御を行なうよう当該突起片32Aの移動軌跡上に配された上限・下限の両リミットスイッチLS1,LS2とを備えて成るものとできる。
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、熱板2の左右両側には下部熱源4からの対流による火力を微調整する開閉移動可能な仕切調整板構造の対流熱調整機構40を備えて成るものとできる。
対流熱調整機構40は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置し且つ上端に上部熱源3を載置固定した固定基台42を装架配置させて成る左右の仕切壁部41と、仕切壁部41内側に位置する熱板2の縁端部から起立配置させた支持フレーム43との間に隙間を形成することで、熱板2を下側から直接加熱する下部熱源4に対し、上部熱源3を通ってから熱板2上側へ輻射熱を誘導すべくこの隙間によって下部熱源4の輻射熱流路を形成し、上部熱源3から熱板2上の被加工物W側へ向けて輻射熱が過度にならないように当該輻射熱を遮蔽すべく上部熱源3設置側に対向して設けられた支持フレーム43の上端において任意の高さに架設変更可能な横垂板46と、下部熱源4からの輻射熱流束を上部熱源3の輻射熱流束と合流させて対流を生じさせることで熱板2上の被加工物W側への熱伝達を向上させるよう支持フレーム43の上端側に調節ネジ44を介して水平方向に移動自在に固定可能とした調整板45とから構成することができる。
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、オーブン窯1の後側面もしくは左右側面に設けた給気口からオーブン窯1内部に外気を送り込んで上下部熱源3,4自体の裏側部分を自然対流によって冷却する熱源冷却機構50を備えて成るものとできる。
熱源冷却機構50は、外気を取り入れる取入開口部53Aを有するオーブン窯1内部の底面部53と、内側に断熱材54Aを貼着し且つ側面部給気口54Cを有する側面壁部54と、側面壁部54と所要幅の間隙を有して相対峙しオーブン窯1内側に隔壁状となって起立配置した仕切壁部51と、仕切壁部51の上端においてオーブン窯1内側に向けて若干傾斜した段差状となって装架固定され上面には上部熱源3を離間配設した固定基台52と、固定基台52の外縁端部から直上に向けて配置された複数の孔部55Aが隣接形成されて成る天井側垂直ダクト部55Bおよび当該天井側垂直ダクト部55B上側に連通配置した略台形型中空状の排気口55Cを備えて成るオーブン窯1内部の天井部55と、オーブン窯1の操作盤56Aを備えた前面壁部56と、外気を取り入れる背面部給気口57Aを有する背面壁部57とのそれぞれによって囲繞形成された冷却用熱交換室Pを備えることによって構成することができる。
上下部熱源3,4は、セラミックヒーター、赤外線シュバンクバーナー、ガスバーナー等の熱源部材を採用することができる。
【0009】
以上のように構成された本発明に係るオーブン装置において、支持棒材16に比し熱伝導率が大きく且つ熱拡散率の大きなパイプ材にて形成され、その内周面には比熱が当該パイプ材より小さく且つ熱伝導率・熱拡散率が当該パイプ材より大きな蓄熱用パイプ材18が貫挿されて成る反射部材17は、上部熱源3からの輻射を反射する当該反射部材17に対し高蓄熱性・高輻射効率を付与させ、熱板2上にある被加工物W全般に対しての輻射による照射加熱効率を向上させる。
摺動機構による焼きムラ調整機構20は、摺動板23を固定基台22の上で前後に摺動させることで上部熱源3による反射部材17への照射領域を任意に変更可能にさせるものとなって熱板2上の被加工物Wの焼きムラを防止させる。
回転機構による焼きムラ調整機構30は、駆動モータ39を作動させることによって回転基台32を回転させて、反射機構10の反射部材17に対する上部熱源3の照射領域の選定を可能にさせる。このとき回転基台32が略水平状態となるように回転位置した際には突起片32Aは下限リミットスイッチLS2の接点バネに当接することで駆動モータ39による動作を停止させる。
一方、回転基台32が例えば回転角度が略90°と45°との間の最大傾斜状態となるように回転位置した際には突起片32Aは上限リミットスイッチLS1の接点バネに当接することで駆動モータ39による動作を停止させる。
これによって過度の回転基台32の回転量を防止可能にさせると共に、熱板2上に配置される各種の生地材料等である被加工物Wに対し焼きムラを微妙に調整可能にさせる。
仕切調整板構造の対流熱調整機構40は、下部熱源4の対流による火力を調整するに際し、火力を弱める場合には、調節ネジ44の押し込み方向への捻回転により調整板45が支持フレーム43上端側で仕切壁部41側に近接して下部熱源4の輻射熱流路を塞ぐ方向に移動させる。
一方、火力を強める場合、調節ネジ44の引き出し方向への捻回転により調整板45が支持フレーム43上端側で仕切壁部41から離反して下部熱源4の輻射熱流路を拡大する方向に移動させる。また支持フレーム43に対して架設高さを適宜変更させて上部熱源3を遮蔽することが可能な横垂板46は、上部熱源3から熱板2上の被加工物W側へ向けての輻射熱の過度の到達を防止させる。
このように調整板45による輻射熱流路の閉塞乃至拡大、横垂板46の架設高さの変更等によって、焼成されるべき被加工物Wへの輻射熱を均等に分散できるものとなって当該被加工物Wの焦げ付きを防止させると共に、上下部熱源3,4からの輻射熱流束の合流に伴う対流伝熱により、オーブン窯1内を焼成条件に応じた対流熱伝達系とさせ、これにより被加工物Wに対する焼きムラ等を防止させる。
熱源冷却機構50は、側面壁部54の側面部給気口54Aから底面部53の取入開口部53Aを通して外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。同時に背面壁部57の背面部給気口57Aからも外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。冷却用熱交換室Pに取り入れられた外気は、上部熱源3の下面側の部分を冷却した後、温められた外気は上昇しながら天井部55の天井側垂直ダクト部55Bを経て排気口55Cから外側に排気される。このようにして自然対流原理を利用した冷却システムにより上部熱源3の高温による寿命の低下を防止させる。
セラミックヒーター、赤外線シュバンクバーナー等の熱源部材を採用した上下部熱源3,4は、上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、下部熱源4からの遠近赤外線によって熱板2自体を下方から加熱するという蓄熱効果も高められ、メンテナンスも容易なオーブン装置を提供させる。
【0010】
【発明の実施の形態】
以下図面を参照して本発明の一実施の形態を説明すると、図において示される符号1は略密閉構造に形成された断熱性のオーブン窯であり、例えば前面に付設の図示を省略した開閉扉61によって開閉され、底部に配した例えば石綿性等の熱板2上にピザ、パン、カステラ、グラタン等その他の調理焼成すべき各種の生地材料である被加工物Wが載置されるようになっている(図14参照)。そしてこのオーブン窯1内部の左右には、後述する摺動機構もしくは回転機構等による焼きムラ調整機構20、30を備えた例えば上方に向けられている上部熱源3が配置され、また熱板2下方に配置した下部熱源4によって熱板2自体を加熱する。尚、上下部熱源3,4としては、例えばセラミックヒーター、赤外線シュバンクバーナー、ガスバーナー等の熱源部材を採用することができる。
【0011】
これらの上下部熱源3,4によってオーブン窯1内部が例えば300℃前後の温度、例えばピザの場合には約5〜10分等の短時間にて約400℃の高温で、パンや焼菓子の場合には約10〜40分等の長時間にて約200℃前後の中温で加熱されるようにしてある。特に上部熱源3による加熱に際しオーブン窯1上部に配装された高蓄熱性および高輻射率を有する後述する反射機構10によって所定の遠近赤外線を熱板2上の被加工物Wに照射させて加熱するのであり、またオーブン窯1内の天井に開閉自在な熱抜用開孔を設けることにより当該オーブン窯1内に対流を生じさせて所定の加熱雰囲気が形成されるようにしてある。
【0012】
また熱板2の左右両側には下部熱源4からの対流による火力を微調整するための開閉移動可能な仕切調整板構造の対流熱調整機構40を設けると共に、上下部熱源3,4の寿命を伸ばすために、オーブン窯1の後側面もしくは左右側面に設けた給気口からオーブン窯1内部に外気を送り込んで上下部熱源3,4自体の裏側部分を自然対流によって冷却するための熱源冷却機構50を備えている。
【0013】
(反射機構10)
以下に本発明に係るオーブン装置における反射機構10の具体的構成について図1乃至図4に基づき説明する。反射機構10はその外表面によって上部熱源3からの遠近赤外線による輻射熱を乱反射させてシャワーの如く熱板2上に拡散放射し、熱板2上に置かれている被加工物Wたる生地材料を包み込むような熱回りで焼き上げるようにして加熱処理を行なうものである。すなわち、反射機構10は、複数の取付部15が配列されていて、オーブン窯1の例えば前後側壁内側面に前後で対称的に配置形成した支持部材11と、前後の取付部15それぞれによってオーブン窯1の前後に沿って支持される例えばステンレス製芯棒材による小径パイプ状の支持棒材16と、この支持棒材16外側に挿通されることで支持される大径パイプ状の反射部材17とを備えて成るものである(図3、図4参照)。
【0014】
支持部材11は反射部材17を装架支持するオーブン窯1内においての上部乃至その近傍に位置させて例えばネジ止め、溶接等によって固着配置されており、図示例にあってはオーブン窯1内の上部の中央部、上部の左右両側部それぞれに分割して配置されている。この支持部材11自体は、図3に示すようにオーブン窯1の前後側壁内側面にネジ止め等によって当接固着される固着片12の下縁に略水平状にして折曲形成した連結片13に、固着片12と略平行な取付支持片14を更に折曲形成することで断面で略溝形状を呈すると共に、取付支持片14にその上縁で開放されている溝状のあるいは孔状の複数の取付部15を配列形成し、支持棒材16は支持部材11相互間にその取付部15への嵌合によって架け渡されるように支持されている。
【0015】
図4に示すように、反射部材17は、蓄熱を高め且つ輻射効率を大きくするため、支持棒材16に比し大径の例えばアルミニウム製等の熱伝導率が良好で且つ熱拡散率の大きなパイプ材にて形成されていて、その内周面には比熱がアルミニウムより小さく且つ熱伝導率・熱拡散率が共にアルミニウムより大きな例えば銅製等の蓄熱用パイプ材18が貫挿されている。そして反射部材17はオーブン窯1前後の支持部材11相互間に架け渡した支持棒材16部分に挿通支持され、支持棒材16を芯材として反射部材17を支持することでその挿通支持状態は例えば二重管状に構成されるものとなる。尚、この反射部材17は支持棒材16に支持させずに配置しない場合にはその反射作用は得られないのものとしてあるから、例えば反射が強すぎたり、反射の必要がない部位等を設定したりする場合には反射部材17自体を配置しない等とすることで、被加工物Wに対応する反射の有無、反射率の調整、反射態様等を選定できるようにしてある。
【0016】
次に以上のように構成された実施の形態についての使用、動作の一例を説明するに、図1に示すように、熱板2上に調理、焼成すべきピザ、パン等の被加工物Wを載置する一方、この被加工物Wに対応する反射の有無、反射率の大小等によって反射部材17の配列形態を適宜に選定する。すなわち通常はオーブン窯1の前後に配した支持部材11相互間に支持棒材16を装架支持しておき、反射が必要な部位に対しては反射部材17を挿通支持させるのである。そして上部熱源3によって加熱するとき、これから発生した遠近赤外線は反射機構10のそれぞれの反射部材17によって反射されて熱板2上の被加工物Wに照射されるのである。このとき反射部材17の蓄熱性の高く且つ輻射効率の大きな外表面によって上部熱源3からの遠近赤外線は特定区域に集中されることなく散乱させられ、熱板2上ではその全体に略均一に照射され、また被加工物Wの直上方向からのみでなく側面方向からも照射されるものとする。しかもオーブン窯1のドア開放時に反射部材17の熱が外に逃げてしまっても反射部材17の銅製等の蓄熱用パイプ材18からの余熱によってオーブン窯1内を熱することができるのである。
【0017】
(摺動機構による焼きムラ調整機構20)
以下に本発明に係るオーブン装置における左右の上部熱源3を前後方向に水平摺動させるための摺動機構による焼きムラ調整機構20の具体的構成について図5に基づき説明する。すなわちオーブン窯1内部の左右に配置される上部熱源3の摺動機構は、オーブン窯1の内側壁と、熱板2の縁端部との間に所要幅の間隙を有して起立配置した左右の仕切壁部21によってそれぞれ支持されており、仕切壁部21の上端に装架固定させた若干傾斜したアングル帯板状の固定基台22の上に帯板状の摺動板23が長手方向に沿って前後に摺動可能となるように配置されている。そして摺動板23の上面には矩形状を呈する複数の上部熱源3としての例えば4台のセラミックヒーターが長手方向に離間配設した状態で固定金具24により固定されている。また摺動板23の移動量を示すために、摺動板23の一端側には目盛用の指針23Aを付設し、また固定基台22には指針23Aによって示される目盛用スケール22Aを付設してある。
【0018】
この摺動機構の具体例としては、例えば固定基台22の左右両側に所定の長さをもって離間配設した複数のネジ孔25に、当該ネジ孔25に対向すべく摺動板23の左右両側に所定の間隔をもって穿設形成した複数の長孔26をそれぞれ合致配置させ、この長孔26に貫挿させた固定ネジ27を固定基台22のネジ孔25に捩じ込ませることにより、摺動板23が摺動自在に固定されている。これにより固定基台22上において長孔26の長さ分のストローク距離だけ例えば手動操作もしくは不図示の駆動源による作動等によって摺動板23が前後に摺動できるものとなって、反射機構10の反射部材17に対する上部熱源3の照射領域を任意に選定するようになっている。尚、本実施の形態においては摺動板23の上面に配した上部熱源3としてセラミックヒーターが使用されているが、これに限らず赤外線シュバンクバーナーもしくはガスバーナー等の熱源部材を使用しても良いことは勿論である。
【0019】
次に以上のように構成された実施の形態についての使用、動作の一例を説明するに、図5に示すように、手動操作もしくは不図示の駆動源による作動等によって固定基台22上において摺動板23を前後に摺動させることにより、反射機構10の反射部材17に対する上部熱源3の照射領域を予め選定しておく。このとき摺動板23の移動量は、摺動板23の目盛用の指針23Aを固定基台22の目盛用スケール22Aに合わせることにより容易に設定することができる。これによって熱板2上に配置される各種の生地材料等である被加工物Wに対し焼きムラを微妙に調整することができるのである。
【0020】
(回転機構による焼きムラ調整機構30)
以下に本発明に係るオーブン装置における反射機構10のそれぞれの反射部材17に向けられている上部熱源3の照射角度を変更させるための回転機構による焼きムラ調整機構30の具体的構成について図6、図7に基づき説明する。すなわちオーブン窯1内部の左右に配置される上部熱源3の回転機構は、オーブン窯1の内側壁と、熱板2の縁端部との間に所要幅の間隙を有して起立配置した左右の仕切壁部31にそれぞれ支持されている。この仕切壁部31の上端には帯板を長手方向に沿って直角に折曲した所謂アングル状の回転基台32の直角縁部外側が蝶番33を介して回転可能となるように枢着されており、この回転基台32の一側片上に矩形状を呈する複数の上部熱源3としての例えば4台のセラミックヒーターが長手方向に離間配設した状態で固定金具34により固定されている。
【0021】
回転基台32の一側片上の縁端部には左右一対の可撓性部材として例えば板リンク状のチェーン部材35の各一端が連結され、且つ両チェーン部材35の各他端が回転基台32の直上に位置するオーブン窯1内部の天井箇所に連結されており、反射部材17から拡散放射してきた輻射熱を内側に反射させるための複数の横長の仕切板36がこの左右のチェーン部材35に跨がるようにして下側から上側にかけて順次隙間無く装架配設されている。
【0022】
回転基台32の直角縁部内側にはこれの左右いずれか一端側に形成した扇状のフランジ部37を介して円弧状のラックギヤ38が歯部が外側に向くようにしてネジ固定され、回転基台32下側に配した駆動モータ39の出力軸に固着したピニオンギヤ39Aにこのラックギヤ38の歯部が噛合されている。また回転基台32の他側片上の縁端部には突起片32Aが延設され、回転基台32の回転に伴う当該突起片32Aの移動軌跡上に配した上限・下限の両リミットスイッチLS1,LS2の接点バネそれぞれに当接することで駆動モータ39による動作が停止するようにしてある。すなわち回転基台32が略水平状態となるように回転位置した場合には突起片32Aは下限リミットスイッチLS2の接点バネに当接することで駆動モータ39による動作が停止してそれ以上の回転を防止する。一方、回転基台32が例えば回転角度が略90°〜45°間の最大傾斜状態となるように回転位置した場合には突起片32Aは上限リミットスイッチLS1の接点バネに当接することで駆動モータ39による動作が停止してそれ以上の傾斜方向への回転を防止するのである。尚、オーブン窯1の外壁面等に配設したスイッチの操作でもって駆動モータ39が作動されるようにしてある。
【0023】
こうして回転基台32と共に上部熱源3が若干内側に傾いた略水平位置(図6参照)から内側に向けて約90°〜45°範囲内の任意の角度に傾倒した状態(図7参照)となることで、上部熱源3による反射部材17側への照射領域を選定可能にすると同時に、回転基台32の回転に伴い仕切板36が内側に屈曲することで反射部材17から拡散放射してきた輻射熱を内側に反射させようにしてある。尚、回転基台32の回転量を示すために、回転基台32の蝶番側一端部には目盛用の指針32Bを付設し、一方、オーブン窯1の内側壁には指針32Bによって示される円弧状の目盛用スケール32Cを付設してある。
【0024】
図8、図9は上部熱源3が赤外線シュバンクバーナーもしくはガスバーナーである場合を示すものであり、上部熱源3の照射角度を変更させるための回転機構による焼きムラ調整機構30の具体的構成については上記した上部熱源3としてセラミックヒーターを採用した場合と略同じである。なお図中符号39Bは、赤外線シュバンクバーナーもしくはガスバーナーである上部熱源3においての角度調整がなされるときの供給管路の角度を追随調整するための可撓管である。
【0025】
次に以上のように構成された実施の形態についての使用、動作の一例を説明するに、オーブン窯1の外壁面等に配設したスイッチの操作で駆動モータ39を作動させることによって回転基台32を回転させて、反射機構10の反射部材17に対する上部熱源3の照射領域を予め選定しておく。このとき図6または図8に示すように、回転基台32が略水平状態となるように回転位置した場合には、突起片32Aは下限リミットスイッチLS2の接点バネに当接することで駆動モータ39による動作が停止する。一方、図7または図9に示すように、回転基台32が例えば回転角度が略90°と45°との間の最大傾斜状態となるように回転位置した場合には、突起片32Aは上限リミットスイッチLS1の接点バネに当接することで駆動モータ39による動作が停止する。回転基台32の回転量は当該回転基台32の目盛用の指針32Bを目盛用スケール32Cの任意の目盛位置に合わせることにより容易に設定することができる。これによって熱板2上に配置される各種の生地材料等である被加工物Wに対し焼きムラを微妙に調整することができるのである。
【0026】
(対流熱調整機構40)
以下に本発明に係るオーブン装置における対流熱調整機構40の具体的構成について図10および図11に基づき説明する。オーブン窯1内部の左右に配置される対流熱調整機構40は、上部熱源3設置側に対向して設けられ、上部熱源3から熱板2上の被加工物W側へ向けて輻射熱が過度にならないように当該輻射熱を遮蔽するための例えば石綿をメッシュ状の鉄網板表面に貼着して成る横垂板46と、下部熱源4からの輻射熱流束を上部熱源3の輻射熱流束と合流させて対流を生じさせることで熱板2上の被加工物W側への熱伝達を向上するための調整板45とから構成されている。
【0027】
すなわち、オーブン窯1の内側壁と、熱板2の縁端部との間に所要幅の間隙を有して起立配置し且つ上端に上部熱源3を載置固定するための固定基台42を装架配置させて成る左右の仕切壁部41に対して、内側に位置する熱板2の縁端部から横長帯板上の支持フレーム43を起立配置させて仕切壁部41と支持フレーム43との間に隙間を形成することで、熱板2を下側から直接加熱するための下部熱源4に対し、上部熱源3を通ってから熱板2上側へ輻射熱を誘導すべくこの隙間によって下部熱源4の輻射熱流路を形成してある。そして支持フレーム43の上端側には、左右に配した調節ネジ44を介して水平方向に移動自在に固定可能とした水平面部45Aと垂直面部45Bとから成るL字型帯板状の調整板45を配置してある。またこの調整板45の垂直面部45Bの左右両端側にそれぞれ調節ネジ44が取り付けられており、この調節ネジ44の押し込み方向への捻回転により調整板45の水平面部45Aが支持フレーム43上端側で仕切壁部41側に近接して下部熱源4の輻射熱流路を塞ぐ方向に移動できると共に、調節ネジ44の引き出し方向への捻回転により調整板45の水平面部45Aが支持フレーム43上端側で仕切壁部41から離反して下部熱源4の輻射熱流路を拡大する方向に移動できるようにしてあり、これによって下部熱源4の対流による火力を微妙に調整できるものとしてある。
【0028】
また支持フレーム43の上端には横垂板46の下縁部両端側に設けた二股状の脚部47を介して当該横垂板46を任意の高さに架設配置できるようにしてある。すなわち横垂板46の下縁部の左右両端側には、外形が矩形柱状でしかも下端には支持フレーム43の厚さ分に相当するスリット幅を有する挿入用溝部48が脚部47下面に形成されている。そして脚部47の側面には挿入用溝部48を貫通するようにして係架用のピン部材49が貫挿されるための複数の孔部48Aが縦方向に隣接形成してあり、これによって支持フレーム43の上端に脚部47の挿入用溝部48が嵌め込まれた際に、支持フレーム43がピン部材49によって係止されるのである。したがって支持フレーム43に対する横垂板46の架設高さを適宜変更する場合には、ピン部材49を貫挿させる複数の孔部48Aを選定することで容易に行なわれるのである。尚、横垂板46の脚部47を支持フレーム43上端に嵌装させるに際し、調整板45の水平面部45Aが障壁にならないように水平面部45A両側には凹部45Cが設けられている。また、仕切壁部41には目盛用の指針41Aが取付けられ、一方、調整板45の水平面部45Aには指針41Aによって示される目盛用スケール41Bが付設されている。
【0029】
次に以上のように構成された実施の形態についての使用、動作の一例を説明するに、図11に示すように、下部熱源4の対流による火力を調整するに際し、火力を弱める場合には、調節ネジ44の押し込み方向への捻回転により調整板45の水平面部45Aが支持フレーム43上端側で仕切壁部41側に近接して下部熱源4の輻射熱流路を塞ぐ方向に移動する。一方、火力を強める場合には、調節ネジ44の引き出し方向への捻回転により調整板45の水平面部45Aが支持フレーム43上端側で仕切壁部41から離反して下部熱源4の輻射熱流路を拡大する方向に移動する。これによって下部熱源4の対流による火力を微妙に調整することができる。また、支持フレーム43に対する横垂板46の架設高さを適宜変更する場合には、複数の孔部48Aのいずれかを選定し、そこにピン部材49を貫挿しておいてから横垂板46の脚部47を支持フレーム43上端に嵌装させれば良い。このように調整板45の水平面部45Aによる輻射熱流路の閉塞乃至拡大、横垂板46の架設高さの変更等によって、焼成されるべき被加工物Wへの輻射熱を均等に分散できるので当該被加工物Wが焦げ付くことが無くなると共に、上下部熱源3,4からの輻射熱の対流伝熱により、オーブン窯1内を焼成条件に応じた対流熱伝達系とすることができるので被加工物Wに対し焼きムラ等を生じることが無くなるのである。
【0030】
(熱源冷却機構50)
以下に本発明に係るオーブン装置における熱源冷却機構50の具体的構成について図12、図13に基づき説明する。先ず上部熱源3としてセラミックヒーターを採用している場合について説明する。すなわちオーブン窯1内部の左右に設けられた上部熱源3の熱源冷却機構50は、後述する側面部給気口54Cから底面部側ダクト部を経て外気を取り入れるための複数の矩形状の取入開口部53Aを有するオーブン窯1内部の底面部53と、内側に断熱材54Aを貼着し且つ底面部53の複数の小孔を横一列に隣接形成して成る側面部給気口54Bを露出させてオーブン窯1の左右側面の外壁を形成する側面壁部54と、側面壁部54と所要幅の間隙を有して相対峙しオーブン窯1内側に隔壁状となって起立配置した仕切壁部51と、仕切壁部51の上端においてオーブン窯1内側に向けて若干傾斜した段差状となって装架固定され上面には矩形状を呈する複数の上部熱源3としての例えば4台のセラミックヒーターが長手方向に離間配設した帯板状の固定基台52と、固定基台52の外縁端部から直上に向けて配置された複数の矩形状の孔部55Aが隣接形成されて成る天井側垂直ダクト部55Bおよび当該天井側垂直ダクト部55B上側に連通配置した略台形型中空状の排気口55Cを備えて成るオーブン窯1内部の天井部55と、オーブン窯1の操作盤56Aを備えた前面壁部56と、外気を取り入れるための略矩形状の背面部給気口57Aを形成した背面壁部57とのそれぞれによって囲繞形成された略矩形空間状の冷却用熱交換室Pを備えることによって構成されている。
【0031】
次に以上のように構成された実施の形態についての使用、動作の一例を説明するに、図12に示すように、側面壁部54の側面部給気口54Aから底面部側ダクト部を経て底面部53の取入開口部53Aを通して外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。同時に背面壁部57の背面部給気口57Aからも外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。冷却用熱交換室Pに取り入れられた外気は、上部熱源3の下面側の部分である例えばセラミックヒーターの場合は通電用のニクロム配線部を冷却した後、温められた外気は上昇しながら天井部55の天井側垂直ダクト部55Bを経て排気口55Cから外側に排気される。このようにして自然対流原理を利用した冷却システムにより上部熱源3の高温による寿命の低下を防止するものとしてある。
【0032】
図13には上部熱源3としてセラミックヒーターに替わって赤外線シュバンクバーナーもしくはガスバーナーを採用している場合が示されている。すなわち上部熱源3の下面側の部分に配置されている例えば赤外線シュバンクバーナーもしくはガスバーナー等の混合管58は高温になるとバーナー自体の寿命が極端に短くなってしまうのであり、これを回避すべく混合管58を冷却することでバーナーの寿命を延ばす必要がある。
【0033】
具体的にはこの混合管58の1次空気取入口58Aに本体外側を断熱した上で充分な空気を送り込む所謂自然対流原理を利用した冷却システムが利用される。例えば固定基台52に配置された赤外線シュバンクバーナーもしくはガスバーナーの下部側に備えた混合管58の1次空気取入口58Aを背面壁部57の背面部給気口57Aに臨ませてある。そして側面壁部54の側面部給気口54Aから底面部側ダクト部を経て底面部53の複数の矩形開口部53Aを通して外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。同時に背面壁部57の背面部給気口57Aからも外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられる。冷却用熱交換室Pに取り入れられた外気は、上部熱源3の下面側の部分である混合管58の1次空気取入口58Aに送られて混合管58自体を冷却した後、温められた外気は上昇しながら天井部55の天井側垂直ダクト部55Bを経て排気口55Cから外側に排気される。このように自然対流原理を利用した冷却システムにより上部熱源3の高温による寿命の低下を防止するものとしてある。
【0034】
【発明の効果】
本発明は以上のように構成されているために、上部熱源3による反射部材17への照射領域を任意に変更すべく上部熱源3の位置や方向を任意に微調整可能にすることで、被加工物Wの全般のものに対して焼きムラを生じることなく満遍なく照射できるのである。また、反射部材17の蓄熱率・輻射効率を向上することができて被加工物Wの全般のものに対して効率良く照射することができ、さらに下部熱源4からの輻射による対流熱を調整することができて熱板2下方のみが極端に高温状態となるのを防止でき、これによって熱板2上の被加工物Wの下面だけが局部的に焦げてしまうようなことを回避できる。また上部熱源3の裏側後方に自然対流を利用した冷却システムを配置させて上部熱源3の裏側部位を冷却可能にすることで当該上部熱源3の寿命を延ばすことができるようにしたオーブン装置を提供することができる。
【0035】
すなわち、オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を乱反射させて熱板2上に拡散放射して加熱処理を行なうための反射機構10は、オーブン窯1内の前後で対称的に配置形成した支持部材11によってオーブン窯1の前後に沿って支持される支持棒材16外側に挿通されることで支持される反射部材17を備え、反射部材17は、高蓄熱性・高輻射効率を付与すべく支持棒材16に比し熱伝導率が大きく且つ熱拡散率の大きなパイプ材にて形成され、その内周面には比熱が当該パイプ材より小さく且つ熱伝導率・熱拡散率が当該パイプ材より大きな蓄熱用パイプ材18が貫挿されて成るので、オーブン窯1内の蓄熱空間状態を長時間維持させておくことができ、熱板2上にある被加工物Wの全般に対しての輻射熱による照射加熱効率を従来に比して更に向上することができる。
【0036】
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、反射機構10の反射部材17に対する上部熱源3の照射領域を任意に選定するよう上部熱源3には摺動機構もしくは回転機構等による焼きムラ調整機構20、30を備えて成るので、上部熱源3による反射部材17への照射領域を任意に変更すべく上部熱源3の位置や方向を容易に微調整することができ、被加工物Wの全般のものに対して焼きムラ等を生じることなく満遍なく照射することができる。
【0037】
摺動機構による焼きムラ調整機構20は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置した仕切壁部21の上端に装架固定させた固定基台22と、複数の上部熱源3が離間配設した状態で固定配置され且つ固定基台22の上で前後に摺動可能な摺動板23とを備えて成るので、上部熱源3による反射部材17への照射領域を任意に変更すべく上部熱源3の位置を前後水平方向に容易に微調整することができ、被加工物Wの全般のものに対して焼きムラ等を生じることなく満遍なく照射することができる。
【0038】
回転機構による焼きムラ調整機構30は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置した左右の仕切壁部31の上端に蝶番33を介して回転可能となるように枢着され且つ一側片上に複数の上部熱源3が離間配設した状態で固定された回転基台32と、反射部材17から拡散放射してきた輻射熱を内側に反射させるべく回転基台32の一側片上の縁端部とオーブン窯1内部の天井箇所との間に複数に隣接した状態で連結配置された可撓性を有する仕切板36と、回転基台32の直角縁部内側において歯部が外側に向くようにしてネジ固定されたラックギヤ38と、ラックギヤ38の歯部が噛合されるピニオンギヤ39Aを有する駆動モータ39と、回転基台32の他側片上の縁端部に延設された突起片32Aと、回転基台32の回転に伴い突起片32Aが当接することで駆動モータ39の停止制御を行なうよう当該突起片32Aの移動軌跡上に配された上限・下限の両リミットスイッチLS1,LS2とを備えて成るので、上部熱源3による反射部材17への照射領域を任意に変更すべく上部熱源3の照射方向を略水平状態から例えば回転角度が90°〜45°間の最大傾斜状態まで容易に微調整することができ、被加工物Wの全般のものに対して焼きムラ等を生じることなく満遍なく照射することができる。
【0039】
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、熱板2の左右両側には下部熱源4からの対流による火力を微調整する開閉移動可能な仕切調整板構造の対流熱調整機構40を備えて成るので、下部熱源4からの輻射による対流熱を容易に調整することができて熱板2下方のみが極端に高温状態となるのを防止でき、これによって熱板2上の被加工物Wの下面だけが極端に焦げてしまうようなことが回避できる。
【0040】
対流熱調整機構40は、オーブン窯1の内側壁と熱板2の縁端部との間に所要幅の間隙を有して起立配置し且つ上端に上部熱源3を載置固定した固定基台42を装架配置させて成る左右の仕切壁部41と、仕切壁部41内側に位置する熱板2の縁端部から起立配置させた支持フレーム43との間に隙間を形成することで、熱板2を下側から直接加熱する下部熱源4に対し、上部熱源3を通ってから熱板2上側へ輻射熱を誘導すべくこの隙間によって下部熱源4の輻射熱流路を形成し、上部熱源3から熱板2上の被加工物W側へ向けて輻射熱が過度にならないように当該輻射熱を遮蔽すべく上部熱源3設置側に対向して設けられた支持フレーム43の上端において任意の高さに架設変更可能な横垂板46と、下部熱源4からの輻射熱流束を上部熱源3の輻射熱流束と合流させて対流を生じさせることで熱板2上の被加工物W側への熱伝達を向上させるよう支持フレーム43の上端側に調節ネジ44を介して水平方向に移動自在に固定可能とした調整板45とから構成したので、下部熱源4の対流による火力を調整するに際し、火力を弱める場合には、調節ネジ44の押し込み方向への捻回転により調整板45Aが支持フレーム43上端側で仕切壁部41側に近接して下部熱源4の輻射熱流路を塞ぐ方向に移動させることが容易に行える。
【0041】
一方、火力を強める場合、調節ネジ44の引き出し方向への捻回転により調整板45が支持フレーム43上端側で仕切壁部41から離反して下部熱源4の輻射熱流路を拡大する方向に移動させることが容易に行える。また支持フレーム43に対して架設高さを適宜変更させて上部熱源3を遮蔽することが可能な横垂板46によって上部熱源3から熱板2上の被加工物W側へ向けての輻射熱の過度の到達を防止させることができる。このように調整板45による輻射熱流路の閉塞乃至拡大、横垂板46の架設高さの変更等によって、焼成されるべき被加工物Wへの輻射熱を均等に分散させることができ、当該被加工物Wの焦げ付きを防止できる。また上下部熱源3,4からの輻射熱流束の合流に伴う対流伝熱により、オーブン窯1内を焼成条件に応じた対流熱伝達系とさせ、これにより被加工物Wに対する焼きムラ等を防止することができる。
【0042】
オーブン窯1内の熱板2上に置かれた被加工物Wに対し上方に向けられている上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、熱板2下方に配置した下部熱源4によって熱板2自体を加熱するオーブン装置において、オーブン窯1の後側面もしくは左右側面に設けた給気口からオーブン窯1内部に外気を送り込んで上下部熱源3,4自体の裏側部分を自然対流によって冷却する熱源冷却機構50を備えて成るので、上部熱源3の裏側後方における自然対流により上部熱源3の裏側部位を効率よく冷却することができ、当該上部熱源3の寿命を延ばすことができる。
【0043】
熱源冷却機構50は、外気を取り入れる取入開口部53Aを有するオーブン窯1内部の底面部53と、内側に断熱材54Aを貼着し且つ側面部給気口54Cを有する側面壁部54と、側面壁部54と所要幅の間隙を有して相対峙しオーブン窯1内側に隔壁状となって起立配置した仕切壁部51と、仕切壁部51の上端においてオーブン窯1内側に向けて若干傾斜した段差状となって装架固定され上面には上部熱源3を離間配設した固定基台52と、固定基台52の外縁端部から直上に向けて配置された複数の孔部55Aが隣接形成されて成る天井側垂直ダクト部55Bおよび当該天井側垂直ダクト部55B上側に連通配置した略台形型中空状の排気口55Cを備えて成るオーブン窯1内部の天井部55と、オーブン窯1の操作盤56Aを備えた前面壁部56と、外気を取り入れる背面部給気口57Aを有する背面壁部57とのそれぞれによって囲繞形成された冷却用熱交換室Pを備えることによって構成したので、側面壁部54の側面部給気口54Aから底面部53の取入開口部53Aを通して外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられると同時に背面壁部57の背面部給気口57Aからも外気がオーブン窯1内部の冷却用熱交換室Pに取り入れられるものとなり、冷却用熱交換室Pに取り入れられた外気によって上部熱源3の下面側の部分を効率良く冷却することができる。また温められた外気は上昇しながら天井部55の天井側垂直ダクト部55Bを経て排気口55Cから外側に容易に排気することができる。これにより高温な加熱雰囲気中に晒される上下部熱源3,4自体の裏側部分を他に対流用ファン装置や冷媒機構による冷却装置等を利用しなくても自然対流によって効率良く冷却することができ、当該上下部熱源3,4自体の寿命を延ばすことができる。
【0044】
上下部熱源3,4は、セラミックヒーター、赤外線シュバンクバーナー等の熱源部材を採用したので、上部熱源3からの遠近赤外線を反射機構10によって乱反射させて熱板2上に拡散放射して加熱処理を行ない、下部熱源4からの遠近赤外線によって熱板2自体を下方から加熱するという蓄熱効果も高められメンテナンスも容易なオーブン装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態におけるオーブン装置のオーブン窯内部を示す縦断面図である。
【図2】同じく上部熱源の傾倒状態の異なる形態を示すオーブン窯内部の縦断面図である。
【図3】同じく反射機構の要部概略斜視図である。
【図4】同じく反射機構における反射部材の要部拡大斜視図である。
【図5】摺動機構による焼きムラ調整機構の一形態を示すもので、(a)は摺動状態を説明する斜視図、(b)は(a)におけるX−X断面図である。
【図6】上部熱源がセラミックヒーターである場合の回転機構による焼きムラ調整機構の一形態を示すもので、(a)は回転動作前の状態を示す正面図、(b)は回転動作前の状態を示す側面図である。
【図7】同じく回転動作後の状態を示す正面図である。
【図8】上部熱源が赤外線シュバンクバーナーもしくはガスバーナーである場合の回転機構による焼きムラ調整機構の一形態を示すもので、(a)は回転動作前の状態を示す正面図、(b)は回転動作前の状態を示す側面図である。
【図9】同じく回転動作後の状態を示す正面図である。
【図10】オーブン装置のオーブン窯内部における対流熱調整機構の一形態を示す斜視図である。
【図11】図10中のA部断面図である。
【図12】上部熱源がセラミックヒーターである場合のオーブン窯内部における熱源冷却機構の一形態を示す斜視図である。
【図13】上部熱源が赤外線シュバンクバーナーもしくはガスバーナーである場合のオーブン窯内部における熱源冷却機構の一形態を示す斜視図である。
【図14】オーブン装置全体の概略斜視図である。
【符号の説明】
1…オーブン窯 2…熱板
3…上部熱源 4…下部熱源
10…反射機構 11…支持部材
12…固着片 13…連結片
14…取付支持片 15…取付部
16…支持棒材 17…反射部材
18…蓄熱用パイプ材 W…被加工物
20…摺動機構による焼きムラ調整機構
21…仕切壁部 22…固定基台
22A…目盛用スケール 23…摺動板
23A…指針 24…固定金具
25…ネジ孔 26…長孔
27…固定ネジ
30…回転機構による焼きムラ調整機構
31…仕切壁部 32…回転基台
32A…突起片 32B…指針
32C…目盛用スケール 33…蝶番
34…固定金具 35…チェーン部材
36…仕切板 37…フランジ部
38…ラックギヤ 39…駆動モータ
39A…ピニオンギア 39B…可撓管
LS1…上限リミットスイッチ LS2…下限リミットスイッチ
40…対流熱調整機構
41…仕切壁部 41A…指針
41B…目盛用スケール 42…固定基台
43…支持フレーム 44…調節ネジ
45…調整板 45A…水平面部
45B…垂直面部 45C…凹部
46…横垂板 47…脚部
48…挿入用溝部 48A…孔部
49…ピン部材
50…熱源冷却機構
51…仕切壁部 52…固定基台
53…底面部 53A…取入開口部
54…側面壁部 54A…断熱材
54B…側面部給気口 55…天井部
55A…孔部 55B…天井側垂直ダクト部
55C…排気口 56…前面壁部
56A…操作盤 57…背面壁部
57A…背面部給気口 58…混合管
58A…1次空気取入口 P…冷却用熱交換室
61…開閉扉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvements in fixed and tunnel type gas / electric ovens used in cooking and baking processing of confectionery, bread making, pizza, etc., and in particular, far-infrared rays generated from a heat source are used as a dough material on a hot plate. It is related to an oven device that irradiates evenly on a workpiece such as, does not cause uneven baking, reduces the amount of water evaporation, and provides good surface baking color, internal flexibility, etc., and easy maintenance Is.
[0002]
[Prior art]
Conventionally, a gas oven apparatus has been generally used for cooking and baking of confectionery, bread making, pizza, etc., for example, as disclosed in Japanese Patent Laid-Open No. 12-116305 proposed by the applicant himself. In addition, far infrared rays generated from an upper heat source such as a far-infrared schwann burner placed on the left and right above the hot plate in the oven kiln are reflected by a reflecting mechanism arranged on the ceiling inner surface in the oven kiln, and the coating on the hot plate Irradiate the workpiece and simultaneously heat the workpiece such as pizza, bread, castella, and gratin on the hot plate by directly heating the workpiece on the hot plate with the lower heat source located below the hot plate. I am doing so. The reflecting member is formed of, for example, an aluminum pipe material, and is inserted and supported by a supporting bar portion spanned between supporting members arranged in the front and rear of the oven kiln. By supporting, it is configured in a double tubular shape. In addition, in order to be able to select the presence / absence of reflection on the workpiece, the adjustment of the reflectance, the reflection mode, etc., for example, when setting a part where reflection is too strong or need not be reflected, the reflection member In order to select the arrangement form of the reflecting members such as not detaching and arranging them properly, or to reduce the reflectance of the reflecting members, the outer surface of the reflecting member itself is processed into a mirror finish, and conversely In order to increase the reflectance, the outer surface of the reflecting member itself is processed into a rough finish.
[0003]
[Problems to be solved by the invention]
However, in such a conventionally proposed oven apparatus, the upper heat source itself is a fixed type whose position and direction cannot be changed at the time of reflection by this reflection mechanism, and the irradiation area to the reflection member by the upper heat source is arbitrarily changed. Therefore, it is relatively difficult to finely adjust the unevenness of baking by uniformly irradiating the whole workpiece. In addition, in the past, in order to be able to select the presence or absence of reflection on the workpiece, adjustment of reflectance, reflection mode, etc., for example, when setting a part etc. where reflection is too strong or need not be reflected The arrangement form of the reflecting member such as not disposing the reflecting member itself is appropriately selected, or when the reflectance of the reflecting member is reduced, the outer surface of the reflecting member itself is processed into a mirror finish state, On the other hand, when increasing the reflectivity, it takes a lot of time and effort to take the troublesome measures such as processing the outer surface of the reflecting member itself into a rough finish.
[0004]
In addition, the conventional reflecting member is formed of, for example, an aluminum pipe material, and is inserted and supported by the supporting bar portion spanned between the supporting members arranged in the front and rear of the oven kiln, and the supporting bar material is used as a core material. Since the reflecting member is supported to form a double tube, both the heat storage rate and the radiation efficiency of the reflecting member are low.
[0005]
Furthermore, conventionally, since the convective heat due to radiation from the lower heat source cannot be adjusted well, only the lower part of the hot plate becomes extremely high temperature, and this causes only the lower surface of the workpiece on the hot plate to become extremely scorched. There was a problem.
[0006]
In addition, since there is no cooling system behind the upper heat source in the past, the upper side of the upper heat source often remains in a high temperature state, and as a result, the life of the upper heat source, for example, the heater part itself There was also a risk that would become extremely short.
[0007]
Therefore, the present invention was created in view of the conventional circumstances as described above, and the position and direction of the upper heat source can be arbitrarily fine-tuned to arbitrarily change the irradiation region of the reflecting member by the upper heat source. As a result, it is possible to irradiate the entire work piece without causing uneven baking, and to improve the heat storage rate and radiation efficiency of the reflecting member, and to the work piece in general. Irradiation can be performed efficiently, and convection heat due to radiation from the lower heat source can be adjusted, so that only the lower part of the hot plate can be prevented from becoming extremely hot. It can be avoided that only the lower surface is burned locally, and a cooling system using natural convection is arranged behind the upper heat source so that the rear portion of the upper heat source can be cooled. Life And to provide an oven apparatus that can bus.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described problem, in the present invention, the near infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are reflected. In the oven apparatus in which the heat plate 2 is diffused and radiated and radiated and radiated onto the hot plate 2 to heat the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the reflection mechanism 10 is provided in the oven kiln 1. The support bar 16 supported along the front and rear of the oven kiln 1 by the support member 11 arranged symmetrically before and after the front and the reflection member 17 supported by being inserted outside the support bar 16 The reflecting member 17 is formed of a pipe material having a good thermal conductivity and a large thermal diffusivity compared to the support bar 16 so as to provide a high heat storage property and a high radiation efficiency. Specific heat is smaller than the pipe material and Conductivity and thermal diffusivity are those in which the pipe large heat storage pipe member from member 18 is made is inserted through.
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In the oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the upper heat source 3 is selected so as to arbitrarily select the irradiation region of the upper heat source 3 on the reflecting member 17 of the reflecting mechanism 10. Can be provided with a non-uniformity adjustment mechanism 20, 30 using a sliding mechanism or a rotation mechanism.
The baking unevenness adjusting mechanism 20 by the sliding mechanism is fixed to the upper end of the partition wall portion 21 that is erected with a gap having a required width between the inner wall of the oven furnace 1 and the edge of the hot plate 2. The fixed base 22 and the sliding plate 23 fixedly arranged in a state where the plurality of upper heat sources 3 are spaced apart and slidable back and forth on the fixed base 22 can be provided.
The baking unevenness adjustment mechanism 30 by the rotation mechanism has a hinge 33 at the upper ends of the left and right partition wall portions 31 that are arranged upright with a gap having a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2. The rotary base 32 is pivotally mounted so as to be rotatable through the base plate and is fixed in a state where a plurality of upper heat sources 3 are spaced apart on one side piece, and the radiant heat diffused and radiated from the reflecting member 17 is brought inward. A flexible partition plate 36 connected and arranged in a plurality of adjacent positions between an edge on one side piece of the rotating base 32 and the ceiling portion inside the oven kiln 1 to reflect the rotating base 32; 32, a rack gear 38 that is screwed so that the teeth are directed outwardly on the inside of the right-angled edge of 32, a drive motor 39 having a pinion gear 39A that meshes with the teeth of the rack gear 38, and the other side piece of the rotary base 32 Projection piece 3 extending at the edge of The upper limit and lower limit limit switches LS1, LS2 arranged on the movement locus of the projection piece 32A so that the stop control of the drive motor 39 is performed by the contact of the projection piece 32A with the rotation of the rotary base 32. And can comprise.
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In an oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the left and right sides of the hot plate 2 can be opened and closed to finely adjust the heat generated by the convection from the lower heat source 4. A convection heat adjustment mechanism 40 having a partition adjustment plate structure may be provided.
The convective heat adjustment mechanism 40 is a fixed base that is erected with a gap of a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2 and the upper heat source 3 is placed and fixed at the upper end. By forming a gap between the left and right partition wall portions 41 formed by mounting 42 and the support frame 43 erected from the edge of the hot plate 2 located inside the partition wall portion 41, A radiant heat flow path of the lower heat source 4 is formed by this gap so as to induce radiant heat to the upper side of the heat plate 2 after passing through the upper heat source 3 with respect to the lower heat source 4 that directly heats the heat plate 2 from the lower side. The upper end of the support frame 43 provided to face the upper heat source 3 installation side so as to shield the radiant heat from the radiant heat toward the workpiece W side on the hot plate 2 at an arbitrary height. The horizontal plate 46 that can be installed and the radiant heat flux from the lower heat source 4 are installed in the upper part. It is combined with the radiant heat flux of the source 3 to generate convection, so that the heat transfer to the workpiece W side on the hot plate 2 is improved in the horizontal direction via the adjusting screw 44 on the upper end side of the support frame 43. The adjusting plate 45 can be movably fixed.
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In an oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the outside air is sent into the oven kiln 1 from the air supply port provided on the rear or left and right sides of the oven kiln 1. Thus, the heat source cooling mechanism 50 for cooling the back side portions of the upper and lower heat sources 3 and 4 themselves by natural convection can be provided.
The heat source cooling mechanism 50 includes a bottom surface portion 53 inside the oven kiln 1 having an intake opening 53A for taking in outside air, a side wall portion 54 having a heat insulating material 54A attached inside and a side surface air supply port 54C, The side wall 54 has a gap of a required width and is relatively laid, and a partition wall 51 standing upright in the form of a partition inside the oven kiln 1, and slightly toward the inside of the oven kiln 1 at the upper end of the partition wall 51 A fixed base 52 in which the frame is fixed in an inclined stepped shape and the upper heat source 3 is spaced apart on the upper surface, and a plurality of holes 55A arranged from the outer edge end portion of the fixed base 52 directly upward. A ceiling portion 55 inside the oven kiln 1 provided with a ceiling-side vertical duct portion 55B formed adjacently and a substantially trapezoidal hollow exhaust port 55C communicating with the upper side of the ceiling-side vertical duct portion 55B, and the oven kiln 1 Equipped with an operation panel 56A It can be constructed by providing the front wall portion 56, the heat exchange chamber P which are surrounded respectively formed by the rear wall portion 57 having a rear portion air inlet 57A drawing outside air.
As the upper and lower heat sources 3 and 4, heat source members such as a ceramic heater, an infrared schbank burner, and a gas burner can be adopted.
[0009]
In the oven apparatus according to the present invention configured as described above, it is formed of a pipe material having a higher thermal conductivity and a higher thermal diffusivity than that of the support bar 16, and the specific heat is generated on the inner peripheral surface thereof. The reflection member 17 formed by inserting a heat storage pipe material 18 which is smaller than the material and has a thermal conductivity / thermal diffusivity larger than that of the pipe material has high heat storage with respect to the reflection member 17 which reflects the radiation from the upper heat source 3. And high radiation efficiency are imparted, and the irradiation heating efficiency by radiation on the entire workpiece W on the hot plate 2 is improved.
The baking unevenness adjustment mechanism 20 by the sliding mechanism allows the irradiation region to the reflecting member 17 by the upper heat source 3 to be arbitrarily changed by sliding the sliding plate 23 back and forth on the fixed base 22. Thus, uneven baking of the workpiece W on the hot plate 2 is prevented.
The baking unevenness adjustment mechanism 30 by the rotation mechanism rotates the rotation base 32 by operating the drive motor 39 so that the irradiation region of the upper heat source 3 on the reflection member 17 of the reflection mechanism 10 can be selected. At this time, when the rotary base 32 is rotated so as to be in a substantially horizontal state, the protruding piece 32A comes into contact with the contact spring of the lower limit switch LS2 to stop the operation by the drive motor 39.
On the other hand, when the rotation base 32 is rotated so that the rotation angle reaches a maximum inclination state between approximately 90 ° and 45 °, for example, the protruding piece 32A comes into contact with the contact spring of the upper limit switch LS1. The operation by the drive motor 39 is stopped.
Accordingly, an excessive amount of rotation of the rotation base 32 can be prevented, and the unevenness of baking can be finely adjusted with respect to the workpiece W such as various dough materials arranged on the hot plate 2.
The convection heat adjustment mechanism 40 having a partition adjustment plate structure adjusts the heating power due to the convection of the lower heat source 4. When the heating power is weakened, the adjustment plate 45 is twisted in the pushing direction of the adjustment screw 44 so that the adjustment plate 45 is attached to the upper end of the support frame 43. It moves to the direction which closes the radiant heat flow path of the lower heat source 4 near the partition wall 41 side on the side.
On the other hand, when the heating power is strengthened, the adjusting plate 45 is moved away from the partition wall 41 on the upper end side of the support frame 43 by the twisting rotation of the adjusting screw 44 in the pulling direction to expand the radiant heat flow path of the lower heat source 4. . The horizontal plate 46 that can shield the upper heat source 3 by appropriately changing the installation height with respect to the support frame 43 radiates heat from the upper heat source 3 toward the workpiece W on the heat plate 2. To prevent excessive reach.
Thus, by closing or enlarging the radiant heat flow path by the adjusting plate 45, changing the installation height of the horizontal plate 46, etc., the radiant heat to the workpiece W to be fired can be uniformly distributed. While preventing the workpiece W from being burnt, the inside of the oven kiln 1 is made into a convection heat transfer system according to the firing conditions by convection heat transfer accompanying the merging of the radiant heat flux from the upper and lower heat sources 3 and 4, thereby Unevenness of baking on the workpiece W is prevented.
In the heat source cooling mechanism 50, outside air is taken into the cooling heat exchange chamber P inside the oven kiln 1 from the side surface air supply port 54 </ b> A of the side wall portion 54 through the intake opening 53 </ b> A of the bottom surface portion 53. At the same time, outside air is also taken into the cooling heat exchange chamber P inside the oven kiln 1 from the back surface air supply port 57 </ b> A of the back wall portion 57. After the outside air taken into the cooling heat exchange chamber P cools the lower surface portion of the upper heat source 3, the warmed outside air rises from the exhaust port 55C via the ceiling-side vertical duct portion 55B of the ceiling portion 55. Exhausted outside. In this way, the lifetime of the upper heat source 3 is prevented from being reduced due to the high temperature by the cooling system using the principle of natural convection.
The upper and lower heat sources 3 and 4 employing heat source members such as a ceramic heater and an infrared schwann burner perform the heat treatment by causing the near-infrared rays from the upper heat source 3 to be diffusely reflected by the reflection mechanism 10 and diffused and radiated on the hot plate 2. Moreover, the heat storage effect of heating the hot plate 2 itself from below by the near infrared rays from the lower heat source 4 is enhanced, and an oven apparatus that is easy to maintain is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Reference numeral 1 shown in the drawing is a heat-insulating oven kiln formed in a substantially sealed structure. The workpiece W, which is a variety of dough materials to be cooked and fired, such as pizza, bread, castella, gratin, etc., is placed on the hot plate 2 made of asbestos or the like that is opened and closed by 61 and placed on the bottom. (See FIG. 14). On the left and right sides of the oven kiln 1 are disposed, for example, an upper heat source 3 that is directed upward, and includes a heating unevenness adjusting mechanism 20, 30 such as a sliding mechanism or a rotating mechanism, which will be described later. The heating plate 2 itself is heated by the lower heat source 4 arranged in the above. As the upper and lower heat sources 3 and 4, heat source members such as a ceramic heater, an infrared schwann burner, and a gas burner can be employed.
[0011]
With these upper and lower heat sources 3 and 4, the inside of the oven kiln 1 is heated to a temperature of about 300 ° C., for example, about 400 ° C. for a short time such as about 5 to 10 minutes in the case of pizza. In such a case, heating is performed at a medium temperature of about 200 ° C. for a long time such as about 10 to 40 minutes. In particular, when heating by the upper heat source 3, the workpiece W on the hot plate 2 is heated by irradiating the workpiece W on the hot plate 2 with a reflecting mechanism 10 described later having high heat storage and high emissivity disposed on the upper part of the oven kiln 1. In addition, by providing a heat release opening that can be freely opened and closed on the ceiling in the oven kiln 1, convection is generated in the oven kiln 1 so that a predetermined heating atmosphere is formed.
[0012]
In addition, on both the left and right sides of the heat plate 2, a convection heat adjustment mechanism 40 having a partition adjustment plate structure that can be opened and closed to finely adjust the heat generated by the convection from the lower heat source 4 is provided, and the life of the upper and lower heat sources 3 and 4 is increased. In order to extend, the heat source cooling mechanism for sending outside air into the oven kiln 1 from the air supply port provided on the rear or left and right side surfaces of the oven kiln 1 and cooling the back side portions of the upper and lower heat sources 3 and 4 themselves by natural convection 50.
[0013]
(Reflection mechanism 10)
Hereinafter, a specific configuration of the reflection mechanism 10 in the oven apparatus according to the present invention will be described with reference to FIGS. The reflection mechanism 10 diffuses and radiates radiant heat from near-infrared rays from the upper heat source 3 on its outer surface, diffuses and radiates it onto the hot plate 2 like a shower, and the dough material that is the workpiece W placed on the hot plate 2 The heat treatment is performed by baking around the enveloping heat. In other words, the reflection mechanism 10 includes a plurality of mounting portions 15 arranged, and the oven kiln 1 includes, for example, a support member 11 that is symmetrically arranged on the front and rear side walls of the oven kiln 1 and front and rear mounting portions 15. A small-diameter pipe-like support bar 16 made of, for example, a stainless steel core bar supported along the front and rear of 1, and a large-diameter pipe-like reflection member 17 supported by being inserted outside the support bar 16; (See FIG. 3 and FIG. 4).
[0014]
The support member 11 is positioned at or near the upper part in the oven kiln 1 that supports and supports the reflecting member 17, and is fixedly disposed by, for example, screwing, welding, or the like. The upper central part and the upper left and right side parts are arranged separately. As shown in FIG. 3, the support member 11 itself is a connecting piece 13 that is bent in a substantially horizontal shape at the lower edge of the fixing piece 12 that is abutted and fixed to the inner side surfaces of the front and rear side walls of the oven kiln 1 by screws or the like. Further, the mounting support piece 14 that is substantially parallel to the fixing piece 12 is further bent to form a substantially groove shape in cross section, and the mounting support piece 14 has a groove shape or a hole shape that is open at its upper edge. A plurality of attachment portions 15 are formed in an array, and the support bar 16 is supported so as to be bridged between the support members 11 by fitting to the attachment portions 15.
[0015]
As shown in FIG. 4, the reflecting member 17 has a large thermal conductivity such as aluminum and has a large thermal diffusivity compared to the support bar 16 in order to increase heat storage and increase radiation efficiency. A pipe material 18 for heat storage, such as copper, having a specific heat smaller than that of aluminum and larger in both thermal conductivity and thermal diffusivity than aluminum, is inserted in the inner peripheral surface of the pipe material. The reflection member 17 is inserted and supported by the support bar 16 extending between the support members 11 before and after the oven kiln 1, and the support member 16 is used as a core to support the reflection member 17 so that the insertion support state is as follows. For example, it is configured in a double tubular shape. In addition, since the reflecting member 17 is assumed not to be able to obtain the reflecting action when it is not supported without being supported by the support bar 16, for example, a portion where the reflection is too strong or the reflection is not necessary is set. For example, when the reflecting member 17 itself is not disposed, the presence / absence of reflection corresponding to the workpiece W, the adjustment of the reflectance, the reflection mode, and the like can be selected.
[0016]
Next, an example of use and operation of the embodiment configured as described above will be described. As shown in FIG. 1, a work W such as pizza or bread to be cooked and baked on the hot plate 2. On the other hand, the arrangement of the reflecting members 17 is appropriately selected according to the presence or absence of reflection corresponding to the workpiece W, the magnitude of the reflectance, and the like. That is, usually, the support bar 16 is mounted and supported between the support members 11 arranged before and after the oven kiln 1, and the reflection member 17 is inserted and supported to a portion that needs to be reflected. When heating by the upper heat source 3, the near-infrared rays generated therefrom are reflected by the respective reflecting members 17 of the reflecting mechanism 10 and are irradiated onto the workpiece W on the hot plate 2. At this time, the near infrared rays from the upper heat source 3 are scattered without being concentrated in a specific area by the outer surface of the reflecting member 17 having high heat storage property and high radiation efficiency, and is irradiated almost uniformly on the hot plate 2. Further, it is assumed that irradiation is performed not only from the direction directly above the workpiece W but also from the side surface direction. Moreover, even if the heat of the reflecting member 17 escapes outside when the door of the oven kiln 1 is opened, the inside of the oven kiln 1 can be heated by the remaining heat from the heat storage pipe material 18 made of copper or the like of the reflecting member 17.
[0017]
(Making adjustment mechanism 20 by sliding mechanism)
A specific configuration of the uneven baking adjustment mechanism 20 using a sliding mechanism for horizontally sliding the left and right upper heat sources 3 in the front-rear direction in the oven apparatus according to the present invention will be described below with reference to FIG. That is, the sliding mechanism of the upper heat source 3 arranged on the left and right inside the oven kiln 1 is arranged upright with a gap of a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2. A strip plate-like sliding plate 23 is supported on the right and left partition wall portions 21 on a slightly inclined angle strip plate-like fixed base 22 mounted and fixed to the upper end of the partition wall portion 21. It arrange | positions so that it can slide back and forth along a direction. For example, four ceramic heaters as a plurality of upper heat sources 3 having a rectangular shape are fixed to the upper surface of the sliding plate 23 by a fixing bracket 24 in a state of being spaced apart in the longitudinal direction. In order to indicate the amount of movement of the sliding plate 23, a scale pointer 23A is attached to one end of the sliding plate 23, and a scale scale 22A indicated by the pointer 23A is attached to the fixed base 22. It is.
[0018]
As a specific example of this sliding mechanism, for example, a plurality of screw holes 25 spaced apart with a predetermined length on both the left and right sides of the fixed base 22 are arranged on both the left and right sides of the sliding plate 23 so as to face the screw holes 25. A plurality of long holes 26 formed at predetermined intervals are aligned with each other, and a fixing screw 27 inserted through the long holes 26 is screwed into the screw holes 25 of the fixed base 22 so as to slide. A moving plate 23 is slidably fixed. As a result, the sliding plate 23 can be slid back and forth by a manual operation or operation by a drive source (not shown), for example, by a stroke distance corresponding to the length of the long hole 26 on the fixed base 22. The irradiation region of the upper heat source 3 with respect to the reflective member 17 is arbitrarily selected. In the present embodiment, a ceramic heater is used as the upper heat source 3 disposed on the upper surface of the sliding plate 23. However, the present invention is not limited to this, and a heat source member such as an infrared Schwann burner or a gas burner may be used. Of course it is good.
[0019]
Next, an example of use and operation of the embodiment configured as described above will be described. As shown in FIG. 5, sliding on the fixed base 22 by manual operation or operation by a drive source (not shown). By sliding the moving plate 23 back and forth, the irradiation area of the upper heat source 3 for the reflecting member 17 of the reflecting mechanism 10 is selected in advance. At this time, the moving amount of the sliding plate 23 can be easily set by matching the scale indicator 23A of the sliding plate 23 with the scale scale 22A of the fixed base 22. As a result, the unevenness of baking can be finely adjusted with respect to the workpiece W, which is a variety of dough materials and the like disposed on the hot plate 2.
[0020]
(Burn unevenness adjustment mechanism 30 by rotation mechanism)
FIG. 6 shows a specific configuration of the baking unevenness adjusting mechanism 30 by a rotating mechanism for changing the irradiation angle of the upper heat source 3 directed to each reflecting member 17 of the reflecting mechanism 10 in the oven apparatus according to the present invention. This will be described with reference to FIG. In other words, the rotation mechanism of the upper heat source 3 arranged on the left and right inside the oven kiln 1 is a left-right arrangement with a gap of a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2. Are respectively supported by the partition wall portions 31. At the upper end of the partition wall portion 31, the outer side of the right-angled edge of the so-called angle-shaped rotation base 32 obtained by bending the belt plate at right angles along the longitudinal direction is pivotally attached via a hinge 33. For example, four ceramic heaters as a plurality of upper heat sources 3 having a rectangular shape are fixed on one side piece of the rotating base 32 by a fixing bracket 34 in a state of being spaced apart in the longitudinal direction.
[0021]
One end of a pair of left and right flexible members, for example, a plate link-like chain member 35 is connected to an edge on one side piece of the rotating base 32, and each other end of both chain members 35 is connected to the rotating base. A plurality of horizontally long partition plates 36 that are connected to a ceiling portion inside the oven kiln 1 positioned directly above 32 and reflect the radiant heat diffused and radiated from the reflecting member 17 to the left and right chain members 35. The straddles are arranged with no gaps sequentially from the lower side to the upper side so as to straddle.
[0022]
An arc-shaped rack gear 38 is screwed to the inside of the right-angled edge of the rotation base 32 through a fan-shaped flange portion 37 formed on one of the left and right sides of the rotation base 32 so that the teeth are directed outward. A tooth portion of the rack gear 38 is meshed with a pinion gear 39A fixed to the output shaft of the drive motor 39 disposed below the table 32. Further, a protrusion piece 32A is extended at the edge of the other side piece of the rotation base 32, and both upper and lower limit switches LS1 are arranged on the movement locus of the protrusion piece 32A as the rotation base 32 rotates. , LS2 contacts the contact springs to stop the operation of the drive motor 39. That is, when the rotation base 32 is rotated so as to be in a substantially horizontal state, the projecting piece 32A comes into contact with the contact spring of the lower limit switch LS2, thereby stopping the operation of the drive motor 39 and preventing further rotation. To do. On the other hand, when the rotation base 32 is rotated so that, for example, the rotation angle is in a maximum inclination state between approximately 90 ° and 45 °, the projecting piece 32A comes into contact with the contact spring of the upper limit switch LS1, thereby driving the motor. The operation by 39 stops and prevents further rotation in the tilt direction. The drive motor 39 is operated by the operation of a switch disposed on the outer wall surface of the oven kiln 1.
[0023]
In this way, the upper heat source 3 together with the rotating base 32 is tilted to an arbitrary angle within the range of about 90 ° to 45 ° from the substantially horizontal position (see FIG. 6) inclined slightly inward (see FIG. 7). As a result, it is possible to select an irradiation region to the reflecting member 17 side by the upper heat source 3, and at the same time, the radiant heat diffused and radiated from the reflecting member 17 as the partition plate 36 bends inward as the rotating base 32 rotates. Is reflected inward. In order to indicate the amount of rotation of the rotary base 32, a scale pointer 32B is attached to one end of the rotary base 32 on the hinge side, while a circle indicated by the pointer 32B is provided on the inner wall of the oven kiln 1. An arc-shaped scale 32C is provided.
[0024]
FIGS. 8 and 9 show the case where the upper heat source 3 is an infrared schwann burner or a gas burner, and a specific configuration of the baking unevenness adjusting mechanism 30 by a rotating mechanism for changing the irradiation angle of the upper heat source 3. Is substantially the same as the case where a ceramic heater is employed as the upper heat source 3 described above. In addition, the code | symbol 39B in a figure is a flexible tube for adjusting the angle of a supply pipe line when the angle adjustment in the upper heat source 3 which is an infrared schbank burner or a gas burner is made.
[0025]
Next, an example of use and operation of the embodiment configured as described above will be described. By rotating the drive motor 39 by operating a switch disposed on the outer wall surface of the oven kiln 1, a rotating base 32 is rotated, and the irradiation region of the upper heat source 3 with respect to the reflection member 17 of the reflection mechanism 10 is selected in advance. At this time, as shown in FIG. 6 or FIG. 8, when the rotation base 32 is rotated so as to be in a substantially horizontal state, the projecting piece 32A comes into contact with the contact spring of the lower limit switch LS2, thereby driving the motor 39. The operation due to stops. On the other hand, as shown in FIG. 7 or FIG. 9, when the rotation base 32 is rotated so that the rotation angle is in a maximum inclination state between about 90 ° and 45 °, for example, the protrusion piece 32A has an upper limit. The operation by the drive motor 39 is stopped by contacting the contact spring of the limit switch LS1. The amount of rotation of the rotary base 32 can be easily set by aligning the scale pointer 32B of the rotary base 32 with an arbitrary scale position of the scale scale 32C. As a result, the unevenness of baking can be finely adjusted with respect to the workpiece W, which is a variety of dough materials and the like disposed on the hot plate 2.
[0026]
(Convection heat adjustment mechanism 40)
Hereinafter, a specific configuration of the convection heat adjustment mechanism 40 in the oven apparatus according to the present invention will be described with reference to FIGS. 10 and 11. The convective heat adjustment mechanisms 40 arranged on the left and right inside the oven kiln 1 are provided to face the upper heat source 3 installation side, and the radiant heat is excessive from the upper heat source 3 toward the workpiece W on the hot plate 2. For example, the horizontal plate 46 formed by sticking asbestos to the surface of the mesh-shaped iron net plate to shield the radiant heat so that the radiant heat flux from the lower heat source 4 is combined with the radiant heat flux of the upper heat source 3. The adjustment plate 45 is configured to improve heat transfer to the workpiece W side on the hot plate 2 by causing convection.
[0027]
That is, a fixed base 42 for standing and arranging a gap having a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2 and for fixing the upper heat source 3 on the upper end is provided. With respect to the left and right partition walls 41 formed by mounting, the support frames 43 on the horizontally long strips are erected from the edge of the hot plate 2 located on the inner side, and the partition walls 41 and the support frames 43 By forming a gap between the lower heat source 4 and the lower heat source 4 for directly heating the heat plate 2 from the lower side, the lower heat source is guided by this gap to induce radiant heat to the upper side of the heat plate 2 after passing through the upper heat source 3. 4 radiant heat flow paths are formed. On the upper end side of the support frame 43, an L-shaped strip-shaped adjustment plate 45 comprising a horizontal surface portion 45A and a vertical surface portion 45B that can be fixed to be movable in the horizontal direction via adjustment screws 44 arranged on the left and right. Is arranged. Further, adjustment screws 44 are respectively attached to the left and right ends of the vertical surface portion 45B of the adjustment plate 45, and the horizontal plane portion 45A of the adjustment plate 45 is moved on the upper end side of the support frame 43 by twisting the adjustment screw 44 in the pushing direction. It can move in the direction close to the partition wall 41 side and close the radiant heat flow path of the lower heat source 4, and the horizontal plane 45 </ b> A of the adjustment plate 45 is partitioned at the upper end side of the support frame 43 by the twisting rotation of the adjustment screw 44 in the pulling direction. It is configured to be able to move away from the wall portion 41 in the direction in which the radiant heat flow path of the lower heat source 4 is expanded, and thereby, the heating power by the convection of the lower heat source 4 can be finely adjusted.
[0028]
Further, the horizontal plate 46 can be installed at an arbitrary height on the upper end of the support frame 43 via a bifurcated leg portion 47 provided on both ends of the lower edge of the horizontal plate 46. That is, on the left and right ends of the lower edge portion of the horizontal plate 46, an insertion groove 48 having a rectangular column shape and a slit width corresponding to the thickness of the support frame 43 is formed on the lower surface of the leg 47 at the lower end. Has been. A plurality of holes 48A for penetrating the anchor pin member 49 so as to penetrate the insertion groove 48 are formed on the side surface of the leg 47 in the vertical direction, thereby supporting the support frame. When the insertion groove 48 of the leg 47 is fitted into the upper end of 43, the support frame 43 is locked by the pin member 49. Therefore, when the installation height of the horizontal plate 46 with respect to the support frame 43 is appropriately changed, it is easily performed by selecting a plurality of holes 48A through which the pin members 49 are inserted. In addition, when the leg portion 47 of the horizontal plate 46 is fitted to the upper end of the support frame 43, concave portions 45C are provided on both sides of the horizontal plane portion 45A so that the horizontal plane portion 45A of the adjustment plate 45 does not become a barrier. Further, a scale pointer 41A is attached to the partition wall portion 41, while a scale scale 41B indicated by the pointer 41A is attached to the horizontal surface portion 45A of the adjustment plate 45.
[0029]
Next, in order to explain an example of use and operation of the embodiment configured as described above, as shown in FIG. 11, when adjusting the thermal power due to the convection of the lower heat source 4, when reducing the thermal power, Due to the twisting rotation of the adjusting screw 44 in the pushing direction, the horizontal surface portion 45A of the adjusting plate 45 moves close to the partition wall 41 side on the upper end side of the support frame 43 in the direction of closing the radiant heat flow path of the lower heat source 4. On the other hand, when the heating power is increased, the horizontal plane portion 45A of the adjustment plate 45 is separated from the partition wall portion 41 on the upper end side of the support frame 43 by the twisting rotation of the adjustment screw 44 in the pulling direction, and the radiant heat flow path of the lower heat source 4 is formed. Move in the direction of enlargement. As a result, the heat generated by the convection of the lower heat source 4 can be finely adjusted. Further, when the installation height of the horizontal plate 46 with respect to the support frame 43 is appropriately changed, one of the plurality of holes 48A is selected, and the pin member 49 is inserted therethrough before the horizontal plate 46 is inserted. The leg 47 may be fitted to the upper end of the support frame 43. In this way, the radiant heat to the workpiece W to be fired can be evenly distributed by closing or expanding the radiant heat flow path by the horizontal surface portion 45A of the adjustment plate 45, changing the installation height of the horizontal plate 46, etc. Since the workpiece W is not burned, the convection heat transfer system in accordance with the firing conditions can be formed in the oven kiln 1 by the convection heat transfer of the radiant heat from the upper and lower heat sources 3 and 4. On the other hand, no burning unevenness occurs.
[0030]
(Heat source cooling mechanism 50)
Hereinafter, a specific configuration of the heat source cooling mechanism 50 in the oven apparatus according to the present invention will be described with reference to FIGS. First, a case where a ceramic heater is employed as the upper heat source 3 will be described. That is, the heat source cooling mechanism 50 of the upper heat source 3 provided on the left and right inside the oven kiln 1 has a plurality of rectangular intake openings for taking outside air from a side surface air supply port 54C described later through a bottom surface side duct portion. A bottom surface portion 53 inside the oven kiln 1 having a portion 53A, and a side surface air supply port 54B formed by adhering a heat insulating material 54A inside and forming a plurality of small holes in the bottom surface portion 53 adjacent to each other in a horizontal row. The side wall portion 54 that forms the outer wall of the left and right side surfaces of the oven kiln 1, and the partition wall portion that has a gap of the required width with the side wall portion 54 and is arranged upright as a partition wall inside the oven kiln 1. 51, for example, four ceramic heaters serving as a plurality of upper heat sources 3 which are mounted and fixed in a stepped shape slightly inclined toward the inside of the oven kiln 1 at the upper end of the partition wall portion 51 and have a rectangular shape on the upper surface. Separated in the longitudinal direction A strip-shaped fixed base 52 and a ceiling-side vertical duct portion 55B formed by adjacently forming a plurality of rectangular hole portions 55A arranged from the outer edge end portion of the fixed base 52 directly above, and the ceiling A ceiling portion 55 inside the oven kiln 1 provided with a substantially trapezoidal hollow exhaust port 55C arranged in communication with the upper side of the side vertical duct portion 55B, a front wall portion 56 provided with an operation panel 56A of the oven kiln 1, and outside air Is provided with a substantially rectangular space-shaped cooling heat exchange chamber P surrounded by the back wall portion 57 having a substantially rectangular back surface air inlet 57A for taking in the air.
[0031]
Next, an example of use and operation of the embodiment configured as described above will be described. As shown in FIG. 12, the side wall portion 54 passes through the bottom surface side duct portion from the side surface air supply port 54A. Outside air is taken into the cooling heat exchange chamber P inside the oven kiln 1 through the intake opening 53 </ b> A of the bottom surface portion 53. At the same time, outside air is also taken into the cooling heat exchange chamber P inside the oven kiln 1 from the back surface air supply port 57 </ b> A of the back wall portion 57. The outside air taken into the cooling heat exchange chamber P is a portion on the lower surface side of the upper heat source 3, for example, in the case of a ceramic heater, after cooling the energized nichrome wiring portion, the warmed outside air rises while the ceiling portion The air is exhausted to the outside from the exhaust port 55C through the 55 vertical ceiling-side duct portion 55B. Thus, the cooling system utilizing the principle of natural convection prevents the life of the upper heat source 3 from decreasing due to the high temperature.
[0032]
FIG. 13 shows a case where an infrared Schwann burner or a gas burner is employed as the upper heat source 3 instead of the ceramic heater. That is, the life of the burner itself is extremely shortened when the temperature of the mixing tube 58 such as an infrared schwann burner or a gas burner disposed on the lower surface side of the upper heat source 3 becomes high. It is necessary to extend the life of the burner by cooling the mixing tube 58.
[0033]
Specifically, a cooling system using a so-called natural convection principle is used in which sufficient air is supplied to the primary air inlet 58A of the mixing pipe 58 after the outside of the main body is insulated. For example, the primary air intake 58A of the mixing tube 58 provided on the lower side of the infrared schwann burner or gas burner arranged on the fixed base 52 faces the back side air supply port 57A of the back wall 57. Then, outside air is taken into the cooling heat exchange chamber P inside the oven kiln 1 through the plurality of rectangular openings 53A of the bottom surface portion 53 from the side surface air supply port 54A of the side wall portion 54 through the bottom surface portion side duct portion. At the same time, outside air is also taken into the cooling heat exchange chamber P inside the oven kiln 1 from the back surface air supply port 57 </ b> A of the back wall portion 57. The outside air taken into the cooling heat exchange chamber P is sent to the primary air intake 58A of the mixing pipe 58 which is the lower surface side portion of the upper heat source 3 to cool the mixing pipe 58 itself, and then warmed outside air. Ascending, the air is exhausted to the outside from the exhaust port 55C through the ceiling-side vertical duct portion 55B of the ceiling portion 55. Thus, the cooling system using the principle of natural convection prevents the life of the upper heat source 3 from being reduced due to the high temperature.
[0034]
【The invention's effect】
Since the present invention is configured as described above, the position and direction of the upper heat source 3 can be arbitrarily finely adjusted to arbitrarily change the irradiation area of the upper heat source 3 to the reflecting member 17. The entire workpiece W can be irradiated evenly without causing uneven baking. Further, the heat storage rate and radiation efficiency of the reflecting member 17 can be improved, so that the entire workpiece W can be efficiently irradiated, and the convection heat due to radiation from the lower heat source 4 is adjusted. Therefore, it is possible to prevent only the lower part of the hot plate 2 from becoming an extremely high temperature state, thereby avoiding that only the lower surface of the workpiece W on the hot plate 2 is locally burned. In addition, an oven apparatus is provided in which a cooling system using natural convection is disposed behind the upper heat source 3 so that the back side portion of the upper heat source 3 can be cooled, thereby extending the life of the upper heat source 3. can do.
[0035]
That is, the near-infrared rays from the upper heat source 3 directed upward to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected and diffused and radiated on the hot plate 2 for heat treatment. The reflection mechanism 10 for performing the operation is supported by being inserted outside the support bar 16 supported along the front and rear of the oven kiln 1 by the support members 11 arranged symmetrically in the front and rear in the oven kiln 1. The reflecting member 17 is provided with a pipe member having a higher thermal conductivity and a higher thermal diffusivity than the support bar 16 so as to impart high heat storage and high radiation efficiency. Since the heat storage pipe material 18 whose specific heat is smaller than that of the pipe material and whose heat conductivity / thermal diffusivity is larger than that of the pipe material is inserted into the surface, the heat storage space state in the oven kiln 1 is maintained for a long time. On the hot plate 2 That the radiation heating efficiency by radiant heat against general workpiece W can be further improved as compared with the prior art.
[0036]
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In the oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the upper heat source 3 is selected so as to arbitrarily select the irradiation region of the upper heat source 3 on the reflecting member 17 of the reflecting mechanism 10. Is provided with uneven baking adjustment mechanisms 20 and 30 such as a sliding mechanism or a rotation mechanism, so that the position and direction of the upper heat source 3 can be easily finely changed to arbitrarily change the irradiation region of the upper heat source 3 to the reflecting member 17. It is possible to adjust, and it is possible to uniformly irradiate the entire workpiece W without causing uneven baking.
[0037]
The baking unevenness adjusting mechanism 20 by the sliding mechanism is fixed to the upper end of the partition wall portion 21 that is erected with a gap having a required width between the inner wall of the oven furnace 1 and the edge of the hot plate 2. Since the fixed base 22 and the plurality of upper heat sources 3 are fixedly arranged with the plurality of upper heat sources 3 being spaced apart from each other and are slidable back and forth on the fixed base 22, the upper heat source is provided. The position of the upper heat source 3 can be easily finely adjusted in the front-rear and horizontal directions so as to arbitrarily change the irradiation area of the reflecting member 17 by 3, and uneven baking or the like occurs on the entire workpiece W. Irradiation can be performed evenly.
[0038]
The baking unevenness adjustment mechanism 30 by the rotation mechanism has a hinge 33 at the upper ends of the left and right partition wall portions 31 that are arranged upright with a gap having a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2. The rotary base 32 is pivotally mounted so as to be rotatable through the base plate and is fixed in a state where a plurality of upper heat sources 3 are spaced apart on one side piece, and the radiant heat diffused and radiated from the reflecting member 17 is brought inward. A flexible partition plate 36 connected and arranged in a plurality of adjacent positions between an edge on one side piece of the rotating base 32 and the ceiling portion inside the oven kiln 1 to reflect the rotating base 32; 32, a rack gear 38 that is screwed so that the teeth are directed outwardly on the inside of the right-angled edge of 32, a drive motor 39 having a pinion gear 39A that meshes with the teeth of the rack gear 38, and the other side piece of the rotary base 32 Projection piece 3 extending at the edge of The upper limit and lower limit limit switches LS1, LS2 arranged on the movement locus of the projection piece 32A so that the stop control of the drive motor 39 is performed by the contact of the projection piece 32A with the rotation of the rotary base 32. Therefore, the irradiation direction of the upper heat source 3 is changed from a substantially horizontal state to a maximum inclined state between 90 ° and 45 °, for example, in order to arbitrarily change the irradiation region of the upper heat source 3 to the reflecting member 17. Fine adjustment can be easily performed, and the entire workpiece W can be irradiated uniformly without causing uneven baking.
[0039]
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In an oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the left and right sides of the hot plate 2 can be opened and closed to finely adjust the heat generated by the convection from the lower heat source 4. Since the convection heat adjustment mechanism 40 having the partition adjustment plate structure is provided, the convection heat due to the radiation from the lower heat source 4 can be easily adjusted, and only the lower part of the heat plate 2 can be prevented from becoming extremely hot. Thus, it can be avoided that only the lower surface of the workpiece W on the hot plate 2 is extremely burnt.
[0040]
The convective heat adjustment mechanism 40 is a fixed base that is erected with a gap of a required width between the inner wall of the oven kiln 1 and the edge of the hot plate 2 and the upper heat source 3 is placed and fixed at the upper end. By forming a gap between the left and right partition wall portions 41 formed by mounting 42 and the support frame 43 erected from the edge of the hot plate 2 located inside the partition wall portion 41, A radiant heat flow path of the lower heat source 4 is formed by this gap so as to induce radiant heat to the upper side of the heat plate 2 after passing through the upper heat source 3 with respect to the lower heat source 4 that directly heats the heat plate 2 from the lower side. The upper end of the support frame 43 provided to face the upper heat source 3 installation side so as to shield the radiant heat from the radiant heat toward the workpiece W side on the hot plate 2 at an arbitrary height. The horizontal plate 46 that can be erected and the radiant heat flux from the lower heat source 4 at the top It is combined with the radiant heat flux of the source 3 to generate convection, so that the heat transfer to the workpiece W side on the hot plate 2 is improved in the horizontal direction via the adjusting screw 44 on the upper end side of the support frame 43. Since the adjustment plate 45 is movably fixed, the adjustment plate 45A can be adjusted by twisting the adjustment screw 44 in the pushing direction when the thermal power is weakened when adjusting the thermal power due to the convection of the lower heat source 4. It can be easily moved in the direction of closing the radiant heat flow path of the lower heat source 4 in the vicinity of the partition wall 41 side on the upper end side of the support frame 43.
[0041]
On the other hand, when the heating power is strengthened, the adjusting plate 45 is moved away from the partition wall 41 on the upper end side of the support frame 43 by the twisting rotation of the adjusting screw 44 in the pulling direction to expand the radiant heat flow path of the lower heat source 4. Can be done easily. Further, the horizontal plate 46 capable of shielding the upper heat source 3 by appropriately changing the installation height with respect to the support frame 43 radiates heat from the upper heat source 3 toward the workpiece W on the heat plate 2. Excessive reaching can be prevented. Thus, by closing or expanding the radiant heat flow path by the adjustment plate 45, changing the installation height of the horizontal plate 46, the radiant heat to the workpiece W to be fired can be evenly dispersed, The burnt of the workpiece W can be prevented. In addition, the convection heat transfer accompanying the merging of the radiant heat flux from the upper and lower heat sources 3 and 4 makes the inside of the oven kiln 1 a convection heat transfer system according to the firing conditions, thereby preventing uneven baking on the workpiece W, etc. can do.
[0042]
The far infrared rays from the upper heat source 3 directed upward with respect to the workpiece W placed on the hot plate 2 in the oven kiln 1 are diffusely reflected by the reflecting mechanism 10 and diffusely radiated and heated on the hot plate 2. In an oven apparatus that performs processing and heats the hot plate 2 itself by the lower heat source 4 disposed below the hot plate 2, the outside air is sent into the oven kiln 1 from the air supply port provided on the rear or left and right sides of the oven kiln 1. Since the heat source cooling mechanism 50 for cooling the back side portions of the upper and lower heat sources 3 and 4 by natural convection is provided, the back side portion of the upper heat source 3 can be efficiently cooled by natural convection behind the upper heat source 3. The life of the upper heat source 3 can be extended.
[0043]
The heat source cooling mechanism 50 includes a bottom surface portion 53 inside the oven kiln 1 having an intake opening 53A for taking in outside air, a side wall portion 54 having a heat insulating material 54A attached inside and a side surface air supply port 54C, The side wall 54 has a gap of a required width and is relatively laid, and a partition wall 51 standing upright in the form of a partition inside the oven kiln 1, and slightly toward the inside of the oven kiln 1 at the upper end of the partition wall 51 A fixed base 52 in which the frame is fixed in an inclined stepped shape and the upper heat source 3 is spaced apart on the upper surface, and a plurality of holes 55A arranged from the outer edge end portion of the fixed base 52 directly upward. A ceiling portion 55 inside the oven kiln 1 provided with a ceiling-side vertical duct portion 55B formed adjacently and a substantially trapezoidal hollow exhaust port 55C communicating with the upper side of the ceiling-side vertical duct portion 55B, and the oven kiln 1 Equipped with an operation panel 56A Since the front wall portion 56 and the rear wall portion 57 having the rear portion air supply port 57A for taking in outside air are provided with the cooling heat exchange chambers P, the side surface portion of the side wall portion 54 is provided. Outside air is taken into the cooling heat exchange chamber P inside the oven kiln 1 through the intake opening 53A of the bottom surface portion 53 from the air supply port 54A, and at the same time, outside air also enters the oven kiln from the back surface air supply port 57A of the back wall portion 57. 1 is taken into the cooling heat exchange chamber P inside, and the portion on the lower surface side of the upper heat source 3 can be efficiently cooled by the outside air taken into the cooling heat exchange chamber P. Further, the warmed outside air can be easily exhausted to the outside from the exhaust port 55C via the ceiling-side vertical duct portion 55B of the ceiling portion 55 while rising. As a result, the back side portions of the upper and lower heat sources 3 and 4 themselves exposed to a high-temperature heating atmosphere can be efficiently cooled by natural convection without using a convection fan device or a cooling device using a refrigerant mechanism. The lifetime of the upper and lower heat sources 3 and 4 itself can be extended.
[0044]
Since the upper and lower heat sources 3 and 4 employ heat source members such as ceramic heaters and infrared schwann burners, the near infrared rays from the upper heat source 3 are diffusely reflected by the reflection mechanism 10 and diffused and radiated onto the heat plate 2 for heat treatment. It is possible to provide an oven apparatus that can enhance the heat storage effect of heating the hot plate 2 itself from below by the near infrared rays from the lower heat source 4 and can be easily maintained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the inside of an oven kiln of an oven device according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the inside of an oven kiln showing a different form of the tilted state of the upper heat source.
FIG. 3 is a schematic perspective view of the main part of the reflection mechanism.
FIG. 4 is an enlarged perspective view of a main part of a reflecting member in the reflecting mechanism.
FIGS. 5A and 5B show an embodiment of a burning unevenness adjusting mechanism using a sliding mechanism, in which FIG. 5A is a perspective view for explaining a sliding state, and FIG. 5B is a sectional view taken along line XX in FIG.
FIGS. 6A and 6B show an embodiment of a baking unevenness adjustment mechanism using a rotating mechanism when the upper heat source is a ceramic heater. FIG. 6A is a front view showing a state before the rotating operation, and FIG. It is a side view which shows a state.
FIG. 7 is a front view showing the state after the rotation operation.
8A and 8B show a form of a baking unevenness adjustment mechanism using a rotating mechanism when the upper heat source is an infrared schwann burner or a gas burner. FIG. 8A is a front view showing a state before a rotating operation, and FIG. FIG. 6 is a side view showing a state before a rotating operation.
FIG. 9 is a front view showing the state after the rotation operation.
FIG. 10 is a perspective view showing one embodiment of a convection heat adjustment mechanism inside the oven kiln of the oven device.
11 is a cross-sectional view of a portion A in FIG.
FIG. 12 is a perspective view showing one form of a heat source cooling mechanism inside the oven kiln when the upper heat source is a ceramic heater.
FIG. 13 is a perspective view showing one form of a heat source cooling mechanism inside the oven kiln when the upper heat source is an infrared schwann burner or a gas burner.
FIG. 14 is a schematic perspective view of the entire oven apparatus.
[Explanation of symbols]
1 ... Oven kiln 2 ... Hot plate
3 ... Upper heat source 4 ... Lower heat source
10 ... reflection mechanism 11 ... support member
12 ... Adhering piece 13 ... Connecting piece
14 ... Mounting support piece 15 ... Mounting part
16 ... support bar 17 ... reflecting member
18 ... Pipe material for heat storage W ... Workpiece
20: Unevenness adjustment mechanism by sliding mechanism
21 ... partition wall 22 ... fixed base
22A ... Scale scale 23 ... Sliding plate
23A ... Pointer 24 ... Fixing bracket
25 ... Screw hole 26 ... Long hole
27 ... Fixing screw
30 ... Unevenness adjustment mechanism by rotating mechanism
31 ... Partition wall 32 ... Rotating base
32A ... Projection piece 32B ... Pointer
32C ... Scale scale 33 ... Hinges
34 ... Fixing bracket 35 ... Chain member
36 ... Partition plate 37 ... Flange
38 ... Rack gear 39 ... Drive motor
39A ... pinion gear 39B ... flexible tube
LS1 ... Upper limit switch LS2 ... Lower limit switch
40 ... Convection heat adjustment mechanism
41 ... partition wall 41A ... pointer
41B ... Scale scale 42 ... Fixed base
43 ... Support frame 44 ... Adjustment screw
45 ... Adjustment plate 45A ... Horizontal plane
45B ... Vertical surface 45C ... Recess
46 ... Horizontal plate 47 ... Leg
48 ... Insertion groove 48A ... Hole
49. Pin member
50 ... Heat source cooling mechanism
51 ... Partition wall 52 ... Fixed base
53 ... Bottom 53A ... Intake opening
54 ... Side wall 54A ... Insulation
54B ... Side surface air supply port 55 ... Ceiling part
55A ... Hole 55B ... Ceiling side vertical duct
55C ... Exhaust port 56 ... Front wall
56A ... Control panel 57 ... Back wall
57A ... Back side air supply port 58 ... Mixing tube
58A ... Primary air intake P ... Heat exchange chamber for cooling
61 ... Opening / closing door

Claims (4)

オーブン窯内の熱板上に置かれた被加工物に対し上方に向けられている上部熱源からの遠近赤外線を反射機構によって乱反射させて熱板上に拡散放射して加熱処理を行ない、熱板下方に配置した下部熱源によって熱板自体を加熱するオーブン装置において、反射機構は、オーブン窯内の前後で対称的に配置形成した支持部材によってオーブン窯の前後に沿って支持される支持棒材と、この支持棒材外側に挿通されることで支持される反射部材とを備え、反射部材は、高蓄熱性・高輻射効率を付与すべく支持棒材に比し熱伝導率が大きく且つ熱拡散率の大きなパイプ材にて形成され、その内周面には比熱が当該パイプ材より小さく且つ熱伝導率・熱拡散率が当該パイプ材より大きな蓄熱用パイプ材が貫挿されて成ることを特徴とするオーブン装置。  The near infrared rays from the upper heat source directed upward to the workpiece placed on the hot plate in the oven kiln are diffusely reflected by the reflection mechanism and diffused and radiated on the hot plate to perform the heat treatment. In the oven apparatus that heats the hot plate itself by the lower heat source disposed below, the reflection mechanism includes a support bar that is supported along the front and rear of the oven kiln by the support members that are symmetrically arranged in the front and rear of the oven kiln. The reflecting member is supported by being inserted outside the supporting bar, and the reflecting member has a higher thermal conductivity and thermal diffusion than the supporting bar so as to provide high heat storage and high radiation efficiency. It is formed of a pipe material with a high rate, and a heat storage pipe material whose specific heat is smaller than that of the pipe material and whose heat conductivity / thermal diffusivity is larger than that of the pipe material is inserted in the inner peripheral surface. Oven . オーブン窯内の熱板上に置かれた被加工物に対し上方に向けられている上部熱源からの遠近赤外線を反射機構によって乱反射させて熱板上に拡散放射して加熱処理を行ない、熱板下方に配置した下部熱源によって熱板自体を加熱するオーブン装置において、反射機構の反射部材に対する上部熱源の照射領域を任意に選定するよう上部熱源には回転機構による焼きムラ調整機構を備えて成り、この回転機構による焼きムラ調整機構は、オーブン窯の内側壁と熱板の縁端部との間に所要幅の間隙を有して起立配置した左右の仕切壁部の上端に蝶番を介して回転可能となるように枢着され且つ一側片上に複数の上部熱源が離間配設した状態で固定された回転基台と、反射部材から拡散放射してきた輻射熱を内側に反射させるべく回転基台の一側片上の縁端部とオーブン窯内部の天井箇所との間に複数に隣接した状態で連結配置された可撓性を有する仕切板と、回転基台の直角縁部内側において歯部が外側に向くようにしてネジ固定されたラックギヤと、ラックギヤの歯部が噛合されるピニオンギヤを有する駆動モータと、回転基台の他側片上の縁端部に延設された突起片と、回転基台の回転に伴い突起片が当接することで駆動モータの停止制御を行なうよう当該突起片の移動軌跡上に配された上限・下限の両リミットスイッチとを備えて成ることを特徴とするオーブン装置。  The near infrared rays from the upper heat source directed upward to the workpiece placed on the hot plate in the oven kiln are diffusely reflected by the reflection mechanism and diffused and radiated on the hot plate to perform the heat treatment. In the oven apparatus that heats the hot plate itself by the lower heat source disposed below, the upper heat source is provided with a baking unevenness adjusting mechanism by a rotating mechanism so as to arbitrarily select an irradiation region of the upper heat source to the reflecting member of the reflecting mechanism, This rotating unevenness adjustment mechanism by the rotating mechanism is rotated via hinges at the upper ends of the left and right partition walls that are arranged upright with a gap of the required width between the inner wall of the oven kiln and the edge of the hot platen. A rotating base that is pivotally mounted so that it is possible and fixed with a plurality of upper heat sources spaced apart on one side piece, and a rotating base that reflects the radiant heat diffused and radiated from the reflecting member to the inside. On one side A flexible partition plate connected and arranged in a plurality of adjacent positions between the edge portion and the ceiling portion inside the oven kiln, and a tooth portion facing outside on a right side edge portion of the rotating base. A rack gear fixed with screws, a drive motor having a pinion gear meshed with a tooth portion of the rack gear, a protruding piece extending at an edge on the other side piece of the rotating base, and with the rotation of the rotating base An oven apparatus comprising: an upper limit switch and a lower limit switch arranged on a movement trajectory of the projecting piece so as to perform stop control of the drive motor when the projecting piece comes into contact. オーブン窯内の熱板上に置かれた被加工物に対し上方に向けられている上部熱源からの遠近赤外線を反射機構によって乱反射させて熱板上に拡散放射して加熱処理を行ない、熱板下方に配置した下部熱源によって熱板自体を加熱するオーブン装置において、熱板の左右両側には下部熱源からの対流による火力を微調整する開閉移動可能な仕切調整板構造の対流熱調整機構を備えて成り、この対流熱調整機構は、オーブン窯の内側壁と熱板の縁端部との間に所要幅の間隙を有して起立配置し且つ上端に上部熱源を載置固定した固定基台を装架配置させて成る左右の仕切壁部と、仕切壁部内側に位置する熱板の縁端部から起立配置させた支持フレームとの間に隙間を形成することで、熱板を下側から直接加熱する下部熱源に対し、上部熱源を通ってから熱板上側へ輻射熱を誘導すべくこの隙間によって下部熱源の輻射熱流路を形成し、上部熱源から熱板上の被加工物側へ向けて輻射熱が過度にならないように当該輻射熱を遮蔽すべく上部熱源設置側に対向して設けられた支持フレームの上端において任意の高さに架設変更可能な横垂板と、下部熱源からの輻射熱流束を上部熱源の輻射熱流束と合流させて対流を生じさせることで熱板上の被加工物側への熱伝達を向上させるよう支持フレームの上端側に調節ネジを介して水平方向に移動自在に固定可能とした調整板とから構成したことを特徴とするオーブン装置。  The near infrared rays from the upper heat source directed upward to the workpiece placed on the hot plate in the oven kiln are diffusely reflected by the reflection mechanism and diffused and radiated on the hot plate to perform the heat treatment. In the oven device that heats the hot plate itself with the lower heat source arranged below, the left and right sides of the hot plate are equipped with a convection heat adjustment mechanism with a partition adjustment plate structure that can be opened and closed to finely adjust the heat generated by convection from the lower heat source This convective heat adjustment mechanism is a fixed base in which an upper heat source is placed and fixed at the upper end with a gap having a required width between the inner wall of the oven kiln and the edge of the hot plate. By forming a gap between the left and right partition walls formed by mounting and the support frame placed upright from the edge of the heat plate located inside the partition wall, the lower side of the heat plate Pass the upper heat source against the lower heat source that heats directly from In order to induce radiant heat from the heat plate to the upper side of the heat plate, a radiant heat flow path of the lower heat source is formed by this gap, and the radiant heat is shielded so that the radiant heat does not become excessive from the upper heat source toward the workpiece on the heat plate. Convection is achieved by combining a horizontal plate that can be installed at an arbitrary height at the upper end of the support frame provided facing the upper heat source installation side, and the radiant heat flux from the lower heat source with the radiant heat flux of the upper heat source. It is composed of an adjustment plate that can be fixed to the upper end side of the support frame so as to be movable in the horizontal direction via an adjustment screw so as to improve heat transfer to the workpiece side on the hot plate. Oven device. 上下部熱源は、セラミックヒーター、赤外線シュバンクバーナー等の熱源部材を採用した請求項1乃至3のいずれか記載のオーブン装置。  The oven device according to any one of claims 1 to 3, wherein the upper and lower heat sources employ a heat source member such as a ceramic heater or an infrared Schwann burner.
JP2002045520A 2002-02-22 2002-02-22 Oven equipment Expired - Fee Related JP3701920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045520A JP3701920B2 (en) 2002-02-22 2002-02-22 Oven equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045520A JP3701920B2 (en) 2002-02-22 2002-02-22 Oven equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005019027A Division JP3920290B2 (en) 2005-01-27 2005-01-27 Oven equipment

Publications (2)

Publication Number Publication Date
JP2003235437A JP2003235437A (en) 2003-08-26
JP3701920B2 true JP3701920B2 (en) 2005-10-05

Family

ID=27784341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045520A Expired - Fee Related JP3701920B2 (en) 2002-02-22 2002-02-22 Oven equipment

Country Status (1)

Country Link
JP (1) JP3701920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247243A (en) * 2008-04-03 2009-10-29 Tokyo Gas Co Ltd Oven device
JP2009296957A (en) * 2008-06-16 2009-12-24 Kyuhan Kk Oven apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781317B2 (en) * 2007-06-14 2011-09-28 キュウーハン株式会社 Oven equipment
KR101543471B1 (en) 2009-03-04 2015-08-10 엘지전자 주식회사 Oven range
CN104542751A (en) * 2014-12-31 2015-04-29 广州焙欧机械设备有限公司 Far-infrared reflection device
CN114277237A (en) * 2021-12-28 2022-04-05 江苏百德特种合金有限公司 Heat treatment device for stainless steel bar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247243A (en) * 2008-04-03 2009-10-29 Tokyo Gas Co Ltd Oven device
JP4642872B2 (en) * 2008-04-03 2011-03-02 東京瓦斯株式会社 Oven equipment
JP2009296957A (en) * 2008-06-16 2009-12-24 Kyuhan Kk Oven apparatus

Also Published As

Publication number Publication date
JP2003235437A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
JP3701920B2 (en) Oven equipment
JP5753358B2 (en) Continuous rice cooker
JP3364475B2 (en) microwave
JP5859188B2 (en) Continuous rice cooker
JP5753360B2 (en) Continuous rice cooker
US9175859B2 (en) Burner assembly
JPH0776623B2 (en) Gas cooker for both oven and grill
JP2002243156A (en) Heating cooking apparatus
JP4781317B2 (en) Oven equipment
JP3920290B2 (en) Oven equipment
JP5346179B2 (en) Oven equipment
JP2018008076A (en) Continuous rice cooker
JP4317857B2 (en) Oven equipment
JP5215430B2 (en) Oven equipment
JP4642872B2 (en) Oven equipment
JP3839435B2 (en) Oven equipment
JP3639129B2 (en) Oven equipment
JP6196023B2 (en) Continuous rice cooker
KR100705067B1 (en) The mounting structure of round type bottom heater for electric oven
JP6106255B2 (en) Continuous rice cooker
JP6404967B2 (en) Continuous rice cooker
JP2001074249A (en) Oven toaster
JP5753359B2 (en) Continuous rice cooker
JP5166086B2 (en) Top-fired pottery
JP5583626B2 (en) Means to achieve uniformity of thermal power and temperature in the oven cabinet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Ref document number: 3701920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees