JPH0364625A - Suction device for multi-cylinder internal combustion engine - Google Patents

Suction device for multi-cylinder internal combustion engine

Info

Publication number
JPH0364625A
JPH0364625A JP19694589A JP19694589A JPH0364625A JP H0364625 A JPH0364625 A JP H0364625A JP 19694589 A JP19694589 A JP 19694589A JP 19694589 A JP19694589 A JP 19694589A JP H0364625 A JPH0364625 A JP H0364625A
Authority
JP
Japan
Prior art keywords
cylinder
intake
stroke
combustion chambers
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19694589A
Other languages
Japanese (ja)
Inventor
Naoya Tsutsumoto
直哉 筒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19694589A priority Critical patent/JPH0364625A/en
Publication of JPH0364625A publication Critical patent/JPH0364625A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To produce powerful suction swirling flow and the like by mutually communi cating the combustion chambers of respective cylinders wherein the expansion stroke and the suction stroke take place roughly at the same time, thereby applying combus tion gas at high pressure from the combustion chambers at the expansion stroke side to the combustion chambers at the suction stroke side. CONSTITUTION:The cylinder head 2 of a four cylinder diesel engine 1 is formed with helical type suction ports 4 which are communicated with the combustion chambers of respective cylinder #1 through #4. In this case, the respective combustion chambers 3 of No.1 and No.4 cylinder #1 and #4 are communicated with each other through No.1 communication passage 5. The respective combustion chambers of No.2 and No.3 cylinder #2 and #3 are also communicated with each other through No.2 communi cation passage 6. In addition, fuel is injected from No.1, No.3 No.4 and No.2 cylinder #1, #3, #4 and #2, in that order. When No.1 and No.2 cylinder #1 and #2 are in the expansion stroke respectively, No.4 and No.3 cylinder #4 and #3 are designed to be in the suction stroke respectively. By this constitution, powerful suction swirling flow can be produced with combustion gas put into use.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多気筒内燃機関において、燃焼室における吸
気旋回流と吸気乱れとを強化させて燃焼性能を向上させ
る技術に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a technique for improving combustion performance in a multi-cylinder internal combustion engine by strengthening intake swirl flow and intake turbulence in a combustion chamber.

〈従来の技術〉 この種の吸気流制御装置の従来例として、以下のような
ものがある(特公昭57−12016号公報及び特開昭
60−30424号公報参照)。
<Prior Art> Conventional examples of this type of intake flow control device include the following (see Japanese Patent Publication No. 57-12016 and Japanese Patent Application Laid-Open No. 60-30424).

すなわち、ヘリカル状の吸気ポートの土壁或いは側壁に
凸部或いは凹部を形威し、これらにより吸気に乱れを形
成して燃焼室内での吸気乱れを高めるようにしている。
That is, a convex portion or a concave portion is formed on the earthen wall or side wall of the helical intake port, thereby creating turbulence in the intake air and increasing the turbulence of the intake air within the combustion chamber.

また、特公昭58−9248号公報に示すように、吸気
ポート近傍の吸気通路にスロットル弁を設けることによ
り吸気をスロットル弁の一縁側を偏流させると共に、各
気筒の吸気弁上流の吸気ポート相互を連通させて吸気行
程の気筒の吸気ボートに他の気筒から吸気(混合気)を
噴出させ、吸気旋回流を強めるようにしたものがある。
Furthermore, as shown in Japanese Patent Publication No. 58-9248, by providing a throttle valve in the intake passage near the intake port, the intake air is diverted to one edge of the throttle valve, and the intake ports upstream of the intake valves of each cylinder are connected to each other. There is a system that connects the intake boats of the cylinders in the intake stroke to blow out intake air (mixture) from other cylinders, thereby strengthening the intake swirl flow.

〈発明が解決しようとする課題〉 しかしながら、このような従来の吸気装置においては、
吸気旋回流と吸気乱れとの生成を、ピストンの下降に伴
う吸気流動エネルギと吸気流れの方向とを利用するよう
にしているので、吸気旋回流及び吸気乱れを高めるため
に吸気ボートの形状を変更すると吸気充填効率が低下し
、かつ生成される吸気乱れの強さには限度があり燃焼性
能を大巾に向上させるような強力な吸気乱れを生成でき
ないという不具合がある。
<Problem to be solved by the invention> However, in such a conventional intake device,
The intake swirl flow and intake turbulence are generated by utilizing the intake flow energy and the direction of the intake flow as the piston descends, so the shape of the intake boat is changed to increase the intake swirl flow and intake turbulence. As a result, the intake air filling efficiency decreases, and there is a limit to the strength of the intake air turbulence that can be generated, resulting in the inability to generate strong intake air turbulence that can significantly improve combustion performance.

本発明は、このような実状に鑑みてなされたもので、吸
気旋回流と吸気乱れとを大巾に高めることができる多気
筒内燃機関の吸気装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an intake system for a multi-cylinder internal combustion engine that can significantly increase intake swirl flow and intake turbulence.

〈課題を解決するための手段〉 このため、本発明は、膨張行程と吸気行程とが略同時期
にある気筒の燃焼室相互を連通ずる連通路を、設けるよ
うにした。
<Means for Solving the Problems> For this reason, the present invention provides a communication path that communicates with each other the combustion chambers of cylinders whose expansion stroke and intake stroke are at substantially the same time.

〈作用〉 そして、吸気行程にある気筒の燃焼室に、膨張行程にあ
る気筒の燃焼室から高圧の燃焼ガスを導入し、燃焼ガス
により吸気に強力な吸気旋回流と吸気乱とを生成させる
ようにした。
<Operation> Then, high-pressure combustion gas is introduced into the combustion chamber of the cylinder in the intake stroke from the combustion chamber of the cylinder in the expansion stroke, so that the combustion gas generates a strong intake swirl flow and intake air turbulence in the intake air. I made it.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図〜第3図は本発明の第1実施例を示す。1 to 3 show a first embodiment of the present invention.

図において、4気筒デイーゼルエンジン1のシリンダム
ノド2には各気筒の燃焼室3に連通ずるヘリカル型吸気
ポート4が夫々形成され、これらヘリカル型吸気ボート
4は吸気マニホールド(図示せず)に連通ずる直線状の
吸気路とこの下流に連通接続されて吸気弁を介して燃焼
室3に連通する渦巻部とから夫々形成されている。
In the figure, a cylinder throat 2 of a four-cylinder diesel engine 1 is formed with a helical intake port 4 that communicates with the combustion chamber 3 of each cylinder, and these helical intake ports 4 communicate with an intake manifold (not shown) in a straight line. They are each formed of a shaped intake passage and a spiral portion that is connected downstream of the intake passage and communicates with the combustion chamber 3 via an intake valve.

また、#l気筒の燃焼室3と#4気筒の燃焼室3とが第
1連通路5により連通され、#2気筒の燃焼室3と#3
気筒の燃焼室3とが第2連通路6により連通されている
。前記第1及び第2連通路5.6の燃焼室3との連通部
は、燃焼室3の中心に対し吸気ポート4側にオフセット
されかつ燃焼室3の接線方向に向くように形成されてい
る。
Further, the combustion chamber 3 of the #l cylinder and the combustion chamber 3 of the #4 cylinder are communicated with each other by the first communication passage 5, and the combustion chamber 3 of the #2 cylinder and the combustion chamber 3 of the #4 cylinder are communicated with each other by the first communication passage 5.
A second communication passage 6 communicates with the combustion chamber 3 of the cylinder. The communication portions of the first and second communication passages 5.6 with the combustion chamber 3 are formed to be offset toward the intake port 4 side with respect to the center of the combustion chamber 3 and to face in the tangential direction of the combustion chamber 3. .

ここにおいて、燃料噴射順序は#1−#3−#4−#2
に設定され、#1気筒が膨張行程(吸気行程)にあると
きには#4気筒が吸気行程(膨張行程)になり、また#
2気筒が膨張行程(吸気行程)にあるときには#3気筒
が吸気行程(膨張行程)になるようになっている。
Here, the fuel injection order is #1-#3-#4-#2
When the #1 cylinder is in the expansion stroke (intake stroke), the #4 cylinder is in the intake stroke (expansion stroke), and the #4 cylinder is in the intake stroke (expansion stroke).
When the second cylinder is in the expansion stroke (intake stroke), the #3 cylinder is in the intake stroke (expansion stroke).

尚、7は燃料噴射ノズル、8は排気ポートである。Note that 7 is a fuel injection nozzle, and 8 is an exhaust port.

かかる構成によれば、例えば#1気筒が膨張行程にある
ときには、第3図に示すように#4気筒は吸気行程にな
っているので、#l気筒の燃焼室3から#4気筒の燃焼
室3に第1連通路5を介して高温高圧の燃焼ガスが噴出
供給される。このとき、第1連通路5の燃焼室3との連
通部が燃焼室3の中心に対し吸気ポート4側にオフセッ
トされかつ燃焼室3の接線方向に向くように形成されて
いるので、吸気ボート4から流入して旋回する吸気Aは
高温高圧の燃焼ガスによって吸気旋回流が大巾に強化さ
れると共に吸気乱れも大巾に強化される。逆に、#1気
筒が吸気行程にあり#4気筒が膨張行程にあるときには
#4気筒から#3気筒に燃焼ガスが導入される。また、
#2気筒と#3気筒とにおいても同様となる。
According to this configuration, for example, when the #1 cylinder is in the expansion stroke, the #4 cylinder is in the intake stroke as shown in FIG. High-temperature, high-pressure combustion gas is ejected and supplied to 3 through the first communication passage 5. At this time, since the communication part of the first communication passage 5 with the combustion chamber 3 is offset toward the intake port 4 side with respect to the center of the combustion chamber 3 and is formed so as to face in the tangential direction of the combustion chamber 3, the intake port The swirling flow of the intake air A flowing in from 4 and swirling is greatly strengthened by the high-temperature, high-pressure combustion gas, and the turbulence of the intake air is also greatly strengthened. Conversely, when the #1 cylinder is in the intake stroke and the #4 cylinder is in the expansion stroke, combustion gas is introduced from the #4 cylinder to the #3 cylinder. Also,
The same applies to #2 cylinder and #3 cylinder.

ところで、一般に吸気行程にて得られる吸気旋回流及び
吸気乱れのエネルギが高いほど燃焼速度が増大し、特に
燃焼室にて燃料と吸気とを混合させる直接噴射式ディー
ゼルエンジンにおいてはその傾向が顕著である。
By the way, in general, the higher the energy of the intake swirl flow and intake air turbulence obtained in the intake stroke, the higher the combustion rate will be, and this tendency is particularly noticeable in direct injection diesel engines that mix fuel and intake air in the combustion chamber. be.

したがって、本実施例では、燃焼期間が短縮され燃費や
スモーク排出量を大巾に改善できる。さらに、燃焼ガス
を吸気行程にある燃焼室3に導入するので、排気還流効
果によってNOxの低減化をも図れる。また、第1及び
第2連通路5,6を設けるだけでよく、構成も極めて簡
易となる。
Therefore, in this embodiment, the combustion period is shortened, and fuel efficiency and smoke emissions can be greatly improved. Furthermore, since the combustion gas is introduced into the combustion chamber 3 during the intake stroke, NOx can also be reduced due to the exhaust gas recirculation effect. Further, it is sufficient to simply provide the first and second communication passages 5 and 6, and the configuration is extremely simple.

尚、膨張行程にある気筒においては、燃焼ガスの一部が
他の気筒に流出するので、トルクの低下が予測されるが
、これは連通路の流路断面積を充分に小さく設定するこ
とによって特に高速運転時にはトルク低下は抑制できる
。また、例えば#4気筒が圧縮行程にあるときには#1
気筒が排気行程にあるので、#4気筒の圧縮吸気が第1
連通路5を介して#1気筒に流入するが、この流入量は
少なく特に高速運転時には機関の運転性に影響はない。
In addition, in a cylinder that is in the expansion stroke, a portion of the combustion gas flows out to other cylinders, so a decrease in torque is expected, but this can be avoided by setting the cross-sectional area of the communication passage sufficiently small. Particularly during high-speed operation, torque reduction can be suppressed. Also, for example, when #4 cylinder is in the compression stroke, #1 cylinder
Since the cylinder is on the exhaust stroke, the compressed intake of cylinder #4 is the first
Although it flows into the #1 cylinder through the communication passage 5, the amount of this flow is small and does not affect the drivability of the engine, especially during high-speed operation.

また、燃焼ガスによって吸気乱れのみを生威し吸気旋回
流は吸気ボート4の渦巻部で生成するときには、第1及
び第2連通路5,6の燃焼室3との連通部を、吸気ポー
ト4側にオフセットさせなくてもよい。
In addition, when only intake turbulence is caused by combustion gas and the intake swirl flow is generated in the swirl part of the intake boat 4, the communication part of the first and second communication passages 5 and 6 with the combustion chamber 3 is connected to the intake port 4. There is no need to offset it to the side.

第4図及び第5図は本発明の第2実施例を示す。4 and 5 show a second embodiment of the invention.

尚、第1実施例と同一要素には第1図と同一符号を付し
て説明を省略する。
Incidentally, the same elements as in the first embodiment are given the same reference numerals as in FIG. 1, and the explanation thereof will be omitted.

本実施例は、本発明を6気筒ディーゼルエンジンに適用
したものであり、#1気筒の燃焼室3と#6気筒の燃焼
室3とが第1連通路11により連通され、#2気筒の燃
焼室3と#5気筒の燃焼室3とが第2連通路12により
連通され、#3気筒の燃焼室3と#4気筒の燃焼室5と
が第3連通路13により連通されている。
In this embodiment, the present invention is applied to a six-cylinder diesel engine, in which the combustion chamber 3 of the #1 cylinder and the combustion chamber 3 of the #6 cylinder are communicated with each other by a first communication passage 11, and the combustion chamber 3 of the #2 cylinder is communicated with the combustion chamber 3 of the #6 cylinder. The combustion chamber 3 of the #5 cylinder communicates with the combustion chamber 3 of the #5 cylinder through a second communication passage 12, and the combustion chamber 3 of the #3 cylinder communicates with the combustion chamber 5 of the #4 cylinder through a third communication passage 13.

ここで、燃料噴射順序は#1−#5−#3−#6−#2
−#4に設定されており、第5図に示すように#1気筒
と#6気筒とで吸気行程と膨張行程とが略同時期になり
、#2気筒と#5気筒とで吸気行程と膨張行程とが略同
時期になり、さらに#3気筒と#4気筒とで吸気行程と
膨張行程とが略同時期になっている。
Here, the fuel injection order is #1-#5-#3-#6-#2
- As shown in Fig. 5, the intake stroke and expansion stroke of cylinder #1 and cylinder #6 are set at approximately the same time, and the intake stroke and expansion stroke of cylinder #2 and #5 are set at approximately the same time. The expansion stroke is approximately at the same time, and the intake stroke and expansion stroke are approximately at the same time for the #3 and #4 cylinders.

かかる構成においても、第1実施例と同様な効果を奏す
る。
This configuration also provides the same effects as the first embodiment.

第6図は同上の変形態様を示すものである。FIG. 6 shows a modification of the same as above.

すなわち、他の気筒の燃焼室と連通ずる連通路21を開
閉路する開閉弁22を設け、機関始動時や低速運転時に
前記開閉弁22をスプリング23の付勢力によって閉弁
させて連通路21を閉路するようにしたものである。こ
れにより、機関始動時や低速運転時に、圧縮行程におけ
る圧縮空気が排気行程の気筒に流出したり、燃焼ガス流
出によるトルク低下を防止するようにしたものである。
That is, an on-off valve 22 is provided to open and close a communication passage 21 that communicates with the combustion chamber of another cylinder, and the on-off valve 22 is closed by the biasing force of a spring 23 during engine startup or low-speed operation to open the communication passage 21. It is designed to form a closed circuit. This prevents compressed air in the compression stroke from flowing into the cylinder in the exhaust stroke and torque reduction due to combustion gas leakage during engine startup or low-speed operation.

また、前記以外の運転時にはアクチュエータ24により
開閉弁22をスプリング23の付勢力に抗して開弁させ
、連通路21を開路させ、吸気旋回流及び吸気流の乱れ
を強化させる。
In addition, during operations other than those described above, the actuator 24 opens the on-off valve 22 against the urging force of the spring 23, opens the communication passage 21, and strengthens the intake swirl flow and the turbulence of the intake flow.

〈発明の効果) 本発明は、以上説明したように、膨張行程と吸気行程と
が略同時期にある気筒の燃焼室相互を連通路により連通
させるようにしたので、吸気旋回流特に吸気乱れを燃焼
ガスによって大巾に強化できるため、極めて簡易な構成
で燃費の向上、スモークの低減化及びNOXの低減化を
図ることができる。
<Effects of the Invention> As explained above, the present invention allows the combustion chambers of cylinders whose expansion stroke and intake stroke are at approximately the same time to communicate with each other through a communication passage, thereby reducing intake swirl flow, particularly intake turbulence. Since it can be greatly strengthened by combustion gas, it is possible to improve fuel efficiency, reduce smoke, and reduce NOx with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す構成図、第2図は同
上のff−ff矢視図、第3図は同上の作用を説明する
ための図、第4図は本発明の第2実施例を示す構成図、
第5図は同上の作用を説明するための図、第6図は同上
の変形態様を示す要部断面図である。 3・・・燃焼室  4・・・吸気ポー)   5.11
・・・第1連通路  6.12・・・第2連通路  1
3・・・第2連通路
FIG. 1 is a configuration diagram showing a first embodiment of the present invention, FIG. 2 is a view taken along the ff-ff arrow shown above, FIG. A configuration diagram showing a second embodiment,
FIG. 5 is a diagram for explaining the effect of the above, and FIG. 6 is a sectional view of a main part showing a modification of the same. 3... Combustion chamber 4... Intake port) 5.11
...First communication path 6.12...Second communication path 1
3...Second communication path

Claims (1)

【特許請求の範囲】[Claims]  膨張行程と吸気行程とが略同時期にある気筒の燃焼室
相互を連通する連通路を、設けたことを特徴とする多気
筒内燃機関の吸気装置。
An intake system for a multi-cylinder internal combustion engine, characterized in that a communication passage is provided for communicating the combustion chambers of cylinders whose expansion stroke and intake stroke are at substantially the same time.
JP19694589A 1989-07-31 1989-07-31 Suction device for multi-cylinder internal combustion engine Pending JPH0364625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19694589A JPH0364625A (en) 1989-07-31 1989-07-31 Suction device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19694589A JPH0364625A (en) 1989-07-31 1989-07-31 Suction device for multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0364625A true JPH0364625A (en) 1991-03-20

Family

ID=16366272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19694589A Pending JPH0364625A (en) 1989-07-31 1989-07-31 Suction device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0364625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084088A1 (en) * 2001-04-09 2002-10-24 Daihatsu Motor Co.,Ltd. Multiple cylinder internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084088A1 (en) * 2001-04-09 2002-10-24 Daihatsu Motor Co.,Ltd. Multiple cylinder internal combustion engine
US7028648B2 (en) 2001-04-09 2006-04-18 Daihatsu Motor Co., Ltd. Multiple cylinder internal combustion engine

Similar Documents

Publication Publication Date Title
US4523560A (en) Intake device of an internal combustion engine
JPH0821342A (en) Fuel injection type engine
US7273032B2 (en) Engine induction system
JP2617487B2 (en) Scavenging device for supercharged engine
JPH01208517A (en) Direct injection type diesel engine
JPH048606B2 (en)
JP3214720B2 (en) Exhaust gas recirculation system for internal combustion engine
JP3386588B2 (en) Engine intake control device
JP2597081Y2 (en) Engine intake system
JPH0364625A (en) Suction device for multi-cylinder internal combustion engine
CA1194744A (en) Suction system for internal combustion engine
JPS6128828B2 (en)
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
JP2005180309A (en) Intake device for internal combustion engine
JPH10252486A (en) Intake/exhaust device for internal combustion engine
JPH03182623A (en) Air intake device for internal combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH0315807Y2 (en)
JPH04194318A (en) Suction device for engine
JP2004176619A (en) Overhead valve type internal combustion engine capable of two-cycle operation
JPS5851375Y2 (en) Internal combustion engine intake system
JPH048251Y2 (en)
JPS6114612Y2 (en)
JPH0626411A (en) Intake system for internal combustion engine
JPH09291868A (en) Fuel injection-type multiple-cylinder engine