JP3698991B2 - プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法 - Google Patents

プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法 Download PDF

Info

Publication number
JP3698991B2
JP3698991B2 JP2001001301A JP2001001301A JP3698991B2 JP 3698991 B2 JP3698991 B2 JP 3698991B2 JP 2001001301 A JP2001001301 A JP 2001001301A JP 2001001301 A JP2001001301 A JP 2001001301A JP 3698991 B2 JP3698991 B2 JP 3698991B2
Authority
JP
Japan
Prior art keywords
potential difference
plasma
light emitting
current
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001001301A
Other languages
English (en)
Other versions
JP2002100617A5 (ja
JP2002100617A (ja
Inventor
信行 三瀬
哲郎 小野
建人 臼井
良司 西尾
主人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001001301A priority Critical patent/JP3698991B2/ja
Publication of JP2002100617A publication Critical patent/JP2002100617A/ja
Publication of JP2002100617A5 publication Critical patent/JP2002100617A5/ja
Application granted granted Critical
Publication of JP3698991B2 publication Critical patent/JP3698991B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電位差、電流の測定方法にかかわり、特に半導体製造工程において、試料である半導体ウエハの表面処理加工を行うために半導体ウエハをプラズマ発生装置内に配置した際に、プラズマ中にある半導体ウエハ上に発生する電位差もしくはプラズマ電流を測定する方法に関する。さらに、この電位差もしくはプラズマ電流の測定結果を利用して、プラズマ処理装置におけるプロセスモニターを行う装置およびそれを用いた試料の処理方法に関するものである。
【0002】
【従来の技術】
一般に、半導体製造工程においては、半導体ウエハに対してエッチング等の各種の表面加工を行う必要があり、その表面加工を行う加工装置としては、電磁波を用いてプラズマを発生させるプラズマ発生装置を用いることが主流となっている。この場合、プラズマ発生装置においては、電磁波やプラズマによって、プラズマ発生装置内の空間部に強い電界強度が発生するだけでなく、処理台(試料台)上に載置した半導体ウエハ表面にも強い電界強度が発生する。そして、半導体ウエハ表面に強い電界強度が発生すると、その電界強度により半導体ウエハ表面に電位差が発生し、その電位差が所定値を超えるようになった場合、半導体ウエハが破損することがある。このため、プラズマ発生装置を用いて半導体ウエハの表面加工を行う際には、半導体ウエハ上の電位差を測定することが重要になる。
【0003】
この場合、プラズマ発生装置内の電界強度や電位差を測定する方法としては、代表的なものとして探針法(以下、これを既知の第1方法という)がある。この既知の第1方法は、プラズマ雰囲気中に導体針を挿入し、探針によって導体針の電圧-電流特性を検出することにより、プラズマ発生装置内の電界強度や電位差を測定するものである。
【0004】
また、平成11年(1999年)春季第46回応用物理学関連連合講演会講演予稿集の第775ページには、プラズマ発生装置内にある半導体ウエハの電位を測定する方法(以下、これを既知の第2方法という)が開示されている。この既知の第2方法は、プラズマ発生装置内にあり、半導体ウエハを載置する試料台に予め探針を埋め込んでおき、半導体ウエハの電位を測定する代わりに、試料台に載置される半導体ウエハの位置に発生すると思われる電位を埋め込んだ探針によって測定するものである。
【0005】
【発明が解決しようとする課題】
ところで、プラズマ発生装置内にある半導体ウエハ上の電位差を測定する既知の第1方法は、プラズマ雰囲気中で探針により導体針の電圧-電流特性を検出するものであるため、導体針に発生する検出出力を外部に取り出すための接続導線が必要になったり、その上、プラズマが真空容器内に発生するものであることから、真空容器にこの接続導線を中継する中継端子を設ける必要があったりし、全体的にプラズマ発生装置の構造が複雑になり、簡便な手段による半導体ウエハ上の電位差の測定ができないものである。
【0006】
また、プラズマ発生装置内にある半導体ウエハ上の電位差を測定する既知の第2方法は、半導体ウエハを載置する試料台に探針を埋め込んでいるものであるため、特殊な構成の試料台が必要になるだけでなく、この試料台を用いて半導体ウエハ上の電位差を測定した後、この試料台上で半導体ウエハの表面加工を行うことが難しく、半導体ウエハ上の電位差の測定を行う場合と半導体ウエハの表面加工を行う場合とで試料台を交換する必要があり、その分、プラズマ発生装置のコストが増大し、かつ、処理工程が増えることになる。
【0007】
本発明は、このような技術的背景に鑑みてなされたもので、その目的は、簡単な構成を有する電位差、電流測定部材を用い、被測定物体上の直流電位差を簡便な手段によって測定を行うことを可能にした電位差、電流測定方法を提供することにある。
【0008】
本発明の他の目的は、簡単な構成の装置でプロセスをモニターしながら効率よく試料を処理することのできる方法を提供することにある。
【0009】
【課題を解決するための手段】
発光ダイオードなどの発光素子をプラズマ中に放置すると、発光素子の両端に、プラズマからの荷電粒子(イオン、電子)の流れによって発生する電位差により発光素子に電流が流れ、発光する。この発光素子の発光強度は発光素子の電圧や電流と一定の相関がある。本発明は、発光素子のこの性質を利用するものである。
【0010】
本発明の特徴は、真空容器にガスを導入してプラズマを発生させ試料を処理するプラズマ処理装置における、プラズマ処理の電位差を測定するものにおいて、前記試料と同じ構成の測定用試料の上に発光素子を形成し、プラズマから入射する荷電粒子量の差に対応して発生する電位差を利用し、前記発光素子の両端に発生した電位差によって該発光素子に電流が流れ該電流に応じて前記発光素子が発光することによる発光強度を測定し、該発光強度の強弱に応じて前記測定用試料上の電位差を測定することにある。
【0011】
本発明の他の特徴は、真空容器にガスを導入してプラズマを発生させ、被処理物にプラズマ処理を施すプラズマ処理の電流を測定するものにおいて、前記被処理物の上に発光素子を形成し、該被処理物の表面にプラズマから入射する荷電粒子の流れを、前記発光素子に流れる電流に応じて該発光素子が発光する発光強度として測定し、該発光強度の強弱に応じて前記被処理物へ流れ込む電流を測定することにある。
【0012】
例えば、発光素子の端子にプラズマからの荷電粒子を捕捉するためのアンテナとなる導体を接続する。これを、プラズマ処理装置内あるいはウェハ上に設置し、発光素子の発光強度を測定する。予め求めてある発光素子の発光強度と電圧-電流との相関式により、この発光強度を電圧に換算し2点間の電位差を測定、また、電流に換算し2点間に流れるプラズマ電流を測定することができる。
【0013】
プラズマ電位差測定を行う場合、発光ダイオードの回路抵抗はプラズマを含む外部回路抵抗より大きく、また、プラズマ電流測定を行う場合は小さくする必要がある。この方法では、光強度を測定するための窓があればよく、導線やその導入端子を必要としない。
【0014】
前記目的を達成するために、本発明による電位差測定方法は、一対の導体アンテナと、一対の導体アンテナ間に接続された発光素子と、発光素子に並列接続された交流電圧バイパス素子とを備えた電位差、電流測定部材を用いるものであって、一対の導体アンテナを被測定物体の電位測定点にそれぞれ配置接続し、そのときに発光素子が出力する発光強度を検出することによって各電位測定点の直流電位差を測定する手段を具備する。
【0015】
前記手段によれば、一対の導体アンテナを被測定物体の各電位測定点にそれぞれ配置接続すると、各電位測定点間に直流電位差がある場合、その直流電位差に応じて発光素子、好ましくは発光ダイオードが発光するので、被測定物体が内蔵されている機器、例えばプラズマ発生層の外部からその発光強度を目視により、または、CCD(電荷結合素子)カメラ等の光学機器で検出することにより、各電位測定点間の直流電位差を測定することができるもので、検出出力を取り出すための接続導線や、検出用導体針を埋め込んだ試料台を設ける必要がない。
【0016】
この場合、発光素子に並列に交流電圧バイパス素子、好ましくはコンデンサが接続されているので、各電位測定点間に発生する交流電位差はこの交流電圧バイパス素子によりバイパスされ、各電位測定点間の直流電位差だけを測定することができるものである。
【0017】
また、本発明によれば、簡単な構成を有する電位差、電流測定部材を用いた、効率の良い試料の処理方法を提供することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は、本発明が適用されるECR方式のエッチング装置の全体構成図である。マイクロ波電源101から導波管102と導入窓103を介して真空容器104内にマイクロ波が導入される。導入窓103の材質は石英などの電磁波を透過する物質である。真空容器104の回りには電磁石107が設置されており、磁場強度はマイクロ波の周波数と共鳴を起こすように設定されて、たとえば周波数が2.45GHzならば磁場強度は875Gaussである。試料台108の上に、ウエハ105(またはプラズマ電位差、電流測定装置200)が設置される。ウエハに入射するイオンを加速するために、高周波電源109が試料台108に接続されている。試料台108の周りにはこの高周波に対するアース114が設けてある。
【0019】
また、後に示す発光ダイオードの発光強度を測定するために、導波管には窓112があり、ここからCCD(電荷結合素子)などを用いたカメラ110によりウエハ像をモニタする。カメラのデータはパソコン111で処理される。プラズマ106の発光を除去するために、カメラ110には発光ダイオードの発光波長に合わせた干渉フィルター113がつけてある。
【0020】
図2は、本発明の一実施例になる測定用試料、すなわちプロセス処理の対象となるウエハ105と全く同じ構成(材料、形状)の測定用試料上に電位差、電流測定部が形成され試料台108の上に載置されるプラズマ電位差、電流測定装置200の上面図である。図3はこのプラズマ電位差、電流測定装置200の断面図である。
【0021】
このプラズマ電位差、電流測定装置200は、Si基板204上に酸化膜205を堆積して、その上に発光ダイオード(LED)201を設置してある。発光ダイオードの両端には、被服導線を用いてアルミ製アンテナ203が接続されている。エッチングに用いるプラズマ発生装置は、飽和イオン電流密度が0.5から5mA/cm2 の範囲内である。一方、発光ダイオード201のオン電流(発光時の通流電流)は1mA程度であるので、導体アンテナの面積は0.2から2cm2 の範囲以上にすればよい。一般にはアンテナ面積はプラズマ密度に応じて変えればよい。
【0022】
この装置では、図2中LED1からLED5で示されるように発光ダイオードを1から5個直列に接続して、それぞれの両端に独立したアンテナが接続されている。このようにして発光ダイオードの発光開始しきい値をかえて、測定の精度をあげている。各発光ダイオードには交流電圧成分を除去するためのフィルターとしてコンデンサ202が並列に接続されている。コンデンサの値は高周波電源109の周波数が800kHzの場合には1μF程度が適当であるが、一般には周波数に応じて値を変えればよい。また、この例ではあらかじめウエハ中心の電位が周囲よりも大きいことを想定して、この電位分布のときにダイオードが発光するような極性で接続されている。発光ダイオード1個の場合のみ逆方向のダイオードも並列に接続されている。これにより周囲の電位の方が高い場合を検出できる。
【0023】
図4は、図1に示すエッチング装置でウエハ105(またはプラズマ電位差、電流測定装置200)上に生じる電位分布を示す。プラズマ密度の不均一や高周波電源109からの電流分布の不均一が原因で、ウエハ上には電位の不均一が生じる。図4(a)ではウエハ中心A点の電位がウエハ周囲B点よりΔVdcだけ高くなっている。さらにウエハ上には高周波電源109の高周波電圧成分が重なりAB間の電位は図4(b)のように時間的に変動する。もし、ΔVdcがゼロでも発光ダイオードはこの高周波成分で発光するために、直流成分ΔVdcのみを測定するために、発光ダイオード201にはコンデンサ202が並列に接続されている。従って、図2に示す装置をこのプラズマ中に設置するとΔVdcにより発光ダイオードが発光する。
【0024】
図5は、直列に接続された発光ダイオードにかかる電圧と発光強度の関係を示したもので、図5中のLED1から5はそれぞれ直列接続されたダイオードの数を示す。このダイオードの発光色は赤で、発光開始のしきい値は1.5Vである。従って1個から5個直列に接続すると発光しきい値はそれぞれ1.5V、3V、4.5V、6V、7.5Vになる。
【0025】
図6は、図2に示すプラズマ電位差、電流測定装置200を図1のエッチング装置中に設置して発光ダイオードの発光強度をカメラ110で測定した結果である。横軸は時間で時間とともに高周波電源109の出力を10Wから70Wまで変えている。図6では発光ダイオードを3個接続したものと5個接続したものの発光強度を例として示してある。20Wでダイオード3個接続したものが発光を開始して、ΔVdcが4.5V以上発生したことが分かる。また50Wでダイオード5個接続したものが発光を開始して、ΔVdcが7.5V以上発生したことが分かる。
【0026】
以上の方法で、高周波電力とΔVdcの関係を測定した結果を図7に示す。プラズマのガスは塩素74sccm + 酸素6sccmで、圧力0.4Paである。またマイクロ波電源101の出力は400Wである。これは半導体素子に使われるpoly-Siをエッチングする条件である。
【0027】
プラズマ中に置かれたウエハ上に生じる電位差ΔVdcはウエハに加工されたトランジスタのゲート酸化膜の絶縁破壊に関連する量なので、この測定が重要となる。エッチング装置の開発あるいはエッチング条件の決定では、エッチング速度などの特性に加えて、ゲート酸化膜の絶縁破壊が無いことが必要である。
【0028】
従来は、公知例で述べた探針を埋め込んだ電極で電位差を測定しながらその値が小さくなるように、装置を設計したりエッチング条件を決め、その後通常の試料台に置き換えて試料のエッチングを行う必要があった。
【0029】
本発明ではΔVdcを測定する装置すなわち、プラズマ電位差、電流測定装置200がウエハと同じ形状を持つために、エッチング装置に何ら変更をすることなく、ΔVdcが測定でき、ΔVdcが十分小さい条件を決定した後に、ウエハを交換するだけで半導体素子のエッチングも行える。すなわち、作業時間が短縮できかつ、装置も全く同じ構成でエッチング特性とウエハ面内電位差の測定ができるので、精度も上がる。
【0030】
以上の実施例において、各発光ダイオードの両端のアンテナはウエハの中心と周囲に位置するように配置してあるが、アンテナ位置はウエハ上の電位を知りたい点に応じて変えればよい。
【0031】
また、カメラで読む発光強度は、カメラと発光ダイオードの距離や、窓材の光の透過率などに依存する。したがって、電位差の絶対値を求めるためには、距離や透過率を測定して読みを校正すればよい。また、校正作業はなくてもウエハ面内の電位差の相対的な大小は発光強度でわかる。
【0032】
また、ウエハ上に発生する電位の分布はいつも図4のように中心が高くなるとは限らないので発光ダイオードを順方向と逆方向につないだものを1組としてウエハ上に設置することで、電位の極性が判定できる。
【0033】
また、図2で発光ダイオード201やコンデンサ202は必要に応じてポリイミドなどで被い、プラズマからの損傷を防ぐことができる。
【0034】
また、ウエハ上に発生する電位の交流成分も合せて測定したい場合はコンデンサ202を接続しなければよい。また、発生するΔVdcの大きさに応じて、直列接続する発光ダイオードの数、あるいは青色などの発光しきい値の異なるダイオードを用いればよい。
【0035】
また、発光強度測定用カメラ110は電磁波対策を施した上で真空容器中104中に設置してもよい。また、受光部分に光ファイバなどを取り付けてもよい。
【0036】
次に、図8aは、アンテナ203Aと203Bの間に発光回路801を挿入し、さらに交流成分を除去するためにコンデンサー202を発光回路801と並列に接続したものである.アンテナ203Aとアンテナ203B間に電位差が生じたときには、その電位差に応じて発光回路が発光し、その発光量を観察することで、電位差を知ることができる。交流成分を除去するにはコンデンサー202を発光回路と並列に接続する代わりに、コイル802を発光回路801と直列に接続してもよい。ここで、発光回路801とは発光ダイオード201や両端に印加される電圧に応じて抵抗が発光するいわゆる豆電球の類位、あるいは半導体レーザーなどのレーザーなど発光する素子を含んだ回路である。この発光回路の種々の実施例に関しては後ほど説明する。また、ここでは発光素子を含む発光回路801として説明するが、発光素子の代わりとしては両端に印加される電圧に応じた強度の紫外線、赤外線、X線などの電磁波や音波を発する装置でもよい。ただし、その場合にはカメラ110や干渉フィルター113の代わりに、それらの信号を検出できるようなセンサーやフィルターを用いることは言うまでもない。重要な点は、両端に印加される電圧、あるいはそれに応じた電流と対応関係のある何らかの物理量を発し、その物理量を離れた位置で検出する手段をもつことである。
【0037】
次に、本発明のプラズマ電位差、電流測定装置200を半導体デバイス製造時に用いる方法について説明する。図9は半導体製造装置の構成例を示す。具体的にはエッチング装置、CVD装置などである。
【0038】
図9の半導体製造装置は、処理室901、第二の処理室902、ウエハ搬送用ロボット903、ロードロック室904、アンロードロック室905、ローダー906、ストッカー907を有する。ストッカー907にはカセット908とダミーカセット909がある。ウエハを処理室901で処理するときには、ほぼ大気圧条件にあるカセット908に入れられたウエハ105をローダー906でほぼ大気圧条件にあるロードロック室904に運び、ロードロック室を閉じる。ロードロック室904の圧力を適当な圧力に減圧したのちに、ウエハ搬送用ロボット903でウエハ105を処理室901に搬送し、そこで適当な処理を施す。処理が終わると、ウエハ105をウエハ搬送用ロボット903でアンロードロック室905に搬送する。アンロードロック室905の圧力をほぼ大気圧まで上昇させたのち、ローダー906でカセット908に挿入する。通常はこのような処理を繰り返す。
【0039】
次に、図10で本発明の電位差、電流測定装置200をプロセス処理に用いる方法を説明する。通常は、処理室901、902でウエハー105の処理がなされる(S1000)。定期的にあるいは不定期的に、処理条件をチェックするときには、ダミーカセット909に入れておいた前述の電位差、電流測定装置200を処理室に搬送し、処理条件をチェックすれば良い(S1002)。すなわち、処理条件をチェックするときには、カセット908からウエハ105を取り出すのではなく、ダミーカセット909に入れておいた電位差、電流測定装置200をローダー906でロードロック室904に運び、そののちウエハ搬送用ロボット903で処理室901に搬送する。それから、電位差、電流測定装置200をあらかじめ決められた条件で処理し、そのときの発光状態を観察し、異常の有無、程度を検知する(S1004)。
【0040】
異常がないときには、本電位差、電流測定装置200をウエハ搬送用ロボット903で取り出し、アンロードロック室905に入れ、ローダー906でダミーカセット909に入れて、半導体の処理を再開する(S1000)。
【0041】
異常があると判断された場合は、できるだけ処理室を真空状態に保ったままで、装置の状態を点検し対策する(S1006)。対策後、再び本電位差、電流測定装置をあらかじめ決められた条件で処理し、発光状態を観察し(S1008)、異常の有無、程度を検知する(S1010)。
【0042】
このとき、異常がないと判断されれば、本電位差、電流測定装置200をウエハ搬送用ロボット903で取り出し、アンロードロック室905に入れ、ローダー906でダミーカセット909に入れて、半導体の処理を再開する(S1000)。このときにも異常があると判断されれば、本電位差、電流測定装置200をウエハ搬送用ロボット903で取り出し、アンロードロック室905に入れ、ローダー906でダミーカセット909に入れたのちに、処理室を大気開放して必要な処理を行う(S1012)。ここで、必要な処理とは、具体的には、消耗部品を交換すること、有機溶剤などで処理室の各部に付着した膜を除去することなどである。
【0043】
この処理を終えると、再び処理室を真空状態にし、半導体の処理が可能な状態にする。このとき、ただちに半導体の処理を再開するのではなく、本電位差、電流測定装置200で本処理室901が正常な状態に復帰しことを確認してから、半導体の処理を再開する(S1014〜1016)。このとき、異常が検知されれば、再び、処理室901あるいは本半導体製造装置全体を点検し、先ほどの処理を繰り返したり、さらに大掛かりな処理を施すことになる。
【0044】
本発明の電位差、電流測定装置200を処理する条件は、必ずしも半導体処理条件と一致しなくてもよい。同じ条件であれば、その条件が正常に維持されているかを判断することになる。しかし、実際の処理条件とは異なるが、異常の検知が容易な条件を用いることにより、時間が経るに連れてわずかに変化するような異常状態をあらかじめ予測することができる。半導体処理条件と異なる条件での処理であるから異常が検知されても、必ずしも半導体処理を中止する必要はない。ただしこの条件で異常が検知されると、半導体処理を再開してから、再び本電位差、電流測定装置を用いて装置状態を監視する時間を通常よりも短くするなどする。これにより装置の稼働率を落とさないで処理したウエハを無駄にしないですむようになる。
【0045】
また、説明上ここでは大気カセットを用いたが、真空カセットを用いてもよい。
次に、図11で本電位差、電流測定装置200を処理装置901や処理プロセスを開発するのに用いる方法を説明する。本電位差、電流測定装置を開発したい半導体製造装置、たとえば図1に示したエッチング装置に挿入する。
【0046】
たとえば、ウエハ面内の電位差を小さくするための試料台108の高さを最適化するには、プラズマを発生させるためのマイクロ波電源の出力パワー、ウエハにバイアス電圧を印加するための高周波電源の出力パワー、処理室の圧力、処理室に導入するガスの流量などを一定にした状態で、試料台108に本電位差、電流測定装置200を載せ、発光状態を観察する。次に試料台の高さのみを変えた条件で発光状態を観察する(S1100)。このような実験を繰り返し、試料台の高さと発光状態の関係を調べることで、ウエハ面内の電位差が小さい条件を見つけることができる。本方法は、ウエハ105の代わりに本電位差、電流測定装置を挿入するだけで可能なもので、特殊な電極などを必要としない。また、本方法はその場で発光量、すなわち電位差が定量化できるので、本測定の前、あるいは後で、ウエハ105を用いて実際に処理を行ったり、本測定中あるいは前または後にプラズマ106の発光状態を分光分析したりすることも容易である。すなわち、ひとつの条件に対して、試料台108の高さとウエハ面内の電位差、そのときのプラズマの様子、ウエハの処理結果が得られ、多面的に装置の構成を最適化することが可能である(S1102〜1108)。ここでは、試料台108の高さを例にとったが、本方法は試料台の大きさやガス導入口の位置、アース114の大きさ、位置などを最適化するのにも有効である。
【0047】
また本手法は装置のハード的な構成の最適化のみでなく、処理ガスの種類、圧力、磁場、マイクロ波電源の出力パワー、周波数、高周波電源の出力パワー、周波数などの各種処理条件を最適化するのにも有効である(S1110〜1116)。
【0048】
カセット、アッシャー901は本半導体製造装置の反応室である。反応室901の例が図1に示したエッチング装置である。反応室901にウエハを搬送するために、搬送装置902があり。902はダミーカセットである。
【0049】
次に、図12は、本発明の他の実施例としての、バイアス電圧が印加されない場合の電位差、電流測定装置200の構成図である。図2の装置構成と異なるのは、交流成分を除去するためのコンデンサー202がないことである。バイアス電圧が印加されないときには、交流成分が無視でき、コンデンサー202を除いた構成にしても問題はないことが多い。実際にCVDやアッシングでは、プラズマプロセスであってもバイアス電圧を印加しないこともある。
【0050】
図13はバイアスを印加しない装置、アッシング装置の例である。図13の構成は図1に示したものと似ているが、図13の構成では高周波電源109およびアース114がない。また、用いるガスはレジストを除去するためのガスで、アルゴン、酸素などである。図12の電位差、電流測定装置はこのような装置に導入して、使用する。
【0051】
本発明の電位差、電流測定装置200は、アンテナの片方が基板に導通したであっても良い。図14は、図2あるいは図12に示した電位差、電流測定装置の変形である。この発明では、片方のアンテナが基板204に導通していることが特徴である。通常の半導体製造プロセスにおいては、基板の電位に対するゲートの電位が問題にされることが多く、このような構成を取ることで、基板とゲートの電圧を測定可能である。また、この装置では基板と導通していないアンテナ203はウエハ中心からの距離を変えて計3箇所設置されている。アンテナ203とシリコン基板204の間の電位差が求まる。
【0052】
また、櫛形アンテナを用いても良い。図15(a)、(b)に示した電位差、電流測定部材は、櫛形アンテナ1501とアンテナ203との間に、逆向きに並列接続された2個の発光ダイオード201と、それに並列接続されたコンデンサ202とが接続された構成のもので、シリコン基板204表面に被覆された絶縁膜205上に配置接続されている。この場合、櫛形アンテナ1501は、絶縁膜205上に配置された導体アンテナ203の上にラインアンドスペース状に加工されたレジスト1502によって形成されている。レジスト1502におけるラインアンドスペース状のパターンは、半導体製造工程中にリソグラフィーによって形成されるもので、ラインとスペースの各サイズは数μm以下の微細なものである。アンテナ203を櫛形アンテナ1501のような構造にすると、一般に電子シェーディングと呼ばれる現象により、微細構造内に生じる直流電位差を測定できる。プラズマ中に置かれたシリコン基板204に入射するイオンは、加速されるためにシリコン基板204にほぼ垂直に入射する。一方、電子は質量が小さいために、熱によるランダムな方向の速度が大きく、シリコン基板204にランダムな方向から入射する。
【0053】
このため、シリコン基板204上に数μm以下の微細な溝や孔からなる微細パターンを持ったレジスト1502がある場合、大部分のイオンは微細パターンの底部まで到達するが、大部分の電子は底部に到達できない。その結果、レジスト1502は、微細パターンの底部が正に、微細パターンの壁部が負に帯電するもので、この現象を電子シェーディングと呼んでいる。半導体素子の加工においては、一般に微細パターンの底部がゲート酸化膜に接続されている場合が多く、それによりゲートが帯電して絶縁破壊が生じることになるので、電子シェーディングの測定を行う必要がある。
【0054】
図15(a)、(b)に図示の櫛形アンテナ1501は、シリコン基板204が電子シェーディングにより正に帯電し、それにより櫛形アンテナ1501とアンテナ203間に直流電位差を生じるので、2個の発光ダイオード201の中のいずれかが光を出力し、その光強度から電子シェーディングの発生の度合いを測定することができる。電子シェーディングの測定においては、位置間の直流電位差が重ならないように、2個の発光ダイオード201の両端に接続される櫛形アンテナ1501とアンテナ203とを近接配置するのが好ましい。また、電子シェーディングとシリコン基板204表面の直流電位差が重なったものを測定するときは、櫛形アンテナ1501とアンテナ203とを離間配置すればよい。
【0055】
櫛形アンテナ1501と平面的なアンテナ203を近接配置して、発光ダイオード201の発光強度を調べ、発光ダイオード201に流れる電流を求めることができる。発光ダイオード201に流れる電流は、櫛形アンテナ1501の構造とプラズマ106のイオン電流密度によって定まる量である。櫛形アンテナ1501の構造は既知であるので、本装置の発光量を調べることで、イオン電流密度を求めることができる。
【0056】
また、アンテナ203の厚さをアンテナ1501の厚さよりも厚くしておいたものをプラズマに曝し、アンテナ203、1501をエッチングすると、アンテナ1501が残っている間は発光ダイオード201の発光が観察できるが、アンテナ1501がエッチングされると電流を集める面積が減り、発光ダイオード201が発光しなくなる。したがって、発光ダイオード201が発光している時間とアンテナ1501の厚さから、エッチングレートが測定できる。レジスト1502のパターンを変えれば、パターンに依存したエッチングレートが測定できる。たとえば、溝幅を変えたレジストのパターン、複数の孔のあるレジストパターンなどである。
【0057】
次にこの装置でウエハ面内のエッチングレートの均一性を向上させる方法を示す。エッチング装置の開発あるいはエッチング条件の決定では、エッチング速度の均一性がウエハ全面で一定の基準を満たすことが要求される。従来は、その場でエッチングレートを測定するには、干渉を用いる方法が一般であるが、一度に複数個所のレートをその場観察するのは、分光器を取り付ける位置に制限があるなど、なかなか困難である。また、複雑なパターンを有する場合は、回折の複雑な計算を精度良く行う必要があり、簡単ではない。それに対し、本方法はウエハ上に前述の装置を複数箇所に設置し、エッチング中に発光回路801の発光を観察するだけの極めて簡便な手法である。
【0058】
さて、ウエハ全面に渡って、平坦部のエッチングレートの均一性が高い条件とは、発光回路801が発光している時間のばらつきが小さい条件である。従って、図1のプラズマエッチング装置において、エッチング中に導入するガスの流量などを変えたエッチングを行い、そのたびに発光回路801が発光している時間のばらつきを計測し、発光回路801が発光している時間のばらつきが小さい条件ほどがウエハ全面にわたって平坦部のエッチングレートが均一な条件である。
【0059】
パターン付きのアンテナを簡単に構成するのに、導体の上に、微細なパターンのついた絶縁物を載せればよい。この絶縁物として、たとえば、浜松ホトニクス社製のキャピラリープレート型式J5022-11を用いる。このキャピラリープレートは直径が10μm、深さが400μmの穴が複数配置されたものである。実際の半導体では約1μmあるいはそれより小さな領域の加工が問題になることが多い。しかし、参考文献[1]によれば、平均自由行程やシース厚さなどの代表的な寸法に対し、パターンの寸法が十分に小さければ、パターンが相似であれば絶対的な大きは関係ないことがわかっている。すなわち、上記のキャピラリープレート、またはそれを加工したもの、あるいはその類似品などを用いることで、リソグラフィーなどを使用することなく、1μmオーダーの状況を簡便に模擬できる。
参考文献[1]N. Mise et al.、 Proceedings of the 5th International Symposium on Plasma Process-Induced Damage、 p.46、 2000
次に、本発明による、エネルギー制御について説明する。図16の実施例は、アンテナ203前面に電池1601を接続したメッシュ1602を設けて、アンテナに入る荷電粒子のエネルギーを測定する装置である。(A)は発光ダイオード部分の拡大上面図、(B)は縦断面図である。電池は絶縁膜205の開口部1503からシリコン基板204に接続されている。メッシュ1602に電圧をかけるとその向きと大きさにより、イオンや電子が反発されて、印加した電圧以上のエネルギーを持つ粒子しかアンテナ203に到達しなくなり、発光強度と電池1601の電圧から、あるエネルギー以上を持つ電荷の数がわかる。図16では電圧の異なる電池1602をつけたアンテナを複数個設置すると、エネルギーの分布も測定できる。
【0060】
次に、本発明の他の実施例を図17で説明する。図17はアンテナ203の面積を変え測定を行った場合の例を示す。この測定方法においては、発光ダイオードの発光強度を測定するために、発光ダイオードが光るのに十分な電流を必要とする。電流の上限はアンテナ面積とプラズマの密度で決まる値となる。また十分電流が供給されても、発光ダイオード両端の電位差が低いと、電圧で制限されて、発光強度は小さくなる。発光ダイオードの発光強度が電圧で制限されるか、電流で制限されるかは発光ダイオードの電流電圧特性、ウエハ面上に発生する電位差の大小、アンテナの大小、あるいはプラズマ密度の大小などに依存するので、一義的には決まらない。測定では、発光強度が最も測定しやすい領域になるようにアンテナの面積を変えて調整をする必要があるが、図17の様にあらかじめ異なる面積のアンテナ203に接続された発光ダイオード201を複数個用意しておけば、一度で、広い電流範囲の測定ができる。
【0061】
また、図18は、本発明の他の実施例になるウエハ上の電位差測定装置200の別構成図であり、(A)は拡大上面図、(B)は縦断面の拡大図である。この例は、発光素子として薄い酸化膜を用いた装置である。シリコン基板204上に絶縁膜205が堆積しておりその一部に薄いゲート酸化膜1801がある。ゲート酸化膜1801にはポリシリコンなどでできたアンテナ1802が接続している。薄い酸化膜も十分な電流が流れると発光するので、発光ダイオード201と同様に使うことができる。この構成は、より実際の半導体素子が加工されるウエハに近いので、測定された値もより正確になる。
【0062】
図18の構成では、発光素子はアンテナ面積の異なる複数個の素子がウエハ上に配置してある。また、図では1組しか書いていないが同様の組をウエハ全面に配置して分布を測定できる。この構造ではアンテナ1802とシリコン基板204間の電位差を測定するが、構造を変えることで、いろいろな二点間の電位差を測定できる。
【0063】
また、発光ダイオードの材質に化合物半導体ではなく、シリコンを用いると汚染の問題はない。シリコンで発光ダイオードを形成するれば、シリコン基板を用いて半導体デバイスを製造するときに、たとえばスクライブ領域やウエハの端の半導体デバイスとしては使用しない領域に発光回路801を形成することもできる。このような領域に発光回路801を形成すれば、一枚のウエハから取得できる半導体デバイス数が減少しなくてすむ。しかも、このウエハを用いればデバイスを作成しながら、プラズマに曝したときのウエハ面内の電位差、ゲート酸化膜の破壊程度が測定できる。すなわち、プラズマ装置の状態やプロセス条件をその場で評価することができ、デバイスの歩留まりを予測することができる。
【0064】
次に、図19に発光回路801の実施例を示す。図19はアンテナ203の間に、二つの回路を並列に接続した例である。一つ目の回路は発光素子1901とツェナーダイオードZ1sを直接に接続したものに別のツェナーダイオードZ1pを並列に接続し、それにさらにダイオードD1を接続したものである。Z1sとZ1pは極性を揃えておき、D1の極性はZ1sと逆向きする。ツェナーダイオードに逆方向の電圧を印加したときに、急激に電流が流れ始める電圧をVZとする。ここでは、ツェナーダイオードZ1pの閾値電圧の絶対値VZ1pがツェナーダイオードZ1sの閾値電圧の絶対値VZ1sよりも大きくなるようにツェナーダイオードZ1s、Z1pを選択する。二つ目の回路は、一つ目の回路と同様の素子からなり、極性のあるものはすべて一つ目の回路と反転させた回路である。ここでも、ツェナーダイオードZ2pの閾値電圧の絶対値VZ2pがツェナーダイオードZ2sの閾値電圧の絶対値VZ2sよりも大きくなるようにツェナーダイオードZ2s、Z2pを選択する。ここで発光素子L1は極性を持たない素子で、たとえばタングステンのフィラメントに流れる電流により光を発する素子である。
【0065】
図19のように発光回路を構成したときに、発光素子L1が発光する条件を説明する。L1とD1は直列に接続されているので、少なくともΔV=VA+VB>0のときしかL1は発光しないことがわかる。しかし、AとBの電位差ΔVがダイオードD1の閾値よりも小さいとき、すなわちΔV<VD1のとき、ダイオードD1の影響でL1に電流は流れない。さらに電位差が上昇しても、ΔV<VD1+VZ1sではL1に電流は流れない。なぜなら、ツェナーダイオードZ1sが降伏していないためである。さらに、電位差が大きくなると(ΔV>VD1+VZ1s)、ツェナーダイオードZ1sが降伏し、L1に電流が流れ始める。さらに電位差ΔVが大きくなりΔV>VD1+VZ1pとなると、ツェナーダイオードZ1pも降伏する。従ってΔV>VD1+VZ1pの範囲で、電位差ΔVが大きくなっても、L1とZ1sに印加される電圧はVD1+VZ1pの一定値に保たれる。従って、ツェナーダイオードZ1pによって、発光素子L1の両端には過剰な電圧が印加されないように、あるいはL1には過剰な電流が流れないように、保護されていることになる。従って、VD1+VZ1p<ΔV<VD1+VZ2pのときは、ΔVとL1の発光強度が一対一に対応するが、ΔV>VD1+VZ2pのときは、ΔVによらず発光強度は一定になる。
【0066】
逆向きの電圧が印加されるときには、発光素子L2が発光することになり、L1とL2が同時に発光することはない。
【0067】
具体例として、ツェナーダイオードZ1s、Z2sに日立製作所製のツェナーダイオードHZ6A1を、ツェナーダイオードZ1p、Z2pに日立製作所製のツェナーダイオードHZ7A1を、ダイオードD1、D2に日立製作所製のダイオードHSK110を用いたときを考える。平成4年9月に発行された日立ダイオードデータブックによると、HZ6A1の降伏電圧は5.2ボルトであり、HZ6A1の降伏電圧は-6.3ボルトである。また、ダイオードHSK110の閾値電圧は0.8ボルトである。このときアンテナAの電位VAがアンテナBの電位VBに比べ6.0ボルトより高くなると、発光素子L1が発光する。その差が7.1ボルトよりも小さいときには、発光素子L1の発光強度は発光素子L1に印加される電圧に応じて変化するが、 その差が7.1ボルト以上になると、発光素子L1に印加される電圧は変化しなくなり、発光強度はVAとVBの差に無関係になる。VAとVBの極性が逆のときは、発光素子L2が発光する。
【0068】
ツェナーダイオードの代用として、ダイオードを用いることもできる。一般にダイオードの閾値電圧は1V程度で、あまり大きく変化することはない。そのため、希望するレンジの閾値を得るには、複数個のダイオードを直列に接続する必要がある。
【0069】
また、図20に図19の変形例を示す。この例は四つの回路をアンテナAとアンテナBの間に並列に接続している。一つ目の回路は発光素子L1とツェナーダイオードZ1とダイオードD1の直列接続である。Z1とD1の極性は反対にしている。二つ目の回路は、一つ目の回路と同様の構成で、極性があるものはすべて一つ目のものとは反対にしている。三つ目の回路は、二つのツェナーダイオードZ1p、Z2pを直列に極性を反転させて接続したものである。四つ目の回路はコンデンサーCである。
このように構成したときのL1の発光条件はVA+VB>VZ1s+VD1である。このとき、L1に印加される電圧は(VZ1p+VZD2p)+(VZ1s+VD1)であり、本発明は図31の発明と同様に発光素子の保護回路機能を持つ。
【0070】
図19、図20において発光素子L1(L2)と並列に接続されているツェナーダイオードZ1p(Z2p)を省くと、発光素子L1(L2)に印加される電圧を制限しないので、発光している範囲では発光強度とVAとVBの差は一対一に対応する。従って、発光強度を測定することで、発光している全範囲におけるアンテナAとアンテナBの電位差を決定することができる。ただしこの場合には、過電流が発光素子L1(L2)に流れ、発光素子L1(L2)を破壊する恐れがある。
【0071】
また、図19、図20においてダイオードD2を省くと、VA+VB>VZD2であれば、L2が光る。すなわち、VA+VB>VZD2かつVA+VB>VZ1+VD1であればL1もL2も光る。このとき、L1とL2の発光する条件から、VA+VBの範囲をさらに限定することも可能である。
【0072】
また、図19、図20において、Z1s(Z2s)を省くと、VA+VB>VD1でL1が発光し、VB-VA>VD2でL2が発光する。
【0073】
次に、図21で保護回路3について説明する。VA>VBがわかっているときには、発光回路を簡単にすることができる。たとえば、図21に図20の発明からツェナーダイオードZ2pを省いたものを示す。このとき、0<VZ1+VD1<VZ2+VD2<VZ3となるように各素子を選べば、L1のみが光るのはVA+VB>VZ1+VD1のときで、L1もL2も光るのはVZ1+VD1<VA+VB<VZ2+VD2である。また、L1(L2)に印加される最大の電圧は VZ3+VZ1+VD1(VZ3+VZ2+VD2)なので、L1(L2)は保護される。L1とL2の発光を観測して、VA+VBを求める。
【0074】
図19、20、21で説明した発光回路から必要に応じて、要素を加減したり、組みあわせることにより、適切な発光回路を形成することができる。また、図19、20、21では、発光素子としていわゆる豆電球の類のように極性のないものを考えて、発光電圧を説明したが、発光ダイオードのようにダイオード特性のあるものは、その閾値が多少変化する。しかし、原理は上記の通りである。また、発光素子としてダイオードを用いるときは、図19、20、21の発明例では、それぞれそれと直列のダイオードD1あるいはD2と極性を揃えておく。
【0075】
図22は、発光ダイオード201にかかる電圧を調整するために、直列に抵抗2201を接続した装置である。ウエハ面上に発生する電位差が大きすぎる場合は、この構成を適用できる。発光ダイオード201の発光強度より、電流Iが求まる。発光ダイオードの電流−電圧特性より、ダイオード両端の電圧V1が求まり、I x Rで抵抗両端の電圧V2が求まる。発生した電位はV1+V2で求まる。ここでは、値の異なる抵抗2201(R1、R2)をそれぞれ発光ダイオード201に接続して、一度に広い範囲に電圧が測定できるようにしてある。
【0076】
続いて、図22は、本発明による電位差測定方法に用いられる電位差、電流測定部材の第5の実施の形態を示す回路構成図であって、電位差、電流測定部材において測定可能な直流電位差の範囲な拡大するようにした他の一つの回路例を示すものであり、発光ダイオード201を流れる電流を制限する抵抗素子を直列接続しているものである。
【0077】
図22に図示されるように、本電位差、電流測定装置200は、発光ダイオード201とコンデンサ202との並列接続回路に直列に抵抗素子2201を接続しているものである。抵抗素子2201を接続したことにより、発光ダイオード201に過剰電流が流れることを防止するとともに、導体アンテナ203A、203B間の直流電位差が発光ダイオード201の端子間電圧と抵抗素子2201の端子間電圧に分圧されるので、発光ダイオード201に印加される電圧を導体アンテナ203A、203B間の直流電位差よりも小さくすることができ、その分、電位差、電流測定部材における測定可能な直流電位差の範囲を拡大することができる。そして、この場合においても、発光ダイオード201から出力される放射光の検出を、目視あるいはCCDカメラ等で行うことができるので、検出出力の取り出しに別途接続導線や探針等を必要としない。
【0078】
次に前述した発光素子103の観察方法とは別の観察方法について述べる。
【0079】
図23に示したようなエッチング装置においては、シリコン基板204の温度を測定するために、試料台108には放射温度計の計測用孔2301が設けられていることが多い。ない場合は基板204を観察するために試料台108に孔2301を設ける。試料台108に設けられた孔2301を利用して、基板204の上に置かれた発光強度を観察する。このとき、発光回路801が発する光が基板205を透過するように適切な発光回路801を選択しておけば、基板204に孔を設けることなく、基板204の裏側から観察することもできる。基板204の表側から発光回路801の発光状態を観察するときと同様に、必要に応じてカメラ2302、干渉フィルタ、パソコン、光ファイバーを用いる。
【0080】
たとえばシリコンは、波長約1.3μm以上の波長の光を透過しやすい性質を持っている。従って、基板204が主としてシリコンで構成されている場合、L1450-35Cという1450nmの波長を発する発光ダイオードを用いると、 基板204に孔を設けることなく、基板204の裏面から表面に位置する発光を観察することができる。このように構成すれば、観察用窓112をあえて設ける必要がなくなる場合もある。
【0081】
本発明の電位差、電流測定装置は、いろいろな場所に配置できる。すなわち、本発明の電位差、電流装置を絶縁体に載せたものをパッケージ化しておくことにより、このパッケージを任意の位置に、任意の個数設置することができる。半導体製造装置の内壁につけて、内壁の状態を観察することも可能である。通常はプラズマの影響が直接及ばない領域にも設けてもよい。たとえば、試料台108の側面や、それに対向する反応室の壁面、反応室を真空排気するためのポンプのすぐ上流の位置(たとえば位置2401)である。この目的はプラズマの異常放電を監視することで、異常を検知したらすぐにウエハの処理を中断し、正常状態に復帰させる対策を施す。この対策とは、たとえば、反応室を大気開放して、反応室の壁面、排気系の流路を有機溶剤などを用いてクリーニングすることである。また、導波管102の内壁(たとえば位置2402)に取り付けて二点間の電位差を測定することも可能である。
【0082】
アンテナは基本的に導体で形成するが、金属汚染の低減のため、その材質として不純物をドーピングされた多結晶シリコンやアルミニウムなどの軽金属あるいは導電性の高い炭素を用いるとよい。
【0083】
発光ダイオードは、窒化ガリウム(GaN)やAlGaNなど化合物半導体を用いることが多いが、これを外部に露出したまま、シリコン系の半導体製造装置に入れるのは金属汚染の問題がある。この金属汚染の問題を避けるため、必要な部分を発光が観察できる適当な材料で覆うとよい。この材質の例として、酸化シリコン、プラスチックの樹脂などが挙げられる。
【0084】
次に、図25でGaAs発光素子の例を述べる。図25(a)、(b)、(c)は、本発明による電位差測定方法に用いられる電位差、電流測定装置200を示す構成図であって、基板204上に電位差、電流測定装置を一体形成した例を示すものであり、(a)は上面図、(b)はそのA−A線部分の断面図、(c)はそのB−B線部分の断面図である。
【0085】
図25(a)乃至(c)に示される電位差、電流測定装置200は、ガリウム砒素(GaAs)等からなる基板204上に電位差、電流測定部材が形成されたもので、基板204にイオン注入等によってn型半導体領域2501 とp型半導体領域2502とからなる発光ダイオードが形成され、このpn接合部が光を出力する。発光ダイオードの形成部分を含む基板上に第1絶縁膜2503が被覆され、第1絶縁膜2503は、n型半導体領域2501上及びp型半導体領域2502にそれぞれ基板204に達する開口2504、2505を有している。第1導体26は、一端側が開口2505を通してp型半導体領域2502に接続され、他端側が第1絶縁膜2503上に沿って延在配置される。
【0086】
一方のアンテナ203Aは、一端側が開口2504を通してn型半導体領域2501に接続され、他端側が第1絶縁膜2503上に沿って延在配置される。他方の導体アンテナ203Bは、第1導体2506の他端に接続された状態で第1絶縁膜2503上に形成される。第2絶縁膜2507は、他方の導体アンテナ203Bの一部の上側に形成配置される。第2導体2508は、一方の導体アンテナ203Aに接続された状態で第2絶縁膜2507の上側に形成配置される。第3絶縁膜2509は、第1導体2506と第2導体2508と他方の導体アンテナ203Bの各露出部を被覆するように、かつ、第1導体2506と一方の導体アンテナ203Aとを絶縁するように配置形成される。この場合、第2絶縁膜2507を介する他方の導体アンテナ203Bと第2導体2508との対向配置部分がコンデンサを形成しており、このコンデンサが発光ダイオードに並列接続される。
【0087】
この実施の形態によれば、基板204上の一方の導体アンテナ203Aと他方の導体アンテナ203B間の直流電位差に応じて発光ダイオードから放射光が出力され、その光強度を検出することにより直流電位差を測定することができる。
【0088】
この場合、放射光は、第2導体2508ポリシリコン等の光透過性物質で、また、第3絶縁膜2509を同じく光透過性物質で構成することにより、外部に放射させることができる。また、放射光の通過部分に透明絶縁膜で覆われた窓を設けるようにしても、同じように外部に放射させることができる。
【0089】
この他に、発光ダイオードを形成する方法としては、シリコン基板204上に、一方の導体アンテナ203Aと他方の導体アンテナ203Bとを形成するとともに、コンデンサを形成し、この後で一方の導体アンテナ203A及び他方の導体アンテナ203Bまたはコンデンサの形成領域にイオンビーム加工方法等を用いて発光ダイオードの微細チップを埋込み、前記構成のものと同じものを形成するようにしてもよい。
【0090】
また、以上の実施例はプラズマを用いたエッチング装置での測定例を示したが、本発明によれば、膜堆積装置や、レジスト除去装置など同じように測定できる。
さらに、実施例の半導体製造装置では主に磁場とマイクロ波を用いたプラズマ源の場合を説明したが、高周波の誘導結合あるいは容量結合によりプラズマを発生させる装置またUHF帯の電磁波によりプラズマを発生させる装置など他の方式のプラズマ源を用いた装置でも同様に適用できる。
【0091】
【発明の効果】
以上述べたように、本発明によれば、簡単な構成を有する電位差、電流測定部材を用い、被測定物体上の直流電位差を簡便な手段によって測定を行うことを可能にした電位差、電流測定方法を提供することができる。すなわち、プラズマを用いた半導体の表面処理装置で重要な量であるウエハ上に発生するプラズマ電位差及びプラズマ電流を装置の改造なしで測定する手段を提供することができる。発光強度は、カメラで非接触に測定できるので、従来の探針法のように導線の導入端子が不要になる。また、ウエハに導線をつける必要がないので、ウエハの交換はエッチング時と同様にできる。
【0092】
また、本発明によれば、簡単な構成を有する電位差、電流測定部材を用いた効率の良い試料の処理方法を提供することができる。
【図面の簡単な説明】
【図1】ECRエッチング装置の全体構成図。
【図2】本発明の一実施例の電位差、電流測定装置の上面図。
【図3】本発明の一実施例の電位差、電流測定装置の断面図。
【図4】本発明原理を示す図。
【図5】発光ダイオードに印加する電圧と発光強度の関係を示す図。
【図6】本発明の適用した結果の一例を示す図。
【図7】本発明の適用した結果の一例を示す図。
【図8】本発明の電位差、電流測定装置の別構成図(交流電流バイパス)。
【図9】本発明の電位差、電流測定装置を適用する半導体処理装置の全体構成図。
【図10】本発明の電位差、電流測定装置を半導体処理に適用して、生産性を向上させるためのフローチャート。
【図11】本発明の電位差、電流測定装置を半導体処理装置の最適化に適用するためのフローチャート。
【図12】本発明による電位差測定装置の別構成図及びコンデンサーのない電位差、電流測定装置。
【図13】アッシング装置の全体構成図。
【図14】本発明による電位差、電流測定装置の別構成図。
【図15】本発明による電位差、電流測定装置の別構成図。
【図16】本発明による電位差、電流測定装置の別構成図。
【図17】本発明による電位差、電流測定装置の別構成図。
【図18】本発明による電位差、電流測定装置の別構成図。
【図19】本発明による電位差、電流測定装置の別構成図。
【図20】本発明による電位差、電流測定装置の別構成図。
【図21】本発明による電位差、電流測定装置の別構成図。
【図22】本発明による電位差、電流測定装置の別構成図。
【図23】本発明の電位差、電流測定装置の発光状態を観察する方法を示す図。
【図24】本発明による電位差、電流測定装置を設置する場所を示す図。
【図25】本発明による電位差、電流測定装置の別構成図。
【符号の説明】
101…マイクロ波電源、102…導波管、103…導入窓、
104…真空容器、105…ウエハ、106…プラズマ、107…電磁石、
108…試料台、109…高周波電源、110…カメラ、111…パソコン、
112…窓、113…干渉フィルター、200…電位差、電流測定装置、
201…発光ダイオード、202…コンデンサー、
203…アンテナ(ふたつのアンテナを区別するときには203A、203B)、
204…シリコン基板、205…絶縁膜、206…プラズマ、208…試料台、
209…高周波電源、801…発光回路、901…処理室、
902…第二の処理室、903…ウエハ搬送用ロボット、
904…ロードロック室、905…アンロードロック室、
906…ローダー、907…ストッカー、908…カセット、
909…ダミーカセット、1401…基板と導通したアンテナ、
1501…上に絶縁物のパターンの載ったアンテナ(絶縁物を含めて)、
1502…アンテナに載った絶縁物のパターン、1601…電池、
1602…メッシュ、1603…開口部、1801…ゲート酸化膜、
1802…ポリシリコンなどでできたアンテナ、
2201…抵抗、2301…計測用孔、2302…カメラ、
2401…本発明の電位差、電流測定装置を取り付ける位置の例
2402…本発明の電位差、電流測定装置を取り付ける位置の例
2501…n型半導体領域、
2502…p型半導体領域、
2503…第1絶縁膜、
2504…開口、2505…開口、2506…第1導体、
2507…第2絶縁膜、2508…第2導体、2508…第3絶縁膜、
L1、L2…発光素子、
D1、D2…ダイオード、
Z1、Z2、Z1s、Z2s、Z1p、Z2p…ツェナーダイオード、
C…コンデンサー。

Claims (7)

  1. 真空容器にガスを導入してプラズマを発生させ、試料にプラズマ処理を施すプラズマ処理装置におけるプラズマ電位差測定装置において、
    前記試料と同じ構成の測定用試料の上に形成された発光素子と、プラズマから入射する荷電粒子量の差に対応して発生する電位差を利用して前記発光素子の両端に発生した電位差によって発光素子に電流が流れ、該電流に応じて前記発光素子が発光する発光強度を測定する発光強度測定手段とを備え、前記発光強度の強弱に応じて前記測定用試料上の電位差を測定することを特徴とするプラズマ処理のプラズマ電位差測定装置。
  2. 真空容器にガスを導入してプラズマを発生させ、試料にプラズマ処理を施すプラズマ処理装置におけるプラズマ電流測定装置において、
    前記試料と同じ構成の測定用試料の上に形成された発光素子と、前記測定用試料の表面にプラズマから入射する荷電粒子の流れを、前記発光素子に流れる電流に応じて該発光素子が発光する発光強度として測定する発光強度測定手段とを有し、該発光強度の強弱に応じて前記測定用試料へ流れ込む電流を測定することを特徴とするプラズマ処理のプラズマ電流測定装置。
  3. 一対の導体アンテナと、前記一対の導体アンテナ間に接続された発光素子と、前記発光素子に接続された交流電圧バイパス素子とを備えた電位差、電流測定部材を用いるプラズマ電位差または電流測定方法であって、前記電位差、電流測定部材をプラズマ雰囲気中に設置し、前記一対の導体アンテナを被測定物体の測定点にそれぞれ配置接続し、そのときに前記発光素子が出力する発光強度を検出することによって前記各測定点の直流電位差または直流電流を測定することを特徴とするプラズマ電位差または電流測定方法。
  4. 請求項1又は2に記載の装置によりプラズマ処理のプラズマ電位差または直流電流を測定し、エッチングレートを測定するものにおいて、
    一対の導体アンテナと、前記一対の導体アンテナ間に接続された前記発光素子と、前記発光素子に接続された交流電圧バイパス素子とを備え、
    前記一対の導体アンテナのうち片方のアンテナAは導体部がおおよそ平面的に露出する構造で、もう片方のアンテナBは導体部が絶縁体に囲まれた状態で露出している構造とし、その間に接続された前記発光素子の発光を測定するときに、発光強度の時間依存性を調べ、発光が始まってから終わるまでの時間と、前記アンテナBの導体の厚さから、エッチングレートを測定することを特徴とするエッチングレート測定装置。
  5. 請求項3に記載の方法により前記各測定点の直流電位差または直流電流を測定し、エッチングレートを測定するものにおいて、
    前記一対の導体アンテナのうち片方のアンテナAは導体部がおおよそ平面的に露出する構造で、もう片方のアンテナBは導体部が絶縁体に囲まれた状態で露出している構造とし、その間に接続された前記発光素子の発光を測定するときに、発光強度の時間依存性を調べ、発光が始まってから終わるまでの時間と、前記アンテナBの導体の厚さから、エッチングレートを測定することを特徴とするエッチングレート測定方法。
  6. 真空容器にガスを導入してプラズマを発生させ試料を処理する試料の処理方法において、
    電位差測定用の手段として、前記試料と同じ構成の測定用試料の上に発光素子を形成し、プラズマから入射する荷電粒子量の差に対応して発生する電位差を利用し、前記発光素子の両端に発生した電位差によって該発光素子に電流が流れ該電流に応じて前記発光素子が発光することによる発光強度を測定し、該発光強度の強弱に応じて前記測定用試料上の電位差を測定するように構成し、
    前記真空容器内において前記試料を所定枚数処理する毎に、前記測定用試料を用いて前記電位差を測定し、
    前記電位差が所定値を越えた場合、前記試料の処理を中断することを特徴とする試料の処理方法。
  7. 真空容器にガスを導入してプラズマを発生させ試料を処理する試料の処理方法において、
    プラズマ電流測定用の手段として、前記試料と同じ構成の測定用試料の上に発光素子を形成し、該測定用試料の表面にプラズマから入射する荷電粒子の流れを、前記発光素子に流れる電流に応じて該発光素子が発光する発光強度として測定し、該発光強度の強弱に応じて前記測定用試料へ流れ込む電流を測定するように構成し、
    前記真空容器内において前記試料を所定枚数処理する毎に、前記測定用試料を用いてプラズマ電流を測定し、
    前記プラズマ電流が所定値を越えた場合、前記試料の処理を中断することを特徴とする試料の処理方法。
JP2001001301A 2000-02-16 2001-01-09 プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法 Expired - Fee Related JP3698991B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001301A JP3698991B2 (ja) 2000-02-16 2001-01-09 プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-43575 2000-02-16
JP2000043575 2000-02-16
JP2000219557 2000-07-19
JP2000-219557 2000-07-19
JP2001001301A JP3698991B2 (ja) 2000-02-16 2001-01-09 プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法

Publications (3)

Publication Number Publication Date
JP2002100617A JP2002100617A (ja) 2002-04-05
JP2002100617A5 JP2002100617A5 (ja) 2004-10-07
JP3698991B2 true JP3698991B2 (ja) 2005-09-21

Family

ID=27342435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001301A Expired - Fee Related JP3698991B2 (ja) 2000-02-16 2001-01-09 プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法

Country Status (1)

Country Link
JP (1) JP3698991B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868427B2 (ja) 2004-02-23 2007-01-17 株式会社半導体理工学研究センター プラズマプロセスのリアルタイムモニタ装置
US8889021B2 (en) * 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
JP2021026846A (ja) * 2019-08-01 2021-02-22 東京エレクトロン株式会社 プラズマ処理装置及び制御方法

Also Published As

Publication number Publication date
JP2002100617A (ja) 2002-04-05

Similar Documents

Publication Publication Date Title
KR100522375B1 (ko) 플라즈마처리장치에 있어서의 공정 모니터방법 및모니터장치 및 그것을 사용한 시료의 처리방법
US10777393B2 (en) Process condition sensing device and method for plasma chamber
JP5166270B2 (ja) プラズマ加工の電気パラメータを測定するセンサ装置
US7184134B2 (en) Real-time monitoring apparatus for plasma process
US6830650B2 (en) Wafer probe for measuring plasma and surface characteristics in plasma processing environments
US7898280B2 (en) Electrical characterization of semiconductor materials
KR101138701B1 (ko) 전하 캐리어들의 수명을 측정하는 방법 및 장치
US8796685B2 (en) On-chip plasma charging sensor
TWI641851B (zh) 用於在發光二極體結構中之內部量子效率之非接觸量測的方法及裝置
US20050011611A1 (en) Wafer probe for measuring plasma and surface characteristics in plasma processing environments
US5959309A (en) Sensor to monitor plasma induced charging damage
KR102533948B1 (ko) 플라즈마 처리를 위한 플라즈마 소스에 대한 안정성 모니터링 및 개선을 위한 방법
US8241928B2 (en) Test structure and method for detecting charge effects during semiconductor processing
US6207468B1 (en) Non-contact method for monitoring and controlling plasma charging damage in a semiconductor device
JP3698991B2 (ja) プラズマ電位差、電流測定装置及びそれを用いた試料の処理方法
CN105849577B (zh) 用于非接触式测量p-n结的薄层电阻及分流电阻的方法及设备
US7732783B2 (en) Ultraviolet light monitoring system
US6800562B1 (en) Method of controlling wafer charging effects due to manufacturing processes
JP2009283838A (ja) 紫外光モニタリングシステム
JP2008258375A (ja) プラズマダメージ検出測定装置及びプラズマ処理装置
US7709836B2 (en) Detector arrangement, method for the detection of electrical charge carriers and use of an ONO field effect transistor for detection of an electrical charge
JPH09252038A (ja) プラズマ損傷評価装置及びプラズマ損傷評価方法
CN116314061A (zh) 集成电路和电子设备
WO2024015777A1 (en) Method and apparatus for non-invasive, non-intrusive, and ungrounded, simultaneous corona deposition and shg measurements
JPH04317329A (ja) 半導体装置の製造方法及び半導体装置の製造装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees