JP3700744B2 - Power supply phase loss detection circuit - Google Patents
Power supply phase loss detection circuit Download PDFInfo
- Publication number
- JP3700744B2 JP3700744B2 JP24703097A JP24703097A JP3700744B2 JP 3700744 B2 JP3700744 B2 JP 3700744B2 JP 24703097 A JP24703097 A JP 24703097A JP 24703097 A JP24703097 A JP 24703097A JP 3700744 B2 JP3700744 B2 JP 3700744B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- power supply
- loss detection
- phase loss
- detection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は交流電源の電源欠相検出回路に係り、特に、安価でしかも簡単に交流電源の欠相の有無を判定し、欠相を特定できる電源欠相検出回路に関する。
【0002】
【従来の技術】
従来の三相交流電源の電源欠相検出回路としては、例えば図4に示すようなものがある。図4において、本従来例の電源欠相検出回路は、U相、V相、W相の三相交流電源をP相、N相の直流電圧に変換するサイリスタ等のスイッチング素子を用いたコンバータ回路101と、コンバータ回路101の出力側に接続される平滑用のメインコンデンサ(図示せず)とを備えた回路に対して適用されるものであり、コンパレータ401〜403および3入力NANDゲート回路404を備えて構成されている。
本従来例の電源欠相検出回路は、U相、V相、W相の三相の相間全て(UW間,UV間およびVW間)にそれぞれコンパレータ401〜403を挿入して、各相間電圧を監視して欠相を検出するものである。より具体的には、U相、V相、W相の三相相互の電圧を全波整流等行って交流成分を除去するフィルタ回路(図示せず)を通して、何れかのコンパレータ401〜403が異常を検出したかについて論理和を取って欠相検出信号SCを生成するものである。尚、各コンパレータ401〜403の出力は、”L”レベルで異常検出を示す負論理信号であるため、論理和は3入力NANDゲート回路404によって求められることとなる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の電源欠相検出回路にあっては、三相の相間全てにコンパレータおよびフィルタ回路を必要とし、電源欠相検出回路を構成する部品点数が多く、回路コストがかかるという問題点があった。
本発明は、上記従来の問題点に鑑みてなされたものであって、安価でしかも簡単に交流電源の欠相の有無を判定し、欠相を特定できる電源欠相検出回路を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本願の請求項1に係る発明は、n相(nは正整数)の交流電源の欠相を検出する電源欠相検出回路において、
前記交流電源の出力電圧を整流する整流手段と、前記交流電源投入時における前記整流手段の出力電圧の立ち上がり時間を計測して、前記交流電源の何れかの相に異常があることを検出する欠相検出手段と、を有することを特徴とするものである。
また、請求項2に係る発明は、前記電源欠相検出回路において、
前記欠相検出手段は、前記整流手段の出力電圧をディジタル値に変換するアナログ/ディジタル変換手段と、前記アナログ/ディジタル変換手段の出力に基づいて、前記交流電源の投入から該交流電源の出力電圧が所定電圧に達するまでの時間を計測する計測手段と、を有し、前記計測手段の計測結果に基づいて、前記交流電源の何れかの相に異常があることを検出することを特徴とするものである。
以上のように、本発明の電源欠相検出回路では、欠相検出手段により、交流電源投入時における整流手段の出力電圧の立ち上がり時間を計測して、交流電源の何れかの相に異常があることを検出するようにしており、より具体的には、整流手段の出力電圧をアナログ/ディジタル変換手段によりディジタル値に変換し、該アナログ/ディジタル変換手段の出力に基づいて、交流電源の投入から該交流電源の出力電圧が所定電圧に達するまでの時間を計測手段によって計測し、該計測手段の計測結果に基づいて、交流電源の何れかの相に異常があることを検出するようにしているので、従って、交流電源電圧を整流して得た直流電圧は、例えばサーボドライブやインバータの電源として使用されるが、これらの装置においては、スイッチング素子の点弧制御等を行うための制御手段としてMPU(マイクロプロセッサ)等を具備しており、例えば、欠相検出手段の計測手段をソフトウェアタイマで、欠相検出手段における異常検出処理を当該MPU等によって実行されるプログラムによって実現することとすれば、欠相検出を行うために新たに付加すべき構成要素は、アナログ/ディジタル変換手段のみであり、従来の構成と比較して、部品点数を削減することができ、安価でしかも簡単に交流電源の欠相の有無を判定し、欠相を特定できる電源欠相検出回路を実現することができる。
【0005】
【発明の実施の形態】
以下、本発明の電源欠相検出回路の実施の形態について、図面を参照して詳細に説明する。
図1は本発明の一実施形態に係る電源欠相検出回路の構成図である。同図において、図4(従来例)と重複する部分には同一の符号を附する。
図1において、本実施形態の電源欠相検出回路は、U相、V相、W相の三相交流電源をP相、N相の直流電圧に変換する整流手段として、サイリスタ等のスイッチング素子を用いたコンバータ回路101と、コンバータ回路101の出力側に接続される平滑用のメインコンデンサ102とを備えた回路に対して適用されるものであり、P相、N相の直流電圧(PN間電圧VPN)をディジタル値に変換するA/D変換器103と、A/D変換器103から取り込まれるPN間電圧(ディジタル値)VPNに基づき、電源欠相検出処理プログラムにより、三相交流電源投入時におけるPN間電圧VPNの立ち上がり時間を計測して、三相交流電源の何れかの相に異常があることを検出するCPU104とを備えて構成されている。
図2には、三相交流電源に欠相が無い正常時と欠相が有る異常時におけるPN間電圧VPNの立ち上がり特性を例示する説明図を示す。同図に示すように、例えば、V相が断線等で欠相していると、三相交流電源は単相のみの接続となるので電源容量が1/3になることから、欠相が無い正常時におけるPN間電圧VPNの所定電圧VSに達するまでの立ち上がり時間TS’と比較して、欠相が有る異常時におけるPN間電圧VPNの立ち上がり時間Tf は、3倍の時間がかかることとなる。
CPU104における電源欠相検出処理プログラムは、このような欠相が無い正常時と欠相が有る異常時におけるPN間電圧VPNの立ち上がり特性の違いに着目したものであり、A/D変換器103の出力(PN間電圧VPN)に基づいて、三相交流電源の投入からPN間電圧VPNが所定電圧VSに達するまでの時間をソフトウェアタイマ等の計測手段によって計測し、該計測結果に基づいて、交流電源の何れかの相に異常があることを検出するものである。
図3に、電源欠相検出処理プログラムのフローチャートを示す。同図において、ステップS301で三相交流電源が投入されると、ステップS302でソフトウェアタイマの値Tmがリセットされる。
次に、ステップS303およびS304では、A/D変換器103からPN間電圧VPNを所定時間間隔ごとに取り込んで、該PN間電圧VPNが所定電圧VSを越えたか否かを判断する。このステップS303およびS304の処理は、PN間電圧VPNが所定電圧VSを越えるまで、繰り返し行われる。
ステップS304において、PN間電圧VPNが所定電圧VSを越えると、ステップS305に進んで、ソフトウェアタイマの値Tmを取り込んで、ステップS306で、該ソフトウェアタイマの値Tmを所定時間TSと比較する。ここで、所定時間TSは、欠相が無い正常時におけるPN間電圧VPNの所定電圧VSに達するまでの立ち上がり時間TS’より少し大きい値が設定されている。
すなわち、ステップS306の比較判断で、ソフトウェアタイマの値Tmが所定時間TSより小さければ、三相交流電源は欠相が無い正常な状態であると判定され(ステップS307)、また、ソフトウェアタイマの値Tmが所定時間TSより大きければ、三相交流電源には欠相が有り異常な状態であると判定される(ステップS308)。
U相、V相、W相の三相交流電源電圧をコンバータ回路101によって整流して得た直流電圧(PN間電圧VPN)は、例えば、サーボドライブやインバータの電源として使用されるが、これらの装置においては、スイッチング素子(インバータ等)の点弧制御などを行うための制御手段としてCPU等を既に具備しており、本実施形態のように、欠相検出手段の計測手段をソフトウェアタイマで、欠相検出手段における異常検出処理を当該CPU等によって実行されるプログラムによって実現することとすれば、欠相検出を行うために新たに付加すべき構成要素は、A/D変換器103のみであり、従来の構成と比較して、部品点数を削減することができ、安価でしかも簡単に交流電源の欠相の有無を判定し、欠相を特定できる電源欠相検出回路を実現することができる。
また、サーボドライブやインバータの装置においては、整流後のPN間電圧VPNは、レギュレーションのため、すなわち、モータの回生エネルギーの発生によって電圧が一定以上になると抵抗を通じて放電させる必要があることから、常に監視される構成となっている。このようなPN間電圧VPNの監視機能は、従来の電源欠相検出回路と同様にコンパレータによって実現されていた。本実施形態では、A/D変換器103の出力を取り込むことにより、常時、PN間電圧VPNを監視することが可能である。すなわち、本実施形態の構成によれば、電源欠相検出のみならずPN間電圧VPNの常時監視も可能であり、結果として、装置全体の部品点数を削減することができ、装置の低コスト化を図ることができる。
【0006】
【発明の効果】
以上説明したように、本発明の電源欠相検出回路によれば、欠相検出手段により、交流電源投入時における整流手段の出力電圧の立ち上がり時間を計測して、交流電源の何れかの相に異常があることを検出することとし、特に、整流手段の出力電圧をアナログ/ディジタル変換手段によりディジタル値に変換し、該アナログ/ディジタル変換手段の出力に基づいて、交流電源の投入から該交流電源の出力電圧が所定電圧に達するまでの時間を計測手段によって計測し、該計測手段の計測結果に基づいて、交流電源の何れかの相に異常があることを検出することとしたので、例えば、欠相検出手段の計測手段をソフトウェアタイマで、欠相検出手段における異常検出処理をMPU等によって実行されるプログラムによって実現することとすれば、MPU等は整流手段の出力電圧を利用するシステムの制御等を行うために既に備えられていることが多いことから、欠相検出を行うために新たに付加すべき構成要素は、アナログ/ディジタル変換手段のみであり、従来の構成と比較して部品点数を削減することができ、安価でしかも簡単に交流電源の欠相の有無を判定し、欠相を特定できる電源欠相検出回路を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電源欠相検出回路の構成図である。
【図2】三相交流電源に欠相が無い(正常)時と欠相がある(異常)時におけるPN間電圧の立ち上がりを例示する説明図である。
【図3】実施形態のCPUにおける電源欠相検出処理を説明するフローチャートである。
【図4】従来の電源欠相検出回路の構成図である。
【符号の説明】
101 コンバータ回路(整流手段)
102 メインコンデンサ
103 A/D変換器(アナログ/ディジタル変換手段)
104 CPU(欠相検出手段,計測手段)
401〜403 コンパレータ
404 3入力NANDゲート回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply phase loss detection circuit for an AC power supply, and more particularly, to a power supply phase loss detection circuit that can easily determine whether or not an AC power supply has a phase loss and can identify the phase loss.
[0002]
[Prior art]
An example of a conventional power supply phase loss detection circuit for a three-phase AC power supply is shown in FIG. In FIG. 4, the power supply phase loss detection circuit of this conventional example is a converter circuit using a switching element such as a thyristor for converting a U-phase, V-phase, and W-phase three-phase AC power source into P-phase and N-phase DC voltages. 101 and a circuit having a smoothing main capacitor (not shown) connected to the output side of the
The power supply phase loss detection circuit of this conventional example inserts comparators 401 to 403 between all three phases of U phase, V phase, and W phase (between UW, UV, and VW), respectively. It monitors and detects open phases. More specifically, one of the comparators 401 to 403 malfunctions through a filter circuit (not shown) that removes an AC component by full-wave rectifying the U-phase, V-phase, and W-phase voltages. The phase loss detection signal SC is generated by calculating the logical sum of whether the signal is detected. Since the outputs of the comparators 401 to 403 are negative logic signals indicating abnormality detection at the “L” level, the logical sum is obtained by the three-input NAND gate circuit 404.
[0003]
[Problems to be solved by the invention]
However, the above-described conventional power supply phase loss detection circuit requires a comparator and a filter circuit between all three phases, so that the number of components constituting the power supply phase loss detection circuit is large and the circuit cost is high. there were.
The present invention has been made in view of the above-described conventional problems, and is intended to provide a power supply phase loss detection circuit that can easily determine whether there is a phase loss in an AC power source at low cost and identify the phase loss. It is aimed.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, an invention according to
Rectification means for rectifying the output voltage of the AC power supply and measurement of the rise time of the output voltage of the rectification means when the AC power supply is turned on to detect that any phase of the AC power supply is abnormal And a phase detection means.
According to a second aspect of the present invention, in the power supply phase loss detection circuit,
The phase loss detection means includes an analog / digital conversion means for converting the output voltage of the rectification means into a digital value, and the output voltage of the AC power supply from the input of the AC power supply based on the output of the analog / digital conversion means. Measuring means for measuring a time until the voltage reaches a predetermined voltage, and detecting that there is an abnormality in any phase of the AC power source based on a measurement result of the measuring means Is.
As described above, in the power supply phase loss detection circuit of the present invention, the phase loss detection unit measures the rise time of the output voltage of the rectification unit when the AC power supply is turned on, and any phase of the AC power supply is abnormal. More specifically, the output voltage of the rectifying means is converted into a digital value by the analog / digital conversion means, and the AC power supply is turned on based on the output of the analog / digital conversion means. The time until the output voltage of the AC power supply reaches a predetermined voltage is measured by the measuring means, and based on the measurement result of the measuring means, it is detected that any phase of the AC power supply is abnormal. Therefore, the DC voltage obtained by rectifying the AC power supply voltage is used, for example, as a power supply for a servo drive or an inverter. In these devices, a switching element is used. An MPU (microprocessor) or the like is provided as a control means for performing the ignition control or the like. For example, the measurement means of the phase loss detection means is a software timer, and the abnormality detection processing in the phase loss detection means is performed by the MPU or the like. If it is realized by a program executed by, the only component that needs to be newly added to perform phase loss detection is analog / digital conversion means, and the number of parts is reduced compared to the conventional configuration. Therefore, it is possible to realize a power supply phase loss detection circuit that can determine the phase loss of the AC power supply easily and at low cost, and can identify the phase loss.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a power supply phase loss detection circuit of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a power supply phase loss detection circuit according to an embodiment of the present invention. In the figure, the same reference numerals are given to the portions overlapping with FIG. 4 (conventional example).
In FIG. 1, the power supply phase loss detection circuit of this embodiment uses a switching element such as a thyristor as a rectifying means for converting a U-phase, V-phase, and W-phase three-phase AC power source into P-phase and N-phase DC voltages. The present invention is applied to a circuit including the
FIG. 2 is an explanatory diagram illustrating the rising characteristics of the inter-PN voltage VPN when the three-phase AC power supply has no phase failure and when there is a phase failure. As shown in the figure, for example, if the V phase is lost due to a disconnection or the like, the three-phase AC power supply is connected to only a single phase, so the power supply capacity becomes 1/3, so there is no missing phase. The rise time Tf of the PN voltage VPN at the time of abnormality with a phase failure takes three times as long as the rise time TS 'until the predetermined voltage VS of the PN voltage VPN at the normal time is reached. .
The power supply phase loss detection processing program in the CPU 104 pays attention to the difference in the rising characteristics of the inter-PN voltage VPN between the normal state without such a phase loss and the abnormality with the phase loss. Based on the output (inter-PN voltage VPN), the time from when the three-phase AC power supply is turned on until the inter-PN voltage VPN reaches the predetermined voltage VS is measured by a measuring means such as a software timer. It detects that there is an abnormality in any phase of the power supply.
FIG. 3 shows a flowchart of the power supply phase loss detection processing program. In the figure, when the three-phase AC power is turned on in step S301, the software timer value Tm is reset in step S302.
Next, in steps S303 and S304, the inter-PN voltage VPN is taken from the A / D converter 103 at predetermined time intervals, and it is determined whether or not the inter-PN voltage VPN exceeds the predetermined voltage VS. The processes in steps S303 and S304 are repeated until the inter-PN voltage VPN exceeds the predetermined voltage VS.
In step S304, when the inter-PN voltage VPN exceeds the predetermined voltage VS, the process proceeds to step S305, and the software timer value Tm is fetched. In step S306, the software timer value Tm is compared with the predetermined time TS. Here, the predetermined time TS is set to a value slightly larger than the rising time TS ′ until the predetermined voltage VS of the inter-PN voltage VPN is reached when there is no phase loss.
That is, if the software timer value Tm is smaller than the predetermined time TS in the comparison determination in step S306, it is determined that the three-phase AC power supply is in a normal state with no phase loss (step S307). If Tm is larger than the predetermined time TS, it is determined that the three-phase AC power supply is in an abnormal state with a phase failure (step S308).
The DC voltage (inter-PN voltage VPN) obtained by rectifying the U-phase, V-phase, and W-phase three-phase AC power supply voltages by the
Also, in servo drive and inverter devices, the rectified PN voltage VPN must always be discharged through a resistor for regulation, that is, when the voltage exceeds a certain level due to the generation of regenerative energy of the motor. It is configured to be monitored. Such a monitoring function of the inter-PN voltage VPN is realized by a comparator as in the conventional power supply phase loss detection circuit. In the present embodiment, it is possible to constantly monitor the PN voltage VPN by taking in the output of the A / D converter 103. That is, according to the configuration of the present embodiment, not only the power supply phase loss detection but also the PN voltage VPN can be constantly monitored. As a result, the number of parts of the entire apparatus can be reduced, and the cost of the apparatus can be reduced. Can be achieved.
[0006]
【The invention's effect】
As described above, according to the power supply phase loss detection circuit of the present invention, the phase loss detection unit measures the rise time of the output voltage of the rectification unit when the AC power supply is turned on, and sets it to any phase of the AC power supply. In particular, an abnormality is detected, and in particular, the output voltage of the rectifying means is converted into a digital value by the analog / digital conversion means, and the AC power supply is turned on based on the output of the analog / digital conversion means. The time until the output voltage reaches a predetermined voltage is measured by the measuring means, and based on the measurement result of the measuring means, it is determined that there is an abnormality in any phase of the AC power supply. If the measurement means of the phase loss detection means is realized by a software timer and the abnormality detection processing in the phase loss detection means is realized by a program executed by an MPU or the like. Since MPUs and the like are often already provided to control the system that uses the output voltage of the rectifier, the component that should be newly added to detect the phase loss is analog / digital conversion. Provided is a power supply phase loss detection circuit that can reduce the number of parts compared to the conventional configuration, can easily determine whether there is a phase loss in an AC power source, and can identify the phase loss. be able to.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power supply phase loss detection circuit according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating the rise of the voltage between PN when there is no phase loss (normal) and when there is a phase failure (abnormal) in the three-phase AC power supply;
FIG. 3 is a flowchart illustrating power supply phase loss detection processing in the CPU according to the embodiment.
FIG. 4 is a configuration diagram of a conventional power supply phase loss detection circuit.
[Explanation of symbols]
101 Converter circuit (rectifying means)
102 Main capacitor 103 A / D converter (analog / digital conversion means)
104 CPU (phase loss detection means, measurement means)
401-403 Comparator 404 3-input NAND gate circuit
Claims (2)
前記交流電源の出力電圧を整流する整流手段と、
前記交流電源投入時における前記整流手段の出力電圧の立ち上がり時間を計測して、前記交流電源の何れかの相に異常があることを検出する欠相検出手段と、を有することを特徴とする電源欠相検出回路。In a power supply phase loss detection circuit that detects phase loss of an n-phase (n is a positive integer) AC power source,
Rectifying means for rectifying the output voltage of the AC power supply;
And a phase failure detecting means for measuring a rise time of the output voltage of the rectifying means when the AC power is turned on and detecting that any phase of the AC power is abnormal. Phase loss detection circuit.
前記欠相検出手段は、
前記整流手段の出力電圧をディジタル値に変換するアナログ/ディジタル変換手段と、
前記アナログ/ディジタル変換手段の出力に基づいて、前記交流電源の投入から該交流電源の出力電圧が所定電圧に達するまでの時間を計測する計測手段と、を有し、
前記計測手段の計測結果に基づいて、前記交流電源の何れかの相に異常があることを検出することを特徴とする請求項1記載の電源欠相検出回路。In the power supply phase loss detection circuit,
The phase loss detection means includes
Analog / digital conversion means for converting the output voltage of the rectifying means into a digital value;
Measuring means for measuring the time from when the AC power supply is turned on until the output voltage of the AC power supply reaches a predetermined voltage, based on the output of the analog / digital conversion means;
2. The power supply phase loss detection circuit according to claim 1, wherein an abnormality is detected in any phase of the AC power supply based on a measurement result of the measurement means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24703097A JP3700744B2 (en) | 1997-09-11 | 1997-09-11 | Power supply phase loss detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24703097A JP3700744B2 (en) | 1997-09-11 | 1997-09-11 | Power supply phase loss detection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1183921A JPH1183921A (en) | 1999-03-26 |
JP3700744B2 true JP3700744B2 (en) | 2005-09-28 |
Family
ID=17157371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24703097A Expired - Fee Related JP3700744B2 (en) | 1997-09-11 | 1997-09-11 | Power supply phase loss detection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3700744B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4741366B2 (en) * | 2005-12-28 | 2011-08-03 | 東芝シュネデール・インバータ株式会社 | Phase loss detection device and load drive device |
CN201811997U (en) | 2007-11-13 | 2011-04-27 | 艾默生环境优化技术有限公司 | Three-phase detection equipment |
CN113793461B (en) * | 2021-09-16 | 2022-11-04 | 中磊电子(苏州)有限公司 | Video doorbell and automatic setting method thereof |
-
1997
- 1997-09-11 JP JP24703097A patent/JP3700744B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1183921A (en) | 1999-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006109583A (en) | Protection method for power circuit, and its device | |
KR101235183B1 (en) | Fault-tolerant control apparatus under the open-circuit fault condition of 3-phase AC/DC PWM converter and method thereof | |
JP2011101473A (en) | Power unit for motor drive | |
JP3700744B2 (en) | Power supply phase loss detection circuit | |
JP3229520B2 (en) | Phase rotation abnormality detection device | |
WO2021049230A1 (en) | Power conversion device and method for controlling power conversion device | |
JP4487155B2 (en) | Protection device for PWM cycloconverter | |
JP3800391B2 (en) | Phase loss detection method and circuit of voltage source inverter device. | |
JP2003230275A (en) | Protection method for pwm cycloconverter | |
JP2001218474A (en) | Method and apparatus for detecting ground fault of inverter | |
JP3883054B2 (en) | Converter device | |
JP6344558B2 (en) | Fault detection device for semiconductor power converter | |
JP2005045914A (en) | Inverter device | |
JP2004056893A (en) | Fault detection method for power converter | |
JP5631200B2 (en) | Synchronous motor control device and synchronous generator control device | |
JP5294953B2 (en) | Control device for three-phase AC electric vehicle and control method for three-phase AC electric vehicle | |
JP2004088861A (en) | Power conversion device | |
JPH0843453A (en) | Voltage drop detection circuit | |
JP2020043672A (en) | Inverter controller | |
JP3978902B2 (en) | Ozone generator short circuit detection circuit | |
JP2019213303A (en) | Electric power conversion device | |
US10581350B2 (en) | Synchronous machine control device and method of controlling the synchronous machine control device | |
JP2002247895A (en) | Power output device, abnormality detection device therefor, and abnormality detection method | |
JPH10304554A (en) | Malfunction detector and protective device for ac-to-dc converter | |
JP2002272181A (en) | Power conversion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050705 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |