JP3700521B2 - Road guard fence post - Google Patents

Road guard fence post Download PDF

Info

Publication number
JP3700521B2
JP3700521B2 JP2000044573A JP2000044573A JP3700521B2 JP 3700521 B2 JP3700521 B2 JP 3700521B2 JP 2000044573 A JP2000044573 A JP 2000044573A JP 2000044573 A JP2000044573 A JP 2000044573A JP 3700521 B2 JP3700521 B2 JP 3700521B2
Authority
JP
Japan
Prior art keywords
roadway
base
support
main body
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000044573A
Other languages
Japanese (ja)
Other versions
JP2001234515A (en
Inventor
聰 三上
亘保 萩沢
公志 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2000044573A priority Critical patent/JP3700521B2/en
Publication of JP2001234515A publication Critical patent/JP2001234515A/en
Application granted granted Critical
Publication of JP3700521B2 publication Critical patent/JP3700521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車道の路肩における地覆や車道間の中央分離帯に沿って配置される車道用防護柵に用いる支柱に関する。
【0002】
【従来の技術】
車道用防護柵は、自動車が誤って衝突しても、乗用者の安全を図り且つその車体が車道の外に飛び出す事態を防ぐため、衝突エネルギを吸収すると共に破断しないことが求められる。このため、車道用防護柵の支柱は、自動車が衝突する横梁と共に或る程度の範囲で塑性変形する機能が求められる。
係る塑性変形を可能とするため、従来における車道用防護柵の支柱70は、図7(A)に示すように、車道Rの路肩における地覆T上に、アンカーボルト79により下端のベース71を固定して立設されている。支柱70はアルミニウム合金からなる一体の鋳造材で、図7(B)に示すように、ベース71上で車道R側に面した厚肉のフランジ72と、その反対側で薄肉のフランジ76と、これらの中央を直角に結合するウェブ75とからなる水平断面が略H字形状を有する。
【0003】
図7(A)に示すように、車道R側のフランジ72は、側面視で細長い略S字形状を呈し、その中間と上端に略半円形の支持部73,74を有する。この支持部73,74には、アルミニウム合金の押出形材からなる断面略楕円形の横梁78a,78bが図示しないボルト・ナットにより固定されている。尚、受け部73の上部とフランジ72との間には、補強用のステイ73aが設けてある。
また、背面側のフランジ76も側面視で細長い略S字形状を呈すると共に、下部に座屈誘発用の凹部77を有する。且つ、フランジ76の上端は、上記受け部74の一部を形成すると共に、その背面に補強用のフィン74aを有する。
【0004】
そして、図7(A)に示すように、自動車が横梁78a,78bに衝突した場合、支柱70には略水平な荷重Pが加わる。この際、支柱70は、前記背面側の凹部77近傍のウェブ75を座屈させ、全体として図7(A)で左側に傾くようにして塑性変形する。その結果、支柱70の上端は、衝突エネルギを吸収しながら少なくとも300mm左側に水平移動するが、下端のベース71は各アンカーボルト79によって地覆T上に強固に固定されている。これにより、衝突した自動車に過度の衝撃を与えず、且つ車道Rの外側に飛び出す事態を防ぐことが可能となる(特公昭60−7088号公報参照)。
【0005】
【発明が解決すべき課題】
しかしながら、上記のような支柱70は、凹部77近傍のウェブ75により生じる座屈に、衝突エネルギの吸収を依存している。このため、支柱70を例えば鋳造法により製造した場合、この製法によって生じる形状誤差により、吸収エネルギにバラ付きが生じ易い。従って、高い寸法精度を有しないと、衝突の際における塑性変形がスムースに行われない場合がある、という問題があった。
また、支柱70は、図7(A)に示すように、前記凹部77を背面側の下部に必須とし、側面視で略S字形状のデザインにせざるを得ず、防護柵を設置する場所毎の景観に応じた任意のデザインを有する支柱にし難い、という問題もあった。
更に、設計変更に際して、従来の支柱70のような構造では、エネルギ吸収を座屈に依存するため、設計時に正確なエネルギ吸収性能を予測することが困難であった。このため、試行錯誤により種々の試験体に対する破壊試験を繰り返すことにより、支柱の形状やサイズを決定する必要があった。
しかも、前記支柱70では車道間に挟まれた幅の狭い中央分離帯にて、両側の車道に沿った横梁を支持する防護柵の支柱には、適用しにくい難点があった。
【0006】
【課題を解決するための手段】
本発明は、以上において説明した従来の技術における問題点を解決し、衝突の際における塑性変形が常にスムースに行われると共に、設置する場所の景観に応じたデザインを容易に適用でき、且つ上述したような中央分離帯にも設置が容易な車道用防護柵の支柱を提供する、ことを課題とする。
【0007】
本発明は、上記の課題を解決するため、自動車を走行する車両が誤って横梁に衝突した際、係る横梁を支持する支柱本体が座屈変形することなく、その支柱のベースの塑性変形により、支柱全体が車道と反対側に傾くようにする、ことに着想して成されたものである。
即ち、本発明の車道用防護柵の支柱(請求項1)は、車道に沿った地覆又は中央分離帯上に立設され、係る地覆等に配設されたアンカーボルトにより固定されるベースと、上記ベース上に一体に形成され且つ車道側に横梁の支持部を有する支柱本体とからなり、上記支柱本体は、その水平断面が略T字形又は略H字形を呈する一つ又は一対のフランジとその中央に直角に接続するウェブとからなり、車道側に位置する上記フランジに上記横梁の支持部が形成されていると共に上記ベースに穿孔されるアンカーボルトの貫通孔は、上記支柱本体を形成するウェブ下端の両側に対称に形成され、上記支柱本体を形成するフランジ下端の左右先端部の外側に位置しており、上記横梁に車両が衝突した際、上記支柱本体の座屈変形に依存することなく全体が車道と反対側に傾くように、上記ベースが塑性変形する、ことを特徴とする。
尚、本明細書において「支柱本体の座屈変形に依存することなく」とは、ベースの塑性変形と共に、座屈によらずに支柱本体が塑性変形して衝突エネルギを吸収するものも含んでいる。
【0008】
これによれば、横梁に車両が衝突してもベースが塑性変形することにより、支柱本体の座屈変形に依存することなく支柱全体が車道と反対側に傾くため、衝突した自動車に過度の衝撃を与えず且つ車道の外側に飛び出す事態を防ぐことが可能となる。更に、支柱本体はある程度の剛性を有すれば、高欄を設置する場所の景観に応じた任意のデザインにできると共に、車道間に挟まれた幅の狭い中央分離帯において、両側の車道に沿って各車道寄りに位置する横梁を支持する防護柵の支柱にも適用することができる。
しかも、支柱本体が前記フランジとウェブとからなり、係るフランジに横梁の支持部が形成されているため、支柱本体にある程度の剛性を与えつつ、任意のデザインを適用することも容易となる
加えて、アンカーボルトの貫通孔が前記位置に穿孔されているため、ベースにおいて支柱本体の下端を挟んで対称に形成されるボルトの貫通孔の位置に応じて、ベースにおける車道側寄りの付近全体が持ち上がるように塑性変形するか、又は、ベースにおける車道側寄りで且つ支柱本体の下端付近のみが塑性変形するか、を設計段階から容易に設定できる従って、上記ボルトの貫通孔の位置を選択することにより、支柱本体のデザインやサイズに応じ、且つ所要の変形量を容易に確保することも可能となる
【0009】
また、前記ベースの板厚は、26〜34mmである、車道用防護柵の支柱(請求項2)も含まれる
更に、前記ベースに穿孔されるアンカーボルトの貫通孔は、前記支柱本体を形成するウェブ下端の左右先端部の両外側に複数個が対称に形成され、係る貫通孔間の中心間距離は、200〜240mmである、車道用防護柵の支柱(請求項3)も含まれるこれらによれば、前記効果を具体的に得ることが可能となる
【0010】
尚、前記ベースには、平面視で正方形を含む矩形の他、車道側を長辺とし且つ反対側を短辺とすると共に、係る短辺の両側に位置する傾斜辺が対称な平面視で台形状のものも含まれる
また、前記防護柵の横梁は車道に沿って互いに平行な2本又は3本以上の他、支柱の上端に支持される1本のみの形態も含まれ、その数に応じて支柱の上記支持部が形成される
【0011】
また、前記支柱の素材には、アルミニウム合金の他、鉄や鋼を用いることができ、その製造方法も金型鋳造や砂型鋳造により、支柱本体部分とベース部分とを一体に成形する他、これらを別々に成形した後で溶接により一体化する方法も含まれる。しかし、本発明の支柱の好ましい素材として、アルミニウム合金を用いることが、耐食性に優れ且つ塗装等のメンテナンスが不要であると共に、軽量なため現場での設置工事における作業性の点でも望ましい。
【0012】
そこで、前記支柱の素材であるアルミニウム合金が、Al−Mg系合金であり、具体的にはMgを2.5〜3.5wt%含む鋳物用アルミニウム合金であり、より一層具体的には、Mg2.5〜3.5wt%、Si0.1wt%以下、Fe0.20wt%以下、Ti0.05〜0.2wt%、B0.0007〜0.01wt%、Cu0.1wt%以下、Na0.001wt%以下、Be0.001〜0.005wt%を含み、上記Si,Fe,Cu,Naを除く不純物の合計が0.1wt%以下で、且つTi/Bが30以下であり、残部Alからなる靭性及び耐食性に優れた非熱処理型の鋳物用アルミニウム合金である、車道用防護柵の支柱(請求項4〜6)も本発明に含まれる。
これによれば、砂型鋳造品で15.4%、金型鋳造品で30%の伸びを有し、前述したベースの塑性変形と、支柱本体の剛性を確保しつつ破断しないという優れた靭性と共に、高い耐食性を支柱に与えることができるため、係る支柱を含む防護柵全体における耐久性を高められ、且つ乗用者等の安全を長期間に渉って図ることが可能となる。
【0013】
上記アルミニウム合金における各添加元素の範囲は、以下の理由に基づく。
Mgは非熱処理型で強度を得るのに必須の元素であり、添加量が2.5wt%未満では引張強度や耐力を十分得られなくなり、一方、添加量が3.5wt%を越えると強度が十分でも伸び及び衝撃値が低下し始めるので、これらを除いた上記範囲としたものである。Mgの好ましい範囲は2.7〜3.3wt%である。
Tiは機械的性質を改善する元素であり、添加量が0.05wt%未満では係る効果が十分に得られず、一方、添加量が0.2wt%を越えるとTi−Al系の巨大な金属間化合物が析出する等により靭性が低下し始めるので、これらを除いた上記範囲としたものである。十分な耐衝撃性を発揮し得るTiの好ましい範囲は0.10〜0.15wt%である。特に、Bが0.0007〜0.01wt%の範囲で併存していると、機械的性質が著しく改善され、本発明のような大きな支柱を鋳造した際に強度を高めることができる。しかし、Ti/B(比)が30を越えると効果が飽和乃至減衰するため、Ti/Bを30以下に限定したものである。
【0014】
Siを0.1wt%以下とし、且つFeを0.20wt%以下としたのは、これらの値を超えて添加すると、両者共に伸びと衝撃値を低下させるので、これらを防ぐべくそれぞれ上限を規定した。好ましい添加範囲は、Siでは0.05wt%以下、Feでは0.15wt%以下である。
Cuを0.1wt%以下としたのは、0.1wt%を越えて添加すると耐食性が急速に低下し始めるので、これを防ぐためである。
Naはアルミニウム合金を溶解、溶製、及び鋳造する過程で使用するフラックスから侵入するが、0.001wt%を越えると結晶粒界に偏析することにより、粒界を脆化させて靭性を著しく低下させるので、0.001wt%以下とした。
Beは溶湯中に添加されると溶解、溶製、及び鋳造工程でMgよりも優先的に大気と反応して緻密な酸化被膜を湯面上に形成し、これによりMgの酸化損失を抑制するために添加される。しかし、Beが0.001wt%未満では上記効果が十分に得られず、一方、0.005wt%を越えるとBe自体の酸化が激しくなり作業環境の上から好ましくないため、これらを除いた前記範囲とした。
【0015】
【発明の実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1(A)は、本発明の支柱6,6を含む車道用防護柵1を車道R側から見た状態を示す。防護柵1は、車道Rの路肩に沿った地覆Tの長手方向に沿って立設した複数の支柱6,6と、これらに支持される上下一対の横梁2,3とからなる。
図1(A)及び(B)に示すように、上下一対の横梁2,3は、断面円形のアルミニウム合金からなる押出形材で、長手方向におけるそれぞれの継ぎ目には、隣接する横梁2又は横梁3の中空部に跨るスリーブ4をねじ止めして連結している。
【0016】
支柱6は、Mgを2.5〜3.5wt%含むAl−Mg系のアルミニウム合金の砂型鋳物からなり、図1(A)及び(B)に示すように、地覆T中でアンカーボルト9a,9cにより固定される下端のベース7と、このベース7上に一体に形成され且つ地覆T上で車道R側に向けてやや傾斜すると共に、車道R側の上端と中間に横梁2,3の支持部14,15を有する支柱本体10と、を備えている。
図1(C)に示すように、ベース7は平面視で長方形を呈し、上記ボルト9a,9cを貫通させる長円形の貫通孔8を対称に四個形成している。車道R寄りの一対の貫通孔8には、図1(A),(B)に示すように、直線形のアンカーボルト9aが貫通してナット止めされ、これらの下部に跨ってアンカープレート9bがナットで固定されている。一方、車道Rと反対側の一対の貫通孔8には、側面視で略L字形のアンカーボルト9cが貫通してナット止めされている。尚、ベース7は、地覆Tの表面上に突出するアンカーボルト9a,9cに、係る地覆Tの表面と接触させつつ固定するように配設しても良い。
【0017】
図1(B)及び(C)に示すように、支柱6の支柱本体10は、車道R側のフランジ12とその中央から直角に伸びるウェブ17とからなる断面略T字形を呈する。フランジ12には横梁2,3を受け入れる上下の円弧形の支持部14,15と、上端の水平部16とが連続して形成されている。支持部14,15では、横梁2,3が個別に図示しないボルト・ナットを用いて常法により固定される。係るフランジ12は、ベース7付近から上端に向けて車道R側に約15°程度の傾斜を付されている。このため、図1(B)に示すように、大径の横梁2がやや小径の横梁3よりも車道R側に突出して固定される。
また、ウェブ17は、フランジ12寄りの下部にこれに沿った厚肉部18を含み、且つ車道Rと反対側の下端に小さな凹み19を形成している。尚、凹み19は地覆T内にベース7を容易に埋設するために設けたものであり、本発明の支柱6において必須の要素ではない。
【0018】
車道Rを走行する自動車が誤って横梁2,3に斜め方向から衝突する場合がある。この際、図2(A)に示すように、横梁2,3を介して支柱6の本体10には図中で矢印で示す荷重Pが加わる。係る荷重Pを伴う衝突エネルギを吸収して自動車への衝撃を緩和すると共に、自動車が横梁2,3や支柱6を破断して車道Rの外側へ飛び出す事態を防ぐことが必要となる。
このため、図2(B)及び(C)に示すように、支柱6においては、支柱本体10自体は殆ど座屈変形することなく、ベース7の寄り車道Rにおける支柱本体10の下端付近が持ち上がるように塑性変形し、高さ800mmの位置において衝突前よりも水平方向に少なくとも300mmの距離Lの変位を可能としている。
係る支柱6の変形を可能とするため、その素材を高い靭性を有する前記Al−Mg系のアルミニウム合金とすると共に、ベース7の板厚とアンカーボルト9a,9cを貫通させる各貫通孔8の位置を選定する。例えば、ベース7における車道R寄りの各貫通孔8の位置を、支柱本体10寄りに近接させると、図2(D)及び(E)に示すように、ベース7における車道R寄りの長辺付近全体を、支柱本体10と共に持ち上がるように塑性変形させることができる。
【0019】
因みに、図1に示す形状を有し、且つ前記請求項6のアルミニウム合金の鋳物からなり、各部が以下の寸法等を有する支柱6を二本用意し、図示しないH鋼上にボルト(車道R側:M20×2本、反対側:M22×2本、何れもSUS304)で固定した。この状態で、各支柱6の高さ660mmの位置で車道Rと反対側に水平な静的荷重Pを加えて、高さ800mmの位置における変形量を測定した。
ベース7:320mm(長辺y)×240mm(短辺x)×35mm(厚さt)
ボルト貫通孔8の中心位置:車道R又は反対側と長辺端部から各々50mm(s)
支柱本体10:全高800mm、傾斜15°
フランジ12:幅160mm×厚さ30mm
ウェブ17:幅165mm×厚さ17mm
厚肉部18:高さ500mm×平均幅80mm×厚さ30mm
凹み19:高さ100mm×幅40mm
支柱6の重量:25.6kg
【0020】
その結果、各支柱6における最大支持力(Pmax)は、56.3kN,57.9kN、極限支持力(Pw)は、45.6kN,46.1kN、支柱6の上端(高さ800mmの位置)における水平方向の変形量が300mm時の支持力(P30)は、55.5kN,54.3kNであった。
しかも、何れの支柱6も上記300mmの変形時までに、それぞれの支柱本体10には座屈変形が生じていなかった。係る結果から、本発明の支柱6は、実用的な強度と変形能を有することが確認された。尚、上記支持力(P30)の一般的な目標値は29.4kNである。
【0021】
図3(A)は、異なる形態の支柱24を用いた防護柵20を示し、これは、車道Rの路肩に沿った地覆T上に立設した前記アルミニウム合金鋳物からなる支柱24と、これに支持される押出形材からなる上下一対の横梁21,22とを有する。
図3(A)に示すように、支柱24は、下端のベース25と、このベース25上に一体に形成され且つ車道R側に向けてやや傾斜すると共に、車道R側の上端と中間に横梁21,22の支持部29,30を有する支柱本体27と、を備えている。図3(C)に示すように、ベース25は、車道R側を長辺とし反対側に対称な一対の斜辺25aを有する平面視で略台形を呈し、車道R寄りの各アンカーボルト(図示せず)用の貫通孔26は長辺方向の両端寄りに、反対側の貫通孔26は支柱本体27の下端寄りに形成されている。
【0022】
また、支柱24の支柱本体27は、車道R側のフランジ28とその中央から直角に後方に伸びるウェブ32,34と反対側のフランジ36からなる断面略H字形を呈する。厚肉のフランジ28は横梁21,22を受け入れる上下の円弧形の支持部29,30と、上端の水平部31とを連続して形成している。支持部29,30では、横梁21,22が個別に図示しないボルト・ナットを用いて常法により固定される。上記フランジ28は、支持部30の上下で車道R側に向け数°の傾斜を付されている。このため、図3(A)に示すように、大径の横梁21とやや小径の横梁22の先端は、車道R側において同じ位置に突出する。
更に、図3(B)に示すように、ウェブ32,34は肉厚差を有し、中間のテーパ部33を介して上下に連続している。尚、フランジ28とベース25との内隅におけるウェブ34には、これよりも厚めの厚肉部35が配置されている。一方、薄肉のフランジ36は、上記テーパ部33の後方付近に屈曲部38を有する側面視で略く字形を呈し、且つその下辺39は二つの傾斜部分を有する。
【0023】
また、図3(D)は支柱24の変形形態の支柱44を含む防護柵40を示す。
防護柵40も、車道Rの路肩に沿った地覆T上に立設した前記アルミニウム合金鋳物からなる支柱44と、これに支持されるアルミニウム合金の押出形材からなる上下一対の横梁41,42とを有する。図3(D)に示すように、支柱44は、下端のベース45と、この上に一体に形成され且つ車道R側に向けてやや傾斜すると共に、車道R側の上端と中間に横梁41,42の支持部49,50を有する支柱本体47とを備えている。図3(F)に示すように、ベース45も、車道R側を長辺とし反対側に対称な一対の斜辺45aを有する平面視で略台形を呈し、車道R側の各アンカーボルト(図示せず)用の貫通孔46は長辺方向の両端寄りに、反対側の貫通孔46は支柱本体47の下端寄りに形成されている。
【0024】
また、支柱44の支柱本体47は、車道R側のフランジ48とその中央から直角に後方に伸びるウェブ52,54とからなる断面略T字形を呈する。厚肉のフランジ48は、横梁41,42を受け入れる上下の円弧形の支持部49,50と、上端の水平部51とを連続して形成している。支持部49,50では、横梁41,42が図示しないボルト・ナットを用いて常法により固定される。フランジ48は、支持部50の上下で車道R側に向けて数°ずつの傾斜を付されている。このため、図3(D)に示すように、直径が異なる横梁41と横梁42の先端は車道R側の同じ位置に突出している。更に、ウェブ52,54は互いに肉厚差を有し、図3(E)に示すように、中間のテーパ部53を介して上下に連続している。即ち、支柱44は、前記支柱24に比べ車道Rと反対側にフランジのない断面略T字形の支柱本体47を有し、且つウェブ54は一様な厚さである点で相違する。
以上のような支柱24,44によっても前述したのと同様の実用的な強度及び変形能を得ることが可能である。
【0025】
図4は更に異なる支柱60を含む車道用防護56に関する。この防護柵56は、図4(A)及び(B)に示すように、対面交通となる一対の車道R,R間に形成された中央分離体55上に、その長手方向に沿って立設される複数の支柱60と、これらの両側にて左右対称に支持される上下一対の横梁57,58とを含む。
図4(A),(B)に示すように、横梁57,58は、断面円形のアルミニウム合金からなる押出形材で、長手方向におけるそれぞれの継ぎ目では、隣接する横梁57又は横梁58の中空部に跨るスリーブ59をねじ止めして連結している。
図4(B)に示すように、支柱60は、下端のベース66と、このベース66の上に一体に形成され且つ垂直に立設すると共に、左右の各車道R側に横梁57,58の支持部63,64を有する支柱本体61と、を備えている。
【0026】
図4(C)に示すように、ベース66は、各車道R側に沿って長辺を有する平面視で長方形を呈し、各アンカーボルト69用の四つの貫通孔68は長辺方向の両端寄りに対称にして形成されている。
また、支柱60の支柱本体61は、図4(B)及び(C)に示すように、各車道R寄りの一対のフランジ62とその間の中央を結ぶウェブ65からなる断面略H字形を呈する。各フランジ62には横梁57,58を受け入れる上下の円弧形の支持部63,64を連続して形成されている。フランジ62は、支持部64の上下で肉厚が相違し、この肉厚差に応じてウェブ65の下方の幅が狭くなっている。更に、支持部63,64は、図示で奥行き方向にやや張り出すと共に、横梁57,58を個別に図示しないボルト・ナットを用いて常法により固定している。
以上のような防護柵56によれば、左右何れかの車道Rから自動車が誤って横梁57,58に衝突した場合、支柱60のベース66が前記図2(B)及び(C)に示したような塑性変形を生じ、且つこの間に支柱本体61は座屈変形することなく反対側に傾斜する。従って、衝突エネルギを吸収して自動車への衝撃を緩和すると共に、自動車が横梁57,58や支柱60を破損して反対側の車道Rへ飛び出す事態を防ぐことが可能となる。
【0027】
ここで前記図3(A)にて示した支柱24について、具体的に特性を測定した。
前記請求項6のアルミニウム合金の鋳物から成形し、各部が以下の寸法等を有する支柱24を複数本用意し、図示しないH鋼上にボルト(車道R側:M20×2本、反対側:M22×2本、何れもSUS304)で固定した。そして、高さ660mmの位置で車道Rと反対側に水平な静的荷重Pを加えて、この荷重P及び高さ800mmの位置での変形量を測定した。その結果、主としてベース25の塑性変形により、支柱24は十分な荷重に耐えると共に、水平方向に300mmの変形量が得られることが判った。
【0028】
以下において、上記支柱24に対して行った、有限要素法に基づく弾塑性解析によるシュミレーションの結果を示す。
ベース25:300mm(長辺y1)×120mm(短辺y2)×225mm(幅x)
支柱本体27:全高740mm、車道R側への傾斜5°
フランジ28:幅100mm×厚さ12〜33mm
フランジ36:幅100mm×厚さ7〜9mm
ウェブ32:幅113mm×厚さ10mm
ウェブ34:幅113mm×厚さ7mm
支持部29:半径80mm、 支持部30:半径67.5mm
【0029】
各支柱24について、図5(A)に示すように、そのベース25における車道R側のボルト貫通孔26間の中心間距離Lを200〜240mm間で変化させ、且つベース25の板厚tを26〜34mm間で変化させた状態で、前記静的荷重Pを加えた。尚、上記貫通孔26の中心は、車道R側端から75mmの距離sに統一した。その結果、図5(B),(C)に示すように、ベース25は、支柱本体27のフランジ28付近を中心に曲面状に高さ(h)分持ち上がる塑性変形を示した。
係る塑性変形した各支柱24につき、ベース25の板厚(t)を26,30,34mmと変化させ、且つ上記ボルト間距離Lを200,220,240mmと変化させた場合における、上記持ち上がり量(h)とその際における最大荷重との関係を、図5(D)のグラフに示した。
【0030】
図5(D)のグラフの結果によれば、実線で示す持ち上がり量(h)は、ボルト間距離Lが大きく且つベース25の板厚(t)が薄い程高くなる傾向にあった。
また、図5(D)中で破線で示す最大荷重は、一部を除きボルト間距離Lが小さく且つベース25の板厚(t)が厚くなる程大きくなる傾向にあると共に、全て一般的な目標される29.4kNを大きく越えていた。
更に、同じ各支柱24について、ボルト間距離Lを200,220,240mmと変化させ、且つ上記ベース25の板厚(t)を26,30,34mmと変化させた場合における、上記持ち上がり量(h)とその際における最大荷重との関係を、図5(E)のグラフに示した。
【0031】
図5(E)のグラフに示す結果によれば、実線で示す持ち上がり量(h)は、上記と同様にベース25の板厚(t)が薄く且つボルト間距離Lが大きくなる程高くなる傾向にあった。また、図5(E)中で破線で示す最大荷重も、ベース25の板厚(t)が厚く且つボルト間距離Lが小さい程大きくなる傾向にあり、且つ、全て一般的な目標される29.4kNを大きく越えていた。
以上の傾向を考慮して支柱24のベース25を設計し、前記横梁21等に自動車が衝突してもベース25が塑性変形することにより、支柱本体27が座屈変形することなく支柱24全体を車道Rと反対側に傾けさせ、衝突した自動車に過度の衝撃を与えず、且つ車道Rの外側に飛び出す事態を防ぐことが可能となる。
【0032】
次に、前記各部の寸法等の支柱本体27を有する参考形態の支柱24を複数本用意し、且つ前記と同様に固定して、高さ660mmの位置で車道Rと反対側に水平な静的荷重Pを加えて、その荷重と高さ800mmの位置での変形量とを測定した。
係る参考形態の支柱24のベース25′は、図6(A)に示すように、平面視で長方形を呈し、長辺255mm×短辺160mmで、ボルト貫通孔26は全て支柱本体27におけるフランジ28,36の両先端間の内側付近に位置する。
尚、車道R側の各ボルト貫通孔26の中心間距離Lを80mmに統一している。そして、車道R側の各ボルト貫通孔26の車道R側端からの距離(s)を55,60,65mmと変化させ、ベース25′の板厚(t)を25〜31mm間で変化させた支柱24に、前記同様に静的荷重Pを加えた。その結果、図6(B),(C)に示すように、ベース25′は、車道R寄りの付近全体が高さ(h)分持ち上がる塑性変形を示した。
【0033】
上記塑性変形した各支柱24につき、上記ベース25′の車道R側における各ボルト貫通孔26の車道R側端からの距離sを55,60,65mmと変化させ、且つベース25′の板厚(t)を25,28,31mmと変化させた場合における、上記持ち上がり量(h)とその際における最大荷重との関係を、図6(D)のグラフに示した。これによれば、実線で示す持ち上がり量(h)は、上記距離sが大きく且つベース25′の板厚(t)が薄い程高くなる傾向にあった。また、図6(D)中で破線で示す最大荷重は、上記距離sが小さく且つベース25′の板厚(t)が厚くなる程大きくなる傾向にあり、しかも、全て一般的な目標される29.4kNを大きく越えていた。即ち、前記図5(D)のグラフと同様な傾向が現れた。
【0034】
また、各支柱24について、上記ベース25′の板厚(t)を25,28,31mmと変化させ、且つベース25′における車道R側の各ボルト貫通孔26の車道R側端からの距離(s)を55,60,65mmと変化させた場合における、上記持ち上がり量(h)とその際における最大荷重との関係を、図6(E)のグラフに示した。尚、車道R側の各貫通孔26の中心間距離Lは、80mmに統一した。
図6(E)のグラフによれば、実線で示す持ち上がり量(h)は、ベース25′の板厚(t)が薄く且つ車道R側端部からの距離(s)が大きくなる程高くなる傾向にあった。また、図6(E)中で破線で示す最大荷重は、ベース25′の板厚(t)が厚く且つ上記距離(s)が小さい程大きくなる傾向にあると共に、全ての支柱24は一般的な目標される29.4kNを大きく越えていた。
【0035】
、以上の各支柱において、ベースの塑性変形と共に、座屈によらず支柱本体が塑性変形することにより、衝突エネルギの一部を吸収しても差し支えない。
【0036】
【発明の効果】
以上にて説明した本発明による車道用防護柵の支柱によれば、横梁に自動車が衝突してもベースが塑性変形することにより、支柱本体が座屈変形することなく支柱全体が車道と反対側に傾く。このため、衝突した自動車に過度の衝撃を与えず且つ車道の外側に飛び出す事態を防ぐことが可能となる。更に、支柱本体はある程度の剛性を有すれば、防護柵を設置する場所の景観に応じた任意のデザインにできると共に、例えば車道間における幅の狭い中央分離帯上であって、両側の車道に向けた横梁を支持する支柱を含む防護柵に適用することもできる。
しかも、支柱本体が前記フランジとウェブとからなり、係るフランジに横梁の支持部が形成されているため、支柱本体にある程度の剛性を与えつつ、任意のデザインを適用することも容易となる加えて、アンカーボルトの貫通孔が前記位置に穿孔されているため、ベースにおいて支柱本体の下端を挟んで対称に形成されるボルトの貫通孔の位置に応じて、ベースにおける車道側寄りの付近全体が持ち上がるように塑性変形するか、又は、ベースにおける車道側寄りで且つ支柱本体の下端付近のみが塑性変形するか、を設計段階から容易に設定できる
また、請求項4〜6のアルミニウム合金からなる支柱によれば、ベースの塑性変形と、支柱本体の剛性を確保しつつ破断しないという優れた靭性を有すると共に、高い耐食性を支柱に与えることができる。このため、係る支柱を含む防護柵全体における耐久性を高められ、且つ乗用者等の安全を長期間に渉って図ることが可能となる。
【図面の簡単な説明】
【図1】(A)は本発明の支柱を用いた車道用防護柵の正面図、(B)は(A)中のB−B線に沿った一部に断面を含む側面図、(C)は(B)中のC−C線に沿った断面図。
【図2】(A)及び(B)は図1の支柱の変形前後の状態を示す概略図、(C)〜(E)は変形後におけるベース付近を示す概略図。
【図3】(A)は異なる形態の支柱を示す概略図、(B)は(A)中のB−B線に沿った断面図、(C)は(A)中のC−C線に沿った断面図、(D)は(A)の支柱の変形形態を示す概略図、(E)は(D)中のE−E線に沿った断面図、(F)は(D)中のF−F線に沿った断面図。
【図4】(A)は更に異なる形態の支柱を含む防護柵の平面図、(B)は(A)中のB−B線に沿った一部に断面を含む側面図、(C)は(B)中のC−C線に沿った断面図。
【図5】(A)は本発明の支柱におけるベースの平面図、(B)及び(C)は係るベースの変形後を示す概略図、(D)及び(E)は(A)のベースを有する支柱に対して行ったシュミレーションによる変形特性等を示すグラフ。
【図6】(A)は参考形態の支柱におけるベースの平面図、(B)及び(C)は係るベースの変形後を示す概略図、(D)及び(E)は(A)のベースを有する支柱に対して行ったシュミレーションによる変形特性等を示すグラフ。
【図7】(A)は従来の車道用防護柵の支柱を示す概略図、(B)は(A)中のB−B線に沿った断面図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support column used for a roadway protection fence arranged along a ground cover on a shoulder of a roadway and a central separation between the roadways.
[0002]
[Prior art]
The roadway protection fence is required to absorb the collision energy and not break in order to ensure the safety of the passenger and prevent the vehicle body from jumping out of the roadway even if the automobile collides accidentally. For this reason, the post of the guard fence for the roadway is required to have a function of being plastically deformed within a certain range together with the cross beam on which the automobile collides.
In order to enable such plastic deformation, a conventional roadway guard fence post 70 has a lower end base 71 by anchor bolts 79 on the ground cover T on the road shoulder of the roadway R, as shown in FIG. It is fixed and standing. The column 70 is an integral casting made of an aluminum alloy. As shown in FIG. 7B, a thick flange 72 facing the roadway R side on the base 71, and a thin flange 76 on the opposite side, The horizontal cross section which consists of the web 75 which couple | bonds these centers at right angles has a substantially H shape.
[0003]
As shown in FIG. 7 (A), the flange 72 on the side of the roadway R has an elongated substantially S shape in a side view, and has substantially semicircular support portions 73 and 74 at the middle and upper end thereof. On the support portions 73 and 74, cross beams 78a and 78b made of an aluminum alloy extruded shape and having a substantially elliptical cross section are fixed by bolts and nuts (not shown). A reinforcing stay 73 a is provided between the upper portion of the receiving portion 73 and the flange 72.
Further, the flange 76 on the back side also has an elongated substantially S-shape when viewed from the side, and has a recess 77 for inducing buckling at the bottom. The upper end of the flange 76 forms a part of the receiving portion 74 and has a reinforcing fin 74a on the back surface thereof.
[0004]
As shown in FIG. 7A, when the automobile collides with the horizontal beams 78a and 78b, a substantially horizontal load P is applied to the support column 70. At this time, the column 70 buckles the web 75 in the vicinity of the concave portion 77 on the back side, and plastically deforms so as to incline to the left in FIG. 7A as a whole. As a result, the upper end of the column 70 moves horizontally to the left by at least 300 mm while absorbing the collision energy, but the base 71 at the lower end is firmly fixed on the ground cover T by each anchor bolt 79. As a result, it is possible to prevent the vehicle from colliding without excessive impact and to prevent the vehicle from jumping out of the roadway R (see Japanese Patent Publication No. 60-7088).
[0005]
[Problems to be Solved by the Invention]
However, the strut 70 as described above relies on the buckling caused by the web 75 in the vicinity of the recess 77 to absorb collision energy. For this reason, when the support | pillar 70 is manufactured by the casting method, for example, the absorbed energy tends to vary due to a shape error caused by this manufacturing method. Therefore, there is a problem that the plastic deformation at the time of the collision may not be smoothly performed unless high dimensional accuracy is provided.
Further, as shown in FIG. 7 (A), the column 70 has the concave portion 77 in the lower part on the back side, and has to have a substantially S-shaped design in a side view. There was also a problem that it was difficult to make a column having an arbitrary design according to the scenery of the city.
Furthermore, when the design is changed, in the structure such as the conventional support 70, energy absorption depends on buckling, and it is difficult to predict accurate energy absorption performance at the time of design. For this reason, it was necessary to determine the shape and size of the column by repeating destructive tests on various specimens by trial and error.
In addition, in the support column 70, there is a difficulty that it is difficult to apply to the support column of the protective fence that supports the lateral beam along the roadway on both sides in the narrow central separation band sandwiched between the roadways.
[0006]
[Means for Solving the Problems]
The present invention solves the problems in the prior art described above, and the plastic deformation at the time of collision is always performed smoothly, and the design according to the landscape of the installation location can be easily applied, and has been described above. It is an object of the present invention to provide a protective fence post for a roadway that can be easily installed even in such a median strip.
[0007]
In order to solve the above-mentioned problems, the present invention solves the above-mentioned problem when a vehicle traveling in an automobile accidentally collides with a horizontal beam without buckling deformation of the column main body supporting the horizontal beam. It was conceived to make the entire column tilt to the opposite side of the roadway.
That is, the support fence post for the roadway of the present invention (Claim 1) Is installed on a ground cover or a median strip along the roadway and fixed by anchor bolts arranged on the ground cover, etc., and is formed integrally on the base and has a horizontal beam on the roadway side. It consists of a pillar body with a support part, The column main body is composed of one or a pair of flanges whose horizontal cross section is substantially T-shaped or substantially H-shaped, and a web connected at right angles to the center thereof. With being formed , The through holes of the anchor bolts drilled in the base are formed symmetrically on both sides of the lower end of the web forming the column main body, and are located outside the left and right tip portions of the lower end of the flange forming the column main body. When the vehicle collides with the horizontal beam, the base is plastically deformed so that the entire body tilts to the opposite side of the roadway without depending on the buckling deformation of the column main body.
In this specification, “without depending on the buckling deformation of the column main body” includes not only the base plastic deformation but also the column main body plastic deformation without buckling and absorbing the collision energy. Yes.
[0008]
According to this, even if the vehicle collides with the cross beam, the base is plastically deformed, and the entire column tilts to the opposite side of the roadway without depending on the buckling deformation of the column body. It is possible to prevent the situation of jumping to the outside of the roadway without giving any. More As long as the strut body has a certain degree of rigidity, it can be designed arbitrarily according to the landscape of the place where the railing is installed, and in the narrow median strip between the roadways, each side along the roadways on both sides The present invention can also be applied to a column of a protective fence that supports a lateral beam located near the roadway.
Moreover, since the column main body is composed of the flange and the web, and the support portion of the cross beam is formed on the flange, it is easy to apply an arbitrary design while giving the column main body a certain degree of rigidity. .
In addition, since the through hole of the anchor bolt is drilled at the above position, the entire vicinity of the base near the roadway side according to the position of the through hole of the bolt formed symmetrically across the lower end of the column main body in the base It can be easily set from the design stage whether it is plastically deformed so that it is lifted, or whether it is plastically deformed only near the lower end of the column body near the roadway side in the base . Therefore, by selecting the position of the through hole of the bolt, it is possible to easily secure the required deformation amount according to the design and size of the column main body. .
[0009]
Further, the base plate has a thickness of 26 to 34 mm, and includes a support fence post (claim 2). .
Furthermore, the A plurality of through holes of the anchor bolts drilled in the base are formed symmetrically on both outer sides of the left and right tip portions of the lower end of the web forming the column main body, and the center-to-center distance between the through holes is 200 to 240 mm. A roadway guard fence post (claim 3) is also included. . According to these, the effect can be obtained specifically. .
[0010]
The base has a rectangular shape including a square in plan view, a long side on the roadway side and a short side on the opposite side, and a plan view in which the inclined sides located on both sides of the short side are symmetrical. Include shapes .
Further, the horizontal beam of the protective fence includes two or three or more parallel to each other along the roadway, and also includes a form of only one supported by the upper end of the column, and the support part of the column according to the number thereof Formed .
[0011]
In addition to the aluminum alloy, iron or steel can be used as the material of the support, and the manufacturing method is also such that the support body part and the base part are integrally formed by die casting or sand casting. Also included is a method in which the two are separately formed and then integrated by welding. However, it is desirable to use an aluminum alloy as a preferable material for the support of the present invention because it is excellent in corrosion resistance and does not require maintenance such as painting, and because of its light weight, it is desirable in terms of workability in installation work on site.
[0012]
Therefore, the aluminum alloy that is the material of the support is an Al—Mg-based alloy, specifically, an aluminum alloy for casting containing 2.5 to 3.5 wt% of Mg, and more specifically, Mg 2. 0.5 to 3.5 wt%, Si 0.1 wt% or less, Fe 0.20 wt% or less, Ti 0.05 to 0.2 wt%, B 0.0007 to 0.01 wt%, Cu 0.1 wt% or less, Na 0.001 wt% or less, Inclusive of Be 0.001 to 0.005 wt%, the total amount of impurities excluding Si, Fe, Cu, and Na is 0.1 wt% or less, and Ti / B is 30 or less. Road guard fence post made of superior non-heat-treatable aluminum alloy for casting (Claims 4-6) Are also included in the present invention.
According to this, it has an elongation of 15.4% for sand mold castings and 30% for mold castings, together with the above-mentioned plastic deformation of the base and excellent toughness that does not break while ensuring the rigidity of the column main body. Moreover, since high corrosion resistance can be imparted to the support, the durability of the entire protective fence including the support can be improved, and the safety of passengers and the like can be improved over a long period of time.
[0013]
The range of each additive element in the aluminum alloy is based on the following reason.
Mg is an element essential for obtaining strength in a non-heat treatment type. If the addition amount is less than 2.5 wt%, sufficient tensile strength and yield strength cannot be obtained. On the other hand, if the addition amount exceeds 3.5 wt%, the strength is increased. Even if it is sufficient, the elongation and impact value begin to decrease, so the above range is excluded. A preferable range of Mg is 2.7 to 3.3 wt%.
Ti is an element that improves mechanical properties. If the addition amount is less than 0.05 wt%, such an effect cannot be sufficiently obtained. On the other hand, if the addition amount exceeds 0.2 wt%, a huge Ti-Al-based metal is obtained. Since the toughness starts to decrease due to the precipitation of the intermetallic compound, the above range is excluded. A preferable range of Ti that can exhibit sufficient impact resistance is 0.10 to 0.15 wt%. In particular, when B is present in the range of 0.0007 to 0.01 wt%, the mechanical properties are remarkably improved, and the strength can be increased when casting a large support like the present invention. However, when Ti / B (ratio) exceeds 30, the effect is saturated or attenuated, so Ti / B is limited to 30 or less.
[0014]
The reason why Si is made 0.1 wt% or less and Fe is made 0.20 wt% or less is that if both of these values are added, the elongation and impact value will both decrease. did. A preferable addition range is 0.05 wt% or less for Si and 0.15 wt% or less for Fe.
The reason why Cu is made 0.1 wt% or less is to prevent the corrosion resistance from rapidly decreasing when it exceeds 0.1 wt%.
Na penetrates from the flux used in the process of melting, melting, and casting an aluminum alloy, but when it exceeds 0.001 wt%, it segregates at the grain boundaries, making the grain boundaries brittle and significantly reducing toughness. Therefore, it was made 0.001 wt% or less.
When Be is added to the molten metal, it reacts with the atmosphere preferentially over Mg in the melting, melting, and casting processes to form a dense oxide film on the molten metal surface, thereby suppressing oxidation loss of Mg. To be added. However, if the Be is less than 0.001 wt%, the above effect cannot be obtained sufficiently. On the other hand, if the Be exceeds 0.005 wt%, the oxidation of Be itself becomes violent, which is undesirable from the work environment. It was.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1A shows a state in which the roadway guard fence 1 including the columns 6 and 6 of the present invention is viewed from the roadway R side. The protective fence 1 includes a plurality of support columns 6 and 6 erected along the longitudinal direction of the ground cover T along the shoulder of the roadway R, and a pair of upper and lower horizontal beams 2 and 3 supported by these columns.
As shown in FIGS. 1 (A) and 1 (B), the pair of upper and lower transverse beams 2 and 3 are extruded sections made of an aluminum alloy having a circular cross section, and the adjacent transverse beams 2 or transverse beams are connected to each seam in the longitudinal direction. The sleeve 4 straddling the three hollow portions is screwed and connected.
[0016]
The strut 6 is made of an Al—Mg-based aluminum alloy sand mold casting containing 2.5 to 3.5 wt% of Mg. As shown in FIGS. 1 (A) and 1 (B), the anchor bolt 9a is in the ground cover T. , 9c and a base 7 at the lower end, which is integrally formed on the base 7 and is slightly inclined toward the road R side on the ground cover T, and between the upper and lower beams 2 and 3 on the road R side. The column main body 10 having the support portions 14 and 15 is provided.
As shown in FIG. 1 (C), the base 7 has a rectangular shape in plan view, and has four symmetrical oval holes 8 through which the bolts 9a and 9c penetrate. As shown in FIGS. 1 (A) and 1 (B), straight anchor bolts 9a pass through the pair of through holes 8 near the roadway R and are fastened with nuts. An anchor plate 9b extends over these lower portions. It is fixed with a nut. On the other hand, a substantially L-shaped anchor bolt 9c passes through a pair of through-holes 8 on the side opposite to the roadway R, and is fastened with a nut. The base 7 may be disposed on anchor bolts 9a and 9c protruding on the surface of the ground cover T while being in contact with the surface of the ground cover T.
[0017]
As shown in FIGS. 1B and 1C, the column body 10 of the column 6 has a substantially T-shaped cross section including a flange 12 on the roadway R side and a web 17 extending perpendicularly from the center thereof. Upper and lower arc-shaped support portions 14 and 15 for receiving the horizontal beams 2 and 3 and a horizontal portion 16 at the upper end are continuously formed on the flange 12. In the support portions 14 and 15, the horizontal beams 2 and 3 are individually fixed by a conventional method using bolts and nuts (not shown). The flange 12 is inclined about 15 ° toward the roadway R from the vicinity of the base 7 toward the upper end. For this reason, as shown in FIG. 1 (B), the large-diameter horizontal beam 2 protrudes and is fixed to the roadway R side rather than the slightly small-diameter horizontal beam 3.
Further, the web 17 includes a thick portion 18 along the lower portion near the flange 12, and a small recess 19 is formed at the lower end opposite to the roadway R. The recess 19 is provided for easily embedding the base 7 in the ground cover T, and is not an essential element in the column 6 of the present invention.
[0018]
An automobile traveling on the roadway R may accidentally collide with the horizontal beams 2 and 3 from an oblique direction. At this time, as shown in FIG. 2A, a load P indicated by an arrow in FIG. It is necessary to absorb the collision energy accompanied by the load P to mitigate the impact on the automobile, and to prevent the automobile from breaking off the lateral beams 2 and 3 and the column 6 and jumping out of the roadway R.
For this reason, as shown in FIGS. 2B and 2C, in the column 6, the column main body 10 itself is hardly buckled, and the vicinity of the lower end of the column main body 10 on the approaching road R of the base 7 is lifted. Thus, it is plastically deformed, and a displacement of a distance L of at least 300 mm in the horizontal direction is possible at a height of 800 mm than before the collision.
In order to make the support column 6 deformable, the material is made of the Al-Mg-based aluminum alloy having high toughness, and the plate thickness of the base 7 and the positions of the through holes 8 through which the anchor bolts 9a and 9c pass. Is selected. For example, when the positions of the through holes 8 near the roadway R in the base 7 are close to the column main body 10, as shown in FIGS. 2D and 2E, the vicinity of the long side near the roadway R in the base 7 The whole can be plastically deformed so as to be lifted together with the column main body 10.
[0019]
Incidentally, two struts 6 having the shape shown in FIG. 1 and made of the aluminum alloy casting of claim 6 and having the following dimensions and the like are prepared, and bolts (roadway R) are provided on H steel not shown. Side: M20 × 2 pieces, opposite side: M22 × 2 pieces, both fixed with SUS304). In this state, a horizontal static load P was applied to the opposite side of the roadway R at a position of 660 mm in height of each column 6, and the deformation at a position of 800 mm in height was measured.
Base 7: 320 mm (long side y) × 240 mm (short side x) × 35 mm (thickness t)
Center position of bolt through-hole 8: 50 mm (s) each from roadway R or opposite side and long side end
Prop body 10: Overall height 800mm, inclination 15 °
Flange 12: 160mm width x 30mm thickness
Web 17: 165 mm wide x 17 mm thick
Thick part 18: height 500mm x average width 80mm x thickness 30mm
Recess 19: height 100mm x width 40mm
Weight of support 6: 25.6kg
[0020]
As a result, the maximum support force (Pmax) in each column 6 is 56.3 kN, 57.9 kN, the ultimate support force (Pw) is 45.6 kN, 46.1 kN, and the upper end of the column 6 (position of height 800 mm). Support force when the horizontal deformation amount is 300 mm (P 30 ) Was 55.5 kN and 54.3 kN.
In addition, no buckling deformation has occurred in each of the column main bodies 10 until any of the columns 6 is deformed by 300 mm. From the result, it was confirmed that the support 6 of the present invention has practical strength and deformability. The above support force (P 30 ) Is a typical target value of 29.4 kN.
[0021]
FIG. 3A shows a guard fence 20 using a column 24 having a different form, which is composed of the aluminum alloy cast column 24 standing on the ground cover T along the shoulder of the roadway R. And a pair of upper and lower transverse beams 21 and 22 made of an extruded shape member supported by each other.
As shown in FIG. 3 (A), the support column 24 has a base 25 at the lower end, is integrally formed on the base 25 and is slightly inclined toward the road R side, and is a horizontal beam between the upper end on the road R side and the middle. And a column main body 27 having 21 and 22 support portions 29 and 30. As shown in FIG. 3C, the base 25 has a substantially trapezoidal shape in a plan view having a pair of oblique sides 25a that are long on the road R side and symmetrical on the opposite side, and each anchor bolt near the road R (not shown). The through-holes 26 are formed near the both ends in the long side direction, and the opposite through-holes 26 are formed near the lower end of the column main body 27.
[0022]
The column body 27 of the column 24 has a substantially H-shaped cross section including a flange 28 on the roadway R side and webs 32 and 34 extending rearward at right angles from the center thereof. The thick flange 28 continuously forms upper and lower arc-shaped support portions 29 and 30 for receiving the transverse beams 21 and 22 and a horizontal portion 31 at the upper end. In the support portions 29 and 30, the horizontal beams 21 and 22 are individually fixed by a usual method using bolts and nuts not shown. The flange 28 is inclined at several degrees toward the roadway R side above and below the support portion 30. For this reason, as shown in FIG. 3A, the ends of the large-diameter horizontal beam 21 and the slightly small-diameter horizontal beam 22 protrude at the same position on the roadway R side.
Further, as shown in FIG. 3 (B), the webs 32 and 34 have a thickness difference, and are continuous up and down via an intermediate taper portion 33. Note that a thicker portion 35 thicker than this is disposed on the web 34 at the inner corner of the flange 28 and the base 25. On the other hand, the thin flange 36 has a substantially square shape in a side view having a bent portion 38 near the rear of the tapered portion 33, and the lower side 39 has two inclined portions.
[0023]
FIG. 3D shows a guard fence 40 including a support 44 in a modified form of the support 24.
The protective fence 40 is also a support 44 made of the aluminum alloy casting standing on the ground cover T along the shoulder of the roadway R, and a pair of upper and lower transverse beams 41 and 42 made of an extruded aluminum alloy material supported by the support 44. And have. As shown in FIG. 3D, the column 44 is formed integrally with the base 45 at the lower end and is inclined slightly toward the road R side, and the horizontal beam 41, between the upper end and the middle on the road R side. And a support main body 47 having 42 support portions 49 and 50. As shown in FIG. 3 (F), the base 45 also has a substantially trapezoidal shape in a plan view having a pair of oblique sides 45a that are long on the side of the roadway R and symmetrical on the opposite side, and each anchor bolt on the roadway R side (not shown). The through-holes 46 are formed near both ends in the long side direction, and the opposite through-holes 46 are formed near the lower end of the column main body 47.
[0024]
The column main body 47 of the column 44 has a substantially T-shaped cross section including a flange 48 on the roadway R side and webs 52 and 54 extending rearward at right angles from the center thereof. The thick flange 48 continuously forms upper and lower arc-shaped support portions 49 and 50 for receiving the horizontal beams 41 and 42 and a horizontal portion 51 at the upper end. In the support portions 49 and 50, the cross beams 41 and 42 are fixed by a conventional method using bolts and nuts (not shown). The flange 48 is inclined by several degrees toward the roadway R side above and below the support portion 50. For this reason, as shown in FIG. 3D, the ends of the cross beam 41 and the cross beam 42 having different diameters protrude at the same position on the roadway R side. Further, the webs 52 and 54 have a thickness difference from each other, and are continuous up and down via an intermediate tapered portion 53 as shown in FIG. That is, the column 44 is different from the column 24 in that it has a column main body 47 having a substantially T-shaped cross section without a flange on the opposite side of the roadway R, and the web 54 has a uniform thickness.
The above-described struts 24 and 44 can provide the same practical strength and deformability as described above.
[0025]
FIG. 4 further relates to roadway protection 56 including different struts 60. As shown in FIGS. 4 (A) and 4 (B), this protective fence 56 is erected along a longitudinal direction on a central separator 55 formed between a pair of roadways R and R that are to be face-to-face traffic. And a pair of upper and lower transverse beams 57 and 58 supported symmetrically on both sides thereof.
As shown in FIGS. 4 (A) and 4 (B), the cross beams 57 and 58 are extruded sections made of an aluminum alloy having a circular cross section, and at the joints in the longitudinal direction, the hollow portions of the adjacent cross beams 57 or the cross beams 58 are provided. The sleeve 59 straddling is connected by screwing.
As shown in FIG. 4 (B), the support column 60 is formed integrally with the base 66 at the lower end and is erected vertically, and the lateral beams 57 and 58 are provided on the left and right roadways R side. And a column main body 61 having support portions 63 and 64.
[0026]
As shown in FIG. 4C, the base 66 has a rectangular shape in plan view having a long side along each roadway R side, and the four through holes 68 for the anchor bolts 69 are close to both ends in the long side direction. It is formed symmetrically.
Further, as shown in FIGS. 4B and 4C, the column main body 61 of the column 60 has a substantially H-shaped cross section composed of a pair of flanges 62 near each roadway R and a web 65 connecting the center therebetween. Each flange 62 is formed with upper and lower arc-shaped support portions 63 and 64 for receiving the transverse beams 57 and 58 in succession. The flange 62 has different thicknesses above and below the support portion 64, and the width below the web 65 is narrowed according to the thickness difference. Further, the support portions 63 and 64 slightly protrude in the depth direction in the figure, and the transverse beams 57 and 58 are individually fixed by bolts and nuts not shown in the usual manner.
According to the protective fence 56 as described above, when the automobile accidentally collides with the cross beams 57 and 58 from the left or right roadway R, the base 66 of the support column 60 is shown in FIGS. 2 (B) and 2 (C). Such a plastic deformation occurs, and the column main body 61 is inclined to the opposite side without being buckled. Therefore, it is possible to absorb the collision energy and reduce the impact on the automobile, and to prevent the automobile from jumping to the opposite roadway R due to damage to the cross beams 57 and 58 and the column 60.
[0027]
Here, the characteristics of the support 24 shown in FIG. 3A were specifically measured.
A plurality of support posts 24 each having the following dimensions and the like are prepared from the aluminum alloy casting of claim 6 and bolts (roadway R side: M20 × 2; opposite side: M22) × 2 pieces, both fixed with SUS304). Then, a horizontal static load P was applied to the side opposite to the roadway R at a height of 660 mm, and the deformation at this load P and a height of 800 mm was measured. As a result, it was found that the support column 24 can withstand a sufficient load mainly due to plastic deformation of the base 25, and a deformation amount of 300 mm in the horizontal direction can be obtained.
[0028]
Below, the result of the simulation by the elastic-plastic analysis based on the finite element method performed with respect to the said support | pillar 24 is shown.
Base 25: 300 mm (long side y1) x 120 mm (short side y2) x 225 mm (width x)
Prop body 27: total height 740mm, inclination 5 ° to the roadway R side
Flange 28: width 100mm x thickness 12-33mm
Flange 36: width 100mm x thickness 7-9mm
Web 32: width 113 mm x thickness 10 mm
Web 34: width 113mm x thickness 7mm
Support part 29: radius 80 mm, support part 30: radius 67.5 mm
[0029]
For each column 24, as shown in FIG. 5A, the center-to-center distance L between the bolt through holes 26 on the roadway R side in the base 25 is changed between 200 to 240 mm, and the thickness t of the base 25 is changed. The static load P was applied in a state changed between 26 and 34 mm. The center of the through hole 26 is unified at a distance s of 75 mm from the end of the roadway R side. As a result, as shown in FIGS. 5 (B) and 5 (C), the base 25 exhibited a plastic deformation that lifted by a height (h) in a curved shape around the vicinity of the flange 28 of the column main body 27.
For each of the plastically deformed struts 24, when the plate thickness (t) of the base 25 is changed to 26, 30, 34 mm and the distance L between the bolts is changed to 200, 220, 240 mm, the lifting amount ( The relationship between h) and the maximum load at that time is shown in the graph of FIG.
[0030]
According to the result of the graph of FIG. 5D, the lifting amount (h) indicated by the solid line tends to increase as the distance L between the bolts increases and the plate thickness (t) of the base 25 decreases.
In addition, the maximum load indicated by a broken line in FIG. 5D tends to increase as the distance L between the bolts is small and the plate thickness (t) of the base 25 is thick except for a part of the maximum load. The target 29.4kN was greatly exceeded.
Further, with respect to the same strut 24, the lifting amount (h) when the distance L between the bolts is changed to 200, 220, 240 mm and the thickness (t) of the base 25 is changed to 26, 30, 34 mm. ) And the maximum load at that time is shown in the graph of FIG.
[0031]
According to the results shown in the graph of FIG. 5 (E), the lifting amount (h) indicated by the solid line tends to increase as the plate thickness (t) of the base 25 is reduced and the distance L between the bolts is increased, as described above. It was in. Further, the maximum load indicated by a broken line in FIG. 5 (E) also tends to increase as the plate thickness (t) of the base 25 increases and the distance L between the bolts decreases, and all are generally targeted 29 It greatly exceeded .4kN.
Considering the above tendency, the base 25 of the support 24 is designed, and even if the automobile collides with the transverse beam 21 or the like, the base 25 is plastically deformed so that the support 24 itself is not buckled and deformed. By tilting the vehicle to the opposite side of the roadway R, it is possible to prevent the vehicle from colliding with the vehicle from excessively impacting and jumping out of the roadway R.
[0032]
Next, it has a column main body 27 such as the dimensions of each part. Reference form Prepare a plurality of struts 24 and fix them in the same manner as described above, apply a horizontal static load P on the opposite side of the roadway R at a height of 660 mm, and deform the load at a height of 800 mm. The amount was measured.
Affect Reference form As shown in FIG. 6A, the base 25 ′ of the column 24 has a rectangular shape in plan view, and has a long side of 255 mm × a short side of 160 mm. Located near the inside between the tips.
The distance L between the centers of the bolt through holes 26 on the roadway R side is unified to 80 mm. And the distance (s) from the roadway R side end of each bolt through-hole 26 on the roadway R side was changed to 55, 60, 65 mm, and the plate thickness (t) of the base 25 ′ was changed between 25 and 31 mm. The static load P was applied to the column 24 in the same manner as described above. As a result, as shown in FIGS. 6 (B) and 6 (C), the base 25 'showed plastic deformation in which the entire area near the roadway R was lifted by the height (h).
[0033]
For each plastically deformed column 24, the distance s from each end of the bolt through hole 26 on the side of the roadway R of the base 25 'to the side of the roadway R is changed to 55, 60, 65 mm, and the thickness of the base 25' ( The relationship between the lifting amount (h) and the maximum load at that time when t) is changed to 25, 28, and 31 mm is shown in the graph of FIG. According to this, the lifting amount (h) indicated by the solid line tends to increase as the distance s increases and the plate thickness (t) of the base 25 'decreases. In addition, the maximum load indicated by a broken line in FIG. 6D tends to increase as the distance s decreases and the thickness (t) of the base 25 'increases, and all are generally targeted. It greatly exceeded 29.4kN. That is, the same tendency as in the graph of FIG.
[0034]
Further, the thickness (t) of the base 25 ′ is changed to 25, 28, and 31 mm for each column 24, and the distance from the road R side end of each bolt through hole 26 on the road R side in the base 25 ′ ( The relationship between the lifting amount (h) and the maximum load at that time when s) is changed to 55, 60, and 65 mm is shown in the graph of FIG. The center-to-center distance L of each through-hole 26 on the roadway R side was unified to 80 mm.
According to the graph of FIG. 6E, the lifting amount (h) indicated by the solid line increases as the plate thickness (t) of the base 25 'is thin and the distance (s) from the end on the roadway R side is increased. There was a trend. Further, the maximum load indicated by a broken line in FIG. 6E tends to increase as the thickness (t) of the base 25 'increases and the distance (s) decreases, and all the columns 24 are generally used. The target of 29.4kN was greatly exceeded.
[0035]
still In each of the above-mentioned struts, along with plastic deformation of the base, the strut main body plastically deforms regardless of buckling, so that a part of the collision energy may be absorbed.
[0036]
【The invention's effect】
According to the post of the guard fence for a roadway according to the present invention described above, the base is plastically deformed even when the automobile collides with the cross beam, so that the whole post is opposite to the roadway without buckling deformation of the post body. Lean on. For this reason, it is possible to prevent a situation in which the impacted vehicle is not excessively impacted and jumps out of the roadway. More If the strut body has a certain degree of rigidity, it can be designed arbitrarily according to the scenery of the place where the protective fence is installed, and it is on the narrow median between the roadways, for example, toward the roadways on both sides. It can also be applied to a protective fence including a column supporting a horizontal beam.
Moreover, since the column main body is composed of the flange and the web, and the support portion of the cross beam is formed on the flange, it is easy to apply an arbitrary design while giving the column main body a certain degree of rigidity. . In addition, since the through hole of the anchor bolt is drilled at the above position, the entire vicinity of the base near the roadway side according to the position of the through hole of the bolt formed symmetrically across the lower end of the column main body in the base It can be easily set from the design stage whether it is plastically deformed so that it is lifted, or whether it is plastically deformed only near the lower end of the column body near the roadway side in the base .
Moreover, according to the support | pillar which consists of an aluminum alloy of Claims 4-6, while having the outstanding toughness which does not fracture | rupture, ensuring the plastic deformation of a base and the rigidity of a support | pillar main body, it can give a high corrosion resistance to a support | pillar. . For this reason, it is possible to improve the durability of the entire protective fence including the support column and to improve the safety of passengers and the like over a long period of time.
[Brief description of the drawings]
FIG. 1A is a front view of a guard fence for a roadway using a support of the present invention, FIG. 1B is a side view including a cross section in a part along line BB in FIG. ) Is a cross-sectional view along the line CC in (B).
2A and 2B are schematic views showing a state before and after the deformation of the support column in FIG. 1, and FIGS. 2C to 2E are schematic views showing the vicinity of the base after the deformation.
FIGS. 3A and 3B are schematic views showing different types of struts, FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 3C is taken along line CC in FIG. (D) is a schematic view showing a modified form of the column of (A), (E) is a cross-sectional view along the line EE in (D), (F) is in (D) Sectional drawing along the FF line.
FIG. 4A is a plan view of a guard fence including a column having a different form; FIG. 4B is a side view including a cross section in part along line BB in FIG. Sectional drawing along CC line in (B).
5A is a plan view of a base in a column of the present invention, FIGS. 5B and 5C are schematic views showing the base after deformation, and FIGS. 5D and 5E show the base of FIG. The graph which shows the deformation | transformation characteristic etc. by the simulation performed with respect to the support | pillar which has.
[Figure 6] (A) Reference form In the column Rube (B) and (C) are schematic views showing the deformation of the base, (D) and (E) are deformation characteristics due to the simulation performed on the column having the base of (A), etc. Graph showing.
FIG. 7A is a schematic view showing a post of a conventional guard fence for a roadway, and FIG. 7B is a cross-sectional view taken along line BB in FIG.

Claims (6)

車道に沿った地覆又は中央分離帯上に立設され、係る地覆等に配設されたアンカーボルトにより固定されるベースと、
上記ベース上に一体に形成され且つ車道側に横梁の支持部を有する支柱本体とからなり、
上記支柱本体は、その水平断面が略T字形又は略H字形を呈する一つ又は一対のフランジとその中央に直角に接続するウェブとからなり、車道側に位置する上記フランジに上記横梁の支持部が形成されていると共に
上記ベースに穿孔されるアンカーボルトの貫通孔は、上記支柱本体を形成するウェブ下端の両側に対称に形成され、上記支柱本体を形成するフランジ下端の左右先端部の外側に位置しており
上記横梁に車両が衝突した際、上記支柱本体の座屈変形に依存することなく全体が車道と反対側に傾くように、上記ベースが塑性変形する、
ことを特徴とする車道用防護柵の支柱。
A base which is erected on a ground cover or a median strip along the roadway and fixed by anchor bolts disposed on the ground cover, etc .;
It is composed of a column main body integrally formed on the base and having a support portion of a cross beam on the roadway side,
The column main body is composed of one or a pair of flanges whose horizontal cross section is substantially T-shaped or substantially H-shaped, and a web connected at right angles to the center thereof. Is formed ,
The through holes of the anchor bolts drilled in the base are formed symmetrically on both sides of the lower end of the web forming the column main body, and are located outside the left and right tip portions of the flange lower end forming the column main body ,
When the vehicle collides with the horizontal beam, the base is plastically deformed so that the whole tilts to the opposite side of the roadway without depending on the buckling deformation of the column main body.
A protective fence post for a roadway.
前記ベースの板厚は、26〜34mmである
ことを特徴とする請求項1に記載の車道用防護柵の支柱。
The plate thickness of the base is 26 to 34 mm .
The support fence post for a roadway according to claim 1.
前記ベースに穿孔されるアンカーボルトの貫通孔は、前記支柱本体を形成するウェブ下端の左右先端部の両外側に複数個が対称に形成され、係る貫通孔間の中心間距離は、200〜240mmである
ことを特徴とする請求項1または2に記載の車道用防護柵の支柱。
A plurality of through holes of the anchor bolts drilled in the base are formed symmetrically on both outer sides of the left and right tip portions of the lower end of the web forming the column main body, and the center-to-center distance between the through holes is 200 to 240 mm. Is ,
The support fence post for a roadway according to claim 1 or 2.
前記支柱の素材であるアルミニウム合金が、Al−Mg系鋳物用合金である、
ことを特徴とする請求項1乃至3に記載の車道用防護柵の支柱。
The aluminum alloy that is the material of the support is an alloy for Al-Mg castings.
The support fence post for a roadway according to any one of claims 1 to 3.
前記アルミニウム合金が、Mgを2.5〜3.5wt%含む鋳物用アルミニウム合金である、
ことを特徴とする請求項4に記載の車道用防護柵の支柱。
The aluminum alloy is an aluminum alloy for castings containing 2.5 to 3.5 wt% of Mg,
The support fence post for a roadway according to claim 4.
前記アルミニウム合金が、Mg2.5〜3.5wt%、Si0.1wt%以下、Fe0.20wt%以下、Ti0.05〜0.2wt%、B0.0007〜0.01wt%、Cu0.1wt%以下、Na0.001wt%以下、Be0.001〜0.005wt%を含み、上記Si,Fe,Cu,Naを除く不純物の合計が0.1wt%以下で、且つTi/Bが30以下であり、残部Alからなる靭性及び耐食性に優れた非熱処理型の鋳物用アルミニウム合金である、
ことを特徴とする請求項4又は5に記載の車道用防護柵の支柱。
The aluminum alloy is Mg 2.5 to 3.5 wt%, Si 0.1 wt% or less, Fe 0.20 wt% or less, Ti 0.05 to 0.2 wt%, B 0.0007 to 0.01 wt%, Cu 0.1 wt% or less, 0.0001 wt% or less of Na, 0.001 to 0.005 wt% of Be, the total of impurities excluding Si, Fe, Cu, and Na is 0.1 wt% or less, and Ti / B is 30 or less, and the balance Al Is a non-heat-treatable aluminum alloy for castings with excellent toughness and corrosion resistance,
The support fence post for a roadway according to claim 4 or 5.
JP2000044573A 2000-02-22 2000-02-22 Road guard fence post Expired - Fee Related JP3700521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044573A JP3700521B2 (en) 2000-02-22 2000-02-22 Road guard fence post

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044573A JP3700521B2 (en) 2000-02-22 2000-02-22 Road guard fence post

Publications (2)

Publication Number Publication Date
JP2001234515A JP2001234515A (en) 2001-08-31
JP3700521B2 true JP3700521B2 (en) 2005-09-28

Family

ID=18567309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044573A Expired - Fee Related JP3700521B2 (en) 2000-02-22 2000-02-22 Road guard fence post

Country Status (1)

Country Link
JP (1) JP3700521B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2220238B2 (en) * 2004-08-04 2006-02-16 Hierros Y Aplanaciones, S.A. (Hiasa) SYSTEM OF CONTAINMENT OF SIDE IMPACTS OF VEHICLES, WITH HIGH CAPACITY OF CONTAINMENT AND ENERGY ABSORPTION.
WO2008031150A1 (en) * 2006-09-12 2008-03-20 Racing Victoria Limited Barrier
KR100732465B1 (en) 2006-09-28 2007-06-27 재단법인 포항산업과학연구원 Roadside safety barrier
CL2007000879A1 (en) * 2006-10-31 2008-01-25 Hierros Y Aplanaciones S A Hiasa Containment system of side impacts of vehicles, for use in road safety, which has a post with a back support, a front plate and base plate, horizontal railings, and an absorber element, where the post has a certain acute fold or angle height forming a lower vertical section and an upper section facing the traffic.
JP5149638B2 (en) * 2008-02-05 2013-02-20 積水樹脂株式会社 Road support
JP5443868B2 (en) * 2009-07-17 2014-03-19 株式会社住軽日軽エンジニアリング Guard post
JP2011252362A (en) * 2010-06-04 2011-12-15 Showa Manufactruing Co Ltd Method of replacing balustrade column, spacer for balustrade column replacement and balustrade column
JP2012202184A (en) * 2011-03-28 2012-10-22 Sekisui Jushi Co Ltd Guard fence
JP6605937B2 (en) * 2015-12-16 2019-11-13 日鉄建材株式会社 Guard fence for road

Also Published As

Publication number Publication date
JP2001234515A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3700521B2 (en) Road guard fence post
SE434245B (en) SAFETY BODY, AND PROCEDURE FOR ITS PREPARATION
JP5398150B2 (en) Tubular prop
US4289301A (en) Post for a guard rail
EP0575705B1 (en) Metallic safety barrier
CN111455803B (en) Rain-shielding type river-crossing bridge with high safety performance
CN207227953U (en) A kind of Novel road bridge safety guard rail structure
JP2005188031A (en) Strut for protective fence
JP4414111B2 (en) Support fence post
JP3632441B2 (en) Guard fence for vehicle
KR100780473B1 (en) Guard Rail
JP4829759B2 (en) Protective fence
JP5417152B2 (en) Guard post
EP1709250B1 (en) Road pole
JP4688318B2 (en) Vehicle beam
JP2005076349A (en) Protective fence for vehicle
JP6117606B2 (en) Protective fence for vehicle
JPS60331Y2 (en) high railing
JP4817950B2 (en) Complex facility of concrete retaining wall, guard fence and wheel guide fence
JPS607088B2 (en) Roadway protective fence posts
KR101585734B1 (en) Guard Rail Post And Guard Fence Having the Same
CN216999476U (en) Double-hanging type corrugated beam guardrail
CN220868080U (en) High-strength high-toughness stainless steel guard rail
KR200268094Y1 (en) Guard fence for vehicle
AU2011275921A2 (en) A yieldable lighting column

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees