JP3699357B2 - フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ - Google Patents

フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ Download PDF

Info

Publication number
JP3699357B2
JP3699357B2 JP2001041765A JP2001041765A JP3699357B2 JP 3699357 B2 JP3699357 B2 JP 3699357B2 JP 2001041765 A JP2001041765 A JP 2001041765A JP 2001041765 A JP2001041765 A JP 2001041765A JP 3699357 B2 JP3699357 B2 JP 3699357B2
Authority
JP
Japan
Prior art keywords
fiber
core
pores
cladding
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001041765A
Other languages
English (en)
Other versions
JP2002243972A (ja
Inventor
繁樹 小柳
正俊 田中
真也 山取
正隆 中沢
寛和 久保田
悟基 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001041765A priority Critical patent/JP3699357B2/ja
Publication of JP2002243972A publication Critical patent/JP2002243972A/ja
Application granted granted Critical
Publication of JP3699357B2 publication Critical patent/JP3699357B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コアがクラッドよりも屈折率の高い材料で形成されたフォトニッククリスタルファイバ(以下「PCファイバ」と称する。)の接続方法及びその接続構造体並びにその接続構造体を形成するPCファイバに関する。
【0002】
【従来の技術】
中実コア及び中実クラッドからなる光ファイバは、光を伝搬する媒体として非常によく知られている。また、近年、大きな波長分散を発現する光ファイバとして、PCファイバが注目を集めつつある。このPCファイバは、ファイバ中心を長手方向に延びる中実又は中空のコアと、そのコアを覆うように設けられそのコアに沿って延びる多数の細孔を有するクラッドとを備えており、このクラッドが二次元的に屈折率が周期的に変動したフォトニッククリスタル構造を構成するものである。
【0003】
ところで、かかるPCファイバを他の光ファイバに接続する場合、中実コア及び中実クラッドからなる一般的な光ファイバ同士を接続する場合に比べて非常に大きな接続損失を生じることが確認されている。
【0004】
【発明が解決しようとする課題】
本出願の課題は、コアがクラッドよりも屈折率の高い材料で形成されたPCファイバについて、それを被接続光ファイバに低接続損失で接続する方法及びPCファイバの接続構造体並びのかかる接続構造体を形成するPCファイバを提供することにある。
【0005】
【課題を解決するための手段】
PCファイバは、クラッドが多数の細孔を有するためにコアよりも等価的に屈折率が低くなり、それによって全反射現象によりコアで光を伝搬するものであると共に、クラッドのフォトニッククリスタル構造による効果によってコアで光を伝搬するものでもある。従って、コア及びクラッドを共に石英(SiO2)のみで構成したPCファイバも成立しうることとなる。そして、かかるPCファイバを被接続光ファイバとの接続のためにその接続端を長時間加熱したり高温度加熱したりすると、クラッドの細孔が封止されてしまい、接続端が石英塊となってそこから光が散逸し、大きな接続損失を生じてしまうこととなる。そのため、通常、PCファイバを他の被接続光ファイバに接続する場合には、クラッドの細孔が封止されることがないように加熱時間を短く且つ加熱温度を低く設定するようにしている。
【0006】
しかしながら、コアがクラッドよりも屈折率の高い材料で形成されたPCファイバについては、クラッドの細孔が封止されてもコアが光の伝送路として残るため上記の如き問題を生じない。本発明者らは、この点に着目して本発明に想到したものである。
【0007】
具体的には、本出願の発明は、
ファイバ中心をなす中実のコアと、該コアを覆うように設けられ該コアに沿って延びる多数の細孔を有するクラッドとを備え、該コアが該クラッドよりも屈折率の高い材料で形成されたフォトニッククリスタルファイバを、被接続光ファイバに接続する方法であって、
上記フォトニッククリスタルファイバの接続端部に対し、該接続端部における上記クラッドの細孔を封止する処理を施すと共に、上記コアにドープされた屈折率を高めるためのドーパントを上記細孔が封止されたクラッドに拡散させる加熱処理を施すことを特徴とする。
【0008】
上記の接続方法によれば、PCファイバの接続端部におけるクラッドの細孔が封止されるものの光の伝送路としてのコアは残り、それによって接続端部が中実コア及び中実クラッドからなる被接続光ファイバと同一構成に形成されることなるので、接続端部のクラッドが細孔を有する場合に比べて接続損失が大きく低減されることとなる。
【0009】
また、接続端部の細孔が封止されてコアとクラッドとの屈折率差が小さくなることによって接続端部のモードフィールド径(以下「MFD」と称する)が大きくなるので、MFDの差が大きい被接続光ファイバと接続する場合でも、接続部ではそれらのMFDの差が小さくなることから、放射により散逸する光が少なくなり、接続損失が低く抑えられることとなる。
【0010】
さらに、PCファイバの接続端部のMFDが拡大することとなるので、MFDの差が大きい被接続光ファイバと接続する場合における上記接続損失抑制効果が確実に得られることとなる。また、この加熱処理は、PCファイバと被接続光ファイバとを接続一体化する前に行っても、また、接続一体化を図りながら行っても、さらに、接続一体化させた後に行ってもいずれでもよい。
【0011】
そして、以上のような接続方法により、PCファイバを被接続光ファイバに接続したPCファイバの接続構造体であって、PCファイバの接続端部におけるクラッドの細孔が封止されたものが構成されることとなる。
【0012】
また、かかる接続構造体は、少なくとも一方の端部におけるクラッドの細孔が封止されているPCファイバを用いて形成することができる。
【0013】
ここで、PCファイバは、ファイバ中心をなす中実のコアと、そのコアを覆うように設けられコアに沿って延びる多数の細孔を有するクラッドとを備え、コアがクラッドよりも屈折率の高い材料で形成されたものであれば特に限定されるものではなく、例えば、コアがゲルマニウム(Ge)、エルビウム(Er)、イッテルビウム(Yb)、ネオジム(Nd)、リン(P)、アルミニウム(Al)等をドープした石英(SiO2)で形成される一方、クラッドが純粋な石英(SiO2)で形成されたものを挙げることができる。
【0014】
PCファイバと接続される被接続光ファイバは、特に限定されるものではなく、1.3μm零分散波長ファイバ(ITU規格のG.652)、1.55μm分散シフトファイバ(ITU規格のG.653)、ノンゼロ分散シフトファイバ、分散補償ファイバ、希土類元素ドープファイバ、偏波面保存ファイバ等のコアとそのコアを覆うように設けられた中実のクラッドとを備えた光ファイバの他、PCファイバであってもよい。
【0015】
接続端部におけるクラッドの細孔を封止する処理は、特に限定されるものではないが、接続端部を加熱溶融することが最も容易な方法である。また、この細孔を封止する処理は、PCファイバと被接続光ファイバとを接続一体化する前に行っても、また、接続一体化を図りながら行っても、さらに、接続一体化させた後に行ってもいずれでもよい。
【0016】
PCファイバの被接続光ファイバへの接続は、コネクタを用いて両ファイバの接続端を突き合わせて接続するようにしても、また、両ファイバの接続端を融着により接続するようにしてもよい。ここで、融着による場合、従来のようにクラッドの細孔が封止されないような加熱時間及び加熱温度の設定が不要となるため、接続作業の容易化が図られることとなる。また、接続端部を十分に加熱して接続させることができるので、従来のように加熱時間を短く且つ加熱温度を低く設定して融着した場合に比べて接続部の機械強度が高いものとなる。
【0017】
ところで、PCファイバを被接続光ファイバに接続する場合、図9に示すように、市販の融着接続機を用いてクラッド位置を一致させる方法を採れば、全自動でしかも短時間で両ファイバ10a,20aの接続を行うことができる(クラッド位置合わせ法)。しかしながら、この方法では、コア11aの位置が偏芯しているPCファイバ10aでは接続部で両ファイバ10a,20aのコア位置が合わずに接続損失が大きくなってしまうこととなる。従って、中実コア及び中実クラッドからなる光ファイバ同士を接続するときと同様に、コア位置をファイバ側面から確認しつつ接続を行うことが望まれるが、コアがクラッドよりも屈折率の高い材料で形成されているPCファイバであっても、クラッドに細孔が設けられているためにファイバ側面からコア位置を確認することはできない。これに対し、図10に示すように、PCファイバ10aの接続端部14aとは逆側の端部から光を入射する一方、被接続光ファイバ20aの接続端部23aとは逆側の端部からそれを出射させるようにし、出射光のパワーが最大となるようにコア位置を合わせるようにして両ファイバ10a,20aを接続する方法もある(パワーモニタ法)。しかしながら、この方法では、ファイバ接続装置の他に光源や受光機といった設備が必要となる。そこで、PCファイバの接続端部に対してクラッドの細孔を封止する処理を行うことにより、クラッドを透明にしてファイバ側面からコア位置を確認できるようにし、そのファイバ側面視において視認可能となったPCファイバの接続端部のコア位置に基づいて、PCファイバのコアと被接続光ファイバのコアとの位置合わせを行った後、それらを接続するようにすれば、中実コア及び中実クラッドからなる光ファイバ同士を接続するときと同様の方法及び装置を用いて両ファイバの接続を行うことができることとなる。
【0018】
【発明の効果】
以上説明したように、本出願の発明によれば、PCファイバの接続端部におけるクラッドの多数の細孔が封止されるものの光の伝送路としてのコアは残り、それによって接続端部が中実コア及び中実クラッドからなる光ファイバと同一構成に形成されることなるので、接続端部のクラッドが細孔を有する場合に比べて接続損失を大きく低減させることができる。
【0019】
また、接続端部の細孔が封止されてコアとクラッドとの屈折率差が小さくなることによって接続端部のMFDが大きくなるので、MFDの差が大きい被接続光ファイバと接続する場合でも、接続部ではそれらのMFDの差が小さくなることから、放射により散逸する光が少なくなり、接続損失を低く抑えることができる。
【0020】
【発明の実施の形態】
以下、実施形態に係るPCファイバの接続方法を図面に基づいて詳細に説明する。
【0021】
(実施形態1)
<各ファイバの構成>
図1は、PCファイバ10を示す。このPCファイバ10は、ファイバ中心を長手方向に延びる中実のコア11と、そのコア11を覆うように設けられコア11に沿って延びる多数の細孔12a,12a,…を有するクラッド12と、そのクラッド12を覆うように設けられた被覆部13とを備えている。コア11はゲルマニウム(Ge)がドープされた石英(SiO2)で形成され、クラッド12及び被覆部13は純粋な石英(SiO2)で形成されている。そして、このクラッド12が二次元的に屈折率が周期的に変動したフォトニッククリスタル構造を構成し、信号光は、そのフォトニッククリスタル構造で囲われたコア11に閉じこめられて伝搬されることとなる。
【0022】
図2は、被接続側の被接続光ファイバ20を示す。この被接続光ファイバ20は、ファイバ中心を長手方向に延びるゲルマニウム(Ge)がドープされた石英(SiO2)製のコア21と、そのコア21を覆うように設けられた石英(SiO2)製のクラッド22とを備えている。そして、信号光は、屈折率の高いコア21に閉じこめられて伝搬されることとなる。
【0023】
<ファイバの接続方法>
まず、PCファイバ10の接続端部14を加熱処理することによりクラッド12の細孔12a,12a,…を封止する。このとき、接続端面は、図3(a)に示すようにコア11、クラッド12及び被覆部13よりなる形態から図3(b)に示すようにコア11及び細孔が封止されたクラッド12と被覆部13とにより形成された封止部15よりなる形態に変化する。また、接続端部14ではクラッド12の細孔12a,12a,…が封止されるためクラッド12が透明となってファイバ側面からコア11を確認できるようになる。このように接続端部14におけるクラッド12の細孔12a,12a,…が封止されているPCファイバ10は、後述のPCファイバ10の接続構造体を形成する部材となるものである。
【0024】
次に、PCファイバ10の接続端部14を追加加熱する。これによって、図3(c)に示すように、コア11にドープされたゲルマニウムが細孔12a,12a,…が封止されたクラッド12と被覆部13とによって形成された封止部15に拡散してMFDが拡大することとなる。
【0025】
そして、中実コア及び中実クラッドからなる光ファイバ同士を接続一体化させるときと同様の方法及び装置を用い、PCファイバ10の接続端部14の側面視において臨むコア位置に基づいて、PCファイバ10のコア11と被接続光ファイバ20のコア21との位置合わせを行い、両ファイバ10,20を融着により接続一体化させる。
【0026】
以上のようにして、図4に示すように、PCファイバ10を被接続光ファイバ20に接続したPCファイバ10の接続構造体であって、PCファイバ10の接続端部14におけるクラッド12の細孔12a,12a,…が封止されたものが構成されることとなる。
【0027】
<作用・効果>
上記のPCファイバ10の接続方法によれば、PCファイバ10の接続端部14におけるクラッド12の細孔12a,12a,…が封止されるものの光の伝送路としてのコア11は残り、それによって接続端部14が中実コア及び中実クラッドからなる光ファイバと同一構成に形成されることなるので、接続端部のクラッドが細孔を有したまま接続する場合に比べて接続損失が大きく低減されることとなる。
【0028】
また、接続端部14におけるクラッド12の細孔12a,12a,…が封止されてコア11とクラッド12との屈折率差が小さくなることによって接続端部14のMFDが大きくなり、さらに、PCファイバの接続端部を追加加熱してコア11にドープされたゲルマニウムを封止部15に拡散させているので、MFDの差が大きい被接続光ファイバ20と接続する場合でも、接続部ではそれらのMFDの差が小さくなることから、放射により散逸する光が少なくなり、接続損失が低く抑えられることとなる。
【0029】
さらに、融着により両ファイバ10,20の接続を行っているものの、従来のようにクラッドの細孔が封止されないように加熱時間及び加熱温度を設定することが不要となるため、接続作業の容易化が図られることとなる。加えて、接続端部14を十分に加熱して接続させることができるので、従来のように加熱時間を短く且つ加熱温度を低く設定して融着した場合に比べて接続部の機械強度が高いものとなる。
【0030】
そして、PCファイバ10の接続端部14におけるクラッド12の細孔12a,12a,…を封止する加熱処理を被接続光ファイバ20と接続一体化させる前に行い、それによってクラッド12を透明にしてファイバ側面からコア位置を確認できるようにし、PCファイバ10の接続端部14の側面視において視認可能となったコア位置に基づいて、PCファイバ10のコア11と被接続光ファイバ20のコア21との位置合わせを行うようにしているので、中実コア及び中実クラッドからなる光ファイバ同士を接続するときと同様の方法及び装置を用いることで両ファイバ10,20の接続が容易に行われることとなる。
【0031】
(実施形態2)
実施形態2の各ファイバの構成及び作用・効果は実施形態1と同一である。
【0032】
<ファイバの接続方法>
まず、PCファイバの接続端部及び被接続光ファイバの接続端部を加熱して両ファイバを融着により接続一体化させる。このとき、PCファイバのクラッドの細孔が封止されないように加熱時間を短く且つ加熱温度を低く設定する。
【0033】
次に、両ファイバの接続端部を追加加熱する。このとき、PCファイバの接続端部におけるクラッドの細孔が封止されると共に、コアにドープされたゲルマニウムが細孔が封止されることによって形成された封止部に拡散してMFDが拡大することとなる。なお、被接続光ファイバの接続端部も加熱されることとなるので、被接続光ファイバ側のMFDも拡大することとなる。
【0034】
以上のようにして、図5に示すように、PCファイバ10を被接続光ファイバ20に接続したPCファイバ10の接続構造体であって、PCファイバ10の接続端部14におけるクラッド12の細孔12a,12a,…が封止されたものが構成されることとなる。
【0035】
(その他の実施形態)
上記実施形態1及び2では、コア11にゲルマニウム(Ge)をドープしたPCファイバを用いたが、特にこれに限定されるものではなく、その他にエルビウム(Er)、イッテルビウム(Yb)、ネオジム(Nd)、リン(P)、アルミニウム(Al)等をドープしたものであってもよい。
【0036】
また、被接続光ファイバ20は、特に限定されるものではなく、1.3μm零分散波長ファイバ(ITU規格のG.652)、1.55μm分散シフトファイバ(ITU規格のG.653)、ノンゼロ分散シフトファイバ、分散補償ファイバ、希土類元素ドープファイバ、偏波面保存ファイバ等の他、PCファイバであってもよい。
【0037】
また、上記実施形態1では、PCファイバ10を被接続光ファイバ20に接続一体化する前に、コア11のゲルマニウムを封止部15に拡散させる加熱処理を行ったが、特にこれに限定されるものではなく、PCファイバ10と被接続光ファイバ20とを接続一体化させながら又は接続一体化させた後にこの加熱処理を行うようにしてもよい。
【0038】
また、実施形態1では、PCファイバの被接続光ファイバへの接続を融着により行ったが、特にこれに限定されるものではなく、コネクタを用いて両ファイバの接続端を突き合わせるようにして接続してもよい。
【0039】
【実施例】
(実験1)
PCファイバにシングルモードの被接続光ファイバを接続して構成されたPCファイバの接続構造体の接続損失を測定する実験を行った。
【0040】
<実験方法>
ファイバ外径100μm、クラッドの細孔の直径1.28μm、細孔が形成する三角格子のピッチ2.16μm、MFD3μmであって、コアがゲルマニウム(Ge)をドープした石英(SiO2)で形成されると共にクラッドが純粋な石英(SiO2)で形成され、且つコアの屈折率がクラッドの屈折率よりも1.1%高い構成のPCファイバ(図6参照)と、MFD10.8μmのシングルモードの被接続光ファイバ(ITU規格のG.652)とを5本ずつ準備した。
【0041】
まず、PCファイバのクラッドの細孔が封止されないように加熱時間を短く且つ加熱温度を低く設定して、PCファイバと被接続光ファイバとを融着により接続した。
【0042】
次に、このPCファイバの接続構造体に、PCファイバ側から被接続光ファイバ側に向かって波長1.55μmの光を伝送させて接続損失を測定した。
【0043】
続いて、このPCファイバの接続構造体の接続端部を再度加熱してPCファイバの接続端部の細孔を封止した。このとき、細孔が封止されたか否かは、ファイバ側面から接続端部を観察して、クラッドが透明になっているか否かによって判断した。
【0044】
そして、接続部を再度加熱してクラッドの細孔を封止したPCファイバの接続構造体に、PCファイバ側から被接続光ファイバ側に向かって波長1.55μmの光を伝送させて接続損失を測定した。
【0045】
この実験を5回実施した。
【0046】
<実験結果>
【0047】
【表1】
Figure 0003699357
【0048】
実験結果を表1に示す。
【0049】
同表によれば、PCファイバの接続端部の細孔を封止した方が接続損失が小さいことが分かる。これは、細孔を封止していないPCファイバの接続端部は放射による光の散逸が多くなる構造となっているものと考えられ、そのために大きな接続損失を生じたものと考えられる。これに対し、細孔を封止したPCファイバの接続端部は中実コア及び中実クラッドからなる光ファイバと同一構成となるため、中実コア及び中実クラッドからなる光ファイバ同士を接続した際の接続損失と同水準の接続損失になっているものと考えられる。
【0050】
なお、本実験に追加して被接続ファイバ側からPCファイバ側に向かって波長1.55μmの光を伝送させて接続損失を測定する実験を行ったところ、測定された接続損失値は異なるものの、この場合もPCファイバの接続端部におけるクラッドの細孔を封止することにより接続損失が低減されることが確認された。
【0051】
(実験2)
<実験方法>
実験1で用いたPCファイバの接続端部の加熱前後におけるファイバ断面を走査型電子顕微鏡で観察した。
【0052】
<実験結果>
図7及び8は、PCファイバの接続端部の加熱前後におけるファイバ断面の顕微鏡観察写真をそれぞれ示す。
【0053】
加熱前の図7では、コア、クラッド及び被覆部のそれぞれの構造が明確に識別することができる。一方、加熱後の図8では、細孔が封止されたクラッドと被覆部とが一体となっているものの、ファイバ中心にコアが残っているのが確認できる。
【図面の簡単な説明】
【図1】 施形態1及び2におけるフォトニッククリスタルファイバの斜視図である。
【図2】 施形態1及び2における被接続光ファイバの斜視図である。
【図3】 施形態1におけるフォトニッククリスタルファイバの接続端面の正面図である。
【図4】 施形態1におけるフォトニッククリスタルファイバの接続構造体の側面図である。
【図5】 施形態2におけるフォトニッククリスタルファイバの接続構造体の側面図である。
【図6】 実験1で用いたフォトニッククリスタルファイバの構成を示す説明図である。
【図7】 実験2におけるフォトニッククリスタルファイバの接続端部の加熱前における端面の顕微鏡観察写真である。
【図8】 実験2におけるフォトニッククリスタルファイバの接続端部の加熱後における端面の顕微鏡観察写真である。
【図9】 クラッド位置合わせ法の説明図である。
【図10】 パワーモニタ法の説明図である。
【符号の説明】
10,10a フォトニッククリスタルファイバ(PCファイバ)
11,11a,21,21a コア
12,22 クラッド
12a 細孔
13 被覆部
14,14a フォトニッククリスタルファイバ接続端部
15 封止部
20,20a 被接続光ファイバ
23,23a 被接続光ファイバ接続端部

Claims (3)

  1. ファイバ中心をなす中実のコアと、該コアを覆うように設けられ該コアに沿って延びる多数の細孔を有するクラッドとを備え、該コアが該クラッドよりも屈折率の高い材料で形成されたフォトニッククリスタルファイバを、被接続光ファイバに接続する方法であって、
    上記フォトニッククリスタルファイバの接続端部に対し、該接続端部における上記クラッドの細孔を封止する処理を施すと共に、上記コアにドープされた屈折率を高めるためのドーパントを上記細孔が封止されたクラッドに拡散させる加熱処理を施すことを特徴とするフォトニッククリスタルファイバの接続方法。
  2. ファイバ中心をなす中実のコアと、該コアを覆うように設けられ該コアに沿って延びる多数の細孔を有するクラッドとを備え、該コアが該クラッドよりも屈折率の高い材料で形成されたフォトニッククリスタルファイバを、被接続光ファイバに接続したフォトニッククリスタルファイバの接続構造体であって、
    上記フォトニッククリスタルファイバは、その接続端部における上記クラッドの細孔が封止されていると共に、上記コアに屈折率を高めるためのドーパントがドープされており、上記接続端部における該コアにドープされたドーパントが上記細孔が封止されたクラッドに拡散していることを特徴とするフォトニッククリスタルファイバの接続構造体。
  3. ファイバ中心をなす中実のコアと、該コアを覆うように設けられ該コアに沿って延びる多数の細孔を有するクラッドとを備え、該コアが該クラッドよりも屈折率の高い材料で形成されたフォトニッククリスタルファイバであって、
    少なくとも一方の端部における上記クラッドの細孔が封止されていると共に、上記コアに屈折率を高めるためのドーパントがドープされており、上記端部における該コアにドープされたドーパントが上記細孔が封止されたクラッドに拡散していることを特徴とするフォトニッククリスタルファイバ。
JP2001041765A 2001-02-19 2001-02-19 フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ Expired - Fee Related JP3699357B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041765A JP3699357B2 (ja) 2001-02-19 2001-02-19 フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041765A JP3699357B2 (ja) 2001-02-19 2001-02-19 フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ

Publications (2)

Publication Number Publication Date
JP2002243972A JP2002243972A (ja) 2002-08-28
JP3699357B2 true JP3699357B2 (ja) 2005-09-28

Family

ID=18904155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041765A Expired - Fee Related JP3699357B2 (ja) 2001-02-19 2001-02-19 フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ

Country Status (1)

Country Link
JP (1) JP3699357B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261924A (zh) * 2011-04-26 2011-11-30 南京信息工程大学 一种基于实芯光子晶体光纤的法布里-珀罗干涉传感器及其制作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863866B2 (ja) * 2003-07-01 2006-12-27 日立電線株式会社 光ファイバの接続部及び光ファイバ接続器
WO2005003827A1 (ja) * 2003-07-01 2005-01-13 Hitachi Cable, Ltd. 光ファイバ、光ファイバの接続方法及び光コネクタ
EP1788414B1 (en) 2004-06-22 2016-09-14 Fujikura Ltd. Connecting method and structure of photonic crystal fiber
JP2006072025A (ja) * 2004-09-02 2006-03-16 Shin Etsu Chem Co Ltd バンドルファイバ
JP4823759B2 (ja) * 2005-05-19 2011-11-24 株式会社フジクラ 光ファイバ用コネクタ製造方法
US7458734B2 (en) 2006-11-09 2008-12-02 Corning Incorporated Method of splicing an optical fiber with holes in the cladding
CN104625944A (zh) * 2015-02-26 2015-05-20 中国电子科技集团公司第四十四研究所 光子晶体光纤端面研磨抛光方法及由此获得的器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261924A (zh) * 2011-04-26 2011-11-30 南京信息工程大学 一种基于实芯光子晶体光纤的法布里-珀罗干涉传感器及其制作方法

Also Published As

Publication number Publication date
JP2002243972A (ja) 2002-08-28

Similar Documents

Publication Publication Date Title
US6321006B2 (en) Optical fiber having an expanded mode field diameter and method of expanding the mode field diameter of an optical fiber
US6724528B2 (en) Polarization-maintaining optical fiber amplifier employing externally applied stress-induced birefringence
US7542645B1 (en) Airline optical fiber with reduced multipath interference and methods of forming same
US9014522B2 (en) Optical couplers and methods for making same
JP5565088B2 (ja) 光ファイバ結合器、ファイバレーザ、および、光ファイバ結合器の製造方法
US6705771B2 (en) Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
JP3833621B2 (ja) 偏波保持光ファイバ
JP2009032910A (ja) 光ファイバレーザ用光ファイバ及びその製造方法、並びに光ファイバレーザ
KR20010080687A (ko) 관으로 싸인 섬유 격자
JP2007227713A (ja) ファイバ間融着接続構造、光増幅器及び光ファイバレーザ
JP3699357B2 (ja) フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ
US6742939B2 (en) Optical fiber fusion splice having a controlled mode field diameter expansion match
Zheng et al. Erbium-doped fiber splicing and splice loss estimation
JP4571060B2 (ja) ホーリーファイバの接続構造の製造方法
JP3630767B2 (ja) 希土類添加偏波保持光ファイバ
JP2002243971A (ja) フォトニッククリスタルファイバの接続方法及びその接続構造体並びにその接続構造体の構成部材
US10338315B2 (en) Splicing of crystal fiber to silica fiber with reaction bonding
JP3993198B2 (ja) 光ファイバおよびこれを用いた光ファイバカプラ、エルビウム添加光ファイバ増幅器、光導波路
Oda et al. Thermally expanded core fiber with a 4-µm mode field diameter suitable for low-loss coupling with silicon photonic devices
JP2828276B2 (ja) 偏波保持形光ファイバカプラの製造方法
Michalska et al. Low-loss fiber fusion splicing: a main requirement for the developing of all-fiber laser system technology
JP6746625B2 (ja) 光ファイバ
JPH04219706A (ja) 異種光ファイバの融着接続構造および融着接続方法
JPH06337324A (ja) 光合波分波用光ファイバカプラ及びその製造方法
TW202102887A (zh) 光纖熔接的方法與熔接光纖

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees