JP3693946B2 - Leak position detection line and leak detection system using the same - Google Patents

Leak position detection line and leak detection system using the same Download PDF

Info

Publication number
JP3693946B2
JP3693946B2 JP2001308555A JP2001308555A JP3693946B2 JP 3693946 B2 JP3693946 B2 JP 3693946B2 JP 2001308555 A JP2001308555 A JP 2001308555A JP 2001308555 A JP2001308555 A JP 2001308555A JP 3693946 B2 JP3693946 B2 JP 3693946B2
Authority
JP
Japan
Prior art keywords
wire
resistance
position detection
covering
resistance wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308555A
Other languages
Japanese (ja)
Other versions
JP2003114161A (en
Inventor
保 小堀
正敏 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2001308555A priority Critical patent/JP3693946B2/en
Publication of JP2003114161A publication Critical patent/JP2003114161A/en
Application granted granted Critical
Publication of JP3693946B2 publication Critical patent/JP3693946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、堆積物等からの液体の流出を遮断する遮水シートの損傷等による漏液を検知するのに用いられ、その漏液位置を検知するのに適した漏液位置検知線及びそれを用いた漏液検知システムに関し、特に検知対象液に対する耐液性に優れ、機械的強度と取り扱い性にすぐれた漏液位置検知線及びそれを用いた漏液検知システムに関するものである。
【0002】
【従来の技術】
近年環境問題の一つとして、廃棄物処分場からの環境汚染物質の浸出対策が大きな問題となっている。その廃棄物処分の一方法として、図6に示すように、地盤60の凹部に遮水シート61,62などを敷き、その上に廃棄物67を投棄して堆積させ、最終的にそのまま土中に埋設するという方法が採られている。この遮水シート61,62は、廃棄物67中に混じっていた有害物質や、堆積中に化学反応により生じた有害物質が地盤60中に浸み込んで、地下水を汚染するの防ぐためのものである。したがって、各種の条件を想定し、機械的にも、化学的にも十分な特性を備えたものとされているが、それでも経年変化や何らかの条件により損傷すると、そこから有害物質を含んだ漏液が地盤中に浸出してしまう恐れがある。そこで、遮水シートの損傷による漏液の発生を検知し、かつその損傷位置(漏液位置)を早期に検知して対策を講じ得るようにすることが必要である。
【0003】
このような、遮水シートからの漏液を検知する漏液検知システムは、特開平10−300622号公報に提案され、実用化されている。
図7は、その漏液検知システムにおける漏液位置検知の原理図である。
漏液検知システム30は、遮水シート61の下側に配設される抵抗線31a及び導電線32、遮水シート61の上側に配設される電流ソース線33と、電流ソース線33の一端に接続される図示しない直流電源と電流制御器36からなる定電流電源と、抵抗線31aの両端の電圧を測定する電圧計Vと、定電流電源から電流ソース線33及び抵抗線31aへと流れる電流を監視する電流計Aとを備えている。遮水シート61が損傷して破口Pが生じ、廃棄物から出た液体Eがその破口Pから漏洩すると、漏液Eによって電流ソース線33と抵抗線31aとは導通状態となり、電流計Aに電流Icが流れる。そこで、抵抗線31aの両端に現れる電圧Vxは、破口(漏液点)Pから接地点Gまでの電位差であり、抵抗線31aの単位長あたりの抵抗値をR0 、抵抗線31aの漏液点Pから接地側端Iまでの長さXは、リード線39における電位差を無視できるものとすると、
X=Vx/(R0 ×Ic) (1)
により求められ、破口Pの位置が分かる。
【0004】
ところで、この漏液検知システム30において、抵抗線31aや導電線32、電流ソース線33の具体例としては、次のようなものが用いられてきた。
図8は、抵抗線31a上にポリエステル繊維の糸からなる内部編組体31bを被覆した編組抵抗線31と導電線32aの上にポリ塩化ビニル被覆32bを被覆した被覆リード線32とを撚り合わせ、その上にポリエステル繊維の糸からなる外部編組体33を被覆した漏液位置検知線30とし、電流ソース線33としては、裸銅線が用いられていた。
【0005】
このように、カンタル線などの抵抗線31aと軟銅より線からなる導電線32とが漏液位置検知線30として一体化されているので、それぞれ単独に配設するよりは、取り扱いは容易であるが、抵抗線31aが漏液にさらされると腐食して断線するおそれがあり、また抵抗線31aと導電線32aとの剛性の差に起因して、敷設の際、キンクを生じやすいという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消しようとするものであって、
請求項1乃至5に記載の発明は、抵抗線が腐食されることがなく、キンクを生じる恐れがなく、また機械的強度のある漏液位置検知線の提供を課題とし、請求項6及び7に記載の漏液検知システムは、上記漏液位置検知線を用い確実に漏液位置を検知できる漏液検知システムの提供を課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明の請求項1の発明は、ほぼ平行に配設された1本の被覆抵抗線と1本の被覆リード線とを連接して一体化してなり、
前記被覆抵抗線は、導体抵抗が長さ方向に均一な抵抗線の上に耐液性で半導電性の高分子部材を被覆してなり、
前記被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してなることを特徴とするものである。
【0008】
ここに、耐液性とは検知対象液(破口から漏洩する液体、すなわち漏液)によって特性の劣化が生じにくく、使用期間中は被覆抵抗線又は被覆リード線としての機能を保持する性質をいう。
抵抗線には、耐液性で半導電性の高分子部材が被覆され、被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してあるので、抵抗線や導電線が腐食されることがなく、また被覆抵抗線の被覆は半導電性であるから、抵抗線を電極として他の電極線(例えば、電流ソース線)との間に電圧を加えれば、電極線間への液体の浸入などによる電気特性の変化を検知することができる。そして、1本の被覆抵抗線と1本の被覆リード線とが連接して一体化されているので、曲げ方向が短径方向に限定されるが、抵抗線と導電線との間に剛性のちがいがあってもキンクを生じることがなく、また抵抗線が被覆されているため機械的強度がある。
【0009】
請求項2記載の発明は、請求項1記載の漏液位置検知線において、
前記被覆抵抗線の被覆は、導電性粉を含有する高分子部材からなることを特徴とする。
これにより、適度の導電性を有する半導電性の高分子部材で被覆された被覆抵抗線が安価に得られる。
【0010】
請求項3記載の発明は、請求項1又は2記載の漏液位置検知線において、
前記被覆抵抗線の被覆及び前記被覆リード線の絶縁部材は、基材がともに押出成形可能な高分子部材からなることを特徴とする。
前記被覆抵抗線の被覆及び被覆リード線の絶縁部材は、基材がともに押出成形可能な高分子部材からなることを特徴とする。
これにより、一括押し出しが可能となり、被覆抵抗線及び被覆リード線の形成と連接・一体化が同時に行われる。
【0011】
請求項4記載の発明は、請求項1乃至3のいずれかに記載の漏液位置検知線において、
前記被覆リード線の導電線の導体抵抗は、前記抵抗線の導体抵抗に比して無視し得るほどに小さいことを特徴とする。
これにより、抵抗線の端部から漏液位置までの導体抵抗を測定することにより、漏液位置の検知ができ、しかも被覆リード線中の導電線をリード線として用いることができる。
【0012】
請求項5記載の発明は、請求項1乃至4のいずれかに記載の漏液位置検知線において、
前記被覆抵抗線及び前記被覆リード線に外接して包被する保護編組体を有することを特徴とする。
連接・一体化された被覆抵抗線と被覆リード線は、この保護編組体により、いっそう確実に一体化され、ばらけたりするおそれがない。
【0013】
請求項6記載の発明は、堆積物等からの液体の流出を遮断する遮水シートの損傷による漏液を検知する漏液検知システムにおいて、
前記遮水シートの片側に敷設された請求項1乃至5のいずれかに記載の漏液位置検知線と、
前記遮水シートを挟んで前記漏液位置検知線と反対側に敷設され、前記漏液位置検知線中の抵抗線との間の電気特性の変化を検知するための電流ソース線と、
前記抵抗線と前記電流ソース線との間に定電流を供給する定電流電源と、
前記抵抗線の両端の電圧を測定する電圧測定手段とを備えたことを特徴とする。
【0014】
遮水シートの損傷により、漏液が生じると、漏液位置検知線の抵抗線と、遮水シートを挟んで反対側に敷設された電流ソース線との間に定電流電源からの電流が流れ、電圧測定手段によって被覆抵抗線の両端の電圧を測定することにより、被覆抵抗線の端部から漏液点までの距離が分かり、漏液位置が検知できる。また抵抗線には、耐液性で半導電性の高分子部材が被覆され、被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してあるので、抵抗線や導電線が腐食されることがなく、また被覆抵抗線の被覆は半導電性であるから、抵抗線と電流ソース線との間に電圧を加えれば、その間への液体の浸入などによる電気特性の変化を検知することができる。そして、被覆抵抗線と被覆リード線は連接して一体化されているので、曲げ方向が短径方向に限定されるが、抵抗線と導電線との間に剛性のちがいがあってもキンクを生じることがない。
【0015】
請求項7記載の発明は、請求項6記載の漏液検知システムにおいて、
前記遮水シートは、上下2枚の遮水シートからなり、
前記上下2枚の遮水シートの間に敷設された請求項1乃至5のいずれかに記載の漏液位置検知線と、
前記上側遮水シートの上面に敷設される上側電流ソース線と、
前記下側遮水シートの下面に敷設される下側電流ソース線と、
前記漏液位置検知線中の被覆抵抗線と前記上側及び下側電流ソース線との間にそれぞれ定電流を供給する定電流電源と、
前記被覆抵抗線の両端の電圧を測定する電圧測定手段とを備えたことを特徴とする。
【0016】
遮水シートが2枚ある場合、遮水がより確実に行われるとともに、上記のように、上下2枚の遮水シートの間に漏液位置検知線を、上側遮水シートの上面に上側電流ソース線を、下側遮水シートの下面に下側電流ソース線を、それぞれ敷設し、漏液位置検知線中の抵抗線と上側及び下側電流ソース線との間にそれぞれ定電流電源から定電流を供給するようにすれば、電圧測定手段により抵抗線の両端の電圧を測定することにより上下2枚の遮水シートのいずれに損傷が生じてもそこからの漏液を検知し、その位置を検知することができる。
【0017】
【発明の実施の形態】
本発明の実施の形態を、図面にもとづいて説明する。
図1は、本発明の漏液位置検知線の第1の実施形態の斜視図、図2は、本発明の漏液位置検知線の第2の実施形態の斜視図、図3は、本発明の漏液検知システムの第1の実施形態の説明図、図4は、本発明の漏液検知システムの第2の実施形態の説明図、図5は、本発明の実施例による位置検知の実験の説明図である。
【0018】
図1において、第1の実施形態である漏液位置検知線1は、ほぼ平行に配設された被覆抵抗線2と被覆リード線3とを連接4して一体化したものである。被覆抵抗線2は、導体抵抗が長さ方向に均一な抵抗線2aの上に耐液性で半導電性の高分子部材2bを被覆したものであり、被覆リード線3は、導電線3aの上に耐液性の絶縁部材3bを被覆したものである。
【0019】
先に述べたように、ここで耐液性とは検知対象液(破口から漏洩する液体、すなわち漏液)によって特性の劣化が生じにくく使用期間中は被覆抵抗線又は被覆リード線としての機能を保持する性質をいうが、検知対象液の種類によって異なり、検知対象液が、例えば、水、酸又はアルカリであれば、耐水性、耐酸性、耐アルカリ性ということになる。
【0020】
抵抗線2aには、例えばカンタル線(カンタル・ガデリウス社製のニッケルクロム合金線)など単位長さあたりの導体抵抗が導電線2aの銅線や錫メッキ軟銅線のそれを無視し得る程度に高いものが用いられる。これは後述するように漏液位置を検知する際の誤差を小さくするためである。
【0021】
抵抗線2aの上には、耐液性で半導電性の高分子部材2bが被覆され、導電線3aの上には耐液性の絶縁部材3bが被覆されているので、抵抗線2aや導電線3aは腐食されることがなく、また被覆抵抗線2の被覆2bは半導電性であるから、抵抗線2aを電極として他の電極線との間に電圧を加えれば、電極線間の介在物の電気特性の変化を検知することができる。また、被覆リード線3の導電線3aを電極線として用いればこの漏液位置検知線は単独で漏液検知線として用いることもできる。
【0022】
被覆抵抗線2の被覆2bを導電性粉を含有する高分子部材とすれば、導電性粉の含有量を調節することによって、適度の導電性を有する半導電性の高分子部材2bが容易に得られ、安価な被覆抵抗線2が得られる。
【0023】
また、被覆抵抗線2と被覆リード線3との連接4の方法としては、適当な接着剤によって接着することも当然含まれるが、被覆抵抗線の被覆2a及び被覆リード線の絶縁部材3bの基材をともに押出成形可能な高分子部材とすると、被覆抵抗線2と被覆リード線3とを一括押出成形することが可能となり、被覆抵抗線2と被覆リード線3との連接・一体化が同時に行われるので好ましい。
【0024】
例えば、基材をポリ塩化ビニルなどの汎用のプラスチックとすれば安価でしかも一括押出し成形が容易であるから好ましい。また、被覆抵抗線の被覆2aだけカーボンブラックなどの導電性粉を混入したものを用いればよいので、容易に半導電性の被覆が得られるという点でも好ましい。
【0025】
図2において、第2の実施形態である漏液検知線10は、漏液位置検知線1の上に、その被覆抵抗線2及び被覆リード線3に外接するように保護編組体11を包被したものである。
被覆抵抗線2と被覆リード線3とは、接着や一括押出しなどで連接・一体化されているが、この保護編組体11を包被したことにより、いっそう確実に一体化され、ばらけたりするおそれがない。
【0026】
漏液位置検知線として用いる場合は保護編組体11を構成する糸は、被覆抵抗線2と被覆リード線3とを一体化し、保持する強度を有するものであればよいが、漏液検知線として用いる場合は、テトロンなどの合成樹脂の糸が漏液に濡れたあとの回復性の点で好ましい。また、その保護編組体の密度を調整することにより、検知感度を調整することができる。
【0027】
次に、図3に基づいて、本発明の漏液検知システムについて説明する。
図3は、漏液検知システムの第1の実施形態の構成の概要と動作の説明図であり、遮水シートが1枚の場合に適用される。図3(a)において、漏液検知システム15は、遮水シート61の片側に敷設された漏液位置検知線1と、遮水シート61を挟んで漏液位置検知線1と反対側に敷設され、漏液位置検知線1中の抵抗線2aとの間の電気特性の変化を検知するための電流ソース線21と、抵抗線2aと電流ソース線21との間に定電流を供給する定電流電源Dと、抵抗線2aの両端の電圧を測定する電圧測定手段Vとを備えている。
【0028】
この漏液検知システム15では、漏液位置検知線1が先に述べた特徴を有するので、ここでその特徴が生かされる。
そして、遮水シートの損傷により、漏液Eが生じると、漏液位置検知線1の抵抗線 2aと、遮水シート61を挟んで反対側に敷設された電流ソース線21との間に定電流電源Dからの定電流Icが流れ、電圧測定手段Vによって抵抗線2aの両端の電圧を測定すると、従来の技術で述べたのと同様、式(1)により抵抗線の端部から漏液点までの距離が分かり、漏液位置が検知できる。
X=Vx/(R0 ×Ic) (1)
しかし、抵抗線2aの抵抗値は、温度によって変化するので、この誤差を生じないシステムとして、近端遠端切り換えスイッチSが設けられている。
【0029】
近端遠端切り換えスイッチSは、主極41,42と、近端側極43,44及び遠端側極45,46で構成されている。
図3(a)においては、近端遠端切り換えスイッチSは、近端側に接続されている。したがって、定電流Icは、直流電源Bの〔+〕側から、電流ソース線21の近端Jを通り、その漏液点Pを経由して漏液位置検知線の抵抗線2aに流れ、その近端Iに戻り、極45→44→42を介して、直流電源Bの〔−〕側(接地点g)に流れる。
そのとき、直流電圧計Vには、導電線3aを介して、P点の電位、すなわち漏液点Pから近端I、極45−44−42(接地点g)までの電位差が測定されることになる。近端Iから接地点gまでのリード線抵抗が抵抗線2aのP−I間の抵抗に比べて無視しうる程度であるから、測定される電圧VX は、抵抗線2aのP−I間の電圧降下にほぼ等しい。抵抗線5aの導体抵抗が長さ方向に均一であり、単位長さあたりの導体抵抗値をR0 とし、漏液位置検知線1の近端Iから漏液点Pまての距離をXとすると、上記式(1)が得られる。
【0030】
図3(b)においては、近端遠端切り換えスイッチSは、遠端側に接続されている。したがって、定電流Icは、直流電源Bの〔+〕側から、電流ソース線21の近端Jを通り、その漏液点Pを経由して抵抗線2aに流れ、その遠端Fを経由して、Gから導電線3aの近端Kに戻り、極46→42を介して、直流電源Bの〔−〕側(接地点g)に流れる。
そのとき、直流電圧計Vには、抵抗線2aを介して、P点の電位、すなわち漏液点Pから遠端F、Gを介し、導電線3aの近端K、極46→42(接地点g)までの電位差が測定されることになる。ここで、抵抗線2aの単位長さあたりの導体抵抗R0 が導電線2aの単位長さあたりの導体抵抗R1 を無視し得るほどに大きく、抵抗線2aのP−F間の電圧降下が、導電線3aのG−K間の電圧降下を無視し得るほどに大きいものとすると、測定される電圧VY は、抵抗線2aのP−F間の電圧降下にほぼ等しい。抵抗線2aの導体抵抗が長さ方向に均一であり、単位長さあたりの導体抵抗値をR0 、導電線3aの単位長さあたりの導体抵抗値をR1 とし、漏液点Pから遠端Fまでの距離をY、漏液位置検知線の全長をLとすると、
Y =Ic×〔(R0 ×Y)+(R1 ×L)〕 (2)
【0031】
Ic,R0 ,R2 、Lが既知であるから、式(1)及び(2)から漏液点までの距離X又はYを求めることができる。
そこで、式(2)の両辺を式(1)の両辺で割ると、
Y /VX =〔(R0 ×Y)+(R1 ×L)〕/(R0 ×X)(3)
しかるに、
L=X+Y (4)
であるから、

Figure 0003693946
導電線3aの単位長さあたりの導体抵抗R1 が抵抗線2aの単位長さあたりの導体抵抗R0 に比べて無視し得るほどに小さいと次の近似式が成り立つ。
Y /VX ≒Y/X (5)
式(4)から、
Y=L−X
であるから、これを式(5)代入すると、
Y /VX ≒(L/X)−1
X=L×〔VX /(VX +VY )〕 (6)
同様にして、
Y=L×〔VY /(VX +VY )〕 (7)
式(7)には単位長さあたりの抵抗値R0 、R1 が含まれないので、VX やVY が測定されると、近端又は遠端から漏液点Pまでの距離X又はYは、抵抗線2a,導電線3aの単位長さあたりの導体抵抗値R0 、R1 に関係なく得られる。
【0032】
次に、図4に基づいて、漏液検知システムの第2の実施形態20について説明する。
漏液検知システム20は、遮水シートが2枚の場合に適用される(図6参照)。
第1の実施形態15と異なるところは、遮水シートが、上下2枚の遮水シート61,62で構成されるため、漏液位置検知線1を、2枚の遮水シート61、62の間に敷設して共用とし、電流ソース線を遮水シート61の上面に敷設される上側電流ソース線21と、下側遮水シート62の下面に敷設される下側電流ソース線22の2本とし、これらの端部(図示例では、近端J1,J2)及び漏液位置検知線の端部(図示例では、近端I、K)を検知器25の端子26,27、28,29にそれぞれ接続したものである。
【0033】
検知器25において、直流電源B及び電流制御器Cからなる定電流電源Dは電流計A及び電流ソース線切り替えスイッチS2を介して、端子26,27に切り替え可能に接続されている。そして、電流ソース線切り替えスイッチS2は、端子26を介して電流ソース線21に接続される極47と端子27を介して電流ソース線22に接続される極48と電流計Aに接続された極49とを備えている。また、近端遠端切り替えスイッチS1は、端子28,29間に接続される。近端遠端切り替えスイッチS1の構成は、図3の近端遠端切り替えスイッチSと同じである。そして、直流電圧計Vは、近端遠端切り替えスイッチS1を介して、抵抗線2aの両端の電圧を測定できるように接続されている。
【0034】
次に、動作について説明する。
遮水シート61の点P1 に漏液が生じたときは、電流ソース線切り替えスイッチS2を電流ソース線21側の極47に接続すると、電流ソース線21と漏液位置検知線1の抵抗線2aとの間に漏液E1 と半導電性被覆2bを介して定電流Icが流れる。
さらに近端遠端切り換えスイッチS1が、近端側に接続されていると、抵抗線 2aの漏液点P1 から近端Iへと電流が流れ、端子28、近端遠端切り換えスイッチS1を介して、接地点gに流れる。
そのとき、直流電圧計Vには、導電線3aを介して、P点の電位、すなわち漏液点Pから接地点gまでの電位差が測定されることになる。以下、図3の漏液検知システムの場合と同様にして漏液点P1 の位置が検知できる。
【0035】
同様にして、遮水シート62の点P2 に漏液E2 が生じたときは、電流ソース線切り替えスイッチS2を電流ソース線22側の極48に接続すると、電流ソース線22と漏液位置検知線1の抵抗線2aとの間に漏液E2 と半導電性被覆2bを介して抵抗線 2aに定電流Icが流れる。
近端遠端切り換えスイッチS1が、近端側に接続されていると、抵抗線2aの漏液点P2 から近端Iへと電流が流れ、端子29、近端遠端切り替えスイッチS1を介して、接地点gに流れる。
そのとき、直流電圧計Vには、導電線3aを介して、P2 点の電位、すなわち漏液点P2 から接地点gまでの電位差が測定されることになる。以下、図3 の漏液検知システムの場合と同様にして漏液点P2 の位置が検知できる。
【0036】
上記漏液検知システムにおいて、漏液位置検知線1と、電流ソース線21,22とは、ほぼ平行に配設されるのが好ましいが、遮水シート61,62を挟んでともに面状に配設されるようにし、互いに多数の点で交差するようにしてもよい。
漏液位置検知線1及び電流ソース線21,22を面状に敷設する方法は、地形に合わせて、全長を適宜の長さごとに折り返し蛇行させつつ面状に形成してもよいし、適宜の長さのものを面状に配設して接続してもよい。
【0037】
以上の漏液検知システムにおいて、電流ソース線21、22は、裸銅線であってもよいが、耐腐食性の点からいえば、被覆抵抗線の半導電性の被覆と同様、半導電性の高分子材料を被覆したものとしてもよい。
また、漏液位置検知線としては、漏液位置検知線1を用いるものとして説明したが、もちろん漏液位置検知線10を用いたものとしてもよい。
近端遠端切り替えスイッチS,S1及び電流ソース線切り替えスイッチS2は,手動スイッチとして説明したが、もちろんリレーや電子スイッチなどを用いても良い。
【0038】
【実施例】
次に、実施例による漏液位置検知の実例について説明する。
図5において、1は、表1に示す構造・寸法を有する全長60mの漏液位置検知線であり、被覆抵抗線及び被覆リード線の近端I,Kから遠端F,Gまでを10mごとに折り返し蛇行させて面状に敷設した。被覆抵抗線の抵抗線の近端Iを、抵抗線用リード線23を介し、被覆リード線のなかの導電線の遠端Gを、被覆リード線用リード線24を介して、それぞれ検知器25に接続した。被覆リード線の導電線が、近端Kではなく遠端Gにおいて検知器25に接続されている点で、図3及び図4の場合と異なるが、測定原理上変わるところがないことは容易に理解できよう。
【0039】
【表1】
Figure 0003693946
【0040】
電流ソース線21には、4mmの裸軟銅線を用い、次に示すように被覆抵抗線に直接接触させるか又は水道水での水溜りをつくりそれを介して接触させた。
<測定方法1> 電流ソース線21を漏液位置検知線1の漏液位置模擬点として近端Iから5m,15m,25m,35m,45m、55mの点P5,15, 25, 35, 45, 55に被覆抵抗線21を順次直接触させて測定した。
<測定方法2> 漏液位置検知線1の漏液位置模擬点P5,15, 25, 35, 45, 55上に水道水の水溜りE5 ,E15,E25,E35,E45,E55を順次つくり、その都度その水溜りを介して、電流ソース線21をその外周と被覆抵抗線の外周との間に2〜3mmの間隔をあけて配設し、測定した。
測定結果を表2に示す。
【0041】
【表2】
Figure 0003693946
【0042】
測定結果は、漏液位置模擬点P5,15, 25, 35, 45, 55の近端からの距離を正確に示している。
【0043】
【発明の効果】
以上に説明したように、本発明の請求項1記載の発明によれば、
抵抗線には、耐液性で半導電性の高分子部材が被覆され、被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してあるので、抵抗線や導電線が腐食されることがなく、また被覆抵抗線の被覆は半導電性であるから、抵抗線を電極として他の電極線との間に電圧を加えれば、電極線間への液体の浸入などによる電気特性の変化を検知することができる。そして、1本の被覆抵抗線と1本の被覆リード線は連接して一体化されているので、曲げ方向が短径方向に限定されるが、抵抗線と導電線との間に剛性のちがいがあってもキンクを生じることがないから、取り扱いが容易である。
【0044】
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、
適度の導電性を有する半導電性の高分子部材で被覆された被覆抵抗線が安価に得られるので、漏液位置検知線も安価となる。
【0045】
請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、
被覆抵抗線と被覆リード線との一括押し出しが可能となり、被覆抵抗線及び被覆リード線の形成と連接・一体化が同時に行われ量産に適している。
【0046】
請求項4記載の発明によれば、請求項1乃至3のいずれかに記載の発明の効果に加えて、
抵抗線の端部から漏液位置までの導体抵抗を測定することにより、漏液位置の検知ができ、しかも被覆リード線中の導電線を測定用のリード線として用いることができるので測定が容易である。
【0047】
請求項5記載の発明によれば、請求項1乃至4のいずれかに記載の発明の効果に加えて、
連接・一体化された被覆抵抗線と被覆リード線は、保護編組体により、いっそう確実に一体化され、ばらけたりするおそれがないので丈夫で取り扱いが容易である。
【0048】
請求項6記載の発明によれば 遮水シートの損傷により、漏液が生じると、漏液位置検知線の抵抗線と、遮水シートを挟んで反対側に敷設された電流ソース線との間に定電流電源からの電流が流れ、電圧測定手段によって抵抗線の両端の電圧を測定すると、抵抗線の端部から漏液点までの距離が分かり、漏液位置が検知できる。また抵抗線には、耐液性で半導電性の高分子部材が被覆され、被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してあるので、抵抗線や導電線が腐食されることがなく、また被覆抵抗線の被覆は半導電性であるから、抵抗線と電流ソース線との間に電圧を加えれば、その間への液体の浸入などによる電気特性の変化を検知することができる。そして、被覆抵抗線と被覆リード線は連接して一体化されているので、曲げ方向が短径方向に限定されるが、抵抗線と導電線との間に剛性のちがいがあってもキンクを生じることがない。したがって、漏液検知システムとして、敷設や取り扱いが容易であり、長期間の使用に耐える。
【0049】
請求項7記載の発明によれば、請求項6記載の発明の効果に加えて、
上下2枚の遮水シートの間に漏液位置検知線を、上側遮水シートの上面に上側電流ソース線を、下側遮水シートの下面に下側電流ソース線を、それぞれ敷設し、漏液位置検知線中の抵抗線と上側及び下側電流ソース線との間にそれぞれ定電流電源から定電流を供給するようにすれば、電圧測定手段により抵抗線の両端の電圧を測定することにより上下2枚の遮水シートのいずれに損傷が生じてもそこからの漏液を検知し、その位置を検知することができるので、遮水シートが2枚ある場合でも、漏液位置検知が確実に行われ、2枚の使用を容易にする。
【図面の簡単な説明】
【図1】本発明の漏液位置検知線の第1の実施形態の斜視図である。
【図2】本発明の漏液位置検知線の第2の実施形態の斜視図である。
【図3】本発明の漏液検知システムの第1の実施形態の説明図である。
【図4】本発明の漏液検知システムの第2の実施形態の説明図である。
【図5】本発明の実施例による位置検知の実験の説明図である。
【図6】漏液検知システムの使用例の説明図である。
【図7】漏液検知システムの原理の説明図である。
【図8】従来の漏液検知線の斜視図である。
【符号の説明】
1,10 漏液位置検知線
2 被覆抵抗線
2a 抵抗線
2b 半導電性の被覆
3 被覆リード線
3a 導電線
3b 絶縁被覆
4 連接部
11 保護編組体
15,20 漏液検知システム
21,22 電流ソース線
25 検知器
50 廃棄物処分場
60 地盤
61,62 遮水シート
A,A1,A2 直流電流計
C,C1,C2 電流制御器
D,D1,D2 定電流電源
V 直流電圧計[0001]
BACKGROUND OF THE INVENTION
The present invention is used to detect leakage due to damage to a water shielding sheet that blocks outflow of liquid from deposits, etc., and a leakage position detection line suitable for detecting the leakage position, and the same In particular, the present invention relates to a leak position detection line excellent in liquid resistance against a detection target liquid, excellent in mechanical strength and handleability, and a leak detection system using the leak position detection line.
[0002]
[Prior art]
In recent years, as one of environmental problems, countermeasures against leaching of environmental pollutants from waste disposal sites have become a major problem. As a method for disposing of the waste, as shown in FIG. 6, water-impervious sheets 61, 62, etc. are laid in the recesses of the ground 60, and the waste 67 is dumped and deposited thereon, and finally, as it is in the soil. The method of embedding in is adopted. These water shielding sheets 61 and 62 are for preventing harmful substances mixed in the waste 67 and harmful substances generated by chemical reaction during the deposition from entering the ground 60 and contaminating the groundwater. It is. Therefore, assuming various conditions, it is said to have sufficient characteristics both mechanically and chemically, but if it is still damaged due to aging or some condition, the leaked liquid containing harmful substances from there May leach into the ground. Therefore, it is necessary to detect the occurrence of liquid leakage due to damage to the water shielding sheet, and to detect the damage position (leakage position) at an early stage so that measures can be taken.
[0003]
Such a liquid leakage detection system for detecting liquid leakage from the water shielding sheet is proposed in Japanese Patent Application Laid-Open No. 10-300622 and put into practical use.
FIG. 7 is a principle diagram of leak position detection in the leak detection system.
The liquid leakage detection system 30 includes a resistance wire 31a and a conductive wire 32 disposed below the water shielding sheet 61, a current source line 33 disposed above the water shielding sheet 61, and one end of the current source line 33. A constant current power source comprising a DC power source (not shown) and a current controller 36, a voltmeter V for measuring the voltage across the resistance wire 31a, and the constant current power source to the current source line 33 and the resistance wire 31a. And an ammeter A for monitoring current. When the water shielding sheet 61 is damaged and a fracture P is generated, and the liquid E discharged from the waste is leaked from the fracture P, the current source line 33 and the resistance line 31a are brought into conduction by the liquid leakage E, and the ammeter A current Ic flows through A. Therefore, the voltage Vx appearing at both ends of the resistance wire 31a is a potential difference from the breakage (leakage point) P to the ground point G, and the resistance value per unit length of the resistance wire 31a is represented by R. 0 The length X from the leakage point P of the resistance wire 31a to the ground side end I is such that the potential difference in the lead wire 39 can be ignored.
X = Vx / (R 0 × Ic) (1)
And the position of the breakage P is known.
[0004]
By the way, in this liquid leakage detection system 30, the following are used as specific examples of the resistance wire 31a, the conductive wire 32, and the current source wire 33.
FIG. 8 shows twisting of a braided resistance wire 31 coated with an internal braid 31b made of polyester fiber yarn on a resistance wire 31a and a coated lead wire 32 coated with a polyvinyl chloride coating 32b on a conductive wire 32a, The liquid leakage position detection wire 30 was coated with an external braided body 33 made of polyester fiber, and a bare copper wire was used as the current source wire 33.
[0005]
As described above, the resistance wire 31a such as a Kanthal wire and the conductive wire 32 made of annealed copper are integrated as the liquid leakage position detection wire 30, so that the handling is easier than arranging them individually. However, if the resistance wire 31a is exposed to leakage, it may corrode and break, and due to the difference in rigidity between the resistance wire 31a and the conductive wire 32a, there is a problem that kinks are likely to occur during laying. there were.
[0006]
[Problems to be solved by the invention]
The present invention is to solve the above problems,
It is an object of the present invention to provide a leakage position detection line that does not corrode the resistance wire, does not cause kinking, and has mechanical strength. It is an object of the present invention to provide a leak detection system capable of reliably detecting the leak position using the leak position detection line.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 of the present invention is arranged substantially in parallel. One Sheathing resistance wire and One Connected and integrated with the coated lead wire,
The covered resistance wire is formed by coating a liquid-resistant and semiconductive polymer member on a resistance wire having a uniform conductor resistance in the length direction,
The covered lead wire is formed by covering a conductive wire with a liquid-resistant insulating member.
[0008]
Here, liquid resistance refers to the property that the characteristics of the liquid to be detected (liquid leaking from the breakage, ie, liquid leakage) are not easily deteriorated, and the function as a covered resistance wire or a covered lead wire is maintained during the period of use. Say.
The resistance wire is coated with a liquid-resistant and semi-conductive polymer member, and the coated lead wire is coated with a liquid-resistant insulating member on the conductive wire. In addition, since the covering of the covering resistance line is semiconductive, if a voltage is applied between the resistance line and another electrode line (for example, a current source line), It is possible to detect a change in electrical characteristics due to liquid intrusion or the like. And One Sheathing resistance wire and One Coated lead wire Toga Since they are connected and integrated, the bending direction is limited to the minor axis direction, but there is no kinking even if there is a difference in rigidity between the resistance wire and the conductive wire, and the resistance wire is covered. Therefore, it has mechanical strength.
[0009]
The invention according to claim 2 is the liquid leakage position detection line according to claim 1,
The covering of the covering resistance wire is made of a polymer member containing conductive powder.
Thereby, the covering resistance wire coat | covered with the semiconductive polymer member which has moderate electroconductivity is obtained cheaply.
[0010]
The invention according to claim 3 is the leakage position detection line according to claim 1 or 2,
The covering resistance wire covering and the insulating member of the covering lead wire are both made of a polymer member whose base material can be extruded.
The covering resistance wire covering and the covering lead wire insulating member are both made of a polymer member whose base material can be extruded.
As a result, batch extrusion becomes possible, and formation, connection, and integration of the covering resistance wire and the covering lead wire are simultaneously performed.
[0011]
According to a fourth aspect of the present invention, in the liquid leakage position detection line according to any one of the first to third aspects,
The conductor resistance of the conductive wire of the covered lead wire is characterized by being negligibly small compared to the conductor resistance of the resistance wire.
Thus, by measuring the conductor resistance from the end of the resistance wire to the leakage position, the leakage position can be detected, and the conductive wire in the covered lead wire can be used as the lead wire.
[0012]
The invention according to claim 5 is the liquid leakage position detection line according to any one of claims 1 to 4,
It has a protective braided body that circumscribes and covers the covering resistance wire and the covering lead wire.
The covered resistance wire and the covered lead wire that are connected and integrated are more reliably integrated by this protective braid, and there is no possibility of being scattered.
[0013]
The invention according to claim 6 is a liquid leakage detection system for detecting liquid leakage due to damage of a water shielding sheet that blocks outflow of liquid from a deposit or the like.
The liquid leakage position detection line according to any one of claims 1 to 5 laid on one side of the water shielding sheet,
A current source line that is laid on the opposite side of the leakage position detection line across the water shielding sheet, and detects a change in electrical characteristics between the resistance line in the leakage position detection line,
A constant current power source for supplying a constant current between the resistance line and the current source line;
Voltage measuring means for measuring the voltage across the resistance wire is provided.
[0014]
If liquid leakage occurs due to damage to the water shielding sheet, current from the constant current power source flows between the resistance line of the leakage detection line and the current source line laid on the opposite side across the water shielding sheet. By measuring the voltage at both ends of the covering resistance wire by the voltage measuring means, the distance from the end of the covering resistance wire to the leakage point can be known, and the leakage position can be detected. The resistance wire is coated with a liquid-resistant and semi-conductive polymer member, and the coated lead wire is coated with a liquid-resistant insulating member on the conductive wire. Because it is not corroded and the sheath of the sheathing resistance wire is semiconductive, if a voltage is applied between the resistance wire and the current source wire, changes in electrical characteristics due to liquid intrusion, etc., can be detected. can do. And since the coated resistance wire and the coated lead wire are connected and integrated, the bending direction is limited to the minor axis direction, but even if there is a difference in rigidity between the resistance wire and the conductive wire, kinks are not formed. It does not occur.
[0015]
The invention according to claim 7 is the liquid leakage detection system according to claim 6,
The water shielding sheet is composed of two upper and lower water shielding sheets,
The liquid leakage position detection line according to any one of claims 1 to 5, which is laid between the two upper and lower water shielding sheets,
An upper current source line laid on the upper surface of the upper water shielding sheet;
A lower current source line laid on the lower surface of the lower water shielding sheet,
A constant current power source for supplying a constant current between the covering resistance line in the leak position detection line and the upper and lower current source lines;
Voltage measuring means for measuring the voltage across the covering resistance wire is provided.
[0016]
When there are two water-impervious sheets, the water-impervious sheet is more reliably formed, and as described above, the liquid leakage position detection line is placed between the upper and lower water-impervious sheets, and the upper current on the upper surface of the upper impermeable sheet Lay the source wire and the lower current source line on the lower surface of the lower water-impervious sheet, and set the current from the constant current power source between the resistance line in the leak detection line and the upper and lower current source lines. If the current is supplied, the voltage at both ends of the resistance wire is measured by the voltage measuring means to detect the leakage from any of the two upper and lower water shielding sheets, and the position Can be detected.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a first embodiment of a leak position detection line of the present invention, FIG. 2 is a perspective view of a second embodiment of a leak position detection line of the present invention, and FIG. FIG. 4 is an explanatory diagram of the second embodiment of the liquid leakage detection system of the present invention, and FIG. 5 is an experiment of position detection according to the embodiment of the present invention. It is explanatory drawing of.
[0018]
In FIG. 1, a liquid leakage position detection wire 1 according to the first embodiment is formed by connecting and connecting a covering resistance wire 2 and a covering lead wire 3 arranged substantially in parallel. The covered resistance wire 2 is obtained by coating a liquid resistant and semiconductive polymer member 2b on a resistance wire 2a having a uniform conductor resistance in the longitudinal direction. A liquid-resistant insulating member 3b is coated thereon.
[0019]
As mentioned earlier, liquid resistance here means that the characteristics of the liquid to be detected (liquid leaking from the breakage, that is, liquid leakage) are unlikely to deteriorate and function as a coated resistance wire or coated lead wire during the period of use. However, depending on the type of the liquid to be detected, if the liquid to be detected is, for example, water, acid or alkali, it means water resistance, acid resistance, and alkali resistance.
[0020]
For the resistance wire 2a, for example, a conductor resistance per unit length such as a Kanthal wire (nickel chrome alloy wire manufactured by Kanthal Gadelius) is high enough to ignore that of the copper wire of the conductive wire 2a or the tinned annealed copper wire. Things are used. This is to reduce the error in detecting the leak position as will be described later.
[0021]
The resistance wire 2a is covered with a liquid-resistant semiconductive polymer member 2b, and the conductive wire 3a is covered with a liquid-resistant insulating member 3b. The wire 3a is not corroded, and the covering 2b of the covering resistance wire 2 is semiconductive. Therefore, if a voltage is applied between the resistance wire 2a and another electrode wire, the interposition between the electrode wires It is possible to detect a change in the electrical characteristics of an object. Further, if the conductive wire 3a of the coated lead wire 3 is used as an electrode wire, the leak position detection line can be used alone as a leak detection line.
[0022]
If the coating 2b of the covering resistance wire 2 is a polymer member containing conductive powder, the semiconductive polymer member 2b having moderate conductivity can be easily obtained by adjusting the content of the conductive powder. As a result, an inexpensive covering resistance wire 2 is obtained.
[0023]
Further, the method 4 for connecting the coated resistance wire 2 and the coated lead wire 3 naturally includes bonding with an appropriate adhesive, but the base of the coated resistance wire coating 2a and the coated lead wire insulating member 3b. If the material is a polymer member that can be extruded together, the coated resistance wire 2 and the coated lead wire 3 can be batch-extruded, and the connected resistance wire 2 and the coated lead wire 3 can be connected and integrated simultaneously. Since it is performed, it is preferable.
[0024]
For example, it is preferable to use a general-purpose plastic such as polyvinyl chloride because the substrate is inexpensive and easy to perform batch extrusion. Further, since only the coating 2a of the coating resistance wire may be used in which conductive powder such as carbon black is mixed, it is also preferable in that a semiconductive coating can be easily obtained.
[0025]
In FIG. 2, the liquid leakage detection wire 10 according to the second embodiment encloses the protective braid 11 on the liquid leakage position detection wire 1 so as to circumscribe the covering resistance wire 2 and the covering lead wire 3. It is a thing.
The covering resistance wire 2 and the covering lead wire 3 are connected and integrated by adhesion, collective extrusion or the like, but by covering the protective braid 11, the covering resistance wire 2 and the covering lead wire 3 are more reliably integrated and scattered. There is no fear.
[0026]
When used as a liquid leakage position detection line, the yarn constituting the protective braided body 11 may have any strength to integrate and hold the covering resistance wire 2 and the covering lead wire 3, but as the liquid leakage detection line, When used, it is preferable in terms of recoverability after a synthetic resin thread such as Tetron gets wet with the liquid leakage. Further, the detection sensitivity can be adjusted by adjusting the density of the protective braid.
[0027]
Next, the leakage detection system of the present invention will be described based on FIG.
FIG. 3 is an explanatory diagram of the outline and operation of the configuration of the first embodiment of the liquid leakage detection system, and is applied to the case where there is one water shielding sheet. In FIG. 3A, the liquid leakage detection system 15 is laid on the opposite side of the liquid leakage position detection line 1 with the water leakage sheet 61 sandwiched between the liquid leakage position detection line 1 and the water shielding sheet 61. A constant current is supplied between the resistance source 2a and the current source line 21 and a current source line 21 for detecting a change in electrical characteristics between the resistance line 2a and the resistance line 2a in the leakage position detection line 1. A current power source D and voltage measuring means V for measuring the voltage across the resistance wire 2a are provided.
[0028]
In the liquid leakage detection system 15, the liquid leakage position detection line 1 has the above-described characteristics, and the characteristics are utilized here.
Then, when liquid leakage E occurs due to damage to the water shielding sheet, it is fixed between the resistance wire 2a of the liquid leakage position detection line 1 and the current source line 21 laid on the opposite side across the water shielding sheet 61. When the constant current Ic from the current power source D flows and the voltage across the resistance wire 2a is measured by the voltage measuring means V, the liquid leakage from the end of the resistance wire is represented by the equation (1) as described in the prior art. The distance to the point is known and the leak position can be detected.
X = Vx / (R 0 × Ic) (1)
However, since the resistance value of the resistance wire 2a varies depending on the temperature, a near-end / far-end switch S is provided as a system that does not cause this error.
[0029]
The near end far end changeover switch S is composed of main poles 41 and 42, near end side poles 43 and 44, and far end side poles 45 and 46.
In FIG. 3A, the near end far end changeover switch S is connected to the near end side. Therefore, the constant current Ic flows from the [+] side of the DC power source B through the near end J of the current source line 21 and through the leak point P to the resistance line 2a of the leak position detection line. Returning to the near end I, the current flows to the [-] side (ground point g) of the DC power source B through the poles 45 → 44 → 42.
At that time, the DC voltmeter V measures the potential at point P, that is, the potential difference from the leak point P to the near end I, pole 45-44-42 (ground point g) via the conductive wire 3a. become. Since the lead wire resistance from the near end I to the ground point g is negligible compared to the resistance between P-I of the resistance wire 2a, the measured voltage V X Is approximately equal to the voltage drop across the resistance line 2a. The conductor resistance of the resistance wire 5a is uniform in the length direction, and the conductor resistance value per unit length is R 0 When the distance from the near end I of the leak position detection line 1 to the leak point P is X, the above formula (1) is obtained.
[0030]
In FIG.3 (b), the near end far end changeover switch S is connected to the far end side. Therefore, the constant current Ic flows from the [+] side of the DC power source B through the near end J of the current source line 21 to the resistance wire 2a via the leak point P and via the far end F. Then, it returns from G to the near end K of the conductive wire 3a, and flows to the [-] side (ground point g) of the DC power supply B via the poles 46 → 42.
At that time, the DC voltmeter V is connected to the potential at the point P via the resistance wire 2a, that is, from the leakage point P via the far ends F and G, the near end K of the conductive wire 3a, the pole 46 → 42 (grounding point). The potential difference up to g) will be measured. Here, the conductor resistance R per unit length of the resistance wire 2a 0 Is the conductor resistance R per unit length of the conductive wire 2a 1 Is so large that the voltage drop between P and F of the resistance line 2a is so large that the voltage drop between G and K of the conductive line 3a is negligible. Y Is approximately equal to the voltage drop across P-F of the resistance wire 2a. The conductor resistance of the resistance wire 2a is uniform in the length direction, and the conductor resistance value per unit length is R 0 The conductor resistance value per unit length of the conductive wire 3a is R 1 And the distance from the leak point P to the far end F is Y, and the total length of the leak position detection line is L,
V Y = Ic × [(R 0 × Y) + (R 1 × L)] (2)
[0031]
Ic, R 0 , R 2 , L is known, the distance X or Y from the equations (1) and (2) to the leak point can be determined.
Therefore, dividing both sides of equation (2) by both sides of equation (1),
V Y / V X = [(R 0 × Y) + (R 1 × L)] / (R 0 × X) (3)
However,
L = X + Y (4)
Because
Figure 0003693946
Conductor resistance R per unit length of the conductive wire 3a 1 Is the conductor resistance R per unit length of the resistance wire 2a 0 If it is small enough to be ignored as compared to, the following approximate expression holds.
V Y / V X ≒ Y / X (5)
From equation (4)
Y = L-X
Therefore, if this is substituted into equation (5),
V Y / V X ≒ (L / X) -1
X = L × [V X / (V X + V Y ] (6)
Similarly,
Y = L × [V Y / (V X + V Y ] (7)
Equation (7) shows the resistance value R per unit length. 0 , R 1 Is not included, so V X Or V Y Is measured, the distance X or Y from the near end or the far end to the leakage point P is the conductor resistance value R per unit length of the resistance wire 2a and the conductive wire 3a. 0 , R 1 Can be obtained regardless of
[0032]
Next, a second embodiment 20 of the liquid leakage detection system will be described based on FIG.
The liquid leakage detection system 20 is applied when there are two water shielding sheets (see FIG. 6).
The difference from the first embodiment 15 is that the water shielding sheet is composed of two upper and lower water shielding sheets 61 and 62, so that the liquid leakage position detection line 1 is connected to the two water shielding sheets 61 and 62. Two current source lines are laid between the upper current source line 21 laid on the upper surface of the water shielding sheet 61 and the lower current source line 22 laid on the lower surface of the lower water shielding sheet 62. These ends (near ends J1, J2 in the illustrated example) and the ends (near ends I, K in the illustrated example) of the leakage position detection line are connected to the terminals 26, 27, 28, 29 of the detector 25. Are connected to each other.
[0033]
In the detector 25, a constant current power source D including a DC power source B and a current controller C is connected to terminals 26 and 27 through an ammeter A and a current source line changeover switch S2 so as to be switchable. The current source line changeover switch S2 includes a pole 47 connected to the current source line 21 via the terminal 26, a pole 48 connected to the current source line 22 via the terminal 27, and a pole connected to the ammeter A. 49. Further, the near-end / far-end selector switch S <b> 1 is connected between the terminals 28 and 29. The configuration of the near end far end changeover switch S1 is the same as that of the near end far end changeover switch S of FIG. And the direct-current voltmeter V is connected so that the voltage of the both ends of the resistance wire 2a can be measured via the near end far end changeover switch S1.
[0034]
Next, the operation will be described.
Point P of the water shielding sheet 61 1 When leakage occurs in the current source line, if the current source line changeover switch S2 is connected to the pole 47 on the current source line 21 side, the leakage E between the current source line 21 and the resistance line 2a of the leakage position detection line 1 is detected. 1 And a constant current Ic flows through the semiconductive coating 2b.
Furthermore, when the near end far end changeover switch S1 is connected to the near end side, the leakage point P of the resistance wire 2a. 1 Current flows from the near end I to the near end I, and flows to the ground point g via the terminal 28 and the near end far end changeover switch S1.
At that time, the DC voltmeter V measures the potential at the point P, that is, the potential difference from the leakage point P to the ground point g via the conductive wire 3a. Hereinafter, in the same manner as in the case of the leak detection system of FIG. 1 Can be detected.
[0035]
Similarly, point P of the water shielding sheet 62 2 Leakage E 2 When the current source line changeover switch S2 is connected to the pole 48 on the current source line 22 side, the liquid leakage E occurs between the current source line 22 and the resistance line 2a of the liquid leakage position detection line 1. 2 A constant current Ic flows through the resistance wire 2a through the semiconductive coating 2b.
When the near end far end changeover switch S1 is connected to the near end side, the leakage point P of the resistance wire 2a 2 Current flows from the near end I to the near end I and flows to the ground point g via the terminal 29 and the near end far end changeover switch S1.
At that time, the DC voltmeter V is connected to P through the conductive wire 3a. 2 Point potential, that is, leak point P 2 To the ground point g is measured. The leak point P is the same as in the leak detection system of FIG. 2 Can be detected.
[0036]
In the liquid leakage detection system, the liquid leakage position detection line 1 and the current source lines 21 and 22 are preferably arranged substantially in parallel, but are arranged in a planar shape with the water shielding sheets 61 and 62 interposed therebetween. It may be provided and may intersect with each other at many points.
The method of laying the liquid leakage position detection line 1 and the current source lines 21 and 22 in a planar shape may be formed in a planar shape while being meandered by an appropriate length according to the topography. The thing of length of this may be arrange | positioned and connected in planar shape.
[0037]
In the above leakage detection system, the current source wires 21 and 22 may be bare copper wires, but in terms of corrosion resistance, they are semiconductive as in the case of the semiconductive coating of the coated resistance wires. The polymer material may be coated.
In addition, the liquid leakage position detection line has been described as using the liquid leakage position detection line 1, but of course, the liquid leakage position detection line 10 may be used.
Although the near-end / far-end changeover switches S and S1 and the current source line changeover switch S2 have been described as manual switches, of course, relays, electronic switches, or the like may be used.
[0038]
【Example】
Next, an example of leakage position detection according to the embodiment will be described.
In FIG. 5, reference numeral 1 denotes a leakage position detection line having a total length of 60 m having the structure and dimensions shown in Table 1. Every 10 m from the near end I, K to the far end F, G of the covering resistance wire and covering lead wire It was made to meander and laid in a plane. The near end I of the resistance wire of the covered resistance wire is passed through the lead wire 23 for resistance wire, and the far end G of the conductive wire in the covered lead wire is connected to the detector 25 via the lead wire 24 for covered lead wire. Connected to. Although it differs from the case of FIG. 3 and FIG. 4 in that the conductive wire of the coated lead wire is connected to the detector 25 at the far end G instead of the near end K, it is easily understood that there is no change in the measurement principle. I can do it.
[0039]
[Table 1]
Figure 0003693946
[0040]
A 4 mm bare soft copper wire was used as the current source line 21, and was directly brought into contact with the coated resistance wire as shown below, or a water reservoir was formed through tap water and brought into contact therewith.
<Measuring Method 1> Using the current source line 21 as a leakage position simulation point of the leakage position detection line 1, a point P of 5 m, 15 m, 25 m, 35 m, 45 m, and 55 m from the near end I. Five, P 15, P twenty five, P 35, P 45, P 55 The coating resistance wires 21 were sequentially brought into direct contact with each other and measured.
<Measuring method 2> Leak position simulation point P of the leak position detection line 1 Five, P 15, P twenty five, P 35, P 45, P 55 A puddle of tap water E Five , E 15 , E twenty five , E 35 , E 45 , E 55 Each time, the current source line 21 was disposed with an interval of 2 to 3 mm between the outer periphery and the outer periphery of the covering resistance wire through the water reservoir and measured.
The measurement results are shown in Table 2.
[0041]
[Table 2]
Figure 0003693946
[0042]
The measurement result is the simulated leak position P Five, P 15, P twenty five, P 35, P 45, P 55 The distance from the near end of is accurately shown.
[0043]
【The invention's effect】
As described above, according to the first aspect of the present invention,
The resistance wire is coated with a liquid-resistant and semi-conductive polymer member, and the coated lead wire is coated with a liquid-resistant insulating member on the conductive wire. In addition, since the coating of the coated resistance wire is semiconductive, if a voltage is applied between another electrode wire using the resistance wire as an electrode, the electrical characteristics due to liquid intrusion between the electrode wires, etc. Changes can be detected. And One Sheathing resistance wire and One Since the coated lead wire is connected and integrated, the bending direction is limited to the minor axis direction, but there is no kink even if there is a difference in rigidity between the resistance wire and the conductive wire. Easy to handle.
[0044]
According to the invention of claim 2, in addition to the effect of the invention of claim 1,
Since the covering resistance wire covered with the semiconductive polymer member having appropriate conductivity can be obtained at a low cost, the liquid leakage position detection wire is also inexpensive.
[0045]
According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2,
The covered resistance wire and the covered lead wire can be extruded together, and the formation, connection and integration of the covered resistance wire and the covered lead wire are performed at the same time, which is suitable for mass production.
[0046]
According to the invention of claim 4, in addition to the effect of the invention of any one of claims 1 to 3,
By measuring the conductor resistance from the end of the resistance wire to the leak position, the leak position can be detected, and the conductive wire in the coated lead wire can be used as a measurement lead wire, making measurement easy It is.
[0047]
According to the invention of claim 5, in addition to the effect of the invention of any of claims 1 to 4,
The connected and integrated covered resistance wire and the covered lead wire are more reliably integrated by the protective braid, and are strong and easy to handle because there is no risk of loosening.
[0048]
According to the sixth aspect of the present invention, when leakage occurs due to damage to the water shielding sheet, the gap between the resistance line of the leakage position detection line and the current source line laid on the opposite side across the water shielding sheet When a current from the constant current power source flows and the voltage at both ends of the resistance wire is measured by the voltage measuring means, the distance from the end of the resistance wire to the leak point can be known, and the leak position can be detected. The resistance wire is coated with a liquid-resistant and semi-conductive polymer member, and the coated lead wire is coated with a liquid-resistant insulating member on the conductive wire. Because it is not corroded and the sheath of the sheathing resistance wire is semiconductive, if a voltage is applied between the resistance wire and the current source wire, changes in electrical characteristics due to liquid intrusion, etc., can be detected. can do. And since the coated resistance wire and the coated lead wire are connected and integrated, the bending direction is limited to the minor axis direction, but even if there is a difference in rigidity between the resistance wire and the conductive wire, kinks are not formed. It does not occur. Therefore, it is easy to install and handle as a leakage detection system, and withstands long-term use.
[0049]
According to the invention of claim 7, in addition to the effect of the invention of claim 6,
Leakage position detection lines between the upper and lower water shielding sheets, the upper current source line on the upper surface of the upper water shielding sheet, and the lower current source line on the lower surface of the lower water shielding sheet are laid. If a constant current is supplied from the constant current power source between the resistance line in the liquid position detection line and the upper and lower current source lines, the voltage at both ends of the resistance line is measured by the voltage measuring means. If any of the two upper and lower water-impervious sheets is damaged, it can detect the leaked liquid and detect its position, so even if there are two sheets of water-impervious sheet, the liquid leak position can be detected reliably. To facilitate the use of two sheets.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first embodiment of a leak position detection line according to the present invention.
FIG. 2 is a perspective view of a second embodiment of a leak position detection line of the present invention.
FIG. 3 is an explanatory diagram of a first embodiment of a leak detection system of the present invention.
FIG. 4 is an explanatory diagram of a second embodiment of the leak detection system of the present invention.
FIG. 5 is an explanatory diagram of an experiment of position detection according to an embodiment of the present invention.
FIG. 6 is an explanatory diagram of a usage example of a leak detection system.
FIG. 7 is an explanatory diagram of the principle of a leakage detection system.
FIG. 8 is a perspective view of a conventional leak detection line.
[Explanation of symbols]
1,10 Leak position detection line
2 Insulation resistance wire
2a Resistance wire
2b Semiconductive coating
3 Coated lead wire
3a Conductive wire
3b Insulation coating
4 connecting parts
11 Protective braid
15, 20 Leak detection system
21, 22 Current source line
25 Detector
50 Waste disposal site
60 ground
61,62 Waterproof sheet
A, A1, A2 DC ammeter
C, C1, C2 Current controller
D, D1, D2 constant current power supply
V DC voltmeter

Claims (7)

ほぼ平行に配設された1本の被覆抵抗線と1本の被覆リード線とを連接して一体化してなり、
前記被覆抵抗線は、導体抵抗が長さ方向に均一な抵抗線の上に耐液性で半導電性の高分子部材を被覆してなり、
前記被覆リード線は、導電線の上に耐液性の絶縁部材を被覆してなることを特徴とする漏液位置検知線。
One covering resistance wire and one covering lead wire arranged substantially in parallel are connected and integrated,
The covered resistance wire is formed by coating a liquid-resistant and semiconductive polymer member on a resistance wire having a uniform conductor resistance in the length direction,
The covered lead wire is formed by covering a conductive wire with a liquid-resistant insulating member.
請求項1記載の漏液位置検知線において、
前記被覆抵抗線の被覆は、導電性粉を含有する高分子部材からなることを特徴
とする漏液位置検知線。
In the leak position detection line according to claim 1,
The covering of the covering resistance wire is made of a polymer member containing conductive powder, and the liquid leakage position detection wire.
請求項1又は2記載の漏液位置検知線において、
前記被覆抵抗線の被覆及び前記被覆リード線の絶縁部材は、基材がともに押出成形可能な高分子部材からなることを特徴とする漏液位置検知線。
In the leak position detection line according to claim 1 or 2,
The covering member of the covering resistance wire and the insulating member of the covering lead wire are made of a polymer member whose base material can be extruded together.
請求項1乃至3のいずれかに記載の漏液位置検知線において、
前記被覆リード線の導電線の導体抵抗は、前記被覆抵抗線の抵抗線の導体抵抗に比して無視し得るほどに小さいことを特徴とする漏液位置検知線。
In the leak position detection line according to any one of claims 1 to 3,
The liquid leakage position detection line, wherein the conductor resistance of the conductive wire of the covered lead wire is negligibly small as compared with the conductor resistance of the resistance wire of the covered resistance wire.
請求項1乃至4のいずれかに記載の漏液位置検知線において、
前記被覆抵抗線及び前記被覆リード線に外接して包被する保護編組体を有することを特徴とする漏液位置検知線。
In the leak position detection line according to any one of claims 1 to 4,
A liquid leakage position detection line comprising a protective braid that encloses and covers the covering resistance wire and the covering lead wire.
堆積物等からの液体の流出を遮断する遮水シートの損傷による漏液を検知する漏液検知システムにおいて、
前記遮水シートの片側に敷設された請求項1乃至5のいずれかに記載の漏液位置検知線と、
前記遮水シートを挟んで前記漏液位置検知線と反対側に敷設され、前記漏液位置検知線中の抵抗線との間の電気特性の変化を検知するための電流ソース線と、
前記抵抗線と前記電流ソース線との間に定電流を供給する定電流電源と、
前記抵抗線の両端の電圧を測定する電圧測定手段とを備えたことを特徴とする漏液検知システム。
In a leak detection system that detects leaks due to damage to the water shielding sheet that blocks outflow of liquid from sediments, etc.,
The liquid leakage position detection line according to any one of claims 1 to 5 laid on one side of the water shielding sheet,
A current source line that is laid on the opposite side of the leakage position detection line across the water shielding sheet, and detects a change in electrical characteristics between the resistance line in the leakage position detection line,
A constant current power source for supplying a constant current between the resistance line and the current source line;
A liquid leakage detection system comprising voltage measuring means for measuring a voltage across the resistance wire.
請求項6記載の漏液検知システムにおいて、
前記遮水シートは、上下2枚の遮水シートからなり、
前記上下2枚の遮水シートの間に敷設される請求項1乃至5のいずれかに記載の漏液位置検知線と、
前記上側遮水シートの上面に敷設される上側電流ソース線と、
前記下側遮水シートの下面に敷設される下側電流ソース線と、
前記漏液位置検知線中の抵抗線と前記上側及び下側電流ソース線との間にそれぞれ定電流を供給する定電流電源と、
前記抵抗線の両端の電圧を測定する電圧測定手段とを備えたことを特徴とする漏液検知システム。
The liquid leakage detection system according to claim 6,
The water shielding sheet is composed of two upper and lower water shielding sheets,
The liquid leakage position detection line according to any one of claims 1 to 5, which is laid between the two upper and lower water shielding sheets,
An upper current source line laid on the upper surface of the upper water shielding sheet;
A lower current source line laid on the lower surface of the lower water shielding sheet,
A constant current power source for supplying a constant current between the resistance line in the leak position detection line and the upper and lower current source lines;
A liquid leakage detection system comprising voltage measuring means for measuring a voltage across the resistance wire.
JP2001308555A 2001-10-04 2001-10-04 Leak position detection line and leak detection system using the same Expired - Fee Related JP3693946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308555A JP3693946B2 (en) 2001-10-04 2001-10-04 Leak position detection line and leak detection system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308555A JP3693946B2 (en) 2001-10-04 2001-10-04 Leak position detection line and leak detection system using the same

Publications (2)

Publication Number Publication Date
JP2003114161A JP2003114161A (en) 2003-04-18
JP3693946B2 true JP3693946B2 (en) 2005-09-14

Family

ID=19127848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308555A Expired - Fee Related JP3693946B2 (en) 2001-10-04 2001-10-04 Leak position detection line and leak detection system using the same

Country Status (1)

Country Link
JP (1) JP3693946B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068142A1 (en) * 2004-12-21 2006-06-29 Matsushita Electric Industrial Co., Ltd. Gas detection sensor and gas detector
JP5102734B2 (en) * 2008-09-30 2012-12-19 Jfeスチール株式会社 Damage estimation method for steel sheet pile, steel sheet pile impermeable wall, and waterproof rubber
JP6518908B2 (en) * 2014-12-26 2019-05-29 日本毛織株式会社 Liquid detection cloth

Also Published As

Publication number Publication date
JP2003114161A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
CA2818121C (en) Method of detecting a leak in a membrane of a roof
US5341128A (en) Sensor element for detection of hydrocarbons
US6877359B2 (en) Liquid leak detection
KR101328994B1 (en) Volume Electrical Resistivity Equipment for Cable in NPPs
JP3693946B2 (en) Leak position detection line and leak detection system using the same
JP2013140174A (en) Sensor for detecting organic liquids
JP2002107259A (en) Sensor for detecting broken position of reclaimed ground water barrier film
JP4632434B2 (en) Piping diagnostic device
US5546790A (en) Low molecular weight organic liquid leakage detection system
CN204789449U (en) A equipment for confirming corrode
JP3824873B2 (en) Leak detection line
KR100717597B1 (en) protection monitoring system
RU2743083C2 (en) Electroconductive material for application under non-conductive waterproofing layer
JP2002310845A (en) Water leakage detection system for water impervious sheet
TWI703586B (en) Cables and liquid detection components for cables
JP3551999B2 (en) Method for detecting water leakage position of water-impervious sheet and water-impervious sheet used in the method
JPH09236507A (en) Method for detecting water leakage portion of pipe embedded in the ground, cable for detecting water leakage portion, and pipe embedded in the ground
RU2748862C2 (en) System for monitoring sealing capacity of waterproofing roof covering layer
KR102176165B1 (en) Cable type leakage detection sensor
JP2002002880A (en) Lining coated liquid storage tank, method for manufacturing the same and method for detecting flaw of lining layer
JPH06167411A (en) Liquid leakage detection wire
CN110823960B (en) Surface damage detection device
ITMI961940A1 (en) CABLE FOR STREAMING ELECTRIC FIELDS
EP3593115B1 (en) A method of detecting the locally generated corrosion of a metal element
JP4479861B2 (en) Device for detecting leakage of water shielding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees