JP2005180309A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2005180309A
JP2005180309A JP2003422388A JP2003422388A JP2005180309A JP 2005180309 A JP2005180309 A JP 2005180309A JP 2003422388 A JP2003422388 A JP 2003422388A JP 2003422388 A JP2003422388 A JP 2003422388A JP 2005180309 A JP2005180309 A JP 2005180309A
Authority
JP
Japan
Prior art keywords
egr
internal combustion
combustion engine
intake device
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422388A
Other languages
Japanese (ja)
Inventor
Takeshi Yamamuro
毅 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003422388A priority Critical patent/JP2005180309A/en
Publication of JP2005180309A publication Critical patent/JP2005180309A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize compatibility between securement of high output at the time of full-open performance of an engine and reduction in NOx emission amount by EGR gas injection and improvement of fuel economy at the time other than full-open performance. <P>SOLUTION: This intake device for the internal combustion engine is equipped with an intake passage 2 vertically partitioned by a partition wall 7, EGR piping 11 communicating an exhaust passage of the engine with the intake passage and having an opening part 4 in the upstream side from the partition wall 7 of the intake passage 2, and an on-off valve 3 provided in the vicinity of an upstream side end part of the partition wall 7 and blocking the opening 4 of the EGR piping 11 at the time of full-open performance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の吸気装置の構造に関し、特に排気ガス再循環装置(EGR装置)を備える内燃機関の吸気装置に関する。   The present invention relates to a structure of an intake device for an internal combustion engine, and more particularly to an intake device for an internal combustion engine including an exhaust gas recirculation device (EGR device).

内燃機関において、NOxの発生量抑制や燃費向上のために、排気ガスを吸気管に再循環させるEGR装置を設けて燃焼室内の燃焼温度を低下させる方法が知られている。   In an internal combustion engine, a method is known in which an EGR device that recirculates exhaust gas to an intake pipe is provided to reduce the combustion temperature in the combustion chamber in order to suppress the amount of NOx generated and improve fuel efficiency.

EGR装置による上記効果を高めるためには、排気循環ガス(EGRガス)を各気筒に均等に分配することが望ましく、例えば、特許文献1のようにEGRガス用の配管を分岐させて吸気マニホールドの各ブランチ部に接続し、気筒毎にEGRガスを噴射する方法が知られている。
特開2002−89376号
In order to enhance the above-described effect by the EGR device, it is desirable to distribute exhaust circulation gas (EGR gas) evenly to each cylinder. For example, as disclosed in Patent Document 1, a pipe for EGR gas is branched to A method of injecting EGR gas for each cylinder by connecting to each branch part is known.
JP 2002-89376 A

しかしながら、EGRガス用の配管を吸気マニホールドの各ブランチ部に接続すると、EGRガス用配管によって各ブランチ部は連通してしまう。また、EGRガスの供給・停止を制御するEGRバルブは、通常、EGRガス用配管が分岐する部分より上流に1つ設ける。   However, if the EGR gas pipes are connected to the branch portions of the intake manifold, the EGR gas pipes communicate with each other. In addition, one EGR valve that controls supply / stop of EGR gas is usually provided upstream of the portion where the EGR gas pipe branches.

したがって、各ブランチ部の体積はEGRバルブより下流のEGRガス用配管の分だけ増大することになる。   Therefore, the volume of each branch portion increases by the amount of the EGR gas pipe downstream from the EGR valve.

これにより、例えば全開性能時にEGRガスの噴射を停止しても、体積増加に伴って吸気行程における吸入負圧が上昇しにくくなるので、吸気の慣性を利用して多くの空気を燃焼室内に充填する、いわゆる慣性過給の効果が小さくなり、出力が低下してしまうという問題があった。   As a result, for example, even if EGR gas injection is stopped during full-open performance, the intake negative pressure in the intake stroke is unlikely to increase as the volume increases, so a large amount of air is filled into the combustion chamber using the inertia of the intake air. There is a problem that the effect of so-called inertia supercharging is reduced and the output is reduced.

そこで、本発明ではEGRガス噴射によってNOx排出量の低減や燃費の向上を図りつつ、全開性能時には高出力を得ることを目的とする。   Therefore, an object of the present invention is to obtain a high output during the fully open performance while reducing the NOx emission amount and improving the fuel consumption by EGR gas injection.

本発明の内燃機関の吸気装置は、隔壁によって上下に仕切られた吸気通路と、エンジンの排気通路と吸気通路とを連通し、前記吸気通路の前記隔壁よりも上流側に開口部を有するEGR配管と、前記隔壁の上流側端部付近に設けられ、全開性能時には前記EGR配管の開口部を塞ぐ開閉弁と、を備える。   An intake system for an internal combustion engine according to the present invention includes an EGR pipe having an intake passage partitioned vertically by a partition, an exhaust passage and an intake passage of the engine, and an opening upstream of the partition of the intake passage. And an opening / closing valve provided near the upstream end of the partition wall and closing the opening of the EGR pipe when fully opened.

本発明によれば、エンジンの全開性能時にはEGR配管の開口部を開閉弁によって塞ぐことによって、吸気マニホールドの各ブランチ部がEGR配管によって互いに連通することを防止するので、慣性過給効果が低下することを防止できる。つまり、全開性能時以外のときにはEGRガスを噴射してNOx排出量の低減や燃費の向上を図りつつ、全開性能時には慣性過給効果を利用して高出力を得ることが可能となる。   According to the present invention, when the engine is fully opened, the opening portion of the EGR pipe is closed by the on-off valve, so that the branch portions of the intake manifold are prevented from communicating with each other by the EGR pipe, so that the inertia supercharging effect is reduced. Can be prevented. That is, it is possible to obtain a high output by using the inertia supercharging effect at the time of the full opening performance while injecting EGR gas at times other than the time of the full opening performance to reduce the NOx emission amount and improve the fuel consumption.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)(b)は本実施形態の吸気装置の断面図であり、図1(a)は加速時等の中・高負荷運転時(以下、全開性能時という)、図1(b)は一定速度での走行や低速走行等のような低負荷運転時(以下、パーシャル時という)の状態を表している。   1 (a) and 1 (b) are cross-sectional views of the intake device of the present embodiment, and FIG. 1 (a) is a medium / high load operation during acceleration (hereinafter referred to as fully open performance), FIG. ) Represents a state during low-load operation (hereinafter referred to as partial operation) such as traveling at a constant speed or low-speed traveling.

図2は図1(a)(b)を上面から見た図を表している。なお、図2は多気筒エンジンの一例として4気筒エンジンを示している。   FIG. 2 shows a top view of FIGS. FIG. 2 shows a four-cylinder engine as an example of a multi-cylinder engine.

1は図示しない吸気口から吸入した空気を一時的に溜めておくコレクタータンク、2はコレクタータンク1と各気筒の吸気ポート5とを連通するブランチ部、3はブランチ部2の空気の流れを制御するタンブルコントロールバルブ(以下、TCVという)、4はブランチ部2の下流方向に向けてEGRガスを噴射するEGR噴孔である。図2に示すように、すべてのEGR噴孔4はEGR配管11と連通している。EGR配管11は図示しない排気管を流れる排気ガスの一部を、エンジン内に供給するための配管であり、途中にはEGR配管11を連通、遮断するEGRバルブ10が介装されている。   1 is a collector tank that temporarily stores air drawn from an intake port (not shown), 2 is a branch part that connects the collector tank 1 and the intake port 5 of each cylinder, and 3 is a control of the air flow in the branch part 2 A tumble control valve (hereinafter referred to as TCV) 4 is an EGR injection hole for injecting EGR gas in the downstream direction of the branch portion 2. As shown in FIG. 2, all the EGR nozzle holes 4 communicate with the EGR pipe 11. The EGR pipe 11 is a pipe for supplying a part of exhaust gas flowing through an exhaust pipe (not shown) into the engine, and an EGR valve 10 for connecting and blocking the EGR pipe 11 is provided in the middle.

ブランチ部2の内部には、TCV3より下流に軸心に沿って延びる仕切り板7(7a)が設けられ、上側通路8と下側通路9とに分割されている。また、吸気ポート5も同様の仕切り板7(7b)が設けられて上下に分割されている。なお、吸気ポート5の仕切り板7(7a)は、ブランチ部2の仕切り板7(7b)を、ブランチ部2の吸気ポート5との接続面から突出させ、ブランチ部2を吸気ポート5に接続した状態で吸気ポート5内部に挿入されて吸気ポート5内部を上下に分割するようにしてもよい。   A partition plate 7 (7a) extending along the axial center is provided downstream of the TCV 3 in the branch portion 2, and is divided into an upper passage 8 and a lower passage 9. The intake port 5 is also divided into upper and lower portions by providing a similar partition plate 7 (7b). In addition, the partition plate 7 (7a) of the intake port 5 projects the partition plate 7 (7b) of the branch portion 2 from the connection surface with the intake port 5 of the branch portion 2, and connects the branch portion 2 to the intake port 5. In this state, it may be inserted into the intake port 5 to divide the intake port 5 into upper and lower parts.

TCV3はいわゆるロータリー式のバルブであり、略円形の断面をもち、ブランチ部2の並び方向と略平行かつ断面の中心を通る軸を中心に回転する。TCV3の回転は図示しないコントロールユニットにより、車両の運転状態に応じて制御される。   The TCV 3 is a so-called rotary valve that has a substantially circular cross section and rotates around an axis that is substantially parallel to the arrangement direction of the branch portions 2 and passes through the center of the cross section. The rotation of the TCV 3 is controlled by a control unit (not shown) according to the driving state of the vehicle.

TCV3の内面には、ブランチ部2の有効断面とほぼ同じ断面をもつ流路(ポート)3cが設けられ、その両側には、TCV3の内部方向に突出する小突起部3aと大突起部3bとが設けられる。前記の両突起部3a、3bは、全開性能時には小突起部3aはEGR噴孔4を塞ぎ、大突起部3bはブランチ部2の底部付近に位置して下側通路9が開くような位置であり、かつ、パーシャル時には小突起部3aはEGR噴孔4が開口するような位置となり、大突起部3bは下側通路9を塞ぐような位置に設けられる。   On the inner surface of the TCV 3, a flow path (port) 3 c having substantially the same cross section as the effective section of the branch portion 2 is provided, and on both sides thereof, there are a small protrusion 3 a and a large protrusion 3 b that protrude in the inner direction of the TCV 3. Is provided. The two protrusions 3a and 3b are positioned so that the small protrusion 3a closes the EGR injection hole 4 and the large protrusion 3b is located near the bottom of the branch part 2 and the lower passage 9 is opened when fully opened. In addition, in the partial state, the small protrusion 3 a is located at a position where the EGR injection hole 4 is opened, and the large protrusion 3 b is provided at a position where the lower passage 9 is closed.

小突起部3aの形状について図3を参照して説明する。図3は全開性能時のEGR噴孔4付近の拡大図である。   The shape of the small protrusion 3a will be described with reference to FIG. FIG. 3 is an enlarged view of the vicinity of the EGR nozzle hole 4 when fully opened.

小突起部3aは全開性能時にEGR噴孔4を完全に閉じることができればよいが、吸気抵抗を抑制するために、外周面が円弧形状であることが望ましい。なお、本実施形態では、図3に示したように、吸気流れ方向(図3中の矢印A)の下流側の突出量を大きくし、かつブランチ部2の上端を結ぶ仮想線C付近まで小突起部3aの先端が張り出すようにする。これにより、小突起部3aの下流側端部で剥離した吸気流れがそのまま上側通路8に流れ込むようになり、吸気抵抗をより低減することができる。   The small protrusion 3a only needs to be able to completely close the EGR injection hole 4 when fully opened, but it is desirable that the outer peripheral surface has an arc shape in order to suppress the intake resistance. In the present embodiment, as shown in FIG. 3, the amount of protrusion on the downstream side in the intake flow direction (arrow A in FIG. 3) is increased and is reduced to the vicinity of the imaginary line C connecting the upper ends of the branch portions 2. The tip of the protrusion 3a is projected. As a result, the intake flow separated at the downstream end of the small protrusion 3a flows into the upper passage 8 as it is, and the intake resistance can be further reduced.

次に大突起部3bの形状について図4を参照して説明する。図4はパーシャル時の仕切り板7付近の拡大図である。   Next, the shape of the large protrusion 3b will be described with reference to FIG. FIG. 4 is an enlarged view of the vicinity of the partition plate 7 at the time of partial.

図4に示すように、大突起部3bはR形状となっており、パーシャル時に大突起部3bの下流側端部が仕切り板7の上流側端部と略当接して下側通路9を閉じた場合に、下流側端部は接線Sが仕切り板7と略一致するような形状となっている。これにより、パーシャル時には当接部分が滑らかな円弧形状となるので、ブランチ部2の下側から大突起部3bに沿って上側通路8にむけて上昇する空気が当接部で剥離することがなく、吸気効率の低下を防止することができる。   As shown in FIG. 4, the large protrusion 3 b has an R shape, and the downstream end of the large protrusion 3 b substantially abuts with the upstream end of the partition plate 7 in the partial state to close the lower passage 9. In this case, the downstream end has a shape such that the tangent S substantially coincides with the partition plate 7. As a result, the abutting portion has a smooth circular arc shape in the partial state, so that air rising from the lower side of the branch portion 2 toward the upper passage 8 along the large protruding portion 3b does not peel off at the abutting portion. Thus, a reduction in intake efficiency can be prevented.

また、全開性能時には図1(a)に示すように大突起部3bはブランチ部2の底面付近に位置し、ブランチ部2の内側に張り出すことになるので、下流側端部以外の部分は、上記の接線Sと仕切り板7とが略一致するという条件を満たしたうえで、ブランチ部2底面付近を流れる空気の大突起部3bでの剥離ができるだけ小さくなるような円弧形状とする。   Further, as shown in FIG. 1 (a), when the fully opened performance is reached, the large protrusion 3b is located near the bottom surface of the branch part 2 and protrudes to the inside of the branch part 2. After satisfying the condition that the tangent line S and the partition plate 7 substantially coincide with each other, the arc shape is such that the separation of the air flowing in the vicinity of the bottom surface of the branch portion 2 at the large protrusion portion 3b becomes as small as possible.

上記のような構成の本実施形態の吸気装置は、全開性能時には小突起部3aがEGR噴孔4を塞ぎ、かつ、大突起部3bがブランチ部2の底部付近にあってブランチ部2の流路断面積が最大となるようにTCV3の回転角度が制御される。これにより、空気は上側通路8および下側通路9から燃焼室へ供給されることになる。   In the intake device of the present embodiment configured as described above, the small protrusion 3a closes the EGR injection hole 4 and the large protrusion 3b is near the bottom of the branch part 2 when the fully open performance is achieved. The rotation angle of the TCV 3 is controlled so that the road cross-sectional area is maximized. As a result, air is supplied from the upper passage 8 and the lower passage 9 to the combustion chamber.

また、パーシャル時には、EGR噴孔4が開口し、大突起部3bが下側通路9を塞ぐようにTCV3の回転角度が制御される。これにより、すべての空気は上側通路8を通り、吸気バルブ6が開いたときに吸気ポート5断面の上半分から燃焼室内へ供給されることになり、燃焼室内でタンブル流を形成することになる。タンブル流を形成することにより、少ない燃料噴射量であっても確実に燃焼させることが可能となるので、例えばリーン成層燃焼を行い燃費の向上を図ることができる。   Further, at the time of partial, the rotation angle of the TCV 3 is controlled so that the EGR nozzle hole 4 is opened and the large protrusion 3 b closes the lower passage 9. Thus, all the air passes through the upper passage 8 and is supplied into the combustion chamber from the upper half of the cross section of the intake port 5 when the intake valve 6 is opened, thereby forming a tumble flow in the combustion chamber. . By forming the tumble flow, it is possible to surely burn even with a small fuel injection amount. Therefore, for example, lean stratified combustion can be performed to improve fuel efficiency.

本実施形態の効果について従来の構成と比較して説明する。従来の構成の一例を図5(a)(b)に示す。   The effect of this embodiment will be described in comparison with a conventional configuration. An example of a conventional configuration is shown in FIGS.

図5(a)は図1(a)と同様に全開性能時のTCV3周辺の状態を表しており、図5(b)は同様に図1(b)のパーシャル時の状態である。なお、上側から見た場合は図2と同様であり、各EGR噴孔4はEGR配管11によって連通している。   FIG. 5A shows the state around the TCV 3 at the fully open performance as in FIG. 1A, and FIG. 5B similarly shows the state at the partial time in FIG. 1B. When viewed from the upper side, it is the same as FIG. 2, and each EGR nozzle hole 4 communicates with the EGR pipe 11.

図5においては、TCV3はいわゆるフラップ式のバルブである。このため、全開性能時にバルブが吸気の流路内に障害物として残ってしまい、空気がバルブに衝突することにより圧力損失が大きくなる。また、バルブの下流では流れの剥離が発生し、実流路面積が低下していた。   In FIG. 5, TCV3 is a so-called flap type valve. For this reason, the valve remains as an obstacle in the intake air flow path at the fully open performance, and the pressure loss increases due to the air colliding with the valve. Further, flow separation occurred downstream of the valve, and the actual flow path area was reduced.

また、図5ではEGR噴孔4は空気の流れの上流側を向いて開口している。この理由は、以下のとおりである。EGR噴孔4の開口部に開閉手段を設けずに、EGR配管11の途中に介装したEGRバルブ10のみでEGRガスの噴射量を制御しており、また、各EGR噴孔4は連通している。したがって、EGRガスの噴射を停止するためにEGRバルブ10を閉じると、EGRガスの供給は停止するものの、EGRバルブ10からEGR噴孔4までの空間はブランチ部2と連通したまま、つまり、各部ランチ部2が互いに連通した状態となる。   Further, in FIG. 5, the EGR nozzle hole 4 opens toward the upstream side of the air flow. The reason for this is as follows. The opening of the EGR nozzle hole 4 is not provided with an opening / closing means, and the EGR gas injection amount is controlled only by the EGR valve 10 interposed in the middle of the EGR pipe 11, and each EGR nozzle hole 4 communicates with the EGR nozzle hole 4. ing. Accordingly, when the EGR valve 10 is closed to stop the injection of the EGR gas, the supply of the EGR gas is stopped, but the space from the EGR valve 10 to the EGR injection hole 4 remains in communication with the branch part 2, that is, each part The lunch portions 2 are in communication with each other.

これにより、各気筒の吸気行程において順次ピストンの下降により負圧が発生しても、各ブランチ部2が連通して実質的な体積が増加しているので、ブランチ部2の負圧は発達しにくく、十分な量の空気を吸込むことができない。そこで、各ブランチ部2が開口したまま、かつ各部ランチ部2が互いに連通していることの負圧発達への影響を小さくするために、EGR噴孔4を空気の流れの上流側に向け、かつ開口面積を小さくしている。このため、大量のEGRガス量を噴射することや、パーシャル時から全開性能時までの広い運転領域でEGRガスを噴射することが困難であった。   As a result, even if negative pressure is generated due to the descending of the piston sequentially in the intake stroke of each cylinder, the negative pressure in the branch portion 2 develops because each branch portion 2 communicates and the substantial volume increases. It is difficult to inhale a sufficient amount of air. Therefore, in order to reduce the influence on the negative pressure development that each branch part 2 is open and each part launch part 2 communicates with each other, the EGR nozzle hole 4 is directed to the upstream side of the air flow, In addition, the opening area is reduced. For this reason, it has been difficult to inject a large amount of EGR gas and to inject EGR gas in a wide operation region from the partial time to the fully open performance.

しかし、本位実施形態では、前述したように全開性能時には小突起部3aでEGR噴孔4を閉じ、各ブランチ部2が連通することがないので、EGR噴孔4を空気の流れの下流側に向けて開口させることができ、また、開口面積を大きくしてパーシャル時に大量のEGRガスを噴射することが可能となる。   However, in the present embodiment, as described above, the EGR injection hole 4 is closed by the small protrusion 3a and the branch parts 2 do not communicate with each other at the time of the fully open performance, so that the EGR injection hole 4 is located downstream of the air flow. The opening area can be increased and a large amount of EGR gas can be injected at the time of partial.

また、TVC3はロータリーバルブ式であり、パーシャル時に下側通路9を塞ぐ大突起部3bは全開性能時にはブランチ部2の底面付近に移動し、かつ流れの剥離が発生しないように円弧形状となっているので、全開性能時の圧力損失の増大や、実流路面積の低下を抑制することができる。   Further, the TVC 3 is a rotary valve type, and the large protrusion 3b that closes the lower passage 9 at the time of partial movement moves in the vicinity of the bottom surface of the branch portion 2 when fully opened, and has an arc shape so that no flow separation occurs. Therefore, it is possible to suppress an increase in pressure loss at the time of fully open performance and a decrease in actual flow path area.

以上により本実施形態では、円弧形状の小突起部3aおよび大突起部3bを設けたロータリー式のTCV3の回転角度を、全開性能時には小突起部3aがEGR噴孔4を塞ぎ、かつ大突起部3bはブランチ部2の流路断面積が最大となるように、また、パーシャル時には小突起部3aはEGR噴孔4を開き、かつ大突起部3bはブランチ部2内に設けた仕切り板7によって分割された下側通路9を塞ぐように制御される。また、EGR噴孔4を空気の流れの下流方向に向けて、かつ大面積で開口させることができる。   As described above, in the present embodiment, the rotation angle of the rotary type TCV 3 provided with the arc-shaped small protrusion 3a and the large protrusion 3b is set so that the small protrusion 3a closes the EGR nozzle 4 at the time of the fully open performance. 3b is the largest flow passage cross-sectional area of the branch portion 2, and in the partial state, the small projection portion 3a opens the EGR injection hole 4, and the large projection portion 3b is separated by the partition plate 7 provided in the branch portion 2. Control is performed so as to block the divided lower passage 9. Further, the EGR nozzle hole 4 can be opened in a large area in the downstream direction of the air flow.

これにより、全開性能時にはブランチ部2の負圧が十分に発達し、かつ吸気抵抗が少ないので、内燃機関の燃焼室内への流入空気量が多くなり出力の向上を図ることができ、パーシャル時には大量のEGRガスを噴射することができるので、NOx排出量の低減や燃費の向上を図ることができる。   As a result, the negative pressure of the branch portion 2 is sufficiently developed at the fully open performance and the intake resistance is small, so that the amount of air flowing into the combustion chamber of the internal combustion engine can be increased and the output can be improved. Since EGR gas can be injected, NOx emission can be reduced and fuel consumption can be improved.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本発明は、内燃機関の吸気装置に適用可能である。   The present invention is applicable to an intake device for an internal combustion engine.

本実施形態の吸気装置の横断面図である。It is a cross-sectional view of the intake device of the present embodiment. 本実施形態の吸気装置の上面図である。It is a top view of the intake device of this embodiment. EGR噴孔付近の拡大図である。It is an enlarged view near EGR nozzle hole. TCVと仕切り板当接部付近の拡大図である。It is an enlarged view near TCV and a partition plate contact part. 従来の吸気装置の一例を表す図である。It is a figure showing an example of the conventional intake device.

符号の説明Explanation of symbols

1 コレクタータンク
2 ブランチ部
3 タンブルコントロールバルブ(TCV)
4 EGR噴孔
5 吸気ポート
7 仕切り板
8 上側通路
9 下側通路
1 Collector tank 2 Branch 3 Tumble control valve (TCV)
4 EGR hole 5 Intake port 7 Partition plate 8 Upper passage 9 Lower passage

Claims (6)

内部に、隔壁によって上下に仕切られた通路をもつブランチ部と、
エンジンの排気通路と連通し、前記隔壁よりも上流側のブランチ部に設けた開口部から前記通路内に向けてEGRガスを噴射するEGR配管と、
前記隔壁の上流側端部付近に設けられ、エンジンの全開性能時には前記EGR配管の開口部を塞ぐ開閉弁と、を備えることを特徴とする内燃機関の吸気装置。
Inside, a branch part having a passage partitioned vertically by a partition,
An EGR pipe that communicates with an exhaust passage of the engine and injects EGR gas into the passage from an opening provided in a branch portion on the upstream side of the partition;
An intake device for an internal combustion engine, comprising: an on-off valve provided near an upstream end portion of the partition wall and closing an opening of the EGR pipe when the engine is fully opened.
前記開閉弁は回転に応じてポートの開度が変化するロータリーバルブである請求項1に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 1, wherein the on-off valve is a rotary valve whose port opening degree changes according to rotation. 前記開口部を塞ぐ部分は、前記ロータリーバルブのポートの片面に設けられた外郭面が円弧形状の第1の凸部である請求項2に記載の内燃機関の吸気装置。   3. The intake device for an internal combustion engine according to claim 2, wherein the portion that closes the opening is a first convex portion having an arcuate outer surface provided on one surface of the port of the rotary valve. 前記ロータリーバルブに、前記隔壁で仕切られた下側の通路を塞ぐ第2の凸部を前記ポートの反対面に設けた請求項2または3に記載の内燃機関の吸気装置。   4. The intake device for an internal combustion engine according to claim 2, wherein the rotary valve is provided with a second convex portion on the opposite surface of the port to block the lower passage partitioned by the partition wall. 前記第1の凸部が前記開口部を塞いだときには、前記ポートが全開し、また、前記第2の凸部が前記下側の通路を塞いだときには、前記開口部は全開となっている請求項4に記載の内燃機関の吸気装置。   The port is fully opened when the first convex portion blocks the opening, and the opening is fully open when the second convex portion blocks the lower passage. Item 5. An intake device for an internal combustion engine according to Item 4. 前記EGR配管は、前記ブランチ部の下流方向に向けてEGRガスを噴射する請求項1〜6に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 1, wherein the EGR pipe injects EGR gas toward a downstream direction of the branch portion.
JP2003422388A 2003-12-19 2003-12-19 Intake device for internal combustion engine Pending JP2005180309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422388A JP2005180309A (en) 2003-12-19 2003-12-19 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422388A JP2005180309A (en) 2003-12-19 2003-12-19 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005180309A true JP2005180309A (en) 2005-07-07

Family

ID=34783282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422388A Pending JP2005180309A (en) 2003-12-19 2003-12-19 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005180309A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893987A1 (en) * 2005-11-30 2007-06-01 Renault Sas Internal combustion engine e.g. petrol type direct injection internal combustion engine, for motor vehicle, has exhaust gas pipe connected to upstream end of cylinder head pipe so that exhaust gas is flown across upper part of latter pipe
KR100828832B1 (en) 2007-05-31 2008-05-09 현대자동차주식회사 Exhaust gas recirculation device of engine
KR100862420B1 (en) 2007-07-05 2008-10-08 현대자동차주식회사 Exhaust gas recirculation device of engine
JP2012112319A (en) * 2010-11-25 2012-06-14 Aisin Seiki Co Ltd Intake device for internal combustion engine
JP2013245602A (en) * 2012-05-25 2013-12-09 Mazda Motor Corp Compression self-ignition gasoline engine
JP2015206321A (en) * 2014-04-22 2015-11-19 アイシン精機株式会社 Intake system for internal combustion engine
JP2019157854A (en) * 2018-03-14 2019-09-19 タオ・リィTao LI Temperature control throttle device
JP7502147B2 (en) 2020-10-20 2024-06-18 ダイハツ工業株式会社 Internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893987A1 (en) * 2005-11-30 2007-06-01 Renault Sas Internal combustion engine e.g. petrol type direct injection internal combustion engine, for motor vehicle, has exhaust gas pipe connected to upstream end of cylinder head pipe so that exhaust gas is flown across upper part of latter pipe
KR100828832B1 (en) 2007-05-31 2008-05-09 현대자동차주식회사 Exhaust gas recirculation device of engine
KR100862420B1 (en) 2007-07-05 2008-10-08 현대자동차주식회사 Exhaust gas recirculation device of engine
JP2012112319A (en) * 2010-11-25 2012-06-14 Aisin Seiki Co Ltd Intake device for internal combustion engine
JP2013245602A (en) * 2012-05-25 2013-12-09 Mazda Motor Corp Compression self-ignition gasoline engine
JP2015206321A (en) * 2014-04-22 2015-11-19 アイシン精機株式会社 Intake system for internal combustion engine
JP2019157854A (en) * 2018-03-14 2019-09-19 タオ・リィTao LI Temperature control throttle device
US11162461B2 (en) 2018-03-14 2021-11-02 Tao Li Temperature control throttle device for an engine
JP7502147B2 (en) 2020-10-20 2024-06-18 ダイハツ工業株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
CN101663474B (en) Intake system for internal combustion engine and control method of the same
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPH0821342A (en) Fuel injection type engine
JPS58187519A (en) Intake device of engine
JPH06159079A (en) Intake device for engine
JP2005180309A (en) Intake device for internal combustion engine
US20040107934A1 (en) Integrated inlet manifold tuning valve and charge motion control device for internal combustion engines
JP2012012939A (en) Cylinder head structure of engine
JP2005351235A (en) Suction device for engine
JP2009002191A (en) Intake control device of internal combustion engine
JPS5990720A (en) Intake device for engine
JP5911297B2 (en) Internal combustion engine
JP3695143B2 (en) In-cylinder injection spark ignition engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH11351012A (en) Direct cylinder injection type spark ignition engine
KR200154444Y1 (en) Swirl generating intake system
JP2004176619A (en) Overhead valve type internal combustion engine capable of two-cycle operation
JP2022081083A (en) Internal combustion engine
JP3036946B2 (en) Engine intake system
JP2008128084A (en) Internal combustion engine
JPS63266124A (en) Intake device for engine
JP2008128083A (en) Internal combustion engine
JPH0861190A (en) Fuel injection type engine
JPH0364625A (en) Suction device for multi-cylinder internal combustion engine
JPS6365169A (en) Fuel injection device for internal combustion engine