JP3695143B2 - In-cylinder injection spark ignition engine - Google Patents

In-cylinder injection spark ignition engine Download PDF

Info

Publication number
JP3695143B2
JP3695143B2 JP14792898A JP14792898A JP3695143B2 JP 3695143 B2 JP3695143 B2 JP 3695143B2 JP 14792898 A JP14792898 A JP 14792898A JP 14792898 A JP14792898 A JP 14792898A JP 3695143 B2 JP3695143 B2 JP 3695143B2
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
collector
spark ignition
ignition engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14792898A
Other languages
Japanese (ja)
Other versions
JPH11343854A (en
Inventor
章彦 角方
博史 宮窪
康治 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14792898A priority Critical patent/JP3695143B2/en
Publication of JPH11343854A publication Critical patent/JPH11343854A/en
Application granted granted Critical
Publication of JP3695143B2 publication Critical patent/JP3695143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • F02M31/087Heat-exchange arrangements between the air intake and exhaust gas passages, e.g. by means of contact between the passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • F02B2023/107Reverse tumble flow, e.g. having substantially vertical intake ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は筒内噴射式火花点火機関に関する。
【0002】
【従来の技術】
筒内噴射式火花点火機関は例えば特開平6−81651号公報に示されているように、筒内ガス流動場として逆タンブル流を生成するようにしたものや、特開平5−86873号公報に示されているように筒内ガス流動場として順タンブル流を生成するようにしたもの等、各種のものが知られている。
【0003】
【発明が解決しようとする課題】
前述の何れのタイプであっても、燃料噴射弁から直接燃焼室に燃料を噴射するため、特に成層燃焼時に燃料噴霧がピストン冠面やシリンダ周面のクウェンチ領域に液膜状に付着して、未燃HCやスモークおよびデポジットの発生要因となってしまうことは否めない。
【0004】
そこで、本発明はピストン冠面等への燃料噴霧の付着を防止できて、成層燃焼の安定性および排気ミッションの向上を図ることができる筒内噴射式火花点火機関を提供するものである。
【0005】
【課題を解決するための手段】
請求項1の発明にあっては、燃焼室に点火プラグと、該燃焼室に直接燃料を噴射する燃料噴射弁とを配設した筒内噴射式火花点火機関において、吸気ポートに連なる第1の吸気コレクタと、排気マニホルド上に設けた第2の吸気コレクタとを備え、該第2の吸気コレクタには吸気ポートの吸気弁近傍に開口して、第2の吸気コレクタから供給される吸気により燃焼室内のガス流動を強化するサブポートを連通,配設し、該第2の吸気コレクタは分岐通路を介して第1の吸気コレクタの主吸気通路に連通し、これら分岐通路および主吸気通路に開閉制御弁を設けて、成層燃焼運転と均質燃焼運転との運転状態に応じて第1の吸気コレクタと第2の吸気コレクタとへの吸気量を分配制御するようにしたことを特徴としている。
【0007】
請求項の発明にあっては、請求項1に記載の筒内噴射式火花点火機関において、エンジンの低負荷時に第1の吸気コレクタ側を遮断して、第2の吸気コレクタ側から吸気を行わせるようにしたことを特徴としている。
【0008】
請求項の発明にあっては、請求項1に記載の筒内噴射式火花点火機関において、エンジンの低回転時に第1の吸気コレクタ側を遮断して、第2の吸気コレクタ側から吸気を行わせるようにしたことを特徴としている。
【0009】
請求項の発明にあっては、請求項1〜に記載の排気マニホルドと第2の吸気コレクタとを、EGR制御弁を備えたEGR通路で連通して該第2の吸気コレクタ側から排気還流を行わせるようにしたことを特徴としている。
【0010】
請求項の発明にあっては、請求項1〜に記載のサブポートから供給される吸気の指向方向を、燃焼室内に逆タンブル流が生成されるように設定したことを特徴としている。
【0011】
請求項の発明にあっては、請求項1〜に記載のサブポートから供給される吸気の指向方向を、燃焼室内に順タンブル流が生成されるように設定したことを特徴としている。
【0012】
請求項の発明にあっては、請求項1〜に記載のサブポートから供給される吸気の指向方向を、燃焼室内にスワール流が生成されるように設定したことを特徴としている。
【0013】
請求項の発明にあっては、請求項に記載の筒内噴射式火花点火機関において、点火プラグを燃焼室の略中心部分に配設すると共に、燃料噴射弁を燃焼室の吸気弁配置側の側部に配設する一方、ピストン冠面には吸気弁配置側に偏寄して、燃焼室内のガス流動を保存し、かつ、燃料噴霧を保持するためのキャビティ燃焼室を設けたことを特徴としている。
【0014】
請求項の発明にあっては、請求項に記載の筒内噴射式火花点火機関において、点火プラグを燃焼室の略中心部分に配設すると共に、燃料噴射弁を燃焼室の吸気弁配置側の側部に配設する一方、ピストン冠面の中央部には機関の前方から見て円弧状に形成されて前後方向に延在して、燃焼室内の順タンブル流を保存するための凹部を設けたことを特徴としている。
【0015】
【発明の効果】
請求項1に記載の発明によれば、サブポートから供給される吸気によって燃焼室内のガス流動を強化できるため、圧縮行程で噴射された燃料噴霧をこの強いガス流動に乗せて所定位置に配設した点火プラグ側へ確実に輸送できることは勿論、該サブポートから供給される吸気は排気マニホルド上に設けた第2の吸気コレクタで高温化されているので、吸気行程で燃焼室内に導入された際に該高温吸気によってピストン冠面を始めとする燃焼室内面が加熱され、従って、前記圧縮行程で噴射された燃料噴霧はこの高温吸気によって気化が促進され、かつ、ピストン冠面等に吹き当った際にも即座に気化されて液膜状に付着することがなく、この結果、成層燃焼の安定性の向上と排気エミッションの向上、およびピストン冠面等へのデポジットの付着堆積を防止することができる。
【0016】
また、このように高温吸気によって燃料噴霧の気化促進を行えて、点火の安定化および火焔伝播の安定化が図れるため可燃空燃比を拡大することができて未燃HCを更に低減することもできる。
【0017】
更に、吸入行程噴射を行う均質燃焼時でも前記サブポートより高温の吸気が導入される運転条件では、ガス流動の強化と燃料の気化促進とを同時に行えて可燃空燃比を拡大することができ、従って、燃費の向上と未燃HCの低減化を図ることができる。
【0018】
えて、第1の吸気コレクタ側に連絡する主吸気通路および第2の吸気コレクタ側に連絡する分岐通路にそれぞれ設けた開閉制御弁によって、成層燃焼運転と均質燃焼運転との運転状態に応じて第1の吸気コレクタと第2の吸気コレクタとへの吸気量を適切に分配制御できるため、成層燃焼運転、均質燃焼運転の各運転時における燃焼の安定性と排気ミッションをより一層向上することができる。
【0019】
請求項に記載の発明によれば、請求項1の発明の効果に加えて、吸気量の少ないエンジン低負荷時には第2の吸気コレクタ側からのみサブポートを介して高温の吸気が行われると共に、燃焼室内のガス流動が強化されるため、低負荷運転時の安定性と排気エミッションの向上とを図ることができる。
【0020】
請求項に記載の発明によれば、請求項1の発明の効果に加えて、燃焼室内のガス流動強さはエンジン回転数に比例するが、エンジン低回転時には第2の吸気コレクタ側からのみサブポートを介して高温の吸気が行われると共に、燃焼室内のガス流動が強化されるため、低回転運転時の安定性と排気エミッションの向上とを図ることができる。
【0021】
請求項に記載の発明によれば、請求項1〜の発明の効果に加えて、第2の吸気コレクタ側からの排気還流によってNOx を抑制できることは勿論、サブポートから供給される吸気を更に高温化することができて、燃料噴霧の気化促進を一段と向上することができる。
【0022】
請求項に記載の発明によれば、請求項1〜の発明の効果に加えて、サブポートからの吸気指向方向を変更することによって容易に所望のエンジンコンセプトに対応することができる。
【0023】
請求項に記載の発明によれば、逆タンブル流コンセプトおよびスワール流コンセプトのエンジンでは、逆タンブル流又はスワール流をピストン冠面のキャビティ燃焼室で形崩れを生起することなく保存することができると共に、該キャビティ燃焼室により圧縮行程で吸気弁近傍の燃料噴射弁より噴射された燃料噴霧を保持して拡散を抑制できるから、燃料噴霧を燃焼室中心部の点火プラグへ確実に輸送できて成層燃焼の安定性を一段と向上することができる。
【0024】
請求項に記載の発明によれば、順タンブル流コンセプトのエンジンでは、順タンブル流をピストン冠面中央部の円弧状の凹部によって燃焼室の中心部に集めて形崩れを生起することなく保存することができると共に、該凹部により圧縮行程で吸気弁近傍の燃料噴射弁より噴射された燃料噴霧の受け止め効果が得られて拡散を抑制できるから、燃料噴霧を燃焼室中心部の点火プラグへ確実に輸送できて成層燃焼の安定性を一段と向上することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0026】
図1〜3において、1はシリンダブロック、2はピストン、3はシリンダヘッド、4はこれらシリンダブロック1とピストン2およびシリンダヘッド3により形成された燃焼室を示す。
【0027】
シリンダヘッド3には吸気弁6によって開閉される2つの吸気ポート5と、排気弁8によって開閉される2つの排気ポート7とを対向的に配設してある。
【0028】
また、シリンダヘッド3の中心部、即ち、燃焼室4の中心部には点火プラグ9を配設してあると共に、該燃焼室4の前記吸気弁配置側の側部には、2つの吸気弁6,6間の近傍に該燃焼室4に直接燃料を噴射する燃料噴射弁10を配設してある。
【0029】
吸気ポート6,6には第1の吸気コレクタ11のブランチ部12を接続してある一方、排気ポート7には排気マニホルド13のブランチ部14を接続してある。
【0030】
排気マニホルド13には複数のブランチ部14上に跨って第2の吸気コレクタ15を一体的に形成してある。
【0031】
シリンダヘッド3には各吸気ポート5の吸気弁近傍に開口して前記第2の吸気コレクタ15に連通接続するサブポート16を設けてあり、該第2の吸気コレクタ15およびサブポート16から供給される吸気により、燃焼室4内のガス流動を強化できるようにしてある。
【0032】
本実施形態では前記サブポート16を吸気弁6の略直上位置に開口して、該サブポート16から供給される吸気が吸気弁6の下側を指向し、該吸気が燃焼室4の吸気弁配置側の側面に沿って流入、下降してピストン2の冠面で排気弁配置側へ上向きに反転して、該燃焼室4内に逆タンブル流を生成するようにしてある。
【0033】
また、ピストン2の冠面の吸気弁配置側に偏寄した略半部にはキャビティ燃焼室17を凹設して、前記燃焼室4内に生成強化された逆タンブル流の保存性と、圧縮行程で燃料噴射弁10から噴射された燃料噴霧の保持性を高められるようにしてある。
【0034】
第2の吸気コレクタ15は本実施形態では、分岐通路20を介して第1の吸気コレクタ11の主吸気通路18のスロットル弁19下流に連通接続してある。
【0035】
これら分岐通路20および主吸気通路18には開閉制御弁21,22を設けて、成層燃焼運転と均質燃焼運転との運転状態に応じて第1の吸気コレクタ11と第2の吸気コレクタ15とへの吸気量を分配制御するようにしてある。
【0036】
これは、図外のコントロールユニットにより、例えば図9に示した制御マップにもとづいて開閉制御弁21,22の開度制御を行って、第1の吸気コレクタ11と第2の吸気コレクタ15とへの吸気量分配が行われる。
【0037】
開閉制御弁21,22は図外のアクセル開度センサやクランク角センサ等の各種センサの検出信号にもとづいてコントロールユニットにより開閉制御され、開閉制御弁21,22のエンジン負荷による開閉特性は、図7に示すように成層燃焼を行う低負荷側では、低負荷領域Aで第2の吸気コレクタ15からのみの吸気が行われ、中負荷領域Bで負荷状況に応じて第2の吸気コレクタ15と第1の吸気コレクタ11とへの吸気分配が行われ、そして、均質燃焼が行われる高負荷領域Cで第1の吸気コレクタ11からのみの吸気が行われるような特性としてある。
【0038】
他方、開閉制御弁21,22のエンジン回転による開閉特性は、図8に示すように成層燃焼が行われる低回転領域1で第2の吸気コレクタ15からのみの吸気が行われ、均質燃焼が行われる高回転領域2で第1の吸気コレクタ11からのみの吸気が行われるような特性としてある。
【0039】
このような開閉制御弁21,22は具体的には例えば図10に示すフローチャートに従って作動制御される。
【0040】
図10において、ステップS1でアクセル開度センサ、クランク角センサ等の各種センサからの検出信号が読み込まれると、ステップS2でこれらの検出結果にもとづいて成層燃焼か均質燃焼かの運転状態が判断される。
【0041】
ステップS2で成層燃焼運転と判断されると、ステップS3に進んで第1の吸気コレクタ11側の開閉制御弁22の開度が設定されると共に、ステップS4で第2の吸気コレクタ15側の開閉制御弁21の開度が設定され、前記図9に示した負荷領域A,Bの運転状態に応じてこれら第1の吸気コレクタ11と第2の吸気コレクタ15とへの吸気量が適切に分配される。
【0042】
ステップS2で均質燃焼運転と判断されると、ステップS5に進んで第1の吸気コレクタ11側の開閉制御弁22が全開にされると共に、ステップS6で第2の吸気コレクタ15側の開閉制御弁21が全閉にされ、第1の吸気コレクタ11からのみの吸気が行われる。
【0043】
以上の第1実施形態の構造によれば、成層燃焼を行う低・中負荷,低回転域では、サブポート16から供給される吸気によって燃焼室4内のガス流動を強化できるため、圧縮行程で吸気弁配置側に配設した燃料噴射弁10から噴射された燃料噴霧をこの強いガス流動に乗せて燃焼室中心部の点火プラグ9側へ確実に輸送できることは勿論、該サブポート16から供給される吸気は排気マニホルド13上に設けた第2の吸気コレクタ15で高温化されているので、吸気行程で燃焼室4内に導入された際に該高温の吸気によってピストン2の冠面を始めとする燃焼室4内面が加熱され、従って、前記圧縮行程で噴射された燃料噴霧はこの高温吸気によって気化が促進され、かつ、ピストン2の冠面等に吹き当った際にも即座に気化されて液膜状に付着するのを回避することができる。
【0044】
この結果、成層燃焼の安定性を向上できると共に、未燃HCを減少できて排気エミッションを向上することができ、しかも、ピストン冠面等へのデポジットの付着堆積を防止することができる。
【0045】
また、このようにサブポート16からの高温の吸気によって燃料噴霧の気化促進を行えて、点火プラグ9による混合気の点火の安定化と火焔伝播の安定化が図れるため、可燃室燃比を拡大することができて未燃HCを更に低減することができる。
【0046】
特に、本実施形態では前記サブポート16を吸気弁6の略直上位置に開口して、該サブポート16からの吸気が吸気弁6の下側を指向して燃焼室4内に強い逆タンブル流を生成するようにしてあると共に、ピストン冠面の吸気弁配置側にはキャビティ燃焼室17を設けてあるため、成層燃焼時には図4の(イ)に示すように吸気行程で吸気弁6が開弁すると、サブポート16からの吸気aは吸気弁6の下側を通って燃焼室4の吸気弁配置側の側面に沿って下降してピストン2の冠面で反転されるが、この吸気aはピストン2の冠面のキャビティ燃焼室17のボール形状に沿ってスムーズに排気弁配置側へ上向きに反転されて乱れのない逆タンブル流a1 を生成させることができる。
【0047】
そして、圧縮行程では同図の(ロ),(ハ),(ニ)に示すように前記キャビティ燃焼室17によって逆タンブル流a1 を形崩れさせることなく保存することができると共に、燃料噴射弁10から噴射された燃料噴霧Fを保持して拡散を抑制できるから、同図の(ホ)に示すように該燃料噴霧Fを逆タンブル流a1 に乗せて確実に燃焼室中心部の点火プラグ9へ輸送することができて成層燃焼の安定性を一段と向上することができる。
【0048】
このように、ピストン2の冠面にキャビティ燃焼室17を凹設してあっても、前述のようにサブポート16から供給される吸気a1 は排気マニホルド13の熱によって高温化されていて、この高温吸気によって燃料噴射前に既にキャビティ燃焼室17面が加熱されているため、圧縮行程噴射によりキャビティ燃焼室17に燃料噴霧Fが吹き当っても即座に気化して該キャビティ燃焼室17面に液膜状に付着することはなく、該キャビティ燃焼室17面へのデポジットの発生付着を回避することができる。
【0049】
一方、機関始動時や暖機未完了状態では燃焼安定性維持のため均質燃焼運転が行われるが、均質燃焼運転であってもこのような吸気量の少ないエンジン低負荷時や、燃焼室4内のガス流動が弱いエンジン低回転時にも、前述と同様にサブポート16からの高温吸気による逆タンブル流a1 の強化作用が得られるから、吸気行程で燃料噴射弁10から噴射された燃料噴霧の気化促進と、拡散均質化促進を積極的に行わせることができる。
【0050】
この結果、かかる運転域での燃焼の安定性と排気エミッションとを向上できることはもとより、前述の理由により可燃空燃比を拡大できるため、燃費の向上と未燃HCの低減化を図ることができる。
【0051】
この第1実施形態では燃焼室4内のガス流動場が逆タンブル流となるようにしているが、サブポート16の開口向きを、燃焼室4内で吸気が横旋回するように設定してスワール流を生成するようにした場合でも、前記キャビティ燃焼室17によるスワール流の保存性と燃料噴霧の保持性とが高められて、成層燃焼の安定性向上と排気エミッションの向上とを図ることができる。
【0052】
図5に示す第2実施形態はサブポート16を吸気aが吸気弁6の上側を通って燃焼室4内の排気弁配置側へ向けて流入するように配設して、燃焼室4内に前記第1実施形態とは逆向きの強い順タンブル流a2 が生成されるように設定したものである。
【0053】
また、この実施形態では燃焼室4内のガス流動場を順タンブル流a2 に設定することと併せて、ピストン2の冠面中央部には、機関前方から見て円弧状に形成されて前後方向に延在する比較的大きな凹部23を形成して、該凹部23によって順タンブル流a2 の保存性と、圧縮行程噴射された燃料噴霧の保持性とを高められるようにしてある。
【0054】
即ち、ピストン2の冠面中央部に比較的大きな円弧状の凹部23を形成してあることによって、サブポート16からの吸気により燃焼室4内に生成された順タンブル流a2 は形崩れを生起することなく燃焼室4の中心部に集めて保存することができると共に、該凹部23によって圧縮行程噴射された燃料噴霧の受け止め効果が得られて拡散を抑制できるため、該燃料噴霧を燃焼室中心部の点火プラグ9へ確実に輸送できて成層燃焼の安定性を一段と向上することができる。
【0055】
図6は本発明の第3実施形態を示すもので、この実施形態にあっては前述の排気マニホルド13の集合部13aと、該排気マニホルド13上に設けた第2の吸気コレクタ15とを、EGR制御弁25を備えたEGR通路24で連通して該第2の吸気コレクタ15側から排気還流を行わせるようにしてある。
【0056】
EGR制御弁25は公知の負圧作動ダイヤフラム弁が用いられ、図外のコントロールユニットによって運転状態に応じてバキュームポンプ等の負圧源からの負圧供給を制御して適切な排気還流量が得られるようにしてある。
【0057】
従って、この第3実施形態の構造によれば、前記第1,第2実施形態における各効果に加えて、第2の吸気コレクタ15側からの排気還流によってNOx を抑制できることは勿論、サブポート16から供給される吸気を還流排気によって更に高温化することができて、燃料噴霧の気化促進を一段と向上することができる。
【0058】
なお、前述の各実施形態では分岐通路20と主吸気通路18とに開閉制御弁21,22を設けて、第1の吸気コレクタ11と第2の吸気コレクタ15とへの吸気分配を行わせるようにしているが、分岐通路20を主吸気通路18よりも大径にして、該分岐通路20に設けた開閉制御弁21のみで前記吸気分配制御を行わせるようにすることもでき、あるいは、分岐通路20を主吸気通路18のスロットル弁19の上流側に接続して前述と同様な吸気分配制御を行わせることも可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す略示的断面説明図。
【図2】同実施形態の略示的平面説明図。
【図3】図1のA−A線に沿う断面図。
【図4】同実施形態の成層燃焼時における吸気と燃料噴霧との挙動を示す説明図。
【図5】本発明の第2実施形態を示す略示的断面説明図。
【図6】本発明の第3実施形態を示す略示的平面説明図。
【図7】開閉制御弁のエンジン負荷による吸気分配特性図。
【図8】開閉制御弁のエンジン回転による吸気分配特性図。
【図9】開閉制御弁の制御マップ図。
【図10】開閉制御弁の制御システムのフローチャート。
【符号の説明】
4 燃焼室
5 吸気ポート
6 吸気弁
9 点火プラグ
10 燃料噴射弁
11 第1の吸気コレクタ
13 排気マニホルド
15 第2の吸気コレクタ
16 サブポート
17 キャビティ燃焼室
18 主吸気通路
20 分岐通路
21,22 開閉制御弁
23 凹部
24 EGR通路
25 EGR制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection spark ignition engine.
[0002]
[Prior art]
An in-cylinder injection type spark ignition engine is one in which a reverse tumble flow is generated as an in-cylinder gas flow field, as disclosed in, for example, Japanese Patent Laid-Open No. 6-81651, or Japanese Patent Laid-Open No. 5-86873. As shown, various types are known, such as those that generate a forward tumble flow as an in-cylinder gas flow field.
[0003]
[Problems to be solved by the invention]
In any of the types described above, fuel is directly injected into the combustion chamber from the fuel injection valve, so that the fuel spray adheres to the piston crown surface and the quenching region of the cylinder circumferential surface, particularly during stratified combustion, It cannot be denied that it becomes a cause of generation of unburned HC, smoke and deposits.
[0004]
Therefore, the present invention provides an in-cylinder injection spark ignition engine that can prevent fuel spray from adhering to the piston crown and the like, and can improve the stability of stratified combustion and the exhaust mission.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, in a direct injection spark ignition engine in which an ignition plug is disposed in a combustion chamber and a fuel injection valve that directly injects fuel into the combustion chamber is provided, a first in-line with an intake port is provided. An intake collector and a second intake collector provided on the exhaust manifold are provided. The second intake collector opens near the intake valve of the intake port and burns by intake air supplied from the second intake collector. A sub-port for enhancing the gas flow in the room is communicated and arranged, and the second intake collector communicates with the main intake passage of the first intake collector via the branch passage, and the branch passage and the main intake passage are controlled to be opened and closed. A valve is provided to control the distribution of the intake air amount to the first intake air collector and the second intake air collector according to the operation states of the stratified combustion operation and the homogeneous combustion operation .
[0007]
In the invention of claim 2, in-cylinder injection type spark ignition engine according to claim 1, by blocking the first inlet collector side at low load of the engine, the air from the second intake collector side It is characterized in that it was made to do.
[0008]
In the invention of claim 3, in-cylinder injection type spark ignition engine according to claim 1, by blocking the first inlet collector side during low rotation of the engine, the air from the second intake collector side It is characterized in that it was made to do.
[0009]
According to a fourth aspect of the present invention, the exhaust manifold according to any one of the first to third aspects and the second intake collector are communicated with each other through an EGR passage provided with an EGR control valve to exhaust from the second intake collector side. It is characterized in that reflux is performed.
[0010]
The invention according to claim 5 is characterized in that the direction of the intake air supplied from the subports according to claims 1 to 4 is set so that a reverse tumble flow is generated in the combustion chamber.
[0011]
The invention according to claim 6 is characterized in that the direction of the intake air supplied from the subports according to claims 1 to 4 is set so that a forward tumble flow is generated in the combustion chamber.
[0012]
The invention according to claim 7 is characterized in that the directivity direction of the intake air supplied from the subports according to claims 1 to 4 is set so that a swirl flow is generated in the combustion chamber.
[0013]
According to an eighth aspect of the present invention, in the in-cylinder injection spark ignition engine according to the fifth or seventh aspect , the spark plug is disposed at a substantially central portion of the combustion chamber, and the fuel injection valve is disposed in the intake air of the combustion chamber. While arranged on the side of the valve arrangement side, a cavity combustion chamber for preserving the gas flow in the combustion chamber and holding the fuel spray is provided on the piston crown side, which is biased toward the intake valve arrangement side. It is characterized by that.
[0014]
According to the ninth aspect of the present invention, in the in-cylinder spark ignition engine according to the sixth aspect , the ignition plug is disposed at a substantially central portion of the combustion chamber, and the fuel injection valve is disposed at the intake valve of the combustion chamber. A concave portion for storing a forward tumble flow in the combustion chamber formed in an arc shape when viewed from the front of the engine and extending in the front-rear direction at the center of the piston crown surface. It is characterized by providing.
[0015]
【The invention's effect】
According to the first aspect of the present invention, since the gas flow in the combustion chamber can be enhanced by the intake air supplied from the subport, the fuel spray injected in the compression stroke is placed at a predetermined position on this strong gas flow. Of course, the intake air supplied from the subport is heated by the second intake collector provided on the exhaust manifold, so that when it is introduced into the combustion chamber during the intake stroke, it can be reliably transported to the spark plug side. The combustion chamber surface including the piston crown surface is heated by the high temperature intake air. Therefore, the fuel spray injected in the compression stroke is accelerated by the high temperature intake air and blown to the piston crown surface or the like. Will not vaporize immediately and will not adhere to the liquid film.As a result, the stability of stratified combustion will be improved, exhaust emissions will be improved, and deposits on the piston crown will be removed. It is possible to prevent the wearing deposition.
[0016]
Further, vaporization of fuel spray can be promoted by high-temperature intake air in this way, and ignition can be stabilized and flame propagation can be stabilized, so that the combustible air-fuel ratio can be expanded and unburned HC can be further reduced. .
[0017]
Further, even under homogeneous combustion in which intake stroke injection is performed, under the operating conditions in which intake air having a temperature higher than that of the subport is introduced, the gas flow can be enhanced and the fuel vaporization can be promoted at the same time. In addition, it is possible to improve fuel consumption and reduce unburned HC.
[0018]
Pressurized forte, the first air intake to contact the collector side main intake passage and the opening and closing control valve provided respectively in the branch passage to contact the second intake collector side, according to the operating state of the stratified charge combustion operation and homogeneous combustion operation Since the intake amount to the first intake collector and the second intake collector can be appropriately distributed and controlled, the combustion stability and the exhaust mission can be further improved during each operation of the stratified combustion operation and the homogeneous combustion operation. it can.
[0019]
According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, high-temperature intake is performed through the subport only from the second intake collector side at the time of engine low load with a small intake amount, Since the gas flow in the combustion chamber is strengthened, it is possible to improve stability during low-load operation and improve exhaust emission.
[0020]
According to the third aspect of the present invention, in addition to the effect of the first aspect of the invention, the gas flow strength in the combustion chamber is proportional to the engine speed, but only from the second intake collector side at the time of low engine speed. High-temperature intake is performed via the subport and the gas flow in the combustion chamber is enhanced, so that stability during low-speed operation and exhaust emission can be improved.
[0021]
According to the fourth aspect of the invention, in addition to the effects of the first to third aspects, NOx can be suppressed by exhaust gas recirculation from the second intake collector side, and intake air supplied from the subport is further reduced. The temperature can be increased, and the vaporization promotion of fuel spray can be further improved.
[0022]
According to the inventions of claims 5 to 7 , in addition to the effects of the inventions of claims 1 to 4 , it is possible to easily cope with a desired engine concept by changing the intake direction from the subport.
[0023]
According to the eighth aspect of the invention, in the engine of the reverse tumble flow concept and the swirl flow concept, the reverse tumble flow or the swirl flow can be stored in the cavity combustion chamber on the piston crown surface without causing deformation. In addition, since the fuel spray injected from the fuel injection valve in the vicinity of the intake valve in the compression stroke can be held by the cavity combustion chamber and diffusion can be suppressed, the fuel spray can be reliably transported to the ignition plug in the center of the combustion chamber and stratified. Combustion stability can be further improved.
[0024]
According to the ninth aspect of the present invention, in the engine of the forward tumble flow concept, the forward tumble flow is collected at the center of the combustion chamber by the arc-shaped recess at the center of the piston crown surface and stored without causing deformation. In addition, it is possible to obtain the effect of receiving the fuel spray injected from the fuel injection valve in the vicinity of the intake valve in the compression stroke by the recess, and to suppress the diffusion, so that the fuel spray is surely applied to the ignition plug at the center of the combustion chamber. The stability of stratified combustion can be further improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
1 to 3, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, and 4 is a combustion chamber formed by these cylinder block 1, piston 2 and cylinder head 3.
[0027]
The cylinder head 3 is provided with two intake ports 5 that are opened and closed by an intake valve 6 and two exhaust ports 7 that are opened and closed by an exhaust valve 8.
[0028]
A spark plug 9 is disposed at the center of the cylinder head 3, that is, the center of the combustion chamber 4, and two intake valves are disposed at the side of the combustion chamber 4 on the intake valve arrangement side. A fuel injection valve 10 for directly injecting fuel into the combustion chamber 4 is disposed in the vicinity between 6 and 6.
[0029]
A branch portion 12 of the first intake collector 11 is connected to the intake ports 6 and 6, while a branch portion 14 of the exhaust manifold 13 is connected to the exhaust port 7.
[0030]
A second intake collector 15 is integrally formed on the exhaust manifold 13 across the plurality of branch portions 14.
[0031]
The cylinder head 3 is provided with a sub-port 16 that opens near the intake valve of each intake port 5 and communicates with the second intake collector 15, and intake air supplied from the second intake collector 15 and the sub-port 16. Thus, the gas flow in the combustion chamber 4 can be enhanced.
[0032]
In the present embodiment, the sub port 16 is opened to a position almost directly above the intake valve 6, the intake air supplied from the sub port 16 is directed to the lower side of the intake valve 6, and the intake air is disposed on the intake valve arrangement side of the combustion chamber 4. And flows downward along the side surface of the piston 2 and reverses upward toward the exhaust valve arrangement side at the crown surface of the piston 2 to generate a reverse tumble flow in the combustion chamber 4.
[0033]
Further, a cavity combustion chamber 17 is recessed in a substantially half portion of the crown surface of the piston 2 that is biased toward the intake valve arrangement side, and the storage stability and compression of the reverse tumble flow generated and strengthened in the combustion chamber 4 are compressed. In the stroke, the retention of the fuel spray injected from the fuel injection valve 10 can be improved.
[0034]
In the present embodiment, the second intake collector 15 is connected to the downstream side of the throttle valve 19 of the main intake passage 18 of the first intake collector 11 via the branch passage 20.
[0035]
The branch passage 20 and the main intake passage 18 are provided with open / close control valves 21 and 22, and to the first intake collector 11 and the second intake collector 15 according to the operation state of the stratified combustion operation and the homogeneous combustion operation. The intake air amount is distributed and controlled.
[0036]
For example, the opening / closing control valves 21 and 22 are controlled by a control unit (not shown) on the basis of the control map shown in FIG. 9, for example, to the first intake collector 11 and the second intake collector 15. Intake amount distribution is performed.
[0037]
The open / close control valves 21 and 22 are controlled to open and close by a control unit based on detection signals from various sensors such as an accelerator opening sensor and a crank angle sensor (not shown). As shown in FIG. 7, on the low load side where stratified combustion is performed, intake from only the second intake collector 15 is performed in the low load region A, and in the middle load region B, the second intake collector 15 and The intake air distribution to the first intake collector 11 is performed, and the intake air only from the first intake collector 11 is performed in the high load region C where homogeneous combustion is performed.
[0038]
On the other hand, the opening / closing characteristics of the opening / closing control valves 21 and 22 due to the engine rotation are as follows. As shown in FIG. In the high rotation region 2, the intake air is only taken from the first intake collector 11.
[0039]
Specifically, the opening / closing control valves 21 and 22 are controlled in accordance with, for example, a flowchart shown in FIG.
[0040]
In FIG. 10, when detection signals from various sensors such as an accelerator opening sensor and a crank angle sensor are read in step S1, an operation state of stratified combustion or homogeneous combustion is determined based on the detection results in step S2. The
[0041]
If it is determined in step S2 that the stratified charge combustion operation is performed, the process proceeds to step S3, where the opening degree of the opening / closing control valve 22 on the first intake collector 11 side is set, and in step S4, the opening / closing on the second intake collector 15 side is set. The opening degree of the control valve 21 is set, and the intake air amount to the first intake collector 11 and the second intake collector 15 is appropriately distributed according to the operating states of the load regions A and B shown in FIG. Is done.
[0042]
If it is determined in step S2 that the combustion operation is homogeneous, the process proceeds to step S5 where the opening / closing control valve 22 on the first intake collector 11 side is fully opened, and the opening / closing control valve on the second intake collector 15 side in step S6. 21 is fully closed, and intake from only the first intake collector 11 is performed.
[0043]
According to the structure of the first embodiment described above, the gas flow in the combustion chamber 4 can be strengthened by the intake air supplied from the subport 16 in the low / medium load and low rotation range where stratified combustion is performed. The fuel spray injected from the fuel injection valve 10 arranged on the valve arrangement side can be reliably transported to the ignition plug 9 side in the center of the combustion chamber by being put on this strong gas flow, and of course the intake air supplied from the subport 16 Is heated at the second intake collector 15 provided on the exhaust manifold 13, so that when it is introduced into the combustion chamber 4 in the intake stroke, the combustion of the piston 2 and the like is started by the high-temperature intake. The inner surface of the chamber 4 is heated. Therefore, the fuel spray injected in the compression stroke is accelerated by the high-temperature intake air, and is instantly vaporized even when it blows against the crown surface of the piston 2. In shape It is possible to avoid the Chakusuru of.
[0044]
As a result, the stability of the stratified combustion can be improved, the unburned HC can be reduced, the exhaust emission can be improved, and the deposit deposition on the piston crown surface can be prevented.
[0045]
In addition, since the vaporization of the fuel spray can be promoted by the high-temperature intake air from the sub-port 16 in this way, the ignition of the air-fuel mixture by the ignition plug 9 and the stabilization of the flame propagation can be achieved. And unburned HC can be further reduced.
[0046]
In particular, in the present embodiment, the subport 16 is opened to a position almost directly above the intake valve 6, and the intake air from the subport 16 is directed to the lower side of the intake valve 6 to generate a strong reverse tumble flow in the combustion chamber 4. Since the cavity combustion chamber 17 is provided on the intake valve arrangement side of the piston crown surface, when the stratified combustion is performed, the intake valve 6 is opened during the intake stroke as shown in FIG. The intake air a from the sub-port 16 descends along the side surface of the combustion chamber 4 on the intake valve arrangement side through the lower side of the intake valve 6 and is inverted at the crown surface of the piston 2. It is possible to generate a reverse tumble flow a 1 without any turbulence by smoothly turning upward toward the exhaust valve arrangement side along the ball shape of the cavity combustion chamber 17 on the crown surface.
[0047]
In the compression stroke, the reverse tumble flow a 1 can be stored by the cavity combustion chamber 17 without losing its shape as shown in (b), (c), and (d) of FIG. Since the fuel spray F injected from 10 can be held and the diffusion can be suppressed, the fuel spray F is placed on the reverse tumble flow a 1 to ensure the ignition plug at the center of the combustion chamber, as shown in FIG. 9 and the stability of stratified combustion can be further improved.
[0048]
Thus, even if the cavity combustion chamber 17 is recessed in the crown surface of the piston 2, the intake air a 1 supplied from the subport 16 is heated by the heat of the exhaust manifold 13 as described above. Since the surface of the cavity combustion chamber 17 is already heated by the high-temperature intake air before the fuel injection, even if the fuel spray F blows to the cavity combustion chamber 17 by the compression stroke injection, it is immediately vaporized and liquid is applied to the cavity combustion chamber 17 surface. It does not adhere in the form of a film, and it is possible to avoid depositing and adhering to the surface of the cavity combustion chamber 17.
[0049]
On the other hand, when the engine is started or when the engine is not warmed up, a homogeneous combustion operation is performed to maintain combustion stability. Even in the homogeneous combustion operation, such a low engine load with a small intake amount or in the combustion chamber 4 Since the reverse tumble flow a 1 is strengthened by the high-temperature intake air from the subport 16 in the same manner as described above even when the engine has a weak gas flow, the vaporization of the fuel spray injected from the fuel injection valve 10 in the intake stroke is obtained. Promotion and diffusion homogenization can be actively promoted.
[0050]
As a result, not only can the stability of combustion and exhaust emission in this operating region be improved, but also the combustible air-fuel ratio can be expanded for the reasons described above, so that fuel efficiency can be improved and unburned HC can be reduced.
[0051]
In the first embodiment, the gas flow field in the combustion chamber 4 is a reverse tumble flow. However, the opening direction of the subport 16 is set so that the intake air is swirled in the combustion chamber 4, and the swirl flow is set. Even in the case where the slag is generated, the preservation property of the swirl flow and the retention property of the fuel spray by the cavity combustion chamber 17 are improved, so that the stability of the stratified combustion and the exhaust emission can be improved.
[0052]
In the second embodiment shown in FIG. 5, the sub port 16 is arranged so that the intake air a flows through the upper side of the intake valve 6 toward the exhaust valve arrangement side in the combustion chamber 4. It is set so that a strong tumble flow a 2 having a strong reverse direction to that of the first embodiment is generated.
[0053]
In this embodiment, the gas flow field in the combustion chamber 4 is set to the forward tumble flow a 2 , and at the center of the crown surface of the piston 2 is formed in an arc shape when viewed from the front of the engine. A relatively large recess 23 extending in the direction is formed so that the storage stability of the forward tumble flow a 2 and the retainability of the fuel spray injected by the compression stroke can be enhanced by the recess 23.
[0054]
That is, the relatively large arc-shaped recess 23 is formed at the center of the crown surface of the piston 2, so that the forward tumble flow a 2 generated in the combustion chamber 4 by the intake air from the subport 16 is deformed. The fuel spray can be collected and stored in the central portion of the combustion chamber 4 without being carried out, and the receiving effect of the fuel spray injected by the compression stroke can be obtained by the concave portion 23 to suppress the diffusion. Therefore, the stability of stratified combustion can be further improved.
[0055]
FIG. 6 shows a third embodiment of the present invention. In this embodiment, the collecting portion 13a of the exhaust manifold 13 and the second intake collector 15 provided on the exhaust manifold 13 are provided. The exhaust gas is recirculated from the second intake collector 15 side through an EGR passage 24 provided with an EGR control valve 25.
[0056]
As the EGR control valve 25, a known negative pressure operation diaphragm valve is used, and an appropriate exhaust gas recirculation amount is obtained by controlling the negative pressure supply from a negative pressure source such as a vacuum pump according to the operation state by a control unit (not shown). It is supposed to be.
[0057]
Therefore, according to the structure of the third embodiment, in addition to the effects of the first and second embodiments, NO x can be suppressed by the exhaust gas recirculation from the second intake collector 15 side. The intake air supplied from the engine can be further heated by the recirculation exhaust gas, and the vaporization of the fuel spray can be further promoted.
[0058]
In each of the above-described embodiments, the open / close control valves 21 and 22 are provided in the branch passage 20 and the main intake passage 18 so as to distribute the intake air to the first intake collector 11 and the second intake collector 15. However, it is possible to make the branch passage 20 larger in diameter than the main intake passage 18 so that the intake distribution control is performed only by the opening / closing control valve 21 provided in the branch passage 20, or It is also possible to connect the passage 20 to the upstream side of the throttle valve 19 in the main intake passage 18 to perform the same intake distribution control as described above.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional explanatory view showing a first embodiment of the present invention.
FIG. 2 is a schematic plan explanatory view of the embodiment.
3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is an explanatory diagram showing the behavior of intake air and fuel spray during stratified combustion according to the embodiment.
FIG. 5 is a schematic cross-sectional explanatory view showing a second embodiment of the present invention.
FIG. 6 is a schematic plan view illustrating a third embodiment of the present invention.
FIG. 7 is an intake distribution characteristic diagram according to an engine load of the open / close control valve.
FIG. 8 is an intake distribution characteristic diagram according to engine rotation of an opening / closing control valve.
FIG. 9 is a control map of the open / close control valve.
FIG. 10 is a flowchart of a control system for an open / close control valve.
[Explanation of symbols]
4 Combustion chamber 5 Intake port 6 Intake valve 9 Spark plug 10 Fuel injection valve 11 First intake collector 13 Exhaust manifold 15 Second intake collector 16 Subport 17 Cavity combustion chamber 18 Main intake passage 20 Branch passages 21, 22 Open / close control valve 23 Recess 24 EGR passage 25 EGR control valve

Claims (9)

燃焼室に点火プラグと、該燃焼室に直接燃料を噴射する燃料噴射弁とを配設した筒内噴射式火花点火機関において、吸気ポートに連なる第1の吸気コレクタと、排気マニホルド上に設けた第2の吸気コレクタとを備え、該第2の吸気コレクタには吸気ポートの吸気弁近傍に開口して、第2の吸気コレクタから供給される吸気により燃焼室内のガス流動を強化するサブポートを連通,配設し、該第2の吸気コレクタは分岐通路を介して第1の吸気コレクタの主吸気通路に連通し、これら分岐通路および主吸気通路に開閉制御弁を設けて、成層燃焼運転と均質燃焼運転との運転状態に応じて第1の吸気コレクタと第2の吸気コレクタとへの吸気量を分配制御するようにしたことを特徴とする筒内噴射式火花点火機関。An in-cylinder injection spark ignition engine having an ignition plug in a combustion chamber and a fuel injection valve that directly injects fuel into the combustion chamber is provided on a first intake collector connected to an intake port and an exhaust manifold. A second intake collector, and the second intake collector opens to the vicinity of the intake valve of the intake port, and communicates with a subport that enhances the gas flow in the combustion chamber by the intake air supplied from the second intake collector. The second intake collector communicates with the main intake passage of the first intake collector through a branch passage, and an open / close control valve is provided in the branch passage and the main intake passage to achieve uniform operation with stratified combustion operation. An in-cylinder spark ignition engine characterized in that the intake air amount to the first intake collector and the second intake collector is distributed and controlled in accordance with the operation state of the combustion operation . エンジンの低負荷時に第1の吸気コレクタ側を遮断して、第2の吸気コレクタ側から吸気を行わせるようにしたことを特徴とする請求項1に記載の筒内噴射式火花点火機関。Blocking the first inlet collector side at low load of the engine, in-cylinder injection type spark ignition engine according to claim 1, characterized in that so as to perform suction from the second intake collector side. エンジンの低回転時に第1の吸気コレクタ側を遮断して、第2の吸気コレクタ側から吸気を行わせるようにしたことを特徴とする請求項1に記載の筒内噴射式火花点火機関。Blocking the first inlet collector side during low rotation of the engine, in-cylinder injection type spark ignition engine according to claim 1, characterized in that so as to perform suction from the second intake collector side. 排気マニホルドと第2の吸気コレクタとを、EGR制御弁を備えたEGR通路で連通して該第2の吸気コレクタ側から排気還流を行わせるようにしたことを特徴とする請求項1〜の何れかに記載の筒内噴射式火花点火機関。An exhaust manifold and the second intake air collector, according to claim 1 to 3, characterized in that so as to perform the exhaust gas recirculation from the intake air collector side of the second communicating the EGR passage with the EGR control valve The in-cylinder injection spark ignition engine according to any one of the above. サブポートから供給される吸気の指向方向を、燃焼室内に逆タンブル流が生成されるように設定したことを特徴とする請求項1〜の何れかに記載の筒内噴射式火花点火機関。The direct injection spark ignition engine according to any one of claims 1 to 4, wherein a direction in which intake air supplied from the subport is directed is set so that a reverse tumble flow is generated in the combustion chamber. サブポートから供給される吸気の指向方向を、燃焼室内に順タンブル流が生成されるように設定したことを特徴とする請求項1〜の何れかに記載の筒内噴射式火花点火機関。Cylinder injection type spark ignition engine according to any of claims 1-4 in which the directivity direction of the intake air, characterized by being configured to sequentially tumble flow is generated in the combustion chamber which is supplied from the sub-port. サブポートから供給される吸気の指向方向を、燃焼室内にスワール流が生成されるように設定したことを特徴とする請求項1〜の何れかに記載の筒内噴射式火花点火機関。The in-cylinder injection spark ignition engine according to any one of claims 1 to 4 , wherein a directivity direction of intake air supplied from the subport is set so that a swirl flow is generated in the combustion chamber. 点火プラグを燃焼室の略中心部分に配設すると共に、燃料噴射弁を燃焼室の吸気弁配置側の側部に配設する一方、ピストン冠面には吸気弁配置側に偏寄して、燃焼室内のガス流動を保存し、かつ、燃料噴霧を保持するためのキャビティ燃焼室を設けたことを特徴とする請求項に記載の筒内噴射式火花点火機関。The spark plug is disposed in the substantially central portion of the combustion chamber, and the fuel injection valve is disposed on the side of the combustion chamber on the intake valve arrangement side, while the piston crown surface is biased toward the intake valve arrangement side, Save the gas flow in the combustion chamber, and a cylinder injection type spark ignition engine according to claim 5, 7, characterized in that a cavity combustion chamber for holding the fuel spray. 点火プラグを燃焼室の略中心部分に配設すると共に、燃料噴射弁を燃焼室の吸気弁配置側の側部に配設する一方、ピストン冠面の中央部には機関の前方から見て円弧状に形成されて前後方向に延在して、燃焼室内の順タンブル流を保存するための凹部を設けたことを特徴とする請求項に記載の筒内噴射式火花点火機関。The spark plug is disposed in the substantially central portion of the combustion chamber, and the fuel injection valve is disposed on the side portion of the combustion chamber on the intake valve arrangement side, while the center portion of the piston crown surface is a circle as viewed from the front of the engine. The in-cylinder injection spark ignition engine according to claim 6 , wherein the in-cylinder injection spark ignition engine is formed in an arc shape and extends in the front-rear direction to store a forward tumble flow in the combustion chamber.
JP14792898A 1998-05-28 1998-05-28 In-cylinder injection spark ignition engine Expired - Lifetime JP3695143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14792898A JP3695143B2 (en) 1998-05-28 1998-05-28 In-cylinder injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14792898A JP3695143B2 (en) 1998-05-28 1998-05-28 In-cylinder injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH11343854A JPH11343854A (en) 1999-12-14
JP3695143B2 true JP3695143B2 (en) 2005-09-14

Family

ID=15441255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14792898A Expired - Lifetime JP3695143B2 (en) 1998-05-28 1998-05-28 In-cylinder injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP3695143B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60115841T2 (en) 2000-01-25 2006-08-17 Kabushiki Kaisha Toyota Chuo Kenkyusho DIRECTLY INJECTED INTERNAL COMBUSTION ENGINE
FR2885647B1 (en) * 2005-05-11 2010-10-08 Renault DEVICE FOR INTERNAL COMBUSTION ENGINE FOR VARYING AERODYNAMIC GENERATION FROM AIR INJECTION IN CYLINDER HEAD DELIVERY DUCTS
FR2896545B1 (en) * 2006-01-20 2011-06-10 Renault Sas INJECTION INTERNAL COMBUSTION ENGINE HAVING HEAT EXCHANGE MEANS BETWEEN AN INTAKE CIRCUIT AND AN EXHAUST CIRCUIT
WO2022209880A1 (en) * 2021-03-31 2022-10-06 本田技研工業株式会社 Air suction device for internal combustion engine

Also Published As

Publication number Publication date
JPH11343854A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US6067954A (en) Direct fuel injection engine
JP3644249B2 (en) In-cylinder internal combustion engine
US6668792B2 (en) Control system for in-cylinder direct injection engine
JPH11153034A (en) Direct injection spark ignition type engine
JP2004150284A (en) Control device and control method for internal combustion engine, combustion method for internal combustion engine, and in-cylinder injection type engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPH0821342A (en) Fuel injection type engine
JP3695143B2 (en) In-cylinder injection spark ignition engine
JP3695145B2 (en) Intake control device for in-cylinder injection spark ignition engine
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
JP2005180309A (en) Intake device for internal combustion engine
JP3726503B2 (en) Direct-injection spark ignition internal combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH10317974A (en) Direct injection type internal combustion engine
JP2513612Y2 (en) Stratified combustion internal combustion engine
JPH10141115A (en) Control device of in-cylinder injection internal combustion engine
JP4253825B2 (en) Control device for spark ignition direct injection engine
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JP2656341B2 (en) Intake system for direct injection diesel engine
JPH10110660A (en) In-cylinder injection type engine
JPH03246361A (en) Exhaust gas recirculation control device for diesel engine
JP2001050052A (en) Intake control system for engine
JP2000274278A (en) Cylinder injection type spark ignition internal combustion engine
JP3030226B2 (en) Car lean burn engine
JP3639048B2 (en) In-cylinder fuel injection engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

EXPY Cancellation because of completion of term