JP3698436B2 - 特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備 - Google Patents

特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備 Download PDF

Info

Publication number
JP3698436B2
JP3698436B2 JP52442495A JP52442495A JP3698436B2 JP 3698436 B2 JP3698436 B2 JP 3698436B2 JP 52442495 A JP52442495 A JP 52442495A JP 52442495 A JP52442495 A JP 52442495A JP 3698436 B2 JP3698436 B2 JP 3698436B2
Authority
JP
Japan
Prior art keywords
reactor
wet air
phase
air oxidation
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52442495A
Other languages
English (en)
Other versions
JPH10500611A (ja
Inventor
ジャフェ,マリク
リュク,フランシス
シボニー,ジャック
Original Assignee
オテヴェ・ソシエテ・アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オテヴェ・ソシエテ・アノニム filed Critical オテヴェ・ソシエテ・アノニム
Publication of JPH10500611A publication Critical patent/JPH10500611A/ja
Application granted granted Critical
Publication of JP3698436B2 publication Critical patent/JP3698436B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)

Description

本発明は、固体粒子、特に浄化設備で生成されるスラッジを含む工業排水または都市排水の処理に関する。
さらに一般的には、本発明は、有機物および/または懸濁液を多量に含む排水の処理に適用される。
この処理は、天然の処理媒体、浄化設備または浄化システムに供給するために、被処理排水から望ましくない化合物の大部分を除去することにある。本発明が適用される排水は、本質的には水であるが、他の工業流体であってもよい。
代表的には、この処理は浄化設備内で行われ、浄化設備に流入する残余水の浄化プロセスによって生じたスラッジを処理することを目的としている。また、この処理は、スラッジを化学的酸素要求量(COD)が実質的に軽減された懸濁液に変換することを可能とする。この懸濁液中の高レベルに無機質化された固相は放出され、この懸濁液中の水質相は、場合によっては、浄化設備のヘッドに供給されるとよい。
都市排水または工業排水を処理するための従来の浄化方法は、生物学的酸素要求量(BOD)を減少させる目的として反応の促進に自然現象を利用する生物学的な方法である。しかし、排水中には、生物学的に分解することが困難で、特殊な方法の利用および/または化学物質の利用を必要とする汚染物質が含まれている場合がある。
このような用途に適用される効果的な処理方法の1つとして、湿式空気酸化が挙げられる。
湿式空気酸化は、すでに多くの開示がなされている従来技術であり、例えば、米国特許第4,721,575号、第4,272,383号、およびフランス特許第2,334,635号に記載されている。この技術は、溶液中に高濃度に含有されている生物学的分解性が低いすなわち生物学的に分解が困難な有機物質を高度に酸化することを目的としている。また、この技術は、工業排水の処理に主として用いられてきた。この場合、溶液の液相状態を保持しながら、高温に加熱されたその溶液に酸化ガスを接触させることで処理が行われる。例えば、この方法を実施する条件としては、従来、約5バールから160バールの圧力、および約100℃から350℃の温度が選択されている。また、酸化ガスとしては、空気、酸素含有量の多い空気、または酸素分子などが用いられている。
上記の用途に適用される他の処理方法としては、活性化スラッジによる浄化、および沈殿物の物理化学的処理などが挙げられる。一般的に、これらの処理では、主に不溶性の無機化合物や非分解性の有機物からなる残留スラッジが生成される。
フランスにおいては、浄化設備によって生成されるスラッジの量は、約100万トン/年(乾燥基準)に達している。このスラッジの約半分は農場用に改質され、35%が廃棄場に貯蔵されている。
浄化水に対する基準が新たに制定されると、浄化スラッジの量が飛躍的に多くなる。同時に、この種のスラッジの特性が環境や健康に悪影響を及ぼすので、その貯蔵、農業用改質または腐朽に対する規定が厳しくなる。
スラッジのこのような問題を解消する観点から、本発明は、スラッジ処理の改善という技術的な課題に対して種々の試みを行った。このような処理は、場合にもよるが、スラッジの廃棄または再利用に関する基準を直接的に満たすことができるのが好ましい。
従来は、排水の処理プロセスから独立してスラッジを処理していた。このような処理としては、特に、長期間の曝気、嫌気性消化、焼却、好気安定化または堆肥化などが挙げられる。
このような処理の目的は、特に、有機物を酸化させることによって、スラッジ中の固形物の含有量を減少させることにある。しかし、概して機械的な脱水段階を含む従来のスラッジ処理の工程は、多くの場合、設備の効率的な操業に悪影響を与える。その主な理由は、スラッジ処理で生成された水を設備のヘッドに戻すことにある。これによって、CODや設備においては除去すべき亜硝酸塩が過剰に(例えば、初期値の15ないし30%にまで)生成される。
このような問題点を解消するための1つの方法は、排水処理の操業条件を、特に残留スラッジの無機質化を促進するように設定することである。湿式空気酸化による処理の場合、処理時間を延ばし、または圧力、温度、酸化ガスの濃度を高めることによって無機質化を促進させることができる。
しかし、このような手順は、非常に高価になる。
本発明の目的は、従来のこのような欠点を解消することが可能な方法を提供することにある。
さらに具体的には、本発明の第1の目的は、可溶性有機物および/または懸濁状の有機物を多量に含む工業排水および/または都市排水を、懸濁物の無機質化が最適化されるように、処理する方法を提供することにある。
本発明の他の目的は、標準的な湿式空気酸化法を改善する方法、すなわち、主に酸素、二酸化炭素、一酸化炭素、蒸気および揮発性有機化合物を含む気相を最初に生成し、次いで、主に可溶性の残留有機物と懸濁液中の主に無機質の固相を含む液相を生成することによって、排水が反応器内で少なくとも1つの酸化ガスの存在下で酸化されて排水に含まれる有機物の大部分を無機質化する方法を提供することにある。
本発明の他の目的は、種々に変形が可能で、また、排水と操業条件に対応して一連の変数を調整することが可能な新規の原理に基づく処理からなる上記の方法を提供することにある。
特に、本発明は、湿式空気酸化反応に触媒を用いることによって生じる処理効率とコストの改善を可能にする。従来、触媒は、2つの形態、すなわち、不溶性固体の形態(不均一触媒)と可溶性形態(均一触媒)のいずれかで導入されている。
均一触媒は、一般的にその扱い簡単である。しかし、この触媒は操業コストが高くなるという欠点がある。実際、その触媒を一度だけ使用した後で廃棄するか、またはその触媒を再循環するために反応系から分離する特定の高価な物理化学的方法を採用するか、そのいずれかを選択しなければならない。
固体の形態を有する不均一触媒は、湿式空気酸化、特に、スラッジ処理においては能力を発揮するのが困難である。実際、この方法は理論的には、多量の排水を処理するのに用いられる触媒の特性を維持することが可能であるが、実際の処理では、触媒の特性が劣化する。その主な理由は、都市排水のスラッジの特性とそのスラッジの操業条件によって、触媒がスラッジに溶解されて沈殿物を生成し、そのことによって、触媒活性が急速に損なわれるからである。
この観点から、本発明の目的は、異なった触媒、すなわち、均一触媒と不均一触媒の上記の利点を同時に発揮させることによって従来技術のこのような欠点に対処する方法を提供することにある。
本発明の他の目的は、連続的、半連続的、またはバッチ式の処理形態でかつ異なった流動特性(栓流型、完全混合型など)下で稼働される反応器で実施可能な上記の方法を提供することにある。
また、本発明は上記の方法を実施するための装置の原理を提供することにある。
これらの目的および後述される他の目的を達成するために、本発明による排水を湿式空気酸化によって処理する方法は、前記排水に含まれる有機物の大部分を無機質化するために、少なくとも1つの酸化ガスの存在下で連続的に酸化処理される固体質と液質を形成し、反応器内の前記液質と固体質の滞留時間が異なることによって排水の構成要素を個別に処理することを特徴とする。
この一般的な原理を好ましく実施するための本発明による一貫処理方法は、最初に気相を生成し、次いで、主に可溶性の残留有機物と懸濁液中の主に無機質の固相を含む液相を生成することによって、排水を処理する湿式空気酸化反応器を用いる方法であって、
前記の湿式空気酸化法によって生じる前記の液相を固液分離して前記固相を分離する段階を含み、かつ、前記の分離された固相の少なくとも一部が前記の湿式空気酸化反応器内に再循環されることを特徴とする。
本発明の種々の実施例で詳細に述べられるように、再循環は、前記の再循環された固相の一部が反応器から実際に取り出されて再導入されることを意味しない。固相の再循環は、前記の分離された固相の少なくとも一部が、(連続的にまたはバッチ式に行われる)湿式空気酸化の少なくとも1つの新しい処理サイクル中に、反応器内で再利用されることのみを意味している。
第1の実施例によれば、デカンテーション(溶液中の沈殿と溶液の分離)は反応器内で行われ、分離された固相の少なくとも一部が反応器内でそのまま保持された形態で再循環され(すなわち、少なくとも1つの新しい処理サイクルに取り込まれ)、固相の再循環されなかった分とデカンテーションによって生じた固相の表面に浮いている液体は取り出される。こららの操作は、例えば、半連続的に稼働している反応器内で行われ(この場合、湿式空気酸化反応が中断している間に、分離された液相の少なくとも一部が反応器から取り出され、また、分離された固相の少なくとも一部が反応器内に保持される)、または、これらの操作は、連続的に稼働している反応器内でも行われる。後者の場合、湿式空気酸化の反応の最中に排水の再循環が反応器内で行われていると仮定すると、反応器内で排水の再循環が中断されている間に、分離された液相の少なくとも一部が反応器の外部に取り出され、また、分離された固相の少なくとも一部が反応器内に保持される。
しかし、デカンテーション(分離)が反応器の外部で行われる他の実施例においては、固相を反応器から取り出してから前記の分離された固相の少なくとも一部を反応器内に再導入するという、文字通りの固相の「再循環」が行われる。
なお、本発明による方法は、本発明の2つの目的、すなわち、被処理排水の化学的酸素要求量(COD)の減少と、本発明の方法によって生じた固体残留物の無機質化に対して、新規の手法で、個別に対応することによって湿式空気酸化プロセスの最適化を達成することができる。
主に可溶性残留有機物から構成される液相は、例えば、従来の浄化設備または生物学的処理ラインに供給されるとよい。この液相が適度のCOD減少値を有するように操作を調整することが可能である。実際、湿式空気酸化の最終段階で得られる懸濁液の水質相中に溶解した状態で残留している有機物は、生物学的処理に用いられるバイマス(生物体の集まり)の基質として用いられるのが好ましい。特に、この基質は活性スラッジの従属栄養細菌によって容易に分解され、有機窒素が分子窒素に変換される。このような基質の添加によって、細菌反応の効率を強化し、前記排水に含まれる窒素系汚染物を除去効率を向上させることが可能になる。従来のシステムでは、脱硝性の従属栄養細菌によって容易に同化される炭素が排水中に不足しているので、アンモニアを必要レベルにまで除去することが困難であった。このように、本発明の方法は上記の問題を解消することができる。
なお、操作パラメータ(特に、温度、圧力、滞留時間、触媒の特性、および酸化条件を決定する他の手段)は、湿式空気酸化反応器によって生じる液相のN/COD比が適切な値になるように、当業者によって調整されるのが好ましい。さらに具体的には、生物学的処理設備の要求を満たすだけではなく前記の再循環された液相に含まれる付加的な窒素Nを処理するためにも、液相は十分なCODを含むのが好ましい。
一方、有機物の含有量の大幅な減少が概して望まれる固相に対しては、有機物の含有に関して、液相に対するよりも厳しい制約条件が設けられる。固相は、反応器内に再循環されて、繰り返して酸化されるからである。当業者は、所定の無機質化率が得られるように、酸化の繰り返し回数を予め設定することが可能である。従って、酸化が困難な有機化合物の一部を含む種々の不溶性無機質体からなる固相の再循環率は、スラッジの最も反応しない部分に依存する。スラッジのCODが、特に本発明の触媒によって、80%から90%の酸化効率で効果的に酸化されるにつれて、スラッジの再循環は効率化される。
さらに、固体の再循環は、スラッジのCODの減少効率に悪影響を及ぼすものではない。
再循環された固相の一部は、固体の再循環率が1から20の範囲内にあるように算出されるのが好ましい。この再循環率は、再循環される固体の分率の逆数と等しくなるように規定することができる(20%の固相の再循環は、再循環率5に相当する)。
また、本発明は、個別にまたは組み合わせて実施される2つの変形例によってさらに改善される。
第1変形例によれば、前記の湿式空気酸化は触媒の存在下で行われ、前記の湿式空気酸化によって生じる前記の懸濁液の前記固/液分離の後、前記の再循環された固相が少なくとも60%の前記触媒を含むように、前記触媒が添加されるとよい。
反応器内に導入された触媒は、驚いたことに、反応によって生じた固相内に回収されていることがわかった。本発明によれば、この固相の一部は反応器内に再循環されるので、継続的な処理サイクル中に触媒が再利用される。このように、触媒が再利用される点、固相内に触媒が回収されるので余分のコストが不要である点、およびこのプロセスが本発明の基礎となる固体残留物の再循環と協同作用の関係にある点から、極めて経済的なプロセスが得られる。
前記触媒は、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、それらの混合物、およびこれらの要素の1つ以上の化合物からなる群から選択されるのが好ましい。特に、前記触媒は、銅の可溶性化合物(例えば硫化銅)、亜鉛の可溶性化合物、または銅と亜鉛の混合物の可溶性化合物であるのがさらに好ましい。
前記排水の処理前の化学的酸素要求量(COD)に対する触媒金属の質量比は、約5.10-4から3.10-1の範囲内にあるのが好ましい。
本発明の第2変形例によれば、酸性化のための化学添加物が前記の湿式空気酸化反応器内で分離かつ再循環された一部の固相に添加されるとよい。前記化学添加物は、前記の再循環された一部の固相のpH濃度が約1から約5の範囲内にあるように添加されるのが好ましい。
この任意に添加される酸性化のための化学添加物は、有機物を加水分解することによって、残留物をさらに効率的に無機質化させることができる。この変形例は、単独でも実施可能であるが、第1変形例(反応器への触媒の添加)と共用されると、大きな効果が得られる。化学添加物は、硫酸および有機酸からなる群から選択されるとよい。しかし、本発明の他の特徴によれば、酸性化は、固相を(アンモニアを含む気相の触媒酸化によって生じる)酸化窒素NOXおよび/またはNOXから生成される亜硝酸塩(nitrites)と接触させることによっても行うことができる。
上記の変形例において、前記の湿式空気酸化は、好ましくは、約100℃から約350℃の範囲内の温度で、約5バールから約160バールの範囲内の全圧力の条件下で行われることが好ましい。前記の湿式空気反応器内に導入される酸素の量は、好ましくは、未処理の排水の化学的酸素要求量(COD)に対する酸素の比率が約0.5から2.0の範囲内にあるように決められるのが好ましい。
前記の湿式空気酸化ユニットは、そのユニットの(再循環ループの最初の入口および/または再入口)に入るスラッジを加熱するための熱交換器を外部に設けるとよい。
好ましい実施例において、前記方法はさらに、
湿式空気酸化によって生じる主として可溶性残留有機物とアンモニアを含む前記液相を、アンモニアの含有を著しく減少させた第2の水質相と酸素とアンモニアガスを含む第2気相を生成するために、ガス噴射によってストリッピング(液体中に溶存する気体を気相中に追い出す操作)する第1の段階と、
このようにして得られた主として前記第2気相を酸化して、アンモニアが酸化窒素NOとNO2に(および一酸化炭素と揮発性有機物が二酸化炭素に)完全に酸化された第3の気相を得る第2段階とを含み、
このようにして得られた酸化窒素NOとNO2を含む前記第3気相が前記被処理排水の前記処理ラインのプロセスに利用されることを特徴とする。
必要に応じて、酸化窒素NOとNO2を含む前記第3気相を、前記被処理排水の前記処理ラインのプロセスに利用される前に、予備的に、少なくとも部分的に亜硝酸塩に交換されてもよい。
酸化窒素NOとNO2を含む前記第3気相を利用する前記のプロセスは、
スラッジの酸化を促進しかつその酸化中にNH4の生成を制限するために前記湿式空気酸化プロセスに前記第3気相を再注入するプロセス、
本発明の処理ラインの各段階において水質相を消毒しまたは前記処理ラインで未処理の水を消毒するプロセス、
湿式空気酸化のプロセスによって生じる固相の酸性化プロセス、および
本処理方法によって生じる残留スラッジ(例えば、主浄化設備から生じる主スラッジまたは前記湿式空気酸化段階によって生じる二次的なスラッジ)、または本発明の処理ラインでは生じないスラッジを安定化させるプロセス、からなる群のいずれかを含むことを特徴とする。
また、本発明は、上記の方法を実施するためのスラッジ処理装置、およびそのスラッジ処理装置と接続された水処理用の主ユニットを備える水浄化設備を提供し、前記スラッジ処理装置は、前記主ユニットによって生成されたスラッジが入口から供給され、前記主ユニットのヘッドに前記スラッジ処理によって生じた液相を戻すことを特徴とする。
発明の他の特長と利点は、具体的な一例と添付の図面に基づく、本発明の好適な実施例の以下の説明によって、さらに明らかにされるであろう。
図1は、本発明の方法を連続反応器内で行うための装置の実施例を示す図である。
図2は、本発明の方法を半連続反応器で行うための装置の実施例を示す図である。
図3は、本発明の方法の第1変形例(触媒の再循環)と第2変形例(触媒と酸性化剤の再循環)において得られるCODの減少率を示すグラフである。
図4は、異なった操作条件での一連の試験における有機物の残量を比較したグラフである。
図1に示されるように、本発明の方法は、連続運転される湿式空気酸化反応器10において行われる。
被処理排水が、注入導管11から反応器10に供給される。これらの被処理排水としては、固体粒子、特に浄化設備で生じるスラッジを含む工業排水または都市排水が挙げられる。
この反応器10は、約100℃から約350℃の範囲の温度に加熱することが可能な加熱手段を備えている。また、加圧手段は、被処理排水を約5バールから約160バールの範囲内の圧力で反応器10に供給できるように設計されている。
酸素の注入(16)は、例えば、反応器10の基部18からその上部にスラッジを再循環するためのループ17においてなされる。このようなループ17への酸素の注入は好ましいが、これに限定されるわけではない。反応器の他の場所において、酸素の注入が行われてもよい。湿式空気酸化反応器内に導入される酸素の量は、未処理の排水の化学的酸素要求量(COD)に対する酸素の理論比が約0.5から約2の範囲内にあるように決められるのが好ましい。
通常、反応器は、2つの出口導管12、13を備えている。
まず、導管13は、主に酸素、二酸化炭素、一酸化炭素および揮発性有機化合物を含む水分飽和気相を取り出すための導管である。
これらの気体は、従来の方法によって、高温で燃焼されるか、または触媒手段によって連続的に処理されるとよい。後者の場合、例えば、約200℃から500℃の温度で触媒酸化部14で処理され(COの酸化)、次いで、約300℃から900℃の温度で触媒酸化部15で処理される(NH3の酸化)。
次に、導管12は、主に可溶性の残留有機物と懸濁液中に存在する無機質の固相を含む液相を取り出すための導管である。
本発明の重要な特性によれば、導管12は気体/液体/固体の分離器20に通じている。
熱交換器20が、分離器20の上流に配置されるとよい。その熱交換器によって、処理された排水から熱量を回収して、例えば、スラッジの予熱に利用することができる。同じ理由から、反応器10の再循環ループ17に熱交換器19を設けることができる。このように、発熱反応である湿式空気酸化反応によって放出されたエネルギーを回収することができる。
分離器は、例えば、熱と圧力の存在下でデカンテーション(溶液中の沈殿と溶液の分離)および脱ガスを行う機器である。この分離器は、反応器10内に再導入され易くするために、分離物の再圧縮が簡素化されている。しかし、当業者は本発明の範囲を逸脱することなく他の形式の分離器を構成することも可能である。
分離器20は3つの出口を有している。
(i) 特にアンモニアガスを含む気体を取り出すための出口21。この出口21から放出された気体は300℃から900℃の温度で触媒酸化部15に送られる。
(ii) 分離された液相を取り出すための出口22。この分離された液相は主浄化設備に送られるとよい(ここに記載された装置は水浄化設備に接続され、その水浄化設備のスラッジを処理して、そのスラッジ処理によって生成された固相を水浄化設備に送給する)。また、特にアンモニアを除去するために、ストリッピングガス24が供給されるカラム23内で液相のストリッピング(液体中に溶存する気体を気相中に追い出す操作)を行うことも可能である。この液相のpH濃度は、場合によっては、カラム23に石灰、ソーダなどのアルカリ化合物を添加することによって調整されてもよい。カラム23の出口25で得られるアンモニアガスを含むストリッピングガスは、触媒酸化部15で処理されるとよい。このストリッピングによって、主浄化設備でのアンモニア量が軽減される。実際、標準的な装置においては、本発明においては用いられていないスラッジ脱水部は、その脱水部から装置に、全アンモニア量の20%にも及ぶアンモニアを戻している。
(iii) 本発明の特徴的なプロセスである、固体残留物の反応器への再循環を行うために、分離された固体残留物を取り出すための出口26。本実施例においては、再循環は、反応器で生じる物質の一部または全てを反応器の入口に戻すという形態で行われる。
固体残留物の一部は、固体放出穴27から連続的に取り出される。図1に示される連続プロセスにおいて、放出穴27から放出されるスラッジの流量は、望ましい再循環、さらには望ましい無機質化速度を得るために、注入導管11から注入される排水の流量の関数として調整される。ここで、再循環率は、導管27からシステム外に放出される固体残留物の質量流量に対する導管26を介して再循環される固体残留物の質量流量の比率である。この再循環される固相の分率は、固体の再循環率が略0から20の範囲内にあるように算出される。
このように、再循環は、湿式空気酸化の特性を維持しながら固相の無機質化を向上させることができる。実際、反応器10内における排水の所定時間(例えば、約一時間)の滞留に対して、固体残留物は再循環によってその平均滞留時間が長くなる。従って、固体残留物は酸化処理の機会が多くなるので無機質化が促進され、また、当然のことだが、揮発性物質の含有量が減少する。
カラム23におけるストリッピング(液体中に溶存する気体を気相中に追い出す操作)では、ストリッピングガス24としての空気が噴射される。この場合、ストリッピングで生じるガス25は触媒酸化部14で生じるガスと混合されて触媒酸化部15で処理されるのが好ましい。特に、この混合によって、触媒酸化部15に導入される前の気相を予熱することができる。しかし、一例として(図示せず)、ストリッピングガス24を触媒酸化部14で生じた気相によって構成してもよい。この場合、触媒酸化部14の出口は、触媒酸化部15には接続されず、参照番号24と接続される。
本発明の第1変形例によれば、触媒の添加によってプロセスの効率を改善することができる。この触媒は、反応器10に直接導入される。
触媒は、マンガン、鉄、コバルト、ニッケル、銅、亜鉛のような遷移金属、それらの混合物、およびそれらの化合物から選択されるとよい。代表的には、銅の可溶性化合物、亜鉛の可溶性化合物、および銅と亜鉛の混合物の可溶性化合物が挙げられる。前述したように、従来、触媒は2つの形態、すなわち、不溶性の固体(不均一触媒)または可溶性の固体(均一触媒)の形態で導入されている。しかし、本発明の方法によれば、均一触媒が用いられても、最初に導入された触媒のほとんどすべてが回収され、再循環される。換言すれば、スラッジの触媒処理で生じる無機質の残留物を反応器10へ(従って、新しい被処理スラッジへ)再導入することによって、特性を維持しながら、触媒を連続使用することができる。
これは図3のグラフの曲線50に例示されている。このグラフは、バッチ試験における継続的なスラッジ再循環の時間の関数として、具体的にはその操作回数の関数としてCODの減少率を示している。これらの試験は、硫化銅の存在下で215℃で行われた。(図の左端の)「Ref(参照)」は、触媒を用いない処理に対応する。また、I、II、III、IVは、それぞれ、触媒を導入して最初のバッチ処理を行った後、その処理によって生じたスラッジを導入して一回またはそれ以上のバッチ処理を行った場合に相当する。このスラッジは最初に導入された触媒の大部分を含んでいるので、CODの減少率は、バッチ処理の回数によってわずかに低下するにしても、少なくとも4回の繰り返しによっても、最初のバッチ処理「Ref」におけるCODの減少率よりもかなり大きい。
従って、本発明のこの変形例において、所定の効率を維持するための触媒の損失を十分に補償することができる。これによって、プロセスを工業的規模で実施する上で、大きな経済的な利点が得られる。
再循環された相を予備的に酸性化することによっても、本発明を改善することができる(これは第1の変形例と組み合わされた第2の変形例である)。この酸性化は、参照番号28で示される箇所において、液状の酸相をポンプ作用でまたは気相(例えば、前記のNOX)を圧縮して注入することによってなされるのがよい。なお、この酸相は、液体または固体のいずれであっても、適当な手段(多孔性の担体、固定ミキサーなど)によって再循環される固体に混合することができる。
他の実施例によれば、酸相はまた、例えば、反応器の基部18の参照番号38で示される箇所から直接注入されてもよい。
一般的に、酸性化は、厳しい操作条件(圧力や温度など)で通常得られる性能と同等レベルの性能を通常の操作条件下で達成するこができる。この酸性化は、本発明による方法の他の機能と協同して以下の2つの効果を発揮する。
1時間の湿式空気酸化処理のあとでも酸化されず概して極めて難溶性の固相を含む有機物の加水分解が可能である。
被処理スラッジ内の固相と一緒に反応器10内に再導入される沈殿された銅(または、必要に応じて、触媒として用いられた他の金属/金属化合物または銅との組合わせ)の可溶化を促進することが可能である。
図3の曲線51は、再循環された固体残留物が酸性化処理される以外は、曲線50と場合と同じ条件下で行われた試験における有機物の減少パーセントを示している。図から、酸性化を行うことによって、触媒が損失(例えば、約20%)を考慮して調整されなくても、触媒効果が実質的に延長されることがわかる。
酸性化処理は、また、他の効果(図示せず)をもたらす。具体的には、固体残留物の発揮性物質が顕著な影響を受けて、その残量は、酸性化のない場合には23%から10%の範囲内にあるが、酸性化された場合には、5.7%に減少する。
図4は、湿式空気酸化法を異なる条件下で実施した場合の、残留有機物(O.M)の割合(y軸)とCOD減少率(グラフの基部に示された枠内の百分率)を比較したグラフである。
以下、図4についてさらに詳細に述べる。
最初の3つのブロック61、62、63は、再循環、触媒添加および酸性化のいずれも適用せずにかつ温度を変化させた(215℃、235℃、285℃)条件下で行われた試験で得られた各COD減少率を示している。
次の2つのブロック64、65は、再循環は適用されないが銅を触媒として添加された以外は標準的な条件下で行われた試験で得られた各COD減少率を示している。データから、同じ温度条件下では、銅が添加されなかった場合(ブロック61、62)と比較して、銅の添加によって性能が向上していることがわかる。
次の3つのブロック66、67、68、69は、本発明による固体残留物の再循環を行った場合の性能を示し、ブロック66(215℃で酸性化のみ)、ブロック67(215℃で銅の添加のみ)、ブロック68(235℃で銅の添加および酸性化を適用せず)、そしてブロック69(235℃で酸性化のみ)の順序で脱有機物の効率が向上している。
最後の2つのブロック70、71は、それぞれ、215℃と235℃で、再循環および触媒添加と酸性化が行われた試験例であり、これらのブロック70、71においてO.M%が最も低い、すなわち、脱有機物の効率が最もすぐれていることがわかる。
図2は、半連続反応器を用いて本発明の方法を行う装置の実施例の概略図である。
図2において、図1におけるのと同じ参照番号は、同じ構成要素を示している。図1の実施例と異なる点は、デカンテーション(分離)の機能にある。すなわち、図2の実施例では、固体残留物の分離は、反応器の外部に設けられた(図1において参照番号20で示される)特定の分離器で行う代わりに、反応器10の底部30で行われる。放出孔35は、分離された固形物の一部または全てを引き出すために設けられている。
従って、本発明の特徴である再循環は、反応器内の処理によって生じた固形物の少なくとも一部を反応器内に保持することで行われる。再循環率は、導管11を介して反応器10に注入される固形物の量(または放出孔35から反応器10の外部に放出される固形物の量)に対する反応器10内に含まれる固形物の量の比率である。
反応器の外部に設けられるデカンテーションを行う分離器(これは反応器10内で再循環される固体残留物の再圧縮を容易にするために熱と圧力を付加した状態で分離を行う場合にはますます高価になる)を節約する点とは別に、反応器内に一定量の固形物を保存することによって、反応の再スタートに有用なある程度の熱慣性を得ることができ、被処理排水の注入の開始時点から各反復の再スタートに利用できる点に、利点がある。
固相の分離が反応器内で行われることによって、反応器から出口導管32を介して接続されたガス/液体分離器31以外には何も設ける必要がない。なお、出口導管32は、必要に応じて、図1の熱交換器19、21と同じ働きをする熱交換器33を備えてもよい。分離器31の出口で得られるガスと液体は、図1の実施例の分離器20の出口で得られるガスと液体に対するのと同様の処理が施される。
半連続反応器の操作法は以下の通りである。
まず、スラッジ11が反応器10に注入され、その後、反応器10が加熱され、さらに酸素16が注入される。
酸化は、例えば、約一時間行われる。
ループ17の再循環と酸素の注入16は停止される。
反応器10の底部30における固形物のデカンテーションが行われる。
導管32から水質相が放出され、分離された固形物の一部が、例えば、(反応器10の底部に正確に位置されるかまたは固体残留物の無機質化が最適に行われる他の場所に配置される)放出孔35を介して放出される。
反応器10は、再び加温され、新たな湿式空気酸化プロセスが施される新しいバッチの排水が再注入される。
また、本発明の方法は、本出願人による添付の特許出願に記載されるように、プロセスラインでNH3の酸化(15)によって生じる酸化窒素NOXを再利用することによって最適化することが可能である。
湿式空気酸化による都市スラッジの処理は、主に可溶性のCODとアンモニアガスを含む水質相を生じることが知られている。スラッジの湿式空気酸化によって生成された種々の濃度のアンモニアを含む水質相を処理できない浄化設備の仕様に対して、生成されるアンモニアガスの除去および/またはそのアンモニアガスの有用な変換を行う手段を設けることは有利である。アンモニアガスを酸化窒素NOX(NO、NO2、N25など)またはN2に変換することが可能なストリッピング手段25と触媒酸化手段15が図1、2の装置に設けられるのは、主にこのような目的のためである。
装置内で酸化窒素を有利に利用する方法がいくつかある。例えば、酸化窒素を反応器10に再注入することによって、酸化プロセスを促進しかつスラッジの酸化中にNH4の生成を制限することができる。また、水を消毒したり、再循環(26)中に固相を再び酸性化(28)したり、取り出された残留スラッジまたは本発明でまだ未処理のスラッジを安定化させるのに酸化窒素を利用することもできる。

Claims (25)

  1. 多量の可溶性有機物および/または懸濁状態の有機物を含む工業排水および/または都市排水を浄化する一貫処理方法であって、前記排水に含有される有機物の大部分を無機質化するために、最初にガス相を生成し、次いで、主に可溶性の残留有機物と懸濁状態の無機質の固相を含む液相を生成することによって、前記排水が湿式空気酸化反応器内で少なくとも1つの酸化ガスの存在下で処理されるような方法において、
    前記の湿式空気酸化法によって生じる前記液相を固液分離して前記固相を分離する段階を含み、かつ、前記の分離された固相の少なくとも一部が前記の湿式空気酸化反応器内で再循環されることを特徴とする方法。
  2. 前記の湿式空気酸化法によって生じる前記の液相を固液分離して前記固相を分離する前記段階は、前記の湿式空気酸化反応器の外部に配置された分離器(20)内で行われることを特徴とする請求項1に記載の方法。
  3. 前記の湿式空気酸化反応器は半連続的に操業され、かつ、前記の湿式空気酸化法によって生じる前記液相を固液分離して前記固相を分離する前記段階は前記湿式空気酸化の中断の間に前記反応器(10)内で行われ、前記の分離された液相の少なくとも一部は前記反応器(10)から放出され、また、前記の分離された固相の少なくとも一部は前記反応器(10)内に保存されることを特徴とする請求項1に記載の方法。
  4. 前記反応器(10)内の前記排水の再循環(17)が前記の湿式空気酸化反応の最中に行われることを特徴とする請求項1ないし3のいずれかに記載の方法。
  5. 前記の湿式空気酸化法によって生じる前記液相を固液分離して前記固相を分離する前記段階は排水の前記再循環(17)の中断の間に前記反応器(10)内で行われ、前記の分離された液相の少なくとも一部は反応器(10)から放出され、また、前記の分離された固相の少なくとも一部は反応器(10)内に保存されることを特徴とする請求項4に記載の方法。
  6. 前記の湿式空気酸化は、触媒の存在下で行われ、前記の湿式空気酸化によって生じる前記液相の前記固/液分離の後、前記の再循環された固相が少なくとも60%の前記触媒を含むように、前記触媒が添加されることを特徴とする請求項1ないし5のいずれかに記載の方法。
  7. 前記触媒は、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、それらの混合物、およびこれらの要素の1つ以上の化合物からなる群から選択されることを特徴とする請求項6に記載の方法。
  8. 前記触媒は、銅の可溶性化合物、亜鉛の可溶性化合物、および銅と亜鉛の混合物の可溶性化合物からなる群から選択されることを特徴とする請求項7に記載の方法。
  9. 前記排水の処理前の化学的酸素要求量(COD)に対する触媒金属の質量比は、約5.10-4から3.10-1の範囲内にあることを特徴とする請求項6ないし8のいずれかに記載の方法。
  10. 酸性化のための化学添加物が前記の湿式空気酸化反応器内で分離かつ再循環された一部の固相に添加されることを特徴とする請求項1ないし9のいずれかに記載の方法。
  11. 前記化学添加物は、前記の再循環された一部の固相のpH濃度が約1から約5の範囲内にあるように添加されることを特徴とする請求項10に記載の方法。
  12. 前記化学添加物は、硫酸および有機酸からなる群から選択されることを特徴とする請求項10または11に記載の方法。
  13. 再循環された固相の分率は、固相の再循環率が1から20の範囲内にあるように算出されることを特徴とする請求項1ないし12のいずれかに記載の方法。
  14. 前記の固/液分離によって前記反応器の出口から取り出される水質相は生物学的手段によって処理されることを特徴とする請求項1ないし13のいずれかに記載の方法。
  15. 前記の湿式空気酸化の操作パラメータは、当業者によって、前記の固/液分離によって生じる前記液相のN/CODを規制するように調整されることを特徴とする請求項14に記載の方法。
  16. 前記の湿式空気酸化は、好ましくは、約100℃から約350℃の範囲内の温度で、かつ、約5バールから約160バールの範囲内の全圧力の条件下で行われることを特徴とする請求項1ないし15のいずれかに記載の方法。
  17. 前記の湿式空気反応器内に導入される酸素の量は、好ましくは、未処理の排水の化学的酸素要求量(COD)に対する酸素の比率が約0.5から2.0の範囲内にあるように決められることを特徴とする請求項16に記載の方法。
  18. 前記方法がさらに、
    前記の湿式空気酸化によって生じる主として可溶性残留有機物とアンモニアを含む前記液相を、アンモニアの含有を著しく減少させた第2の水質相と酸素とアンモニアガスを含む第2気相を生成するために、ガス噴射によってストリッピングする第1の段階と、
    このようにして得られた前記第2気相を酸化して、アンモニアが酸化窒素NOとNO2に(および一酸化炭素と揮発性有機物が二酸化炭素に)完全に酸化された第3気相を得る第2段階とを含み、
    このようにして得られた酸化窒素NOとNO2を含む前記第3気相が前記の被処理排水の前記処理ラインのプロセスに利用されることを特徴とする請求項1ないし17のいずれかに記載の方法。
  19. 酸化窒素NOとNO2を含む前記第3気相を、前記の被処理排水の前記処理ラインのプロセスに利用される前に、少なくとも部分的に亜硝酸塩に変換する予備的な段階をさらに含むことを特徴とする請求項18に記載の方法。
  20. 酸化窒素NOとNO2を含む前記第3気相を利用する前記プロセスは、スラッジの酸化を促進しかつその酸化中にNH4の生成を制限するために前記湿式空気酸化プロセスに前記第3気相を再注入するプロセス、
    本発明の処理ラインの各段階において水質相を消毒しまたは前記処理ラインで未処理の水を消毒するプロセス、
    湿式空気酸化のプロセスによって生じる固相の酸性化プロセス、および
    本処理方法によって生じる残留スラッジ(例えば、主浄化設備から生じる主スラッジまたは前記湿式空気酸化段階で生じる二次的なスラッジ)、または本発明の処理ラインでは生じないスラッジを安定化させるプロセス、からなる群のいずれかを含むことを特徴とする請求項19に記載の方法。
  21. 処理されるスラッジは、都市用水または工業水の処理設備の残留スラッジであることを特徴とする請求項1ないし20のいずれかに記載の方法。
  22. 請求項21に記載の方法を実施する装置において、湿式酸化反応が行われる連続反応器(10)と前記反応器(10)とは別体の分離器(20)を備え、前記反応器(10)はその反応器(10)によって生成された液相を入口導管(12)を介して受け取り、分離された固形物の少なくとも一部を帰還導管(26)を介して保持することを特徴とする装置。
  23. 前記の湿式空気酸化反応および固形物(30)のデカンテーションが行われる反応器(10)を備え、前記反応器(10)はさらに前記液相と少なくとも前記固相の一部を排出するための手段(32、35)を備えることを特徴とする請求項22に記載の装置。
  24. 前記の湿式空気酸化ユニットが、出口における液相との熱交換によって前記湿式空気酸化ユニットに入るスラッジを加熱することが可能な熱交換器(19、21;19、33)を備えることを特徴とする請求項22または23に記載の装置。
  25. 請求項1ないし21に記載の方法を実施するための請求項22ないし24のいずれかに記載のスラッジ処理装置に接続された主水処理ユニットを備える水浄化設備において、前記スラッジ処理装置は、前記主ユニットで生成されたスラッジを入口から受け取り、前記主ユニットのヘッドに前記スラッジ処理によって生じた液相を戻すことを特徴とする設備。
JP52442495A 1994-03-21 1995-03-16 特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備 Expired - Fee Related JP3698436B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR94/03503 1994-03-21
FR9403503A FR2717460B1 (fr) 1994-03-21 1994-03-21 Procédé et installation de traitement d'effluents chargés en matière organique, notamment par oxydation en milieu humide, avec recyclage interne des résidus solides.
PCT/FR1995/000321 WO1995025698A1 (fr) 1994-03-21 1995-03-16 Procede et installation de traitement d'effluents charges en matiere organique, notamment par oxydation en milieu humide, avec recyclage interne des residus solides, et station d'epuration correspondante

Publications (2)

Publication Number Publication Date
JPH10500611A JPH10500611A (ja) 1998-01-20
JP3698436B2 true JP3698436B2 (ja) 2005-09-21

Family

ID=9461414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52442495A Expired - Fee Related JP3698436B2 (ja) 1994-03-21 1995-03-16 特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備

Country Status (9)

Country Link
US (1) US5948275A (ja)
EP (1) EP0751914B1 (ja)
JP (1) JP3698436B2 (ja)
AU (1) AU2075995A (ja)
CA (1) CA2185907C (ja)
DE (1) DE69502712T2 (ja)
DK (1) DK0751914T3 (ja)
FR (1) FR2717460B1 (ja)
WO (1) WO1995025698A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726262B1 (fr) * 1994-10-27 1998-06-26 Omnium Traitement Valorisa Procede et installation de traitement d'effluents par oxydation en presence d'un catalyseur heterogene
US6783679B1 (en) 1999-10-19 2004-08-31 Pmc Technologies, Inc. Waste treatment process
SK287581B6 (sk) * 2000-08-22 2011-03-04 Gfe Patent A/S Spôsob znižovania počtu životaschopných mikrobiálnych organizmov a/alebo priónov prítomných v organickom materiáli, jednotka na výrobu bioplynu a jej použitie
US6576144B1 (en) 2001-07-12 2003-06-10 Mpr Services, Inc. Method and apparatus for pretreatment of wastewater streams by chemical oxidation
US7029588B2 (en) * 2003-03-19 2006-04-18 Samuel Rupert Owens Oxidizing solution and process for contaminants
ITMI20041239A1 (it) * 2004-06-21 2004-09-21 3V Green Eagle S P A Procedimento di ossidazione ad umido e apparecchiatura particolarmente per realizzare tale processo
US7300585B1 (en) 2004-07-15 2007-11-27 Mays Chemical Company, Inc. Method of treatment of effluent stream
FR2900147B1 (fr) * 2006-04-19 2008-06-27 Otv Sa Procede d'oxydation par voie humide d'effluents chauffes essentiellement par auto-combustibilite, et installation correspondante.
US9193613B2 (en) 2006-10-03 2015-11-24 Siemens Energy, Inc. pH control to enable homogeneous catalytic wet air oxidation
US9315401B2 (en) 2007-01-22 2016-04-19 Siemens Energy, Inc. Wet air oxidation process using recycled copper catalyst
US20110079560A1 (en) * 2008-04-03 2011-04-07 Siemens Water Technologies Corp. Catalytic wet oxidation systems and methods
DE102011001962A1 (de) * 2011-04-11 2012-10-11 Thyssenkrupp Uhde Gmbh Verfahren und Anlage zur biologischen Reinigung von Kokereiabwasser
US9682876B2 (en) 2011-05-13 2017-06-20 ProAct Services Corporation System and method for the treatment of wastewater
FR2990429B1 (fr) * 2012-05-10 2014-06-13 Veolia Water Solutions & Tech Procede et installation pour l'hydrolyse thermique des boues
US9255025B2 (en) 2012-07-20 2016-02-09 ProAct Services Corporation Method for the treatment of wastewater
WO2016028987A1 (en) * 2014-08-20 2016-02-25 Siemens Energy, Inc. Non-scaling wet air oxidation system and process
US10533138B2 (en) 2017-11-10 2020-01-14 Steeper Energy Aps Recovery system for high pressure processing system
FR3077368B1 (fr) 2018-01-26 2020-09-11 Constructions Mec Consultants Procede et systeme de traitement d'oxydation par voie humide
CN111282962B (zh) * 2020-03-02 2021-04-23 清华大学深圳国际研究生院 一种有机固体废弃物与餐厨垃圾协同处理的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL123415C (ja) * 1958-05-16
CH523205A (de) * 1970-05-14 1972-05-31 Helfer Karl Verfahren zur Behandlung von Wasser mit Substanzen und Einrichtung zur Durchführung des Verfahrens
DE2246652A1 (de) * 1972-09-22 1974-03-28 Othmer Donald F Verfahren zur behandlung waessriger schmutzfluessigkeiten
US3912626A (en) * 1974-03-18 1975-10-14 Sterling Drug Inc Catalyzed process and catalyst recovery
US4699720A (en) * 1985-03-12 1987-10-13 Osaka Gas Company Limited Process for treating waste water by wet oxidations
RU2079450C1 (ru) * 1990-04-12 1997-05-20 Паквес Б.В. Способ переработки воды, содержащей соединения серы (варианты)
AU2436192A (en) * 1991-08-09 1993-03-02 Board Of Regents, The University Of Texas System High temperature wet oxidation using sintered separators
BE1006019A3 (nl) * 1992-06-30 1994-04-19 Organic Waste Systems Naamloze Werkwijze en inrichting voor het anaeroob afbreken van organisch afval.

Also Published As

Publication number Publication date
DE69502712T2 (de) 1999-02-04
FR2717460B1 (fr) 1996-05-15
DK0751914T3 (da) 1999-03-22
AU2075995A (en) 1995-10-09
WO1995025698A1 (fr) 1995-09-28
US5948275A (en) 1999-09-07
FR2717460A1 (fr) 1995-09-22
EP0751914B1 (fr) 1998-05-27
CA2185907C (fr) 2007-09-18
CA2185907A1 (fr) 1995-09-28
EP0751914A1 (fr) 1997-01-08
DE69502712D1 (de) 1998-07-02
JPH10500611A (ja) 1998-01-20

Similar Documents

Publication Publication Date Title
JP3698436B2 (ja) 特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備
CN101607777B (zh) 一种鲁奇炉煤气化污水处理与回用方法
JP3103027B2 (ja) 汚水中のアンモニアを用いる排ガスの処理方法と装置
KR101555491B1 (ko) 자발적 가연성에 의해 필수적으로 가열된 폐수의 습식산화방법, 및 이에 상응하는 장치
JPH0899098A (ja) 酸化による廃棄物処理方法
Genç et al. Wet oxidation: a pre-treatment procedure for sludge
KR102085614B1 (ko) 폐수 처리방법 및 장치
JP2002273494A (ja) 無機塩を含む有機性固形物、特に下水汚泥の処理方法
JP2005313155A (ja) 廃水の処理方法
JP3653427B2 (ja) 豆腐排水処理方法及び設備
KR100755487B1 (ko) 호기성 생흡착, 가압오존처리 및 간헐포기를 이용한 염색폐수 처리방법
KR20220096414A (ko) 분말 산화철을 이용한 수처리장치
KR100320604B1 (ko) 고급산화이용고효율활성오니폐수처리장치및그방법
JP2002079299A (ja) 含アンモニア廃棄物の処理方法
JP2000117273A (ja) 廃水の処理方法
JPH0824920B2 (ja) 固形廃棄物と廃水の処理方法
IE67375B1 (en) Water purification process
JPH06178995A (ja) 有機性廃水の嫌気性消化処理方法
KR102340961B1 (ko) 분말 산화철을 이용한 수처리장치
JPH0125640B2 (ja)
CN1166571C (zh) 高含硫、含氨、含酚废水综合脱硫、脱氨、脱酚的方法
JP2000117289A (ja) 嫌気性消化汚泥の脱水分離液処理方法及びその装置
JP2001179074A (ja) 窒素、リンを含む有機性物質の処理方法及びその装置
JP3803883B2 (ja) 浄化装置の運転方法
KR100225693B1 (ko) 난분해성 유기물질 처리공법

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040301

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees