WO2006068142A1 - Gas detection sensor and gas detector - Google Patents

Gas detection sensor and gas detector Download PDF

Info

Publication number
WO2006068142A1
WO2006068142A1 PCT/JP2005/023370 JP2005023370W WO2006068142A1 WO 2006068142 A1 WO2006068142 A1 WO 2006068142A1 JP 2005023370 W JP2005023370 W JP 2005023370W WO 2006068142 A1 WO2006068142 A1 WO 2006068142A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection
gas
gas detection
common electrode
Prior art date
Application number
PCT/JP2005/023370
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Yamada
Kouichi Hiranaka
Takeshi Hatakeyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004368795A external-priority patent/JP2008057975A/en
Priority claimed from JP2005238160A external-priority patent/JP2008057976A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006068142A1 publication Critical patent/WO2006068142A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Definitions

  • the present invention relates to a gas detection sensor and a gas detection device that are used in equipment and piping for flammable gas such as hydrogen gas and detect a gas leakage point.
  • a catalytic combustion type or semiconductor type hydrogen gas detection sensor is mainly used.
  • a catalytic metal such as platinum (Pt) or palladium (Pd) is heated by a heater, and the hydrogen gas in contact with the catalyst is oxidized by oxygen in the air.
  • the catalytic combustion type hydrogen gas detection sensor electrically detects heat generated by the oxidation of hydrogen gas as a change in the conductivity of the catalyst metal.
  • the semiconductor-type hydrogen gas detection sensor detects a change in electrical characteristics of the detection film due to adsorption of hydrogen gas to the detection film, that is, a change in the resistance value of the detection film.
  • This semiconductor type hydrogen gas detection sensor is used in a state heated by a heater, like the contact combustion type hydrogen gas detection sensor. Examples of this are disclosed, for example, in Japanese Utility Model Publication No. 49-23507 (pages 1-3) and Japanese Patent Application Laid-Open No. 7-260727.
  • These hydrogen gas detection sensors are used for fuel cell vehicles and stationary fuels that use hydrogen gas. It is used as a hydrogen gas detection sensor for detecting hydrogen gas leaks in hydrogen batteries such as fuel cells, hydrogen dispensers and hydrogen compressors, and gas storage facilities such as hydrogen cylinders.
  • hydrogen batteries such as fuel cells, hydrogen dispensers and hydrogen compressors, and gas storage facilities such as hydrogen cylinders.
  • gas storage facilities such as hydrogen cylinders.
  • a plurality of fuel cell vehicles are installed near the fuel cell stack, near the hydrogen tank, inside the vehicle cabin roof, etc., where hydrogen gas is likely to leak or where it is likely to stay.
  • Such an example is disclosed, for example, in Japanese Unexamined Patent Publication No. 2004-2 3874 (pages 5-8, FIG. 3).
  • a hydrogen gas detection sensor using an optical fiber is proposed as a new hydrogen gas detection sensor.
  • Such an optical fiber type hydrogen gas detection sensor is formed by forming a detection film whose refractive index changes with respect to light when hydrogen is detected in the cladding portion of the optical fiber. This optical fiber type hydrogen gas detection sensor detects the concentration of hydrogen gas on a line along the optical fiber laying line.
  • This optical fiber type hydrogen gas detection sensor does not measure the hydrogen gas concentration at the point where the sensor is installed like the conventional catalytic combustion type or semiconductor type hydrogen gas detection sensor, but lays an optical fiber. One-dimensional hydrogen gas concentration can be measured on the line. Furthermore, this optical fiber type hydrogen gas detection sensor measures the position where hydrogen gas is detected on the optical fiber by combining optical time domain reflectometry (OTDR) technology. It is also possible. Such an example is disclosed, for example, in Japanese Unexamined Patent Publication No. 2003-166938 (page 3-6, FIG. 3).
  • Patent Document 1 Japanese Utility Model Publication No. 49-23507 (Pages 1-3)
  • Patent Document 2 JP-A-7-260727
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-23874 (Pages 5-8, Fig. 3)
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-166938 (page 3-6, Fig. 3)
  • the conventional hydrogen gas detection sensor of the catalytic combustion system, the semiconductor system, and the optical fiber system has the following problems.
  • the catalytic combustion type and semiconductor type hydrogen gas detection sensors detect the hydrogen gas concentration at the installed location. For this reason, the hydrogen gas leaked by the hydrogen gas detection sensor may not be detected depending on the direction and speed of the air flow between the location where the hydrogen gas leaks and the location where the hydrogen gas detection sensor is installed. Therefore, in order to increase the certainty, it is necessary to set the detection sensitivity of the hydrogen gas detection sensor high. However, increasing the detection sensitivity in this way has caused problems such as malfunctions caused by gases other than hydrogen gas and failures due to changes over time.
  • Hydrogen gas leakage generation force The detection time until it is detected by the hydrogen gas detection sensor includes the hydrogen gas leakage location, the hydrogen gas outflow direction from the leakage location, and the air flow around the leakage location. Fluctuates greatly depending on conditions. In particular, there is a risk that a large amount of hydrogen gas has already leaked when the hydrogen gas sensor detects the leaked hydrogen gas in a gas storage chamber that stores a large amount of hydrogen gas. Therefore, reducing detection time is an important issue in this area.
  • An optical fiber type hydrogen gas detection sensor is different from the conventional hydrogen gas detection sensor in that the hydrogen gas generated in the area where the optical fiber is installed is not detected only at the installation location. It is a sensor that can detect leakage of water. As described above, the optical fiber type hydrogen gas detection sensor can detect the position where hydrogen gas is detected on the laying line of the optical fiber when combined with the OTDR technology. As described above, the optical fiber type hydrogen gas detection sensor is expected as a new hydrogen gas detection sensor that can solve the problems of the conventional hydrogen gas detection sensor.
  • the position detection accuracy in the hydrogen gas detection sensor of an optical fiber type is expensive. Even using OTDR, it was not possible to make it less than several tens of centimeters, and it was difficult to identify the leak location. For this reason, in order to accurately detect the leak position of hydrogen gas, it was eventually necessary to perform a human inspection using a portable hydrogen gas detector. In addition, the optical fiber used in the optical fiber type hydrogen gas detection sensor itself was broken and difficult to handle immediately.
  • a gas detection sensor includes a substantially strip-shaped resistance layer having a predetermined resistance value
  • a sensing film made of a material whose electrical characteristics change upon contact with the gas to be sensed, and
  • a common electrode disposed in contact with at least one surface in the longitudinal direction of the detection film and bonded to the resistance layer via the detection film;
  • the detection film is configured to be linearly exposed along the longitudinal direction.
  • a gas detection sensor includes a substantially planar resistance layer having a predetermined resistance value
  • a sensing film made of a material that is laminated so as to be in contact with one surface of the resistance layer and whose electrical characteristics change by contact with the gas to be sensed;
  • a common electrode formed of a conductor and laminated on the resistance layer via the sensing film
  • the detection film is configured to be exposed in a planar shape.
  • the gas detection device includes a detection film formed of a material whose electrical characteristics change by contact with the gas to be detected, and the detection surface is configured in a substantially band shape.
  • Detection Gas detection sensor that outputs a current divided according to the gas detection position when detecting gas
  • Bias power supply that supplies power to the gas detection sensor
  • the computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when it is detected, and adds the subtraction result to the calculation result and the division process It is configured to detect the gas detection position based on the calculated result
  • a gas detection device includes a detection film formed of a material whose electrical characteristics change by contact with a gas to be detected, and the detection surface is configured to have a substantially planar shape.
  • a gas detection sensor that outputs a current divided into four directions according to the gas detection position when a gas to be detected is detected,
  • a bias power supply for supplying power to the gas detection sensor
  • the computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when detected, and adds the subtraction result to the calculation result and the subtraction process. It is configured to detect the gas detection position based on the calculated result
  • a gas detection device is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected
  • a resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film.
  • a gas detection device is an electrically insulating base material formed in a substantially strip shape
  • a sensing film that is laminated on a longitudinal surface of the resistance layer and changes its resistance when a gas to be detected is detected
  • a common electrode formed on a longitudinal surface of the sensing film for applying a predetermined bias voltage to the sensing film
  • a first electrode and a second electrode provided at both ends of the resistance layer to detect a resistance change of the sensing film
  • a resistance value change between the common electrode and the first electrode and a resistance value change between the common electrode and the second electrode are measured via the resistance layer, and the resistance value change is determined based on each resistance value change.
  • V. The gas detection position of the detection film is calculated.
  • a gas detector according to still another aspect of the present invention is an electrically insulating base material formed in a substantially strip shape
  • a common electrode formed by bonding to the longitudinal surface of the substrate
  • a first electrode and a second electrode provided at both ends of the resistance layer to detect a resistance change of the sensing film
  • a predetermined bias voltage is applied to the detection film via the common electrode, a resistance value change between the common electrode and the first electrode, and the common electrode and the second electrode via the resistance layer.
  • a change in resistance value is measured, and a gas detection position of the detection film is calculated based on each change in resistance value.
  • a gas detection device is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected
  • a first electrode and a second electrode which are not joined to the sensing film and are formed at both ends in the longitudinal direction on the resistance layer;
  • Conversion means for calculating a gas detection position by detecting a resistance change between the common electrode and the first electrode and a resistance change between the common electrode and the second electrode;
  • the converting means converts a current value flowing between the common electrode and the first electrode through the resistance layer and a current value flowing between the common electrode and the second electrode into a voltage value.
  • an arithmetic unit that calculates a gas detection position based on the converted voltage value is provided.
  • a gas detection device is a gas detection device having a gas detection sensor that changes resistance when a combustible gas is detected
  • a resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film.
  • the temperature of the detection film is heated to 200 ° C. and 400 ° C., and between the common electrode and the first electrode and between the common electrode and the second electrode through the resistance layer. Each resistance value change is measured, and the gas detection position of the detection film is calculated based on the resistance value change.
  • a gas detection device is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected
  • a detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
  • a common electrode that is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film;
  • a linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction;
  • a gas detection device is a gas detection device having a gas detection sensor that changes resistance when a combustible gas is detected
  • a detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
  • a common electrode that is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film
  • a linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction;
  • a third linear electrode and a fourth electrode which are provided on the other pair of opposing sides of the resistance layer and extend in the Y direction to detect a gas detection position in the Y direction;
  • a gas detection device is a gas detection device having a gas detection sensor whose electrical resistance changes when a gas to be detected is detected
  • a base material formed in a substantially strip shape and having electrical insulation
  • a plurality of predetermined regions are configured by detection films arranged linearly with a predetermined interval, and one end of each detection film is connected to the common electrode;
  • a detection electrode connected to the other end of the detection film of the sensor cell and configured to form a pair with the common electrode
  • a bias voltage is applied to the common electrode, a resistance value change between the common electrode and the detection electrode is detected, and a gas detection position is calculated based on the position of the sensor cell where the resistance value change is detected. It is configured as follows. [0023]
  • a gas detection device is a gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected comes into contact with the gas detection device, and has electrical insulation properties.
  • a substrate formed by a material having a substantially strip shape and penetrated by a plurality of holes arranged linearly at a predetermined interval;
  • a sensor cell having a detection film formed on the inner surface of the hole of the substrate
  • a common electrode formed on one longitudinal surface of the substrate and connected to one end of each of the sensing films;
  • a plurality of detection electrodes formed on the other surface of each of the detection film parts, and formed on the other surface of the base material in pairs with the common electrode;
  • a bias voltage is applied to the common electrode, a change in resistance value between the common electrode and the detection electrode of the sensor cell is detected, and a gas detection position is calculated based on the position of the sensor cell where the change in resistance value is detected. It is configured to
  • a gas detection device is a gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected is detected, and is electrically insulating.
  • a substrate formed by a material having a substantially rectangular shape and penetrated by a plurality of holes arranged at predetermined grid-intersection positions at a predetermined pitch,
  • a plurality of sensor cells having a detection film formed on the inner surface of the hole of the base material, formed on one rectangular surface of the base material, connected to one end of each of the sensor cells, and applied with a predetermined bias voltage
  • a common detection electrode in the column direction indicated by the Xi (i l to m) electrode,
  • a noise voltage is supplied to the sensor cell through the Xi electrode at a predetermined time interval, a change in resistance value between the Xi electrode and the Yj electrode to which the bias voltage is supplied is detected, and the resistance value change is detected.
  • the gas detection position is calculated based on the position of the sensor cell where the gas is detected.
  • a gas leakage sensor in a one-dimensional or two-dimensional gas detection region can be configured with a simple configuration by using a gas detection sensor and a gas detection device with a simple configuration for the leakage portion of the gas to be detected. It has an excellent effect that it can be reliably detected.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a hydrogen gas detection sensor of Example 1 according to the present invention.
  • FIG. 2 is a plan view showing the planar shapes of three types of common electrodes 1 in Example 1.
  • FIG. 2 is a plan view showing the planar shapes of three types of common electrodes 1 in Example 1.
  • FIG. 3 is a cross-sectional view showing another configuration of the hydrogen gas detection sensor of the present invention.
  • FIG. 4 is a cross-sectional view showing still another configuration of the hydrogen gas detection sensor of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line V—V in the hydrogen gas detection sensor of FIG.
  • FIG. 6 is a perspective view showing another configuration of the hydrogen gas detection sensor of Example 1 according to the present invention.
  • FIG. 7 is a block diagram showing a configuration of an arithmetic unit and the like in the first embodiment according to the present invention.
  • FIG. 8 is a graph showing the relationship between hydrogen gas detection position X and calculation result E2.
  • FIG. 9 is a graph showing the relationship between hydrogen gas volume concentration and calculation result E1.
  • FIG. 10 is a cross-sectional view showing a configuration of a hydrogen gas detection sensor of Example 2 according to the present invention.
  • FIG. 11 is a plan view showing a detection surface of the hydrogen gas detection sensor according to Example 2 of the present invention.
  • FIG. 12 is a drawing explaining the effect of the through hole in the hydrogen gas detection sensor of Example 2.
  • FIG. 13 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation result E1 in the hydrogen gas detection sensor of Example 2.
  • FIG. 14 is a cross-sectional view showing a configuration of a hydrogen gas detection sensor of Example 3 according to the present invention.
  • FIG. 15 is a graph showing experimental results in the configuration of Example 3 according to the present invention.
  • FIG. 16 is a graph showing experimental results in the configuration of Example 3 according to the present invention.
  • FIG. 17 is an exploded perspective view showing a schematic configuration of the hydrogen gas detection sensor according to the fourth embodiment of the present invention.
  • FIG. 18 is a plan view showing the shape of a common electrode in the hydrogen gas detection sensor of Example 4.
  • FIG. 19 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 4.
  • FIG. 20 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 4.
  • FIG. 21 is a block diagram showing a configuration of a hydrogen gas detection sensor and a computing unit of the fourth embodiment.
  • FIG. 22 is a graph showing the relationship between the hydrogen gas detection position and the calculation result in the hydrogen gas detection sensor of Example 4.
  • FIG. 23 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation results in the hydrogen gas detection sensor of Example 4.
  • FIG. 24 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 5 according to the present invention.
  • FIG. 25 is a plan view of the hydrogen gas detection sensor of Example 5.
  • FIG. 26 is a graph showing the relationship between the hydrogen gas detection position and the calculation result in the hydrogen gas detection sensor of Example 5.
  • FIG. 27 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation results in the hydrogen gas detection sensor of Example 5.
  • FIG. 28 is a sectional view showing a laminated structure of the hydrogen gas detection sensor according to the sixth embodiment of the present invention.
  • FIG. 29 is a graph showing the relationship between the surface temperature of the detection film and the response time in the hydrogen gas detection sensor of Example 6.
  • FIG. 30 is a graph showing the relationship between the surface temperature of the detection film and the calculation results in the hydrogen gas detection sensor of Example 6.
  • FIG. 31 shows a one-dimensional array type hydrogen gas detection sensor of Example 7, (a) is a plan view of the hydrogen gas detection sensor, and (b) is a W—W line in (a). (C) is a rear view of the hydrogen gas detection sensor.
  • FIG. 32 is a block diagram showing a configuration of a gas detection device according to Embodiment 7 of the present invention.
  • FIG. 33 is a diagram for explaining an experiment of a one-dimensional array type hydrogen gas detection sensor in Example 7.
  • FIG. 34 is a plan view (a) and a sectional view (b) showing another configuration of the one-dimensional arrangement type hydrogen gas detection sensor of the seventh embodiment.
  • FIG. 35 is a block diagram showing another configuration of the gas detection device according to Embodiment 7 of the present invention.
  • FIG. 36 is a block diagram showing the configuration of the gas detector of the eighth embodiment according to the present invention.
  • FIG. 37 is a view showing the structure of a two-dimensional array type hydrogen gas detection sensor according to Example 9 of the present invention, (a) is a plan view, and (b) is a hydrogen gas detection sensor of (a).
  • FIG. 6 is a cross-sectional view taken along line Y—Y in the sensor.
  • FIG. 38 is a block diagram showing a configuration of a gas detection device in Example 9.
  • FIG. 39 is a diagram for explaining an experiment of a two-dimensional array type hydrogen gas detection sensor in Example 9.
  • FIG. 40 is a diagram showing a different configuration of the hydrogen gas detection sensor of Example 9.
  • FIG. 41 is a block diagram showing a configuration of a gas detection device according to Example 10 of the present invention.
  • the gas detection sensor according to the first embodiment of the present invention has a substantially linear (one-dimensional) hydrogen gas detection in which the gas detection region capable of detecting hydrogen gas contained in the gas to be detected is one-dimensional.
  • This is a hydrogen gas detection sensor with a surface.
  • the hydrogen gas detection sensor of Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the hydrogen gas detection sensor of the first embodiment.
  • dimensions such as the thickness of each element are exaggerated for easy explanation, and are different from actual ones.
  • the resistance layer 4, the detection film 5, and the common electrode 1 are laminated on the upper surface of the substrate 6.
  • the common electrode 1 is formed on a part of the upper surface of the detection film 5 so that the gas to be detected is in contact with the detection film 5.
  • the common electrode 1 may be configured to cover the entire detection film 5 so that hydrogen gas contained in the gas to be detected can pass through the common electrode 1 and contact the detection film 5.
  • electrodes 1 and 2 are provided as a first electrode and a second electrode. Lands 81 and 81 to which a bias power supply 27 is connected are formed at both ends of the common electrode 1.
  • the hydrogen gas 26 comes into contact with the detection film 5 at the detection position X.
  • the sensing film 5 is substantially insulative and has a high resistance value in a non-detected state.
  • the detection part 8 of the detection film 5 that is the contact portion becomes a semiconductor.
  • the semiconductor detection unit 8 has a lower electrical resistance value.
  • the current from the bias power supply 27 connected to the common electrode 1 passes through the semiconductor detection unit 8 and is divided into currents in the resistance layer 4.
  • the current divided current is output via electrode 2 and electrode 3.
  • the base material 6 has a substantially band shape, and quartz (SiO 2), which is an electrically insulating material, is used.
  • quartz SiO 2
  • the detection surface side of this substrate 6 (the top in Fig. 1)
  • a pair of electrodes composed of an electrode 2 and an electrode 3 are formed at both ends of the side. Further, a substantially strip-shaped resistive layer 4 made of tantalum nitride (TaN) is formed on the detection surface side (upper side) of the base material 6 so as to cover a part of the electrodes 2 and 3. A lead wire 24 formed of copper (Cu) is connected to each of the electrodes 2 and 3, and the lead wire 24 is connected to a computing unit 28 (see FIG. 7) described later via the lead wire 24.
  • TaN tantalum nitride
  • the sensing film 5 formed in 3 is provided.
  • the detection film 5 has a substantially band shape and is formed so as to cover the resistance layer 4.
  • a pair of lands 81 made of gold (Au) are formed on the detection surface side of both ends of the detection film 5.
  • the lands 81 are formed at positions corresponding to the electrodes 2 and 3 on both ends of the resistance layer 4, that is, substantially immediately above the electrodes 2 and 3 with the detection film 5 in between.
  • a common electrode 1 made of gold (Au) is formed on the detection film 5, and the pair of left and right lands 81 are electrically connected by this common electrode 1.
  • a lead wire 24 made of copper (Cu) is connected to the land 81, and the land 81 is connected to the bias power source 27 through a current limiting resistor 29.
  • the land 81 is provided to connect the lead wire 24 to the common electrode 1. Therefore, in the configuration in which the common electrode 1 and the lead wire 24 are directly connected, it is not necessary to provide a land.
  • the hydrogen gas detection sensor 25 of Example 1 has a one-dimensional hydrogen gas detection region, and a substantially strip-shaped detection film 5 formed on the upper part of the resistance layer 4 that connects between the electrodes 2 and 3. Hydrogen gas It is the structure which detects.
  • the hydrogen gas detection sensor 25 according to the first embodiment is configured to detect a position where the hydrogen gas contacts when a part of the substantially band-shaped detection film 5 contacts the hydrogen gas.
  • the range between the electrode 2 and the electrode 3 at both ends of the resistance layer 4 is set as a detection range, and the detection length in the detection range is set to L (see FIG. 1).
  • the common electrode 1 in the hydrogen gas detection sensor 25 of Example 1 is formed so as to cover the detection range of the detection film 5.
  • the detection film 5 has a structure that can be exposed to the gas to be detected.
  • FIGS. 2A, 2B, and 2C are plan views showing the planar shape of the common electrode 1, and show the structures of the three types of common electrodes 1.
  • FIG. In any of the configurations (a), (b), and (c) of FIG. 2, the common electrode 1 is formed on the sensing film 5 between the electrodes 2 and 3, and the sensing film 5 is covered. It has a gap 99 so that it can be exposed to the detection gas.
  • the common electrode 1 shown in FIG. 2 (a) is formed in a lattice shape, and a rectangular gap 99 is formed. In the common electrode 1 shown in FIG. 2 (b), a circular gap 99 is formed.
  • the common electrode 1 shown in FIGS. 2 (a), (b) and (c) has the gap 99 in any configuration, and the detection film 5 is directly exposed to the gas to be detected. Is the structure.
  • the arrangement of the gap 99 configured as described above it is desirable that the arrangement region of the detection film 5 exposed to the gas to be detected is distributed almost uniformly over the entire detection surface! /, .
  • the common electrode 1 shown in FIG. 2 (a) is configured to have a lattice-like mesh, and has a rectangular gap 99.
  • the common electrode 1 is formed so as to electrically connect lands 81 and 81 provided on both sides of the hydrogen gas detection sensor 25. Therefore, the part other than the mesh of the common electrode 1, that is, the gap 99 is exposed so that the detection film 5 under the common electrode 1 is exposed to the gas to be detected.
  • the mesh shape of the common electrode 1 is almost the same in the detection range. Mesh spacing in the detection direction, which is the longitudinal direction of the common electrode 1 It is desirable that the hydrogen gas contained in the gas to be detected is shorter than the range in which the hydrogen gas contacts the detection film 5. In general, it is desirable that the length of the hydrogen gas jet point force detection film 5 is sufficiently shorter than the length.
  • FIG. 2 (b) shows the common electrode 1 provided with a gap 99 which is a plurality of circular holes.
  • the common electrode 1 is formed so as to electrically connect the lands 81 and 81 provided on both sides of the hydrogen gas detection sensor 25, and the detection film 5 on the lower side of the common electrode 1 is formed into hydrogen gas.
  • a plurality of voids 99 are formed so as to be exposed. Therefore, the hole portion of the gap 99 is a portion where the detection film 5 can be exposed to hydrogen gas.
  • the shape of the hole in the gap 99 is almost the same in the detection range.
  • the holes are arranged at equal intervals in the longitudinal direction of the common electrode 1, and are arranged with substantially the same length in the detection range. This interval is desirably sufficiently shorter than the range in which the hydrogen gas contained in the gas to be detected contacts the detection film 5. In general, it is desirable that the hole interval be sufficiently shorter than the length from the hydrogen gas ejection point to the detection film 5.
  • FIG. 2 (c) shows a configuration in which a linear common electrode 1 is formed between lands 81 provided on both sides of the hydrogen gas detection sensor 25.
  • the common electrode 1 shown in FIG. 2 (c) is a linear electrode composed of an electrically connected film body, and electrically connects the land 81 on both sides of the hydrogen gas detection sensor 25. is doing.
  • the width of the common electrode 1 that is linear is substantially the same in the detection range.
  • the number of force common electrodes 1 shown in the example in which only one common electrode 1 is formed on the upper surface of the detection film 5 may be plural. In that case, it is desirable that the distance between the common electrodes 1 is substantially the same in the detection range.
  • the means for exposing the detection film 5 to the gas to be detected is not limited to the configuration shown in (a) to (c) of FIG.
  • Materials that are permeable to hydrogen gas contained in the detection gas such as metal thin films of 1 ⁇ m or less, such as gold (Au), silver (Ag), and copper (Cu), and sintered materials It is also possible to use a porous conductor or the like.
  • the basic structure of the hydrogen gas detection sensor in Example 1 is the detection film 5 formed in a substantially strip shape, and the substantially strip-shaped resistance layer 4 formed on one surface in the longitudinal direction of the detection film 5. And formed on the other surface of the detection film in the longitudinal direction so as not to be in electrical contact with the resistance layer 4
  • the common electrode 1 is formed.
  • the resistance value between the electrodes 2 and 3 (hereinafter referred to as interelectrode resistance) provided at both ends of the resistance layer 4 and the detection film 5 detect hydrogen gas contained in the gas to be detected.
  • the resistance value between the common electrode 1 and the electrode 2 (hereinafter referred to as junction resistance) and the resistance value between the common electrode 1 and the electrode 3 (hereinafter referred to as junction resistance) in the undetected state and the detected state explain the relationship.
  • a noise power source 27 is connected to the common electrode 1 through the current limiting resistor 29, the common electrode 1 and the electrode 2 are connected between the common electrode 1 and the electrode 2 when the detection film 5 is not detecting hydrogen gas.
  • a current (hereinafter referred to as a bias current) that is inversely proportional to the combined resistance of the current limiting resistor 29 and the junction resistance flows between the common electrode 1 and the electrode 3.
  • the sensing film 5 When the sensing film 5 is exposed to hydrogen gas, the exposed part of the sensing film 5 is made into a semiconductor, and the current flowing between the common electrode 1 and the electrode 2 and between the common electrode 1 and the electrode 3 Will increase. Based on this increased current value, it is possible to detect the position where the detection film 5 is semiconductive and the concentration of hydrogen gas. Therefore, if the bias current is greater than the amount of current that increases due to the detection film 5 detecting hydrogen gas, the sensitivity and resolution, so-called hydrogen gas detection, are affected by changes in the bias current. The SZN ratio of the sensor decreases. Therefore, it is desirable to set the joint resistance to a value higher than the interelectrode resistance.
  • the value of the junction resistance should be set at least about 1 times or more than the value of the interelectrode resistance, preferably 10 times or more, more preferably 100 times or more.
  • the contact area between the common electrode 1 and the detection film 5 is decreased, or the contact area between the resistance layer 4 and the detection film 5 It is necessary to increase the thickness of the sensing film 5 or the force to decrease Further, the interelectrode resistance between the electrode 2 and the electrode 3 can be reduced by increasing the thickness of the resistance layer 4.
  • the hydrogen gas detection sensor according to the present invention in which the hydrogen gas detection region is one-dimensional, In addition to the configurations shown in FIGS. 1 and 2, there is a hydrogen gas detection sensor having the following configuration. In the following description, components having the same function and configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 3 is a cross-sectional view showing another configuration of the hydrogen gas detection sensor of the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region.
  • the hydrogen gas detection sensor shown in FIG. 3 is configured by laminating a common electrode 1, a substantially strip-shaped detection film 5, and a substantially strip-shaped resistance layer 4 in this order on a substrate 6. Electrodes 2 and 3 are provided on both ends of the resistance layer 4.
  • the uppermost resistive layer 4 shown in FIG. 3 has a lattice shape (see (a) in FIG. 2), similar to the shape of the common electrode 1 shown in FIGS. 2 (a) to (c). It has a shape with holes (see (b) in Fig. 2) or a line (see (c) in Fig. 2). Therefore, the detection film 5 under the resistance layer 4 has a structure that can be exposed to the gas to be detected.
  • the detection range is between electrodes 2 and 3 indicated by length L in FIG.
  • the uppermost resistive layer 4 has a gap 99 as in the shape of the common electrode 1 shown in (a) to (c) of FIG. Even if it has a structure, it is sufficient that the resistance layer 4 is made of a material having hydrogen gas permeability.
  • the resistance layer 4 may be a thin film such as tantalum nitride (TaN) or acid-chromium (CrO) formed at a low density.
  • FIG. 4 is a cross-sectional view showing still another configuration of the hydrogen gas detection sensor of the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region.
  • the hydrogen gas detection sensor shown in FIG. 4 has a configuration in which the base material 6 is not specially provided. That is, the common electrode 1 has a function as a base material.
  • FIG. 5 is a cross-sectional view taken along the line V-V in the hydrogen gas detection sensor of FIG.
  • the sintering temperature of detection film 5 with high conductivity such as copper (Cu), stainless steel! ⁇ ), Aluminum (A1), etc. is about 500 ° C.
  • the common electrode 1 which is a substantially strip-shaped metal foil that is sufficiently stable, is used as a base material.
  • a substantially strip-shaped detection film 5 and a substantially strip-shaped resistance layer 4 are sequentially laminated. Electrodes 2 and 3 are provided on both ends of the resistance layer 4.
  • the resistance layer 4 has the same shape as that of the common electrode 1 shown in (a), (b) or (c) of FIG.
  • the resistance layer 4 is formed using a material having hydrogen gas permeability.
  • the hydrogen gas detection sensor shown in FIG. 4 has the shape of the gap 99 shown in (c) of FIG. 2, as shown in the sectional view of FIG. That is, the hydrogen gas detection sensor in FIG. 4 has a configuration in which a linear detection film 5 is exposed on both sides of the resistance layer 4, and the resistance layer 4 is formed in a one-dimensional gas detection region in the center of the detection film 5. It is formed in a band shape along.
  • the hydrogen gas sensor configured in this way has a thickness of 0.05m as the common electrode 1! By using a metal foil with a foldable characteristic of about 2 mm, it is possible to realize a flexible shape characteristic that can be bent.
  • FIG. 6 is a perspective view showing a hydrogen gas detection sensor having still another configuration according to the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region.
  • the hydrogen gas detection sensor shown in FIG. 6 has a structure in which a common electrode 1, a detection film 5, and a resistance layer 4 are formed on the surface on the detection surface side of a long and narrow strip-shaped base material 6.
  • a substantially strip-shaped common electrode 1 and a substantially strip-shaped resistance layer 4 are formed in parallel with each other at a predetermined interval on one surface (detection surface side) of the substrate 6. Yes.
  • the detection film 5 is formed on the base 6 between the common electrode 1 and the resistance layer 4, and the detection film 5 and the common electrode 1 are in contact with each other along the longitudinal direction, and the detection film 5 and the resistance layer are in contact with each other. 4 is configured to contact along the longitudinal direction.
  • the electrode 2 and the electrode 3 are formed at both ends of the resistance layer 4.
  • the sensing film 5 does not need to be configured in the shape shown in (a) to (c) of FIG. It is a configuration that is exposed.
  • the material of the base material 6 is electrically insulative and stable at a heating temperature of 500 ° C. when the detection film 5 is sintered. Any state can be used.
  • Concrete material of base material 6 is stone In addition to UK (SiO 2), silicon (SiO 2) and aluminum nitride (A
  • Insulating materials such as IN
  • alumina A120
  • greaves material alumina
  • a heat-resistant phenolic material such as Timold made by Nikko Kasei Co., Ltd.
  • a three-dimensional shape other than a plane by using an injection molding method.
  • a polyimide material such as Kapton (registered trademark) of Toray DuPont Co., Ltd.
  • Polyimide-based materials have a maximum heat-resistant temperature of about 450 ° C, but can be used by performing the sintering temperature of the detection film 5 at about 450 ° C.
  • a thin film resistor formed by vapor deposition or the like, a thick film resistor formed by sintering after printing, or the like can be used.
  • a thin film resistor formed by vapor deposition or the like is desirable because it is easy to form the detection film 5 having a uniform film thickness on the resistance layer 4 where the surface roughness of the resistance layer is small.
  • Thin film resistor materials include single metals such as tantalum (Ta), nickel chrome (NiCr), nickel chrome 'silicon alloy (NiCr—Si), tantalum' silicon alloy (Ta—Si), niobium 'silicon alloy. Alloy thin films such as (Nb—Si), cermet thin films such as chrome 'acid silicon (Cr-SiO 2), tantalum' silicon oxide (Ta—SiO 2), ruthenium oxide
  • RuO 2 chromium oxide (Cr 2 O 3), tantalum nitride (TaN), or the like can be used.
  • Electrode 2 serving as the first electrode and electrode 3 serving as the second electrode are materials having high conductivity and are stable at about 500 ° C, which is the sintering temperature of the detection film 5. Can be used. It is more desirable that the electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected. Electrodes 2 and 3 are made of highly conductive materials such as magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), and nickel (Ni). Metal such as silver (Ag) or carbon (C) can be used. In particular, the materials for electrodes 2 and 3 are preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
  • Mg magnesium
  • Al aluminum
  • Ti titanium
  • V vanadium
  • Cr chromium
  • Fe iron
  • Ni nickel
  • Metal such as silver (Ag) or carbon (C) can be used.
  • any substance can be used as long as it has a property of changing electrical resistance when it comes into contact with the gas to be detected.
  • tin oxide (SnO) molybdenum trioxide
  • the common electrode 1 is a highly conductive material, and it is more desirable that the electrode itself be inert to the hydrogen gas in the gas to be detected.
  • Common electrode 1 materials are magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), which are highly conductive materials.
  • Metal such as silver (Ag), carbon (C), etc. can be used.
  • the material for the common electrode 1 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
  • tungsten trioxide supported by platinum dispersion at the position indicated by the arrow A! To do.
  • This platinum-dispersed supported tungsten trioxide is dispersed on platinum (Pt) fine particles having a particle size of about lnm to lOnm as a catalyst and dispersed on tungsten trioxide (WO) particles having a particle size of about lOnm to lOOnm. It has a supported structure.
  • Hydrogen gas is platinum (Pt) fine particles having a particle size of about lnm to lOnm as a catalyst and dispersed on tungsten trioxide (WO) particles having a particle size of about lOnm to lOOnm. It has a supported structure.
  • Hydrogen gas is platinum (Pt) fine
  • the current generated from the noise power source 27 connected to the common electrode 1 flows intensively through the detection unit 8 made semiconductor.
  • the current flowing through the detection unit 8 flows from the detection unit 8 through the resistance layer 4 and is divided into currents 2 and 3.
  • the current flowing through the resistance layer 4 is divided into currents in inverse proportion to the ratio of the distances Xa and Xb to the electrode 2 and the electrode 3, and the output of the electrode 2 and the electrode 3 is output.
  • FIG. 7 is a block diagram illustrating a configuration of the computing unit 28 to which a signal from the hydrogen gas detection sensor 25 of the first embodiment is input.
  • the gas detection device of the first embodiment includes a hydrogen gas detection sensor 25, a bias power source 27, a computing unit 28, and a current limiting resistor 29.
  • the exposed portion of the detection film 5 that has detected the hydrogen gas is the detection unit 8 that is made into a semiconductor.
  • the resistance change of the detection unit 8 is converted into a current value using the resistance layer 4 and input to the calculator 28.
  • the current value is converted into a voltage value, and the arithmetic processing is performed. The operation of the arithmetic unit 28 as the conversion means will be described below.
  • the common electrode 1 of the hydrogen gas detection sensor 25 is connected to a bias power source 27 via a current limiting resistor 29.
  • the bias current Ilb the current flowing between the common electrode 1 and the electrode 2 when the hydrogen gas detection sensor 25 is not detecting hydrogen gas
  • the current flowing between electrode 1 and electrode 3 is referred to as bias current I2b.
  • These bias currents lib and I2b are input to the calculator 28 from the electrodes 2 and 3, respectively, and are converted into voltage signals in a current-voltage conversion circuit including the operational amplifier 14a and the operational amplifier 14b.
  • the converted voltage signals are sent to analog-digital conversion elements 15a and 15b, which are converted into digital signals.
  • each converted digital signal is sent to a divider 16 and an adder 17.
  • the divider 16 and the adder 17 hold each digital signal in a state where no hydrogen gas is detected as a value corresponding to the bias current lib, I2b.
  • the current flowing between the common electrode 1 and the electrode 2 when the detection film 25 detects hydrogen gas is II, and the current flowing between the common electrode 1 and the electrode 3 is 12.
  • the currents II and 12 are input to the calculator 28 from the electrodes 2 and 3, respectively, and converted into voltage signals in the current-voltage conversion circuit described above.
  • the converted voltage signal is sent to the analog-digital conversion elements 15a and 15b. And is sent to a divider 16 and an adder 17.
  • the digital signals corresponding to the held bias currents Ila and I2b are subtracted from the digital signal forces corresponding to the currents II and 12 when hydrogen gas is detected, respectively.
  • the divider 16 and the adder 17 output the result of the division and addition operation processing to the digital / analog conversion elements 18a and 18b as digital electric signals.
  • the digital-to-analog conversion element 18a outputs a calculation result E2 by division with an analog electric signal.
  • the digital-to-analog conversion element 18b outputs a calculation result E1 by addition with an analog electric signal.
  • E2 k4 X (12— I2b) / ⁇ (I1— lib) + (12— I2b) ⁇
  • the calculation process is not limited to the above formulas (1) and (2), and calculation is also performed using other formulas. be able to.
  • the expression contains a term that represents the ratio of (II 1 lib) and (12—I2b), it will be detected. It can be used as an arithmetic expression for calculating the position X.
  • An example of a calculation method showing the specific hydrogen gas detection position X is described below.
  • the relationship between the detection position X and the calculation result E shown in Equation (3) is not a relationship represented by a straight line when shown on the vertical and horizontal graphs.
  • Equation (2), Equation (3), and Equation (4) when the detection film 5 is in contact with hydrogen gas, that is, when hydrogen gas is detected, current II and 12 force bias current lib and 12 If the value is large enough for b, it can be calculated ignoring the noise currents lib and I2b. In that case, Equation (2), Equation (3), and Equation (4) are as shown in Equation (5), Equation (6), and Equation (7) below.
  • the hydrogen gas detection position X of the hydrogen gas detection sensor 25 of the first embodiment in which the hydrogen gas detection region is one-dimensional is calculated by the equation (2), the force equation (7). Can be obtained.
  • the bias power source 27 used in the hydrogen gas detection sensor 25 of Example 1 has been described as a DC power source, the bias power source in the gas detection sensor of the present invention is not limited to a DC power source. 0. Also used in an AC power source of about IKHz to ⁇ be able to. In that case, It is necessary to add a rectification function to the current-voltage converter of the arithmetic unit 28.
  • the arithmetic unit 28 in the first embodiment converts the output current from the hydrogen gas detection sensor 25 into a digital signal and performs arithmetic processing. It is also possible to do.
  • the hydrogen gas detection sensor with a one-dimensional hydrogen gas detection region used in this experiment had a detection range L of 100 mm in length and 3 mm in width.
  • the substrate 6 was made of quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm. Electrode 2 and electrode 3 are gold (Au)
  • the resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion of 102 mm and a thickness of 10 m, except for a region having a width of 1 mm from both edges of the substrate 6.
  • TaN tantalum nitride
  • a detection film 5 made of platinum dispersion-supported tungsten trioxide (Pt—WO 3) was formed.
  • a sol-gel method was used as a forming method. Specifically, first, sodium tungstate hydrate (Na WO 2 ⁇ ⁇ : manufactured by Junsei Chemical Co., Ltd.) 41. 2 g was placed in a volumetric flask,
  • cation exchange resin Amberlite IR120B Na: manufactured by Organo Co., Ltd.
  • a sodium tungstate (Na 2 WO) aqueous solution was passed through the column tower.
  • a common electrode 1 made of gold (Au) was formed using a sputter method and a metal mask.
  • the common electrode 1 is made of gold (Au) having a linear shape as shown in FIG. 2 (c) and has a width of 0.3 mm. Only formed. Further, as shown in FIG. 2 (c), lands 81, 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface of the detection film 5.
  • the thickness of the common electrode 1 was controlled by controlling the sputtering time and sputtering power, and was 2 m in this experiment.
  • junction resistances of common electrode 1 and electrode 2 and common electrode 1 and electrode 3 were measured. Each junction resistance was about 80 k ⁇ . The interelectrode resistance between electrode 2 and electrode 3 was about 75 ⁇ .
  • FIG. 8 shows the case where the distance to the detection film 5 of the hydrogen gas detection sensor 25 is 1 mm and the volume concentration of hydrogen gas of the detected gas is 0.1% and 1%.
  • 4 is a graph showing the hydrogen gas detection position X, which is the position of the nozzle gas outlet, and the calculation result E2 shown in the above equation (2).
  • the horizontal axis is the hydrogen gas detection position X [mm]
  • the vertical axis is the calculation result E2.
  • the solid line 33 indicates the case where the volume concentration of hydrogen gas is 0.1%
  • the broken line 34 indicates the case where the volume concentration of hydrogen gas is 1.0%.
  • the constant k4 in equation (2) is calculated as 1.
  • the hydrogen gas detection position X on the horizontal axis is the value of the detection position X shown in Fig. 1 and was measured from 20 mm to 80 mm.
  • the calculation result E2 depends on the volume concentration of hydrogen gas to be detected.
  • the hydrogen gas detection position is shown, and it was confirmed that the hydrogen gas detection area 25 is a one-dimensional hydrogen gas detection sensor 25 and a gas detection device.
  • FIG. 9 shows the calculation result E1 according to the above equation (1) when the volume concentration of hydrogen gas in the gas to be detected is changed from 0% force to 1%.
  • the horizontal axis indicates the hydrogen gas volume concentration [%]
  • the vertical axis indicates the calculation result E1 by addition.
  • the solid line 35 shows the case where the distance from the gas outlet to the detection film 5 is lmm
  • the broken line 36 shows the case where the distance from the gas outlet to the detection film 5 is 3 mm.
  • the constant k20 in the equation (1) is calculated as 1 ⁇ 10 2 (V / A).
  • Example 2 a hydrogen gas detection sensor of Example 2 according to the present invention will be described with reference to FIGS. 10 and 11.
  • components having the same configuration and function as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 10 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor according to the second embodiment of the present invention, and shows an example in which hydrogen gas 26 is detected at the position indicated by arrow A.
  • the hydrogen gas detection sensor of Example 2 has a structure in which a through hole 23 penetrating from the detection film 5 to the substrate 6 is formed in the hydrogen gas detection sensor of Example 1 described above.
  • Have The through-hole 23 has a function of allowing the gas to be detected including the hydrogen gas 26 in contact with the detection film 5 to pass from the detection film 5 through the base material 6 to the outside of the hydrogen gas detection sensor. That is, the through hole 23 This is to prevent the gas to be detected from staying on the detection film 5 and diffusing.
  • the hydrogen gas 26 diffuses on the detection film 5 after contacting the detection film 5, and the contact range with the detection film 5 is expanded.
  • the hydrogen gas 26 comes into contact with the detection film 5 and is then released from the base material 6 through the through hole 23. Therefore, the hydrogen gas is difficult to diffuse on the detection film.
  • the contact area with the membrane 5 is unlikely to be widened. If the hydrogen gas 26 leaks upward by installing a hydrogen gas detection sensor so that the detection surface of the detection film 5 faces downward, the specific gravity of the hydrogen gas is very light. Most of the hydrogen gas 26 passed through the through-hole 23 is released above the hydrogen gas detection sensor, and most of the hydrogen gas does not diffuse on the detection film 5.
  • FIG. 11 is a plan view showing a detection surface of the hydrogen gas detection sensor according to the second embodiment.
  • the through hole 23 is formed in a portion where the detection film 5 is exposed.
  • the common electrode 1 in the hydrogen gas detection sensor of Example 2 has the shape shown in FIG. 2C, but may be formed in other shapes.
  • the through hole 23 can be provided in a portion other than the detection film 5, for example, the common electrode 1 or the land 81.
  • FIGS. FIG. 12 and FIG. 13 show the effect of preventing the hydrogen gas from staying with the presence or absence of the through hole 23 in the hydrogen gas detection sensor.
  • the hydrogen gas detection sensor with a one-dimensional hydrogen gas detection area used in this experiment had a detection length L of 100 mm and a width of 3 mm.
  • the substrate 6 was made of quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm. Electrode 2
  • the electrode 3 was formed by depositing gold (Au) with a thickness of 0.5 m on 2 mm on both sides of the substrate 6 by sputtering.
  • the resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion with a thickness of 102 ⁇ m and a thickness of 10 ⁇ m except for a region having a width of 1 mm from both edges of the substrate 6.
  • the detection film 5 in Example 2 is the same as the method described in the experiment of Example 1 described above. Formed by the method. That is, the detection film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide (Pt—WO) was about 1 ⁇ m after catalyst sintering.
  • Pt—WO platinum dispersion-supported tungsten trioxide
  • the common electrode 1 in Example 2 was formed by the same method as described in the experiment of Example 1 described above. That is, the common electrode 1 was formed of gold (Au) in the shape shown in FIG. 2 (c), with a width of 0.3 mm, and only one in the longitudinal direction at the center of the detection surface. In addition, as shown in FIG. 2 (c), lands 81 and 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface. After film formation, the resistance value between the electrodes 2 and 3 was about 75 ⁇ . The junction resistances of common electrode 1 and electrode 2 and common electrode 1 and electrode 3 were about 80 k ⁇ , respectively.
  • the bias power supply is connected to the common electrode 1 with a DC voltage of 5V and a current limiting resistor of 10K ⁇ .
  • the bias current from electrode 2 and electrode 3 was about 60 A.
  • the through-holes 23 have a diameter of 0.1 mm, and are formed in the exposed detection film 5 at intervals of 0.5 mm. As shown in FIG. 11, the through holes 23 are formed in four rows arranged along the longitudinal direction of the detection surface.
  • a circular nozzle 11 with a gas outlet (Fig. 10) with a diameter of lmm was used at the location where the gas to be detected including hydrogen gas was generated, and the jet direction was upward.
  • the hydrogen gas detection sensor was installed so that the detection surface was placed at a distance of lmm above the gas outlet.
  • FIG. 12 is a graph for explaining the effect of the through hole 23 in the hydrogen gas detection sensor of Example 2 shown in FIG. 6 and FIG.
  • the horizontal axis is the hydrogen gas detection position X [mm]
  • the vertical axis is the calculation result E2.
  • a solid line 38 indicates a case where the through hole 23 is not provided
  • a broken line 37 indicates a case where the through hole 23 is provided.
  • the hydrogen gas detection position X on the horizontal axis is the value indicated as the detection position X in FIG. In this experiment, the detection position X was changed from 5mm to 95mm. In this experiment, the volume concentration of hydrogen gas is 1%.
  • FIG. 13 is a graph showing the hydrogen gas volume concentration [%] on the horizontal axis and the calculation result E1 shown in the above equation (1) on the vertical axis.
  • a solid line 42 indicates a case where there is no through hole 23, and a broken line 41 indicates a case where the through hole 23 is present.
  • the calculated result E1 is larger for the volume concentration of hydrogen gas than when the through hole 23 is present (dashed line 41). Yes. This seems to be because when the through-hole 23 is present, the hydrogen gas detection range has become smaller even if the concentration of the hydrogen gas to be ejected is the same. Further, in any case where there is the through hole 23 and no through hole 23, the calculation result E1 increases as the concentration of the hydrogen gas to be ejected increases.
  • Example 3 a hydrogen gas detection sensor of Example 3 according to the present invention will be described with reference to FIGS. 14 to 16.
  • FIG. 14 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor of Example 3.
  • FIG. 15 and FIG. 16 are graphs showing experimental results in the configuration of Example 3.
  • FIG. in the description of the third embodiment components having the same functions and configurations as those of the first embodiment and the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the hydrogen gas detection sensor of Example 3 has a structure in which a heater 39 is attached as a heating means to the hydrogen gas detection sensor of Example 1 described above and covered with a heat insulating material 32.
  • the hydrogen gas detection sensor of Example 3 can maintain the temperature of the detection film at a predetermined temperature by providing a heating means, which improves the response speed to hydrogen gas and affects the humidity of the gas to be detected. Can be eliminated.
  • the basic structure of the detection part of the hydrogen gas detection sensor of Example 3 is the same as that of the hydrogen gas detection sensor of Example 1 shown in FIG.
  • the heat insulating material 32 having hydrogen gas permeability is provided around the hydrogen gas detection sensor of Example 1. Further, the heater 39 is attached to the back surface of the substrate 6.
  • the heat insulating material 32 that is permeable to hydrogen gas is highly heat-resistant and is formed of a foaming resin such as foamed polyethylene.
  • the heat insulating material 32 has a thickness of about 1 mm from the viewpoint of heat insulation, and has a number of holes of about 0.2 mm from the viewpoint of ensuring hydrogen gas permeability. Therefore, the gas to be detected generated outside the heat insulating material 32 passes through the hole and instantaneously reaches the internal hydrogen gas detection sensor.
  • the heater 39 that can be heated was formed by printing a platinum or tungsten paste and then sintering it.
  • the hydrogen gas detection sensor of Example 3 is shown in FIG. 10, in addition to the configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of Example 1 shown in FIG. A configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of the second embodiment having the through hole 23 may be used.
  • the temperature adjustment in the hydrogen gas detection sensor of Example 3 was performed by measuring the temperature using the current and voltage values of the heater 39 in advance and the thermocouple attached to the detection film 5 and preparing a calibration curve. It was.
  • FIG. 15 is a graph showing the experimental results regarding the change in the surface temperature of the detection film 5 and the response time.
  • the horizontal axis represents the surface temperature [° C] of the sensing film 5
  • the vertical axis represents the response time [second].
  • FIG. 16 is a graph showing the surface temperature of the detection film 5 and the calculation result E 1 shown in the above equation (1).
  • the hydrogen gas detection sensor used in this experiment had a one-dimensional hydrogen gas detection region, a detection length L as a detection range of 100 mm, and a width of 3 mm.
  • quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm was used.
  • the electrode 3 was formed by depositing gold (Au) with a thickness of 0.5 m on 2 mm on both sides of the substrate 6 by sputtering.
  • the resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion with a thickness of 102 ⁇ m and a thickness of 10 ⁇ m except for a region having a width of 1 mm from both edges of the substrate 6.
  • the resistance value of the electrode 2 and electrode 3 interelectrode resistance measured after the film formation was about 75 ⁇ .
  • the junction resistances between the common electrode 1 and the electrode 2 and between the common electrode 1 and the electrode 3 were about 80 k ⁇ , respectively.
  • the detection film 5 was formed such that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 ⁇ m after catalyst sintering.
  • the common electrode 1 was formed by the same method as described in the experiment of Example 1 described above. That is, as for the common electrode 1, only one gold (Au) was formed in the shape shown in FIG. 2 (c) with a width of 0.3 mm along the longitudinal direction at the center of the detection surface. Also, as shown in FIG. 2 (c), lands 81, 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface of the detection film 5. After film formation, the resistance value between the electrodes 2 and 3 was about 75 ⁇ .
  • the sensing film 5 used in this experiment has a structure having a through hole 23 as shown in FIG.
  • the through-hole 23 has a diameter of 0.1 mm, and four rows arranged along the longitudinal direction at intervals of 0.5 mm are formed in portions other than the common electrode 1, that is, the exposed portion of the detection film 5. .
  • the current limiting resistor 29 is set to 10K.
  • the bias current was measured with an ammeter with ⁇ and a noise source 27 of DC 5V.
  • the noise current was about 50 ⁇ for both the bias current between common electrode 1 and electrode 2 and the bias current between common electrode 1 and electrode 3.
  • the gas outlet from which the gas to be detected including hydrogen gas, was placed upward, and a circular nozzle with a diameter of lmm was used.
  • the hydrogen gas detection sensor was placed 3 mm above the gas outlet so that the detection surface of the detection film 5 faced downward.
  • FIG. 15 is a graph showing the relationship between the surface temperature of the detection film 5 and the response time showing the results of this experiment.
  • the response time is the time from when the gas to be detected including hydrogen gas is ejected from the gas outlet until the value of the calculation result E1 reaches 90% of the final stable value. Response time is assumed.
  • the horizontal axis is the surface temperature [° C.] of the detection film 5
  • the vertical axis is a graph showing the calculation result E1 shown in the above equation (1).
  • the solid line 69 indicates the case where the relative humidity of the detected gas is 80% RH
  • the broken line 68 indicates the case where the relative humidity of the detected gas is 20% RH.
  • the response time becomes logarithmically faster as the surface temperature of the detection film 5 increases.
  • Response when the surface temperature of the sensing film 5 is 60 ° C The time was about 10 seconds, and when the surface temperature of the detection film 5 was about 80 ° C or higher, it was about 5 seconds and was almost constant.
  • the output of the calculation result E 1 is the output when the relative humidity of the detected gas is 20% RH and 80% RH. to differ greatly.
  • the surface temperature of the detection film 5 exceeds 60 ° C, it is almost the same when the relative humidity of the gas to be detected is 20% RH and 80% RH. That is, from the experimental results shown in Fig. 15 and Fig. 16, when the surface temperature of the detection film 5 is 60 ° C or higher, the humidity dependence due to the detected gas is almost not seen, and the response time is 10 seconds or less It becomes. Furthermore, when the surface temperature of the detection film 5 exceeds 80 ° C, the response time becomes 5 seconds or less.
  • the inventors set the temperature of the detection film 5 to about 200 ° C, 300 ° C, and 400 ° C, and the hydrocarbon system containing hydrogen atoms such as methane (CH 2), ethane (CH 2), and propane (CH 2).
  • Embodiment 4 of the present invention a hydrogen gas detection sensor and a gas detection device according to Embodiment 4 of the present invention will be described with reference to FIGS.
  • the same reference numerals are given to the components having the same configurations and functions as those of the above-described embodiments, and the description thereof is omitted.
  • the hydrogen gas detection region is two-dimensional, and the gas detection portion of the detection film is planar.
  • the direction of current division is a two-dimensional direction, which is an electrode force electrode for detecting current.
  • FIG. 17 is an exploded perspective view showing a schematic configuration of the hydrogen gas detection sensor according to the fourth embodiment of the present invention, and shows an example in which hydrogen gas 26 is detected at a position indicated by an arrow B.
  • a hydrogen gas detection sensor 40 having a two-dimensional hydrogen gas detection region is a thick film of tantalum nitride (TaN) formed on a substantially rectangular electrically insulating quartz (SiO 2) base material 6. Consist of
  • a substantially rectangular resistance layer 4 is formed.
  • An electrode 47, an electrode 48, an electrode 49, and an electrode 50 made of gold (Au) are provided at the four ends of the substantially rectangular resistance layer 4.
  • electrode 47, the electrode 48, the electrode 49, and the electrode 50 are connected to a lead wire 24 made of copper (Cu), and are connected to a computing unit 28 shown in FIG.
  • the resistance layer 4 when hydrogen gas is detected, the state changes to an insulating state force semiconductor state, and the electric resistance value decreases, and is substantially formed of platinum dispersion supported tungsten trioxide (Pt-W03).
  • a rectangular detection film 5 is formed so as to cover the electrode 47, the electrode 48, the electrode 49, the electrode 50, and the resistance layer 4.
  • a common electrode 1 made of gold (Au) is provided on the detection film 5.
  • the common electrode 1 is connected to a lead wire 24 formed of copper (Cu), and is connected to a bias power source 27 through a current limiting resistor 29.
  • the hydrogen gas detection sensor 40 of Example 4 detects a position where the detection surface and the hydrogen gas are in contact with each other on the detection surface of the detection film 5 surrounded by the electrode 47, the electrode 48, the electrode 49, and the electrode 50. Is. On the sensing membrane 5, the area surrounded by the four electrodes 47, 48, 49 and 50 is the two-dimensional hydrogen gas sensing area. In this two-dimensional hydrogen gas detection area, the opposing direction of electrode 47 and electrode 48 is the X direction, and the length of the detection range in the X direction is Lx (see Fig. 17). In the two-dimensional hydrogen gas detection region, the opposing direction of the electrode 49 and the electrode 50 is the Y direction, and the length of the detection range in the Y direction is Ly (see FIG. 17).
  • FIG. 18 is a plan view showing the shape of the common electrode 1, where (a) shows the common electrode 1 having a lattice-like mesh, and (b) shows the common electrode 1 having a plurality of circular gaps 99. ing.
  • the common electrode 1 in Example 4 is formed in the upper part of the detection range surrounded by the electrode 47, the electrode 48, the electrode 49, and the electrode 50, and the gas to be detected with respect to the detection film 5 in the detection range. Is a shape that can be exposed. Further, in the common electrode 1, it is desirable that the configuration in which the detection film 5 can be exposed to the gas to be detected is distributed almost uniformly throughout the entire detection range.
  • the detection film 5 is made of the gas to be detected by the common electrode 1 having the lattice-like mesh shown in (a) or by the common electrode 1 having the circular gap 99 shown in (b).
  • the structure that can be exposed by hydrogen gas is shown, but the gaps with shapes other than those shown in Figure 18 are common.
  • the common electrode 1 shown in FIG. 18 (a) is formed in a grid-like mesh so that lands 81 formed around the common electrode 1 are electrically connected. Accordingly, the void 99 other than the mesh is a portion where the detection film 5 can be exposed to the gas to be detected. Further, the shape of the mesh of the common electrode 1 is almost the same within the detection range. Furthermore, it is desirable that the mesh interval in the detection direction of the common electrode 1 (up / down / left / right direction in FIG. 18) is sufficiently shorter than the length of the detection direction when the hydrogen gas in the detection gas contacts the detection film 5. More preferably, the distance between the meshes in the detection direction of the common electrode 1 is sufficiently shorter than the length from the hydrogen gas ejection point to the detection film 5.
  • the common electrode 1 shown in FIG. 18 (b) is electrically connected to the lands 81 formed around the common electrode 1, and a large number of the detection film 5 can be exposed to the gas to be detected.
  • a hole which is a circular gap 99 is formed. Therefore, the land 81 is electrically connected by a portion other than the hole of the common electrode 1.
  • the hole portion which is the void 99 is a portion where the detection film 5 can be exposed to the gas to be detected.
  • the shape of the hole is almost the same in the detection range, and the formation interval in the detection direction of the hole (the vertical and horizontal directions in FIG. 18) is almost the same length in the detection range. It is desirable that the hole formation interval be sufficiently shorter than the length in the detection direction in which the hydrogen gas in the detection gas contacts the detection film 5. More preferably, it is preferably sufficiently shorter than the length to the hydrogen gas ejection point force detection film 5.
  • the common electrode 1 has a permeability to hydrogen gas in addition to the shape of the common electrode 1 shown in FIGS. 18 (a) and (b). It is also possible to use metal materials with a thickness of 1 ⁇ m or less, such as gold (Au), silver (Ag), and copper (Cu), or porous conductors such as sintered materials. It is.
  • FIGS. 19 and 20 are cross-sectional views showing the laminated structure of the respective hydrogen gas detection sensors. 19 and 20, (a) is a cross-sectional view taken along a line parallel to the X direction (see Fig. 17) of the hydrogen gas detection sensor in the two-dimensional hydrogen gas detection region, and (b) is Y It is sectional drawing by a line parallel to a direction (refer FIG. 17).
  • a common electrode 1 is formed on a substantially rectangular base material 6, and a substantially rectangular detection film 5 and a substantially rectangular resistance layer 4 are sequentially laminated.
  • the electrode 47, the electrode 48, the electrode 49, and the electrode 50 are formed around the four sides of the resistance layer 4 having the above structure.
  • the resistance layer 4 has the same shape as the common electrode 1 shown in FIG. 18 (a) or (b), so that the detection film 5 can be reliably exposed to the gas to be detected. It becomes composition.
  • the resistance layer 4 does not have the shape of the common electrode 1 shown in FIG. 18 (a) or (b)
  • the tantalum nitride (TaN) formed at a low density so as to have hydrogen gas permeability. It is also possible to use thin films such as metal oxides (CrO) and sintered porous materials such as metal oxides.
  • the detection range of the hydrogen gas detection sensor shown in FIG. 19 is between the electrode 47 and the electrode 48 and between the electrode 49 and the electrode 50 indicated by the length LX in the X direction and the length Ly in the Y direction. .
  • the hydrogen gas detection sensor shown in FIG. 20 has a configuration in which a base material is not provided as a special member.
  • the hydrogen gas sensor in Fig. 20 is sufficiently stable even at about 500 ° C, which is the sintering temperature of the sensing film 5 with high conductivity such as copper (Cu), stainless steel (SUS), and aluminum (A1).
  • the common electrode 1 formed of a substantially strip-shaped metal foil in a state is used as a base material.
  • a substantially rectangular detection film 5 and a substantially rectangular resistance layer 4 are sequentially laminated.
  • An electrode 47, an electrode 48, an electrode 49, and an electrode 50 are formed around the four sides of the resistance layer 4.
  • the resistance layer 4 has the same shape as that of the common electrode 1 shown in FIG. 18 (a) or (b). As a result, the detection film 5 is surely exposed to the gas to be detected. It can be configured. Further, when the resistance layer 4 does not have the shape of the common electrode 1 shown in FIG. 18 (a) or (b), the tantalum nitride (TaN) formed so as to have hydrogen gas permeability. ) And chromium oxide (CrO) thin films, metal oxides and other porous materials sintered
  • interelectrode resistance the resistance value between electrode 47 and electrode 48
  • interelectrode resistance the resistance value between electrode 49 and electrode 50
  • detection film 5 detects hydrogen gas.
  • junction resistance the resistance value between electrodes 47, 48, 49 and 50 with respect to the common electrode 1
  • the detection film 5 detects hydrogen gas, and in this state, the common electrode 1 and the electrode 47, the common electrode 1 and the electrode 48, the common electrode 1 and the electrode 49, and the common electrode A current that is inversely proportional to the combined resistance of the current limiting resistance and the junction resistance (hereinafter referred to as a bias current) flows between 1 and the electrode 50.
  • the detection film 5 detects (contacts) hydrogen gas
  • a part of the detection film 5 is converted into a semiconductor, and common electrode 1 and electrode 47, common electrode 1 and electrode 48, common electrode 1 and electrode 49, and common electrode 1 and electrode Current flowing between 50 and 50 increases.
  • the bias current is larger than the amount of current that increases when the detection film 5 detects hydrogen gas, and the sensitivity and resolution, so-called SZN ratio, are affected by changes in the bias current. Therefore, it is desirable to set the junction resistance to a value higher than the interelectrode resistance.
  • the value of the junction resistance is preferably about 1 times or more, preferably 10 times or more, more preferably 100 times or more with respect to the value of the resistance between electrodes.
  • the inter-electrode resistance increases while the junction resistance decreases. Therefore, it is desirable to adjust the shape and film thickness of the common electrode 1, the resistance layer 4 and the sensing film 5 described below to improve the ratio of the junction resistance to the resistance between the electrodes.
  • junction resistance is increased by reducing the area where the common electrode 1 and the sensing film 5 are joined, reducing the area where the resistive layer 4 and the sensing film 5 are joined, or increasing the film thickness of the sensing film 5. Can be made.
  • the interelectrode resistance can be reduced by increasing the thickness of the resistance layer 4.
  • the substrate 6 is an electrically insulating material, and can be used as long as it is in a stable state at a heating temperature of 500 ° C. when the detection film 5 is sintered.
  • the base material 6 of Example 4 is quartz (SiO 2). However, in addition to quartz (SiO 2), silicon (SiO 2) and nitride with surface insulation treatment were used.
  • Aluminum dioxide (A1N), alumina (A120), etc. can be used.
  • a heat-resistant phenolic material such as Timold made by Nikko Kasei Co., Ltd.
  • a three-dimensional shape other than a flat surface by using an injection molding method.
  • a polyimide-based material such as Kapton (registered trademark) manufactured by Toray DuPont can be used.
  • Polyimide-based materials can be used by performing a sintering temperature of the force detection film 5 having a maximum heat resistance of about 450 ° C at about 450 ° C.
  • a thin film resistor formed by vapor deposition or the like, a thick film resistor formed by sintering after printing, or the like can be used.
  • a thin film resistor formed by vapor deposition or the like is desirable because it is easy to form the detection film 5 having a uniform film thickness on the resistance layer 4 where the surface roughness of the resistance layer is small.
  • Thin film resistor materials include single metal such as tantalum (Ta), nickel chrome (NiCr), nickel chrome 'silicon alloy (NiCr—Si), tantalum' silicon alloy (Ta—Si), niobium 'silicon alloy. Alloy thin films such as (Nb—Si), cermet thin films such as chrome 'acid silicon (Cr-SiO 2), tantalum' silicon oxide (Ta—SiO 2), ruthenium oxide
  • RuO 2 chromium oxide (Cr 2 O 3), tantalum nitride (TaN), or the like can be used.
  • the electrode 47, the electrode 48, the electrode 49, and the electrode 50 are materials having high conductivity, and can be used as long as they are stable at about 500 ° C. that is the sintering temperature of the detection film 5. It is more desirable that the electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected.
  • the material of electrodes 47, 48, 49 and 50 is magnesium, which is a highly conductive material.
  • the material of the electrodes 47, 48, 49 and 50 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
  • any substance can be used as long as it has a property of changing resistance in electrical characteristics when it comes into contact with hydrogen gas.
  • tin oxide (SnO) tin oxide
  • Molybdenum trioxide MnO
  • tungsten trioxide WO
  • titanium dioxide TiO
  • Iridium oxide (Ir (OH) n), Vanadium pentoxide (VO), Rhodium oxide (Rh O ⁇ ⁇ o) etc. can be used.
  • the electrode is a highly conductive material, and it is more desirable that the electrode itself is inert to the hydrogen gas in the gas to be detected.
  • Common electrode 1 materials are magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), which are highly conductive materials.
  • Metal such as silver (Ag), carbon (C), etc. can be used.
  • the material for the common electrode 1 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
  • This platinum-dispersed supported trioxide-tungsten trioxide is a platinum (hereinafter referred to as Pt) fine particle having a lnm force of about lOnm as a catalyst. It has a dispersed support structure.
  • the hydrogen gas is dissociated platinum (Pt) Proton on microparticles (H +) and electron (e _).
  • the dissociated protons (H +) spill over from the platinum catalyst fine particles, and diffuse into tritandane trioxide (WO), which is the main component of the detection film 5, to form tungsten bronze.
  • the bronze When the bronze is formed, it becomes a semiconductor, and the detection film 8 of the detection film 5 becomes close to a conductor.
  • the current generated from the noise power source 27 connected to the common electrode 1 intensively flows through the semiconductor-made detection unit 8.
  • the current flowing through the detection unit 8 flows from the detection unit 8 through the resistance layer 4 to each of the electrodes 47, 48, 49, and 50 while being divided.
  • the current flowing through the resistance layer 4 can be roughly divided into an X-direction current flowing through the electrodes 47 and 48 and a Y-direction current flowing through the electrodes 49 and 50.
  • the current flowing in the X direction is the distance Xa from the electrode 47 to the semiconducting sensing position, and from the electrode 48 to the semiconducting sensing position.
  • the current is divided in inverse proportion to the ratio of the distance Xb, and is output as a current signal from the electrodes 47 and 48.
  • the current flowing in the Y direction is current-divided in inverse proportion to the ratio of the distance Ya from the electrode 49 to the detection position made semiconductor and the distance Yb from the electrode 50 to the detection position made semiconductor, 49 and electrode 50 output as current signals.
  • FIG. 21 shows the operation of the computing unit 28 which is a conversion means for converting the current signal output from each electrode 47, 48, 49, 50 of the hydrogen gas detection sensor 40 of Example 4 into a voltage signal. It explains using.
  • FIG. 21 is a block diagram illustrating a configuration of the computing unit 28 to which a signal from the hydrogen gas detection sensor 40 according to the fourth embodiment is input.
  • the exposed portion of the detection film 5 that has detected hydrogen gas is the detection unit 8 that is made into a semiconductor.
  • the resistance change of the detection unit 8 is converted into a current value using the resistance layer 4 and input to the calculation unit 28.
  • the current value is converted into a voltage value, and the arithmetic processing is performed. The operation of the arithmetic unit 28 as the conversion means will be described below.
  • the common electrode 1 is connected to the bias power source 27 via the current limiting resistor 29.
  • the current flowing between the common electrode 1 and the electrode 47 is bias current Iab
  • the current flowing between the common electrode 1 and electrode 48 is the bias current Ibb
  • the current flowing between the common electrode 1 and the electrode 49 is defined as a bias current Icb
  • the current flowing between the common electrode 1 and the electrode 50 is defined as a bias current Idb.
  • bias currents la b, Ibb, Icb, and Idbi, and each electrode 47, 48, 49, and 50 power are input to the calculator 28, and are composed of operational amplifiers 14a, 14b, 14c, and operational amplifier 14d. It is converted into a voltage signal by the circuit 14. The converted voltage signals are sent to analog / digital conversion elements 15a, 15b, 15c and 15d, which are converted into digital signals. Further, each converted digital signal is sent to dividers 16a and 16b and adder 17. Dividers 16a and 16b and adder 17 hold each digital signal in a state where no hydrogen gas is detected as values corresponding to bias currents lab, Ibb, Icb and Idb.
  • the detection film 5 detects hydrogen gas
  • the current flowing between the common electrode 1 and the electrode 47 is Ia
  • the current flowing between the common electrode 1 and the electrode 48 is Ib
  • the current between the common electrode 1 and the electrode 49 is The current flowing between them is Ic
  • the current flowing between the common electrode 1 and the electrode 50 is Id.
  • the currents Ia, Ib, Ic and Id are input to the calculator 28 from the electrodes 47, 48, 49 and 50, respectively. It is converted into a voltage signal in the circuit.
  • the converted voltage signals are sent to analog / digital conversion elements 15a, 15b, 15c and 15d, respectively, which are converted into digital signals and sent to dividers 16a, 16b and adder 17.
  • the digital signals corresponding to the bias currents lab, Ibb, Icb and Idb that have been held are subtracted from the digital signal forces corresponding to la, lb, Ic and Id, respectively.
  • calculation processing of addition and division shown in Expression (8) to Expression (10) described later is performed.
  • the calculation results by addition and division are input to the digital / analog conversion elements 18a, 18b and 18c as digital electric signals.
  • the digital / analog conversion element 18c outputs the calculation result E3 by the addition of the analog electrical signal.
  • the digital / analog conversion element 18a outputs the calculation result E4X by division in the X direction, and the digital / analog conversion element 18b outputs the calculation result E4Y by division in the Y direction.
  • Calculation result in X direction E4X is the calculation result indicating the detection position of hydrogen gas in the X direction on the detection film 5
  • division result E4Y is the calculation result indicating the detection position of hydrogen gas in the Y direction on the detection film 5 It is a result.
  • E4X kl3 X (lb— Ibb) / ⁇ (la— lab)
  • E4Y kl4 X (Id— Idb) / ⁇ (Ic— Icb)
  • the relationship between the positions X and Y and the calculation results E4X and E4Y is a relationship represented by a straight line when shown on the vertical and horizontal graphs.
  • the calculation process is not limited to the above formulas (9) and (10), and the calculation can be performed using other formulas. be able to.
  • the expression for the X direction contains a term representing the ratio of (la—lab) to (lb—Ibb), and the expression for the Y direction contains a term representing the ratio of (Ic—Icb) to (Id—Idb). If! /, It can be used as an arithmetic expression to indicate the hydrogen gas detection position. An example of a calculation method that shows the specific hydrogen gas detection position is described below.
  • Equation (11) and Equation (12) In both cases, the relationship between the hydrogen gas detection position and the calculation result E cannot be expressed as a straight line when shown on the vertical and horizontal graphs.
  • EX kl7X [ ⁇ (lb— Ibb)-(la— lab) ⁇ /
  • EY kl8X [ ⁇ (Id— Idb)-(Ic— Icb) ⁇ /
  • Equation (8) to Equation (14) are as shown in Equation (21) below.
  • the hydrogen gas detection position can be calculated by an arithmetic expression expressed by the equations (8) to (21).
  • the bias power supply 27 used in the hydrogen gas detection sensor 40 of Example 4 is described as a DC power supply.
  • the DC power supply alone is not the only bias power supply in the gas detection sensor of the present invention.
  • the AC power supply can be used. In that case, it is necessary to add a rectification function to the current-voltage converter of the arithmetic unit 28.
  • the arithmetic unit 28 in the fourth embodiment converts the output current from the hydrogen gas detection sensor 40 into a digital signal and performs an operation, but does not convert it into a digital signal but performs an operation according to a circuit configuration in an analog signal state. It is also possible to do.
  • the length Lx in the X direction and the length Ly in the Y direction of the detection range were each 100 mm.
  • quartz (Si 02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used.
  • the electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed using gold (Au), and were formed with a width of 2 mm and a thickness of 0.5 m inside the edge portions of the four sides of the substrate 6.
  • the resistance layer 4 was formed by forming tantalum nitride (TaN) with a thickness of 3 ⁇ m in the central portion 102 mm except for the inner side lmm of the four sides of the base material 6.
  • the sensing film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 ⁇ m after catalyst sintering.
  • a sol-gel method was used as a forming method. Specifically, first, sodium tungstateate dihydrate (Na WO 2 ⁇ O: manufactured by Junsei Chemical Co., Ltd.) 41.2 g
  • the sample was placed in a volumetric flask and adjusted to 250 mL with pure water, to obtain a 0.5 molZL colorless and transparent aqueous sodium tandateate (Na 2 WO 3) solution.
  • cation exchange resin Amberlite IR120B Na: manufactured by Organo Corporation
  • a sodium tungstate (Na 2 WO) aqueous solution was passed through the column tower.
  • the sodium ion (Na +) in the sodium acid (Na WO) aqueous solution is exchanged for protons (H +)
  • the common electrode 1 made of gold (Au) was formed using a sputtering method and a metal mask. As shown in FIG. 18 (a), the common electrode 1 is 0.1 mm wide and 2.5 mm apart so that it has a lattice-like mesh as shown in FIG. 39 in each direction. A land 81 having a width of 2 mm was provided around the common electrode 1. The thickness of the common electrode 1 was controlled by controlling the sputtering time and sputtering power, and was 2 m in this experiment.
  • common electrode 1 After the formation of common electrode 1, the junction resistances of common electrode 1 and electrode 47, common electrode 1 and electrode 48, common electrode 1 and electrode 49, and common electrode 1 and electrode 50 were measured. The junction resistance was 5 Ok ⁇ each. The resistance values of the interelectrode resistances of the electrode 47 and the electrode 48 and the electrode 49 and the electrode 50 were about 50 ⁇ .
  • the evaluation was performed under the following conditions.
  • the hydrogen gas detection region is two-dimensional, and a DC voltage of 5 V was applied to the common electrode 1 from the noise power source 27.
  • the current limiting resistance is 5 ⁇ .
  • the bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A.
  • a circular nozzle with a gas outlet diameter of lmm was used at the location where the detected gas containing hydrogen gas was ejected, and the ejection direction was upward.
  • the experiment was conducted with the hydrogen gas detection sensor 40 installed at a distance of 1 mm and 3 mm above the gas outlet.
  • Fig. 22 shows the hydrogen gas when the distance to the detection film 5 of the gas jetting hydrogen hydrogen detection sensor 40 is lmm and the volume concentration of hydrogen gas of the detected gas is 0.1% and 1%. It is a graph which shows the relationship between a detection position and a calculation result (E4X, E4Y).
  • X 5 is a graph showing the relationship between the hydrogen gas detection position X, which is the nozzle position in the direction, and the calculation result E4X
  • (b) is a graph showing the relationship between the hydrogen gas detection position Y in the Y direction and the calculation result E4Y.
  • the constants kl3 and kl4 in the above formulas (9) and (10) are calculated as 1. In the graph of FIG.
  • a solid line 33 indicates a case where the volume concentration of hydrogen gas is 0.1%
  • a broken line 34 indicates a case where the volume concentration of hydrogen gas is 1.0%.
  • the hydrogen gas detection positions X and Y on the horizontal axis are the values of the detection positions X and Y shown in FIG. 17 and were measured from 20 mm to 80 mm.
  • the calculation results E4X and E4Y show the hydrogen gas detection position regardless of the volume concentration of the hydrogen gas to be detected. It has been confirmed that it functions well as a hydrogen gas detection sensor 40 whose knowledge area is two-dimensional.
  • the addition result E3 is shown when the volume concentration of hydrogen gas in the gas to be detected is changed from 0% to 1% when the distance to the detection surface of the three-dimensional hydrogen gas detection region is lmm and 3mm.
  • the solid line 35 represents the case where the distance from the gas ejection locus to the detection surface is lmm
  • the broken line 36 represents the case where the distance from the gas ejection locus to the detection surface is 3 mm.
  • the constant k21 in the above equation (8) is calculated as 1 ⁇ 10 3 (V / A).
  • the calculation result E3 increases as the hydrogen concentration increases, regardless of whether the distance indicated by the solid line is lmm or the distance indicated by the broken line is 3 mm. .
  • the calculation result E3 depending on the distance to the gas ejection locus detection film 5. This is because the area of the hydrogenated gas in contact with the detection film 5 increases as the distance to the detection film 5 also increases, so the range of the detection part 8 that is semiconductor-coated increases. It can be presumed that the current passing through has increased. From these results, it is possible to measure the volume concentration of hydrogen gas in the gas to be detected by measuring the calculation result E3 by keeping the distance from the gas ejection port to the detection film 5 constant.
  • FIG. 24 is a cross-sectional view showing the laminated structure of the hydrogen gas detection sensor of Example 5, and shows an example in which hydrogen gas is detected at the position indicated by arrow B.
  • the hydrogen gas detection sensor of Example 5 is a gas detection sensor having a two-dimensional hydrogen gas detection region.
  • the hydrogen gas detection sensor of Example 5 has a structure in which a through hole 23 penetrating from the detection film 5 to the substrate 6 is formed in the hydrogen gas detection sensor of Example 4 described above.
  • the through-hole 23 has a function of allowing a gas to be detected including hydrogen gas in contact with the detection film 5 to pass from the detection film 5 through the substrate 6 to the outside of the hydrogen gas detection sensor. In other words, the through-hole 23 prevents the gas to be detected from staying on the detection film 5 and diffusing.
  • FIG. 25 is a plan view of the hydrogen gas detection sensor of Example 5, showing the detection surface.
  • the through hole 23 is provided in the portion of the detection film 5 exposed from the common electrode 1 having a lattice-like mesh.
  • the common electrode 1 has a mesh shape as shown in FIG. 18 (a) described above, but other shapes can also be used.
  • the through hole 23 can be formed in a portion other than the detection film 5.
  • FIG. FIG. 26 and FIG. 27 show the effect of preventing the hydrogen gas from staying with the presence or absence of the through hole 23 in the hydrogen gas detection sensor.
  • the hydrogen gas detection sensor used in this experiment has a two-dimensional hydrogen gas detection area.
  • the detection range has a length Lx in the X direction and a length Ly in the Y direction of 100 mm.
  • quartz (Si02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used.
  • the electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed with a width of 2 mm and a thickness of 0.5 m on four sides of the base material 6 by sputtering gold (Au).
  • Resistive layer 4 is made of tantalum nitride (TaN) by the reactive sputtering method and the peripheral edge of substrate 6 Excluding the minute lmm, it was formed in the center part with a thickness of 102mm and 3m.
  • TaN tantalum nitride
  • the detection film 5 in Example 5 was formed by the same method as described in the experiment of Example 1 described above. That is, the detection film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 ⁇ m after catalyst sintering.
  • the common electrode 1 in Example 5 was also formed by the same method as described in the experiment of Example 1 described above. That is, the common electrode 1 is made of gold (Au) in the shape shown in FIG. 18A, with a width of 0.1 mm, a spacing of 2.5 mm, and a number of 39 in the X and Y directions. did. A land 81 having a width of 2 mm was formed around the detection surface. After the film formation, the resistance values of the interelectrode resistances of the electrode 47 and the electrode 48 and the electrode 49 and the electrode 50 were about 50 ⁇ . The junction resistance of each electrode 47, 48, 49 and 50 with respect to the common electrode 1 was about 50 k ⁇ .
  • the bias power supply is connected to the common electrode 1 with a DC voltage of 5V through a current limiting resistor of 10 ⁇ .
  • Each bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A.
  • the voltage of the bias power supply 27 during the experiment was also 5V.
  • a large number of through holes 23 are formed in the exposed detection film 5 with a diameter of 0.15 mm, with an interval in the X direction and an interval in the Y direction of 0.5 mm.
  • a circular nozzle 11 having a gas outlet diameter of lmm was used at the location where the detected gas containing hydrogen gas was generated, and the jet direction was set upward.
  • the hydrogen gas detection sensor was installed so that the detection surface was placed at a distance of 1 mm above the gas outlet.
  • FIG. 26 is a graph for explaining the effect of the through hole 23 in the hydrogen gas detection sensor of Example 5 shown in FIGS. 24 and 25.
  • the horizontal axis is the hydrogen gas detection position X [mm] in the X direction
  • the vertical axis is the calculation result E4X in the X direction.
  • the horizontal axis is the hydrogen gas detection position Y [mm] in the Y direction
  • the vertical axis is the calculation result E4Y in the Y direction.
  • the solid line 38 shows the case where there is no through hole 23, and the broken line 37 shows the case where there is a through hole 23.
  • the hydrogen gas detection position X which is the 11 position of the nozzle X in the X direction in Fig. 26 (a), is the value of X in Fig. 17 used in the description of Example 4 above. Measured over the range up to.
  • the hydrogen gas detection position Y which is the nozzle position in the Y direction in FIG.
  • the Y value in Fig. 17 was measured in the range from 5mm to 95mm.
  • the volume concentration of hydrogen gas ejected from the gas ejection port of the nozzle 11 is set to 1%. As can be seen from the graph in FIG.
  • the horizontal axis is the hydrogen gas volume concentration [%], and the vertical axis is the graph showing the calculation result E3 shown in the above equation (8).
  • a solid line 42 indicates a case where the through hole 23 is not present, and a broken line 41 indicates a case where the through hole 23 is present.
  • the calculation result E3 is larger for the volume concentration of hydrogen gas than when there is a through hole 23 (dashed line 41). Yes. This is probably because the detection range of the hydrogen gas has become smaller when the through-hole 23 is provided, even if the concentration of the hydrogen gas to be ejected is the same.
  • the calculation result E3 increases as the concentration of the hydrogen gas to be ejected increases.
  • the rate of change in the calculated results E4X and E4Y at the boundary of the detection surface is obtained by forming the through hole 23 to discharge hydrogen gas. A decrease can be prevented.
  • FIG. 28 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor of Example 6, and shows an example in which hydrogen gas is detected at a position indicated by an arrow A.
  • FIG. FIG. 29 and FIG. 30 are graphs showing experimental results in the configuration of Example 6.
  • FIG. In the description of the sixth embodiment components having the same functions and configurations as those of the previous embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the hydrogen gas detection sensor of Example 6 has a structure in which a heater 39 is attached as a heating means to the hydrogen gas detection sensor of Example 4 described above and covered with a heat insulating material 32.
  • the hydrogen gas detection sensor of Example 6 is provided with a heating means, thereby The temperature can be maintained at a predetermined temperature, the response speed to hydrogen gas can be improved, and the influence of the humidity of the gas to be detected can be eliminated.
  • the basic structure of the detection part of the hydrogen gas detection sensor of the sixth embodiment is the same as that of the hydrogen gas detection sensor having the two-dimensional hydrogen gas detection area of the fourth embodiment shown in FIG.
  • the hydrogen gas detection sensor of Example 6 has a structure in which the periphery of the hydrogen gas detection sensor of Example 4 is covered with a hydrogen gas-permeable heat insulating material 32, and a heater 39 is attached to the back surface of the substrate 6.
  • the heat insulating material 32 that is permeable to hydrogen gas is formed of a foamable resin such as foam polyurethane having high heat resistance.
  • the heat insulating material 32 has a thickness of about 1 mm from the viewpoint of heat insulating properties, and has a number of holes of about 0.2 mm from the viewpoint of ensuring hydrogen gas permeability. Therefore, the gas to be detected generated outside the heat insulating material 32 passes through the holes of the heat insulating material 3 and instantaneously contacts the internal hydrogen gas detection sensor.
  • the heater 39 in Example 6 was formed by printing a platinum or tungsten paste and then sintering.
  • the hydrogen gas detection sensor of Example 6 includes the penetration shown in Fig. 24 in addition to the configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of Example 4 shown in Fig. 17.
  • a configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of the embodiment 5 having the holes 23 may be used.
  • Temperature adjustment in the hydrogen gas detection sensor of the embodiment 6 is based on the current and voltage values of the heater 39 in advance. Then, the temperature was measured using a thermocouple attached to the sensing film 5, and a calibration curve was prepared.
  • FIG. 29 shows the experimental results of the change in the surface temperature of the detection film 5 and the response time.
  • the horizontal axis represents the surface temperature [° C.] of the detection film 5
  • the vertical axis represents the response time [second].
  • FIG. 30 shows the surface temperature of the detection film 5 and the calculation result E3 shown in the above equation (8).
  • the horizontal axis represents the surface temperature [° C] of the detection film 5
  • the vertical axis represents the calculation result E3.
  • broken line 68 indicates the case where the relative humidity of the gas to be detected is 20% RH.
  • the solid line 69 shows the case where the relative humidity of the gas to be detected is 80% RH.
  • the hydrogen gas detection sensor used in this experiment has a two-dimensional hydrogen gas detection area, and the detection range is a detection length Lx in the X direction and a detection length Ly in the Y direction of 1 OOmm.
  • quartz (Si02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used.
  • the electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed by sputtering gold (Au) on the four sides of the substrate 6 with a width of 2 mm and a thickness of 0.5 m.
  • the resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion of 102 mm and a thickness of 3 m, except for a region having a width of 1 mm from the peripheral edge of the substrate 6.
  • the detection film 5 was formed so that the thickness of the platinum dispersion-supported tungsten trioxide was about 1 ⁇ m after catalyst sintering.
  • the common electrode 1 was provided with gold (Au) in the shape shown in FIG. 18 (a) so that the width was 0.1 mm, the interval was 2.5 mm, and the number in the X and Y directions was 39 each.
  • a land 81 with a width of 2 mm was provided around the detection surface.
  • a heat insulating material 32 made of foaming resin having a thickness of 1 mm was formed.
  • the heat insulating material 32 was provided with a number of 0.2 mm holes.
  • the interelectrode resistance was measured, and the interelectrode resistance between the electrode 47 and the electrode 48 and the interelectrode resistance between the electrode 49 and the electrode 50 were about 50 ⁇ .
  • each junction resistance of the electrode 47, the electrode 48, the electrode 49, and the electrode 50 with respect to the common electrode 1 was about 5 Ok ⁇ .
  • the noise power source was connected to the common electrode 1 with a DC voltage of 5V and a current limiting resistance of 10 ⁇ .
  • the bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A. Note that the voltage of the bias power supply 27 in this experiment was 5V.
  • the gas outlet from which the gas to be detected including hydrogen gas was ejected was placed upward, and a circular nozzle with a diameter of lmm was used.
  • the hydrogen gas detection sensor having a two-dimensional hydrogen gas detection region was arranged at a distance of 3 mm above the gas outlet so that the detection surface of the detection film 5 faced downward.
  • Fig. 29 is a graph showing the relationship between the surface temperature of the sensing surface 5 and the response time
  • Fig. 30 is the surface temperature of the sensing film 5 and the calculated value. It is a graph showing the relationship of the result E3.
  • the broken line 68 indicates the case where the relative humidity of the detected gas is 20% RH
  • the solid line 69 indicates the case where the relative humidity of the detected gas is 80%.
  • the response time is measured by measuring the time from when the gas to be detected including hydrogen gas is ejected from the gas outlet until the calculated E3 value finally reaches 90% of the stable value. It was time.
  • the response time becomes logarithmically faster as the surface temperature of the detection film 5 increases.
  • the response time is about 10 seconds, and when the surface temperature of the detection film 5 is about 80 ° C or more, it takes about 5 seconds and is almost constant. .
  • the calculation result E3 output is when the relative humidity of the detected gas is 20% RH and 80% RH. It differs greatly.
  • the surface temperature of the detection surface exceeds 60 ° C, it is almost the same when the relative humidity of the gas to be detected is 20% RH and 80% RH. That is, from the experimental results shown in FIG. 29 and FIG. 30, when the surface temperature of the detection film 5 is 60 ° C. or higher, the humidity dependence due to the detected gas is almost not seen, and the response time is 10 Less than a second. Furthermore, when the surface temperature of the sensing film 5 exceeds 80 ° C, the response time becomes 5 seconds or less.
  • the inventors set the temperature of the detection film 5 to about 200 ° C, 300 ° C, and 400 ° C, and the hydrocarbon system containing hydrogen atoms such as methane (CH 2), ethane (CH 2), and propane (CH 2).
  • FIG. 7 In the description of the hydrogen gas detection sensor of the seventh embodiment, components having the same configuration and function as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the hydrogen gas detection sensor of Example 7 has a configuration in which the resistive layer is not used in the configuration of the hydrogen gas detection sensor described in Example 1 and Example 2 above, and a minute sensor cell is formed in a one-dimensional shape (linear shape). ).
  • the hydrogen gas detection sensor of Example 7 has a plurality of minute sensor cells, and the sensor cells are arranged in a substantially straight line (one-dimensional shape) with a predetermined interval.
  • the hydrogen gas detection sensor of Example 7 is referred to as a one-dimensional array type hydrogen gas detection sensor.
  • Each sensor sensor The sensor has a detection film having a predetermined small area whose electrical resistance value changes when it comes into contact with hydrogen gas.
  • the hydrogen gas detection sensor of Example 7 is a gas detection sensor that calculates a hydrogen gas detection position from a change in the resistance value of the sensor cell. This will be described below with reference to FIGS.
  • FIG. 31A is a plan view of the one-dimensional array type hydrogen gas detection sensor 110 of the seventh embodiment.
  • FIG. 31 (b) is a cross-sectional view taken along the line WW in FIG. 31 (a).
  • FIG. 31 (c) is a back view of the one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 (a).
  • a one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 has a base material 101 made of quartz (SiO 2) that is formed in a substantially band shape and is electrically insulating.
  • a pole 102 is formed.
  • the common electrode 102 is formed in a substantially strip shape along the longitudinal direction on the back surface of the substrate 101.
  • the detection film constituting the sensor cell 103 is made of platinum-dispersed supported tungsten trioxide (Pt-WO) that changes its state from an electrically insulating state to a semiconductor state or a conductor state when hydrogen gas is detected.
  • Pt-WO platinum-dispersed supported tungsten trioxide
  • the through holes 106 are arranged on a straight line along the longitudinal direction of the substrate 101. Therefore, the sensor cells 103 formed in the through holes 106 are arranged on a straight line that is a one-dimensional array.
  • the detection electrode 104 paired with each sensor cell 103 is formed on the surface of the base 101, and each detection electrode is formed. 104 is connected to a sensing film bonded to the common electrode 102.
  • the common electrode 102 formed on the back surface of the substrate 101 is connected to the detection films of all the sensor cells 103.
  • a lead wire 108 is connected to each detection electrode 104, and is connected to a position detection device 115A (see FIG. 35) described later.
  • the common electrode 102 is connected to the bias power supply 111 via the current limiting resistor 112.
  • a one-dimensional array type hydrogen gas sensor 110 of Example 7 shown in FIG. 31 has a through-hole 106 penetrating from the front surface to the back surface of the base material 101, so that the water in contact with the surface of the base material 101
  • the gas to be detected including the raw gas can be discharged to the back surface through the through hole 106. Accordingly, it is possible to prevent the range of the sensor cell 103 in contact with the ejected hydrogen gas from spreading the hydrogen gas on the surface of the base material 101 from diffusing on the surface of the base material 101.
  • through-holes for discharging the force to the back surface may be provided at appropriate intervals in the base material 101 other than the sensor cell 103, the common electrode 102, and the detection electrode 104, for example.
  • the hydrogen gas 126 contained in the gas to be detected contacts the sensor cell 103 at the position indicated by the arrow C.
  • the platinum dispersion-supported tungsten trioxide, which forms the sensor cell 103 is a platinum (Pt) fine particle with a particle size of about lnm to 10nm as a catalyst, and a tungsten trioxide (WO) particle with a particle size of about 10nm to lOOnm.
  • the hydrogen gas 126 is dissociated into protons (H +) and electrons (e—).
  • the dissociated proton (H +) spills over the platinum catalyst fine particles and diffuses into tungsten trioxide (WO), the main component of sensor cell 103, forming tungsten bronze.
  • Tungsten trioxide has not formed tungsten bronze.
  • the resistance value of the sensor cell 103 is proportional to the hydrogen gas concentration in contact with the sensor cell 103.
  • the sensor cell 124 comes into contact with hydrogen gas, the sensor cell 124 becomes a semiconductor, and the resistance value of the detection film is significantly lower than that of the other sensor cells 103.
  • a bias voltage is applied from the bias power supply 111 to the sensor cell 103 having the detection film having a lowered resistance value, a large amount of current flows.
  • FIG. 32 is a block diagram showing the configuration of the gas detection device according to the seventh embodiment.
  • a position detector 115 and a position detector 115 connected to the hydrogen gas detection sensor 110 are shown.
  • the operation of the gas detection device for detecting a gas leakage point will be described with reference to FIG.
  • the sensor cell 103 is shown by an equivalent circuit.
  • Each sensor cell 103 is connected to a common electrode 102, and a bias voltage is applied from a bias power supply 111 via a current limiting resistor 112.
  • Each sensor cell 103 is connected to each current-voltage conversion circuit 130 composed of an operational amplifier 113 and a feedback resistor 114 via each detection electrode 104.
  • the current signal from each sensor cell 103 is converted into a voltage signal by each current-voltage conversion circuit 130 and input to the multiplexer 117.
  • the multiplexer 117 selects one voltage signal from the voltage signals from each voltage-current conversion circuit 130 according to the control signal from the control circuit 119 received a command from the personal computer (hereinafter abbreviated as PC) 120,
  • PC personal computer
  • the voltage signal from the multiplexer 117 is converted from analog to digital by the control signal of the control circuit 119 that has received the command of the PC 120, and transmitted to the PC 120.
  • the PC 120 performs arithmetic processing based on the signal from the AZD conversion circuit 118 and calculates a voltage value corresponding to the amount of current flowing through each sensor cell 103.
  • the one-dimensional array type hydrogen gas detection sensor 110 is in a state where it does not detect hydrogen gas.
  • a voltage value corresponding to the amount of current flowing through each sensor cell 103 in that state is measured, and the measured value is recorded in PC 120 as an offset value of each sensor cell 103.
  • a voltage value corresponding to the amount of current flowing through each sensor cell 103 is measured, and the measured value is measured for each sensor cell 103.
  • the measured value force at the time of hydrogen gas detection of each sensor cell 103 accumulated in the PC 120 is also subtracted from the offset value, and the subtracted value is used as a change value of the output signal of the sensor cell 103 at the time of hydrogen gas detection.
  • the change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
  • one-dimensional array type hydrogen gas detection sensor 110 A distribution of change values of signals proportional to the concentration of hydrogen gas detected by each sensor cell 103 is obtained, and the position where hydrogen gas is detected can be calculated.
  • the hydrogen gas is detected at the position of the sensor cell 103 that shows a value greater than the change value of the output signal of the adjacent sensor cell 103 in the three consecutively arranged sensor cells 103.
  • the method of setting the position is used.
  • FIG. 33 (a) is a cross-sectional view of the one-dimensional array type hydrogen gas detection sensor 110 used in this experiment.
  • the configuration shown in (a) of FIG. 33 is basically the same as the configuration shown in FIG. 31 described above.
  • the hydrogen gas detection sensor 110 used in this experiment has twelve sensor cells 103. In the following, each sensor cell 103 is given a number from X 1 to XI 2 in order of the one-end side force, and each sensor cell 103 is identified and described with that number.
  • FIG. 33 shows an example in which the one-dimensional array type hydrogen gas detection sensor 110 detects hydrogen gas at the sensor cell X3 and the sensor cell X8.
  • the bias power supply 111 applies a DC voltage of 5 V to the common electrode 102.
  • the current limiting resistor 112 is 10 ⁇ .
  • the bias current from each detection electrode 104 was about 1 A.
  • the nozzle that ejects the gas to be detected, including hydrogen gas has a circular shape with a gas outlet diameter of lmm, and the ejection direction is downward. In FIG. 33, the ejection direction is indicated by an arrow C, and the nozzles are arranged at positions where the gas to be detected is blown to the sensor cell X3 and the sensor cell X8.
  • the gas to be detected was air containing 1% volume of hydrogen gas.
  • Fig. 33 (b) shows voltage values corresponding to the change values of the signals of the sensor cells XI to XI2 measured in this experiment.
  • the sensor cell X3 and the sensor cell X8 in which the nozzle for ejecting the gas to be detected is arranged have a higher measured voltage value than the other sensor cells 103. Therefore, the one-dimensional array type hydrogen gas detection sensor used in this experiment It was confirmed that multiple hydrogen gas detection positions were accurately detected.
  • quartz (SiO 2) having a length of 60 mm, a width of 5 mm, and a thickness of 0.5 mm was used.
  • the base material 101 includes the sensor cell 103.
  • the common electrode 102 on the back surface of the base material 101 was formed to a thickness of 0.5 m using gold (Au) by sputtering.
  • the detection electrode 104 formed on the surface of the base material 101 has a length of 5 mm in the width direction of the base material 101 and a length of 4 mm in the longitudinal direction around each through-hole 106 using gold (Au) using a notch method. Twelve were formed with a length of 0.5 ⁇ m. Note that when sputtering the common electrode 102 and the detection electrode 104, masking was performed so that gold (Au) was not deposited inside the through hole 106.
  • the sensing film to be formed was formed.
  • a sol-gel method was used as a method for forming the detection film. Specifically, first, sodium tungstate dihydrate (Na WO 2 ⁇ ⁇ : Pure Chemical Co., Ltd.)
  • a cation exchange resin (Amberlite IR120B Na: manufactured by Organo Corporation) was packed into a column tower, and a sodium tungstate (Na W04) aqueous solution was passed through it.
  • the sol-gel solution was applied to the inner surface of the through-hole 106 of the substrate 101 and the surrounding lmm portion.
  • the coating was performed by dipping the substrate 101 on which the portions other than the through hole 106 and the surrounding lmm were masked into the sol-gel solution.
  • Base material 101 The rip time was about 20 seconds, and the substrate 101 was lifted from the sol-gel solution, and then nitrogen gas was blown to remove excess sol-gel solution.
  • the thickness of the detection film of the sensor cell 103 is 0.3 ⁇ m.
  • each resistance value between the common electrode 102 and each detection electrode 104 (hereinafter referred to as junction resistance) was measured.
  • junction resistance was about 5 ⁇ .
  • FIG. 34 shows a one-dimensional array type hydrogen gas detection sensor 11 OA having a structure different from that of the one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 described above.
  • the one-dimensional array type hydrogen gas detection sensor 110A shown in FIGS. 34 (a) and 34 (b) has a common electrode 102, a sensor cell 103 on one surface (front surface) of an elongated substantially strip-like substrate 101.
  • the detection film and the detection electrode 104 are formed.
  • 34 (a) is a plan view of the hydrogen gas detection sensor 110A
  • FIG. 34 (b) is a cross-sectional view of the hydrogen gas detection sensor 110A of FIG.
  • the one-dimensional array type hydrogen gas detection sensor 110A shown in FIG. 34 has a common electrode 102 on a part of the surface of a substantially strip-shaped quartz (SiO 2) base material 101 having electrical insulation properties. Formed
  • the common electrode 102 has a predetermined width on the surface of the base material 101 and is formed in a substantially strip shape along the longitudinal direction. Further, on the surface of the base material 101, a plurality of sensor cells 103, which are detection films of platinum-dispersed supported tandane trioxide (Pt—WO) that changes from an electrically insulated state to a semiconductor state when hydrogen gas is detected, are provided. Formed in the minute area of
  • the sensor cells 103 are arranged in a substantially straight line with a predetermined interval, and one end of all the sensor cells 103 is arranged to be electrically connected to the common electrode 102. Furthermore, detection electrodes 104 are formed on the surface of the substrate 101 corresponding to the sensor cells 103. Each detection electrode 104 is paired with the common electrode 102 with the sensor cell 103 in between, and each detection electrode 104 and the common electrode 102 are connected via the sensor cell 103. The detection area of hydrogen gas in the sensor cell 103 is the same as that of the sensor cell 103 and the common electrode 101. Between the sensor cell 103 and the detection electrode 104.
  • One end of the lead line 108 that outputs a current signal as a detection signal is connected to the end of each detection electrode 104, and the other end is connected to the current-voltage conversion circuit 130 (see FIG. 32) of the position detection device 115.
  • the common electrode 102 is connected to the bias power supply 111 via the current limiting resistor 112, and FIG. Similar to the hydrogen gas detection sensor 110 shown, the hydrogen gas contained in the gas to be detected can be detected.
  • the one-dimensional array type hydrogen gas detection sensor 110A of Fig. 34 has a configuration that does not require a through hole and has a simple structure. However, since the hydrogen gas detection sensor 110A in FIG. 34 does not have a function of discharging the gas to be detected including hydrogen gas from the front surface to the back surface of the base material 101, the hydrogen gas is detected on the surface of the base material 101. The range of the sensor cell that has diffused and detected hydrogen gas tends to expand, and the detection accuracy of the hydrogen gas detection position may be reduced.
  • FIG. 35 is a block diagram showing a gas detection device using position detection device 115 A having a configuration different from that of position detection device 115 shown in FIG. 32 described above.
  • the position detection device 115A shown in FIG. 35 has a single current-voltage conversion circuit 130 and has a feature that a simple circuit configuration can be realized.
  • any structure of the one-dimensional arrangement type hydrogen gas detection sensor shown in FIG. 31 and FIG. 34 described above can be used.
  • the sensor cell 103 is shown by an equivalent circuit.
  • the detection electrode 104 connected to each sensor cell 103 is connected to a plurality of terminals of a detection switch 134 which is a switching switch.
  • the common terminal of the detection switch 134 is connected to the bias power supply 111 via the current limiting resistor 112.
  • Detection switch 134 It is connected to a personal computer (hereinafter abbreviated as PC) 120 via a control circuit 119, and has a function of applying a bias voltage to any one sensor cell 103 in accordance with a command from the PC 120.
  • the common electrode 102 connected to each sensor cell 103 is connected to a current-voltage conversion circuit 130 composed of a feedback resistor 114 and an operational amplifier 113.
  • the current / voltage conversion circuit 130 is connected to the AZD conversion circuit 118 controlled by the PC 120.
  • the output of the AZD conversion circuit 118 is input to the PC 120.
  • connection directions of the common electrode 102 and the detection electrode 104 in the hydrogen gas detection sensor shown in FIGS. 31 and 34 are different.
  • the one-dimensional array type hydrogen gas detection sensor 110 is in a state where it does not detect hydrogen gas.
  • the PC 120 switches the detection switch 134 and applies a bias voltage to the sensor cell 103 to be measured.
  • the current-voltage conversion circuit 130 converts the bias current into a voltage signal, which is converted into a voltage signal and input to the / D conversion circuit 118.
  • the AZD conversion circuit 118 converts the input voltage signal into a digital signal and transmits it to the PC 120.
  • the PC 120 records a digital signal corresponding to the bias current of the sensor cell 103 to which the bias voltage is applied as an offset value.
  • the PC 120 sequentially switches the detection switches 134 in this way, and records the offset values of all the sensor cells 103.
  • the one-dimensional array type hydrogen gas detection sensor 110 is in a state of detecting hydrogen gas.
  • the PC 120 switches the detection switch 134 and sequentially applies a bias voltage to the sensor cell 103 to be measured.
  • each sensor cell 103 to which the bias voltage is applied outputs a current signal in a state of detecting hydrogen gas to the current-voltage conversion circuit 130.
  • the current / voltage conversion circuit 130 converts the current signal to form a voltage signal and outputs the voltage signal to the AZD conversion circuit 118.
  • the AZD conversion circuit 118 converts the input voltage signal into a digital signal and transmits it to the PC 120.
  • PC120 A digital signal corresponding to the current signal of the sensor cell 103 to which the false voltage is applied is recorded as a measurement value when hydrogen gas is detected.
  • the PC 120 sequentially switches the detection switches 134 in this way, and records the measurement values when all the sensor cells 103 detect the hydrogen gas.
  • the PC 120 subtracts the offset value from the measured value when the hydrogen gas is detected in each sensor cell 103. Then, the PC 120 records the subtracted value in the PC 120 as a change value of the output signal of the sensor cell 103 when hydrogen gas is detected.
  • the change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
  • the hydrogen gas is detected at the position of the sensor cell 103 that shows a value greater than the change value of the output signal of the adjacent sensor cell 103 in the three consecutively arranged sensor cells 103.
  • the method of setting the position is used.
  • the position detection device 115A having the configuration shown in FIG. 35 can be used to calculate the hydrogen gas detection position of the one-dimensional array type hydrogen detection sensor with high accuracy.
  • the gas detection apparatus according to the eighth embodiment includes the one-dimensional array type hydrogen gas detection sensor 110 and the position detection apparatus 115B described in the seventh embodiment.
  • the position detection device 115B in the gas detection device of the eighth embodiment has a one-dimensional resistance division type configuration and can be configured with a simple circuit.
  • FIG. 36 is a block diagram illustrating a configuration of the gas detection device according to the eighth embodiment.
  • the one-dimensional arrangement type hydrogen gas detection sensor 110 in the eighth embodiment has the same structure as the one-dimensional arrangement type hydrogen gas detection sensor shown in FIGS. 31 and 34 in the seventh embodiment. Detecting power connected to each sensor cell 103 (shown as an equivalent circuit in FIG. 36) of the one-dimensional array type hydrogen detecting sensor 110
  • the pole 104 is connected to the adjacent detection electrode 104 via a current dividing resistor 141.
  • the output signals of the detection electrodes 104 at both ends of the one-dimensional array type hydrogen gas detection sensor 110 are connected to be input to the current-voltage conversion circuit 130a or the current-voltage conversion circuit 130b.
  • the common electrode 102 is connected to a bias power supply 111 via a current limiting resistor 112.
  • the output signals of the current-voltage conversion circuits 130a and 130b are input to the AZD conversion circuits 118a and 118b, and the analog signal power is also converted into digital signals.
  • the digital signals output from the ⁇ / ⁇ conversion circuits 118a and 118b are input to the adder 130 and the divider 139, respectively. Further, each digital signal from the adder 138 and the divider 139 is converted from a digital signal to an analog signal in the DZA conversion circuits 140a and 140b, respectively.
  • the voltage signal from the DZA conversion circuit 140a is output as the first output 142, and the voltage signal from the DZA conversion circuit 140b is output as the second output 143.
  • the detection electrode 104 of the one-dimensional array type hydrogen gas detection sensor 110 is connected to the adjacent detection electrode 104 by the current dividing resistor 141.
  • the detection electrodes 104 at both ends of the one-dimensional array type hydrogen gas detection sensor 110 are connected to the inputs of the current-voltage conversion circuits 130a and 130b.
  • the output current from each detection electrode 104 is current-divided by a current dividing resistor 141 connected between the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b, and the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b. Is input.
  • Example 8 the current flowing through the current-voltage conversion circuit 130a is Ilb and the current flowing through the current-voltage conversion circuit 130b is I2b when the one-dimensional array type hydrogen gas detection sensor 110 is not detecting hydrogen gas.
  • the currents lib and I2b are converted into voltage signals in the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b.
  • the converted voltage signal is sent to the AZD conversion circuit 118a and the AZD conversion circuit path 118b to be converted into a digital signal.
  • the converted digital signal is sent to an adder 138 and a divider 139.
  • the adder 138 and divider 139 detect the hydrogen gas from each digital signal at this time. Hold as a value corresponding to bias currents I lb and I2b in an unknown state.
  • the sensor cell 103 of the one-dimensional array type hydrogen gas detection sensor detects hydrogen gas. It is assumed that the current flowing through the current-voltage conversion circuit 130a in the state where the hydrogen gas is detected is II, and the current flowing through the current-voltage conversion circuit 130b is 12. Similar to the bias current described above, currents II and 12 are converted to digital signals after current-voltage conversion and sent to adder 138 and divider 139. In the adder 138 and the divider 139, the digital signals corresponding to the bias currents lib and I2b held are also subtracted from the digital signal forces corresponding to the currents II and 12 when hydrogen gas is detected, respectively.
  • the adder 138 and the divider 139 perform addition and division arithmetic processing corresponding to the following equations (22) and (23).
  • the calculation results of these additions and divisions are output as digital electrical signals, and are output as analog electrical signal calculation results E1 and E2 by the DZA conversion circuits 140a and 140b.
  • E2 k32 X (12—I2b) / ⁇ (ll—lib) + (12—I2b) ⁇
  • the calculation result E1 is substantially proportional to the concentration and area of the hydrogen gas in contact with the sensor cell 103, and the calculation result E2 indicates the position of the sensor cell 103 that has detected hydrogen gas.
  • E4 k34 X [ ⁇ (I2—I2b)-(II— lib) ⁇ /
  • Equation (23), Equation (24), and Equation (25) are converted into the following Equation (26), Equation (27), and Equation (28). It becomes.
  • the power bias power supply 111 described in the example in which the DC power supply is used as the bias power supply 111 is not limited to the DC power supply, and may be an AC power supply of about IKHz to ⁇ . In that case, it is necessary to add a rectification function to the current-voltage conversion circuits 130a and 130b of the position detection device 115B.
  • the position detection device 115B is configured to convert the output current from the hydrogen gas detection sensor 110 into a digital signal and perform arithmetic processing.
  • the position detection device 115B is not converted into a digital signal but in an analog signal state.
  • a circuit configuration for calculation may be used.
  • the hydrogen gas detection region is two-dimensional, and a plurality of sensor cells are arranged in a two-dimensional plane.
  • the two-dimensional array type hydrogen gas detection sensor of Example 9 is a detection film of a plurality of minute regions in which an electrical resistance value changes when hydrogen gas is detected on a substantially rectangular and electrically insulating base material. Are arranged in a two-dimensional lattice pattern at approximately equal intervals in the row and column directions. In the hydrogen gas detection sensor of Example 9, the position where hydrogen gas is detected is calculated from the change in the resistance value of the detection film in a plurality of minute regions.
  • FIG. 37 is a diagram showing the structure of the two-dimensional array type hydrogen gas detection sensor of Example 9, (a) is a plan view, and (b) is the hydrogen gas detection shown in (a).
  • FIG. 6 is a cross-sectional view taken along line Y—Y in the sensor.
  • the two-dimensional array-type hydrogen gas detection sensor 125 of Example 9 is formed in a substantially rectangular shape and is made of an electrically insulating quartz (SiO 2) base material 101 and is connected to the surface of the base material 101 in the column direction.
  • SiO 2 electrically insulating quartz
  • Common detection electrode 133 common detection electrode 132 connected to the back surface of substrate 101 in the row direction, and detection connected to common detection electrodes 132, 133 formed on the inner surface of the through-hole and on the front and back of substrate 101 And a sensor cell 103 having a film.
  • the detection film constituting the sensor cell 103 is composed of platinum-dispersed tungsten trioxide (Pt—WO) that changes its state from an electrically insulating state to a semiconductor state when hydrogen gas is detected.
  • the detection film of the sensor cell 103 is formed on the inner surface of the through hole 106 penetrating the front and back of the base material 101, and is formed on the back side of the base material 101 and the common detection electrode 133 in the row direction formed on the surface of the base material 101. It is joined to the common detection electrode 132 in the column direction.
  • the through holes 106 are formed at the intersections of two-dimensional lattices that are equally spaced in the row and column directions that are substantially perpendicular to each other. Therefore, the sensor cells 103 formed in the through holes 106 are in a two-dimensional array (planar array).
  • a plurality of common detection electrodes 132 in the row direction are formed so as to connect one end of each sensor cell 103 arranged in a straight line in the row direction. Further, on the surface of the substrate 101, a plurality of common detection electrodes 133 in the column direction are formed so as to connect a part of the sensor cells 103 arranged in a straight line parallel to the column direction.
  • the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction are It is connected to each lead line 108 provided on the end face of the base 101.
  • the through hole 106 By forming the through hole 106, it is possible to discharge the hydrogen gas 126 of the gas to be detected contacting the surface side of the substrate 101 to the back surface of the substrate 101 through the through hole 106.
  • the through hole 106 penetrating to the back surface of the base material 101 at the center of the sensor cell 103, the surface force of the base material 101 is prevented from diffusing along the surface of the base material 101, An increase in the range of the sensor cell 103 in contact with the hydrogen gas can be prevented.
  • the through hole 106 is an area where the sensor cell 103 is not formed as long as it is a hole penetrating from the front surface to the back surface of the base material 101, and is a part of the base material 101 or a common detection electrode in the row direction and the column direction. You can place it in the part!
  • the common detection electrode 132 in the row direction is provided from the row Y1 to the row Yn, and the common detection electrode 133 in the column direction is provided from the column XI to the column Xm. ing.
  • the display of each sensor cell 103 is indicated by (Xi, Yj) using the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction which are placed at the position of the sensor cell 103 to be displayed. This Where i is in the range of 1 to m and j is in the range of 1 to n.
  • the substrate 101 can be used as long as it is a material having electrical insulation and is stable at a heating temperature of 500 ° C when the sensor cell 103 is sintered.
  • Specific materials for the substrate 101 include silicon (SiO 2), aluminum nitride (A
  • a heat-resistant phenolic material such as Tymold from Kasei Co., Ltd. can also be used.
  • a three-dimensional shape other than a flat surface can be obtained by using an injection molding method.
  • polyimide-based materials such as Kapton (registered trademark) of Toray DuPont Co., Ltd. can be used.
  • Polyimide materials can be used when the sintering temperature of the force sensor cell 103, which has a maximum heat-resistant temperature of about 450 ° C, is about 450 ° C.
  • the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction are materials having high conductivity, and can be used as long as they are stable at the sintering temperature of the sensor cell 103 of about 500 ° C. In addition, it is more desirable that the common detection electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected.
  • Common sensing electrodes 132 and 133 are made of highly conductive materials such as magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), and nickel. It is possible to use metals such as (Ni) and silver (Ag), and carbon (C). In particular, as the material of the common detection electrodes 132 and 133, gold (Au) and copper (Cu) that are inert to hydrogen gas are desirable.
  • the sensor cell 103 can be any material that has a property that its electrical characteristics change when it comes into contact with hydrogen gas.
  • tin oxide (SnO) tin oxide (SnO)
  • molybdenum trioxide molybdenum trioxide
  • organic substances such as pyrrolopyrrole, which is a pigment of paint, mixed with nitrogen gas can also be used.
  • pyrrolopyrrole when used, it can be used only by natural drying. In this case, since a sintering process of about 500 ° C. is not required, the range of materials selection such as the base material 101 and the electrode is greatly expanded.
  • the platinum dispersion supported tungsten trioxide (Pt-WO) constituting the sensor cell 103 has platinum (Pt) fine particles having a particle diameter of about 1 nm to 10 nm as a catalyst.
  • the hydrogen gas 126 is dissociated into protons (H +) and electrons (e—).
  • the dissociated proton (H +) spills over the platinum catalyst fine particles and diffuses into the tungsten trioxide (WO), which is the main component of the sensor cell 103.
  • tandane trioxide becomes a semiconductor when protons (H +) diffuse and form tungsten bronze.
  • the resistance value of the sensor cell 103 is proportional to the concentration of hydrogen gas in contact with the sensor cell 103.
  • the sensor cell 124 in contact with the hydrogen gas is made into a semiconductor, has a resistance value lower than that of the other sensor cells 103, and a large amount of current flows when a bias voltage is applied from the bias power supply 111.
  • FIG. 38 is a block diagram showing a gas detection apparatus having a current-voltage conversion circuit 130 to which a signal from the two-dimensional array type hydrogen gas detection sensor 125 of Example 9 is inputted.
  • each sensor cell 103 of the two-dimensional array type hydrogen gas detection sensor 125 (in FIG. 38, the sensor cell 103 is shown by an equivalent circuit) is connected to the common detection electrode 132 in the corresponding row direction and the corresponding column direction.
  • the common detection electrode 133 is connected.
  • the common detection electrode 132 in each row direction is connected to the corresponding detection switch 134 and further connected to the bias power supply 111 via the current limiting resistor 112.
  • the common detection electrode 133 in each column direction is connected to the corresponding current-voltage conversion circuit 130.
  • the current signal from the common detection electrode 133 in each column direction is converted into a voltage signal and input to the multiplexer 117.
  • the chiplexer 117 selects one voltage signal from the voltage signals from each current-voltage conversion circuit 130 according to the control signal of the control circuit 119 that receives a command from the personal computer (hereinafter abbreviated as PC) 120.
  • the selected voltage signal is input to the AZD conversion circuit 118.
  • the signal from the multiplexer 117 is converted from analog to digital by the control signal of the control circuit 119 that has received a command from the PC 120, and transmitted to the PC 120.
  • the PC 120 performs arithmetic processing based on the signal from the AZD conversion circuit 118, and calculates a voltage value corresponding to the amount of current flowing through each sensor cell 103.
  • a two-dimensional array type hydrogen gas detection sensor detects hydrogen gas and puts it into a state.
  • a detection switch 134 corresponding to the common electrode 132 in the row direction to be measured is connected.
  • a voltage value corresponding to the amount of current flowing through the common electrode 132 in each column direction is measured.
  • the position of the sensor cell measured from the row number Yj of the common electrode 132 in the row direction to which the detection switch 134 is connected and the column number XI of the common electrode 133 in the column direction for which the voltage measurement was performed by the multiplexer 117 is performed.
  • (Xi, Yj) representing the position information and the offset value of the sensor cell 103 are recorded.
  • the detection switches 134 are sequentially switched, and the positional information and offset values of all sensor cells 103 are associated and recorded.
  • the voltage corresponding to the amount of current flowing through all the sensor cells 103 is obtained in the same manner as the method of recording the offset value described above in the state where the hydrogen gas detection sensor of the two-dimensional array type detects hydrogen gas. Measure the value.
  • the position information and measurement values of each sensor cell 103 measured at this time are recorded in the PC 120 as measurement values when hydrogen gas is detected.
  • the measured value force when hydrogen gas is detected is also subtracted from the offset value and recorded in the PC 120 as the change value of the output signal of each sensor cell 103.
  • the change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
  • FIG. 39 (a) is a plan view of the two-dimensional array type hydrogen gas sensor used in this experiment.
  • This two-dimensional array type sensor is basically the same as the hydrogen gas detection sensor 125 described with reference to FIG.
  • the hydrogen gas detection sensor 125 used in this experiment has 144 sensor cells 103 having 12 rows in the row direction and 12 columns in the column direction.
  • common detection electrodes 132 in the row direction are numbered from Y1 to Y12 from one end
  • common detection electrodes 133 in the column direction are numbered from XI to XI2 from one end.
  • the sensor cells 103 arranged at the intersections in the row direction and the column direction are identified and described by their numbers (Xi, Yj). I and j are in the range of 1-12.
  • the bias voltage 111 was a DC voltage of 5V, and was applied to the common detection electrode 132 in the row direction via the detection switch 134.
  • the current limiting resistor 112 is 10 ⁇ .
  • the bias current from the common detection electrode 133 in each column direction was almost constant and about: LA.
  • the nozzle that ejects the gas to be detected, including hydrogen gas, was circular with a gas outlet diameter of lmm, and the ejection direction was upward. Three nozzles were placed at a distance of lmm below the sensor cell (X4, Y4), sensor cell (X6, Y6), and sensor cell (X9, Y8).
  • the gas to be detected was air containing 1% hydrogen gas.
  • (b) of FIG. 39 shows a voltage value which is a change value of the output signal of each sensor cell 103.
  • the voltage of the sensor cell (X4, Y4), sensor cell ( ⁇ 6, ⁇ ⁇ ⁇ 6) and sensor cell ( ⁇ 9, ⁇ 8), where the nozzles for injecting the gas to be detected are located close to each other, are the voltage values of the other sensor cells 103. It is getting higher. Therefore, it was confirmed that the detection position of multiple hydrogen gases was accurately detected.
  • Quartz (SiO 2) having a length of 65 mm, a width of 65 mm, and a thickness of 0.5 mm was used for the base material 101 of the two-dimensional array type hydrogen gas detection sensor of Example 9 used in this experiment.
  • base material 101 In order to form the sensor cell 103, 144 through-holes 106 having a diameter of 3 mm were formed in a lattice form at intervals of 5 mm in length and width.
  • the common detection electrode 132 in the row direction on the back surface of the substrate 101 is formed with a width of 4 mm, a length of 65 mm, and a thickness of 0.5 ⁇ m around the through-hole 106 by sputtering gold (Au). did.
  • the common detection electrode 133 in the row direction on the surface of the base material 101 was formed with a width of 4 mm, a length of 65 mm, and a thickness of 0.5 m around the through hole 106 by using a sputtering method of gold (Au).
  • the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction were formed by sputtering using a mask so that gold (Au) was not deposited inside the through hole 106.
  • the inner surface of the through-hole 106 is composed of platinum dispersion-supported trioxide-tungsten (Pt—WO).
  • the formed sensing film was formed.
  • a sol-gel method was used as a method for forming the detection film. Specifically, first, sodium tungstate dihydrate (Na WO ⁇ 2 ⁇ ⁇ : Pure Chemical)
  • cation exchange resin Amberlite IR120B Na: manufactured by Organo Corporation
  • a sodium tungstate (Na 2 WO) aqueous solution was passed through it.
  • the above sol-gel solution was applied to the inner surface of through-hole 106 and the portion of 0.5 mm around through-hole 106 on the front and back surfaces of substrate 101.
  • the coating was performed by dipping the substrate 101 masked with the portion other than the through-hole 106 and the surrounding area of 0.5 mm into the sol-gel solution.
  • the dip time of the base material 101 was about 20 seconds.
  • the base material 101 was lifted from the sol-gel solution, and then nitrogen gas was blown to remove excess sol-gel solution.
  • the masking was removed, and calcining was performed at 200 ° C for 1 hour using an electric furnace. After calcining at 200 ° C for 1 hour, it was further calcined at 500 ° C for 1 hour and then cooled at room temperature.
  • the sensor cell 103 is located between the front surface and the back surface of the base material 101.
  • the shape of the connecting through hole 106 is obtained.
  • the film thickness of the sensor cell 103 was 0.5 m.
  • a resistance value hereinafter referred to as a junction resistance
  • the junction resistance of each sensor cell 103 was about 5 ⁇ on average and was almost uniform.
  • FIG. 40 is a view showing a hydrogen gas detection sensor 125A having a configuration different from that of the hydrogen gas detection sensor shown in FIG. 37, wherein (a) is a plan view and (b) is shown in (a).
  • FIG. 4 is a cross-sectional view of the hydrogen gas detection sensor 125A taken along line ZZ.
  • the two-dimensional array type hydrogen gas detection sensor 125A shown in FIG. 40 has almost the same structure as the hydrogen gas detection sensor 125 shown in FIG. 37. The difference is that there is no through-hole for discharging.
  • the hydrogen gas detection sensor 125A in FIG. 40 has the same basic function as the two-dimensional array type hydrogen gas detection sensor 125 in FIG.
  • the surface force of the base material 101 also has a function of discharging the gas to be detected including hydrogen gas to the back surface. Therefore, the sensor cell in which the hydrogen gas diffuses on the surface of the base material 101 and the hydrogen gas is detected. The detection range of the hydrogen gas detection position may be reduced.
  • the gas detection device according to the tenth embodiment is a gas detection device configured using the two-dimensional array type hydrogen gas detection sensor 125 described with reference to FIGS. 35 and 36 in the ninth embodiment.
  • the gas detection device of Example 10 uses a two-dimensional resistance division type position detection device.
  • the position detection device used in the gas detection device of Example 10 has a feature that can be configured with a simple circuit.
  • FIG. 41 is a block diagram showing the configuration of the gas detection device according to the tenth embodiment.
  • the two-dimensional array type hydrogen gas detection sensor 125 is provided with a two-dimensional resistance division type position detection device 115C.
  • the common detection electrode 133 in the column direction is connected to the common detection electrode 133 in the adjacent column direction by a current dividing resistor 141.
  • the common detection electrodes 133 in the column direction at both ends become the output electrodes Xa and Xb in the column direction of the hydrogen gas detection sensor 125.
  • the common detection electrode 132 in the row direction is electrically connected to the common detection electrode 132 in the adjacent row direction. They are connected by a flow dividing resistor 141.
  • the common detection electrodes 132 in the row direction at both ends become the output electrodes Ya and Yb in the row direction of the hydrogen gas detection sensor 125.
  • the output electrodes Xa, Xb, Ya and Yb are connected to the current-voltage conversion circuits 130a, 130b, 130c and 130d, respectively.
  • the current-voltage conversion circuits 130a and 130b are configured by using operational amplifiers, and output electrodes Xa and Xb are connected to the inverting input terminals of the operational amplifiers, respectively.
  • a noise power supply 111 is connected to the non-inverting input terminal.
  • the operational amplifiers of the current-voltage conversion circuits 130a and 130b apply a bias voltage for detecting a change in resistance of the sensor cell 103 to the two-dimensional array type hydrogen gas detection sensor via the output electrodes Xa and Xb.
  • the outputs of the operational amplifiers of the current-voltage conversion circuits 130a and 130b are input to the addition / subtraction circuits 135a and 135b for removing the bias voltage and for reversing the voltage, respectively.
  • the outputs of the addition / subtraction circuits 135a and 135b are input to the AZD conversion circuit 118.
  • the current-voltage conversion circuits 130c and 130d are configured using operational amplifiers, and output electrodes Ya and Yb are connected to the inverting input terminals of the operational amplifiers, respectively. The non-inverting input terminal of this operational amplifier is grounded. Outputs from the current-voltage conversion circuits 130c and 130d are input to the AZD conversion circuits 118c and 118d, respectively. Outputs from the AZD conversion circuits 118a and 118b are input to a divider 139a and an adder 138, respectively. On the other hand, outputs from the AZD conversion circuits 118c and 118d are input to the divider 139b and the adder 138, respectively. Outputs from the dividers 139a and 139b and the adder 138 are input to the DZA conversion circuits 140a, 140b, and 140c, and converted into a digital signal power S analog signal.
  • the current flowing to the electrode Xa is Iab
  • the current flowing to the electrode Xb is Ibb
  • the current flowing to the electrode Ya is Icb
  • the electrode Xb is Let Idb be the flowing current.
  • the currents lab, Ibb, Icb and Idb are converted into current-voltage conversion circuits 130a, 130b, 130c and 130d.
  • the voltage signals of the current-voltage conversion circuits 130a and 130b are input to the addition / subtraction circuits 135a and 135b, respectively, and the bias voltage generated by the bias power supply 111 is subtracted, and further the voltage signal The sign of is reversed. As a result, the voltage has the same polarity as the current-voltage conversion circuits 130c and 130d.
  • the signals from the addition / subtraction circuits 135a and 135b and the current-voltage conversion circuits 130c and 130d are converted into digital signals by the AZD conversion circuits 118a, 118b, 118c and 118d.
  • the converted digital signal is sent to dividers 139a and 139b and adder 138.
  • Dividers 139a and 139b and adder 138 hold the digital signals in this state as values corresponding to bias currents lab, Ibb, Icb, and Idb.
  • Example 10 the sensor cell 103 of the two-dimensionally arranged hydrogen gas detection sensor 125 in Example 10 has detected hydrogen gas.
  • the current flowing through the electrode Xa is Ia
  • the current flowing through the electrode Xb is Ib
  • the current flowing through the electrode Ya is Ic
  • the current flowing through the electrode Yb is Id.
  • the currents la, lb, Ic, and Id are converted into current signals, converted into digital signals, and the digital signals are sent to the dividers 139a and 139b and the adder 138.
  • the digital signals corresponding to the bias currents lab, Ibb, Icb, and Idb that have been held are converted into digital signals corresponding to la, lb, Ic, and Id, respectively. Subtraction is performed, and arithmetic processing is performed by addition and division corresponding to equations (29) to (31) below.
  • the calculation results of these additions and divisions are output as digital electric signals, and the D, A conversion circuits 140a, 140b, and 140c calculate the analog electric signals E5, the calculation results by the X direction division, and the E6X and Y direction divisions Calculated by E7Y.
  • the calculation result E6X in the X direction is a calculation result indicating the detection position of the hydrogen gas in the X direction
  • the calculation result E7Y in the Y direction is a calculation result indicating the detection position of the hydrogen gas in the Y direction.
  • E6X k36 X (lb -Ibb) / ⁇ (la -lab) + (lb -Ibb) ⁇
  • E7Y k37 X (Id— Idb) Z ⁇ (Ic— Icb) + (Id -Idb) ⁇
  • the X direction contains (la—lab) and (lb—Ibb), and the Y direction contains the ratio of (Ic – Icb) and (Id—Idb)! / It can be used as an arithmetic expression indicating the detection position.
  • An example of a calculation method that indicates a specific hydrogen gas detection position is described below.
  • Equations (32) and (33) are constants, k38 and k39i.
  • hydrogen gas detection can be performed using the arithmetic expression of the expression (32) and the force expression (35) in addition to the arithmetic expressions of the above expressions (30) and (31).
  • equations (29) to (35) if the output currents la, lb, Ic and Id force bias currents of the hydrogen gas detection sensor 125 are sufficiently large with respect to lab, Ibb, Icb and Idb, It is possible to calculate by ignoring the current. In this case, equations (29) to (35) are expressed by the following equation (36) and force equation (42).
  • the hydrogen gas detection position should be calculated using Equation (29) and Equation (42) as well. Can do.
  • the bias power supply 111 used in the gas detection apparatus of the tenth embodiment has been described as a DC power supply.
  • the bias power supply in the gas detection apparatus of the present invention is not limited to a DC power supply.
  • the AC power supply can be used. In that case, it is necessary to add a rectifier to the current-voltage conversion circuits 130a to 130b 130c and 130d of the position detection device 115C.
  • the position detection device 115C in the tenth embodiment converts the output current from the hydrogen gas detection sensor 125 into a digital signal and performs an arithmetic process, but does not convert the digital signal into an analog signal and calculates the circuit configuration. It is also possible to process.
  • a distributed hydrogen gas detection sensor can be realized in a semiconductor system.
  • the hydrogen gas detection sensor that has been one-dimensional (linear) in the hydrogen gas detection area that was previously realized with the optical fiber hydrogen gas detection sensor is realized with the semiconductor gas detection sensor of the present invention.
  • a gas detection sensor having a two-dimensional (planar) gas detection area can be realized. In the present invention, it is possible to improve the response speed and eliminate the influence of humidity by increasing the temperature of the detection film in the gas detection sensor.
  • the gas detection region is one-dimensional using a plurality of minute sensor cells that connect a one-dimensional linear configuration or a two-dimensional planar configuration with only a laminated structure of a detection film and a resistance layer.
  • a gas detection sensor can be configured by arranging in a linear or two-dimensional plane.

Abstract

Disclosed is a gas detection sensor comprising a strip-shaped resistive layer having a certain resistance which is provided with electrodes at both ends, a detection film which is arranged in contact with at least one side of the resistive layer extending in the longitudinal direction and the electrical characteristics of which vary when it comes into contact with a detection object gas, and a common electrode which is arranged in contact with the detection film and joined to the resistive layer via the detection film. The detection film is arranged to be exposed in the longitudinal direction.

Description

明 細 書  Specification
ガス検知センサおよびガス検知装置  Gas detection sensor and gas detection device
技術分野  Technical field
[0001] 本発明は、水素ガスなどの可燃ガスのための機器や配管などに用いられ、ガス漏 洩箇所を検知するガス検知センサおよびガス検知装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a gas detection sensor and a gas detection device that are used in equipment and piping for flammable gas such as hydrogen gas and detect a gas leakage point.
背景技術  Background art
[0002] 近年、地球環境保護や化石燃料の枯渴防止の観点から、クリーンで、かつ循環可 能なエネルギーの活用が望まれている。そのようなエネルギーの中でも特に、水素ガ スをエネルギー源として利用するための研究は、燃料電池を中心に活発に行われて いる。水素ガスは、爆発限界濃度の範囲が 4%から 75%と広ぐ水素ガスをエネルギ 一源として普及させるためには、水素の貯蔵や輸送などにおけるハンドリングの容易 性や、水素漏洩に対する安全性の確保が不可欠な条件である。その条件の中で、安 全性を確保するため、水素ガスの漏洩を検知するためのガス検知センサの設置は、 必須となっている。  [0002] In recent years, from the viewpoint of protecting the global environment and preventing fossil fuels from drying out, it is desired to use clean and recyclable energy. Among such energies, research to use hydrogen gas as an energy source has been actively conducted, centering on fuel cells. In order to disseminate hydrogen gas as an energy source, hydrogen gas, which has an explosive limit concentration range of 4% to 75%, is easy to handle in hydrogen storage and transportation, and is safe from hydrogen leakage. Ensuring is an essential condition. In order to ensure safety, it is essential to install a gas detection sensor to detect hydrogen gas leakage.
[0003] 従来のガス検知センサとしては、接触燃焼方式若しくは半導体方式の水素ガス検 知センサが主に用いられて 、る。  [0003] As a conventional gas detection sensor, a catalytic combustion type or semiconductor type hydrogen gas detection sensor is mainly used.
接触燃焼方式の水素ガス検知センサにぉ 、ては、白金 (Pt)やパラジウム (Pd)など の触媒金属をヒータで加熱し、触媒に接触した水素ガスを空気の酸素で酸化させて いる。接触燃焼方式の水素ガス検知センサは、水素ガスの酸化作用で生ずる発熱を 、触媒金属の導電率の変化として電気的に検出するものである。  In a catalytic combustion type hydrogen gas detection sensor, a catalytic metal such as platinum (Pt) or palladium (Pd) is heated by a heater, and the hydrogen gas in contact with the catalyst is oxidized by oxygen in the air. The catalytic combustion type hydrogen gas detection sensor electrically detects heat generated by the oxidation of hydrogen gas as a change in the conductivity of the catalyst metal.
[0004] 一方、半導体方式の水素ガス検知センサは、水素ガスの検知膜への吸着による検 知膜の電気的特性の変化、すなわち検知膜の抵抗値の変化を検出するものである。 この半導体方式の水素ガス検知センサは、接触燃焼方式の水素ガス検知センサと同 様に、ヒータにより加熱した状態で使用される。このような例としては、例えば、 日本の 実公昭 49 - 23507号公報 (第 1— 3頁)や、特開平 7— 260727号公報に開示され ている。  [0004] On the other hand, the semiconductor-type hydrogen gas detection sensor detects a change in electrical characteristics of the detection film due to adsorption of hydrogen gas to the detection film, that is, a change in the resistance value of the detection film. This semiconductor type hydrogen gas detection sensor is used in a state heated by a heater, like the contact combustion type hydrogen gas detection sensor. Examples of this are disclosed, for example, in Japanese Utility Model Publication No. 49-23507 (pages 1-3) and Japanese Patent Application Laid-Open No. 7-260727.
[0005] これらの水素ガス検知センサは、水素ガスを利用する燃料電池自動車や定置型燃 料電池、水素ディスペンサゃ水素圧縮器などの水素機器、および水素ボンベなどの 蓄ガス設備などにぉ 、て、水素ガス漏洩を検知するための水素ガス検知センサとし て用いられている。例えば、燃料電池自動車に用いる場合は、燃料電池のスタック近 傍、水素タンク近傍、車室内ルーフなど、水素ガスが漏洩し易い箇所や、滞留し易い 箇所などに複数個設置される。このような例としては、例えば、日本の特開 2004— 2 3874号公報 (第 5— 8頁、第 3図)に開示されている。また、水素ディスペンサゃ水素 圧縮機などの水素機器においても、機器内部の水素ガスが漏洩しやすい箇所や滞 留し易い箇所と、これらの水素機器が設置される室内の上部や排気口付近など、水 素ガスの排気流路ゃ滞留し易い箇所に複数個の水素ガス検知センサが設置される。 最近の新たな水素ガス検知センサとして、光ファイバ一を用いた水素ガス検知セン サが提案されている。このような光ファイバ一方式の水素ガス検知センサは、光フアイ バーのクラッドの部分に、水素を検知すると光に対して屈折率が変化する検知膜を 形成したものである。この光ファイバ一方式の水素ガス検知センサは、光ファイバ一 の敷設ラインに沿った線上における水素ガスの濃度を検知するものである。この光フ アイバー方式の水素ガス検知センサは、従来の接触燃焼方式や半導体方式の水素 ガス検知センサのようにセンサを設置した地点の水素ガス濃度を測定するのではなく 、光ファイバ一を敷設したライン上、すなわち 1次元状の水素ガス濃度を測定すること が可能である。さらに、この光ファイバ一方式の水素ガス検知センサは、光時間領域 反射測定法(OTDR:Optical time-domein reflectometry)の技術を組み合わせること により、光ファイバ一上の水素ガスを検知した位置を測定することも可能となる。この ような例としては、例えば、 日本の特開 2003— 166938号公報 (第 3— 6頁、第 3図) に開示されている。 [0005] These hydrogen gas detection sensors are used for fuel cell vehicles and stationary fuels that use hydrogen gas. It is used as a hydrogen gas detection sensor for detecting hydrogen gas leaks in hydrogen batteries such as fuel cells, hydrogen dispensers and hydrogen compressors, and gas storage facilities such as hydrogen cylinders. For example, when used in a fuel cell vehicle, a plurality of fuel cell vehicles are installed near the fuel cell stack, near the hydrogen tank, inside the vehicle cabin roof, etc., where hydrogen gas is likely to leak or where it is likely to stay. Such an example is disclosed, for example, in Japanese Unexamined Patent Publication No. 2004-2 3874 (pages 5-8, FIG. 3). Also, in hydrogen equipment such as hydrogen dispensers and hydrogen compressors, the location where hydrogen gas inside the equipment is likely to leak or where it is likely to stay, the upper part of the room where these hydrogen equipment is installed, the vicinity of the exhaust port, etc. A plurality of hydrogen gas detection sensors are installed at locations where hydrogen gas exhaust passages are likely to stay. Recently, a hydrogen gas detection sensor using an optical fiber has been proposed as a new hydrogen gas detection sensor. Such an optical fiber type hydrogen gas detection sensor is formed by forming a detection film whose refractive index changes with respect to light when hydrogen is detected in the cladding portion of the optical fiber. This optical fiber type hydrogen gas detection sensor detects the concentration of hydrogen gas on a line along the optical fiber laying line. This optical fiber type hydrogen gas detection sensor does not measure the hydrogen gas concentration at the point where the sensor is installed like the conventional catalytic combustion type or semiconductor type hydrogen gas detection sensor, but lays an optical fiber. One-dimensional hydrogen gas concentration can be measured on the line. Furthermore, this optical fiber type hydrogen gas detection sensor measures the position where hydrogen gas is detected on the optical fiber by combining optical time domain reflectometry (OTDR) technology. It is also possible. Such an example is disclosed, for example, in Japanese Unexamined Patent Publication No. 2003-166938 (page 3-6, FIG. 3).
特許文献 1:実公昭 49 - 23507号公報 (第 1— 3頁) Patent Document 1: Japanese Utility Model Publication No. 49-23507 (Pages 1-3)
特許文献 2:特開平 7 - 260727号公報 Patent Document 2: JP-A-7-260727
特許文献 3:特開 2004 - 23874号公報 (第 5 - 8頁、第 3図) Patent Document 3: Japanese Patent Laid-Open No. 2004-23874 (Pages 5-8, Fig. 3)
特許文献 4 :特開 2003— 166938号公報 (第 3— 6頁、第 3図) Patent Document 4: Japanese Patent Laid-Open No. 2003-166938 (page 3-6, Fig. 3)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 [0007] しかしながら、接触燃焼方式、半導体方式、および光ファイバ一方式の従来の水素 ガス検知センサにおいては以下のような課題がある。 Problems to be solved by the invention [0007] However, the conventional hydrogen gas detection sensor of the catalytic combustion system, the semiconductor system, and the optical fiber system has the following problems.
接触燃焼方式や半導体方式の水素ガス検知センサは、前述のように、設置された 地点における水素ガス濃度を検知するものである。そのため、水素ガスの漏洩箇所と 水素ガス検知センサの設置場所との間における空気が流れる方向や、その速度によ り、当該水素ガス検知センサが漏洩した水素ガスを検知できない場合がある。したが つて、確実性を高めるために、当該水素ガス検知センサの検知感度を高く設定する ことが必要になる。しかし、このように検知感度を高めると、水素ガス以外のガスにより 作動する誤作動や、経時変化による故障の原因となり問題となっていた。  As described above, the catalytic combustion type and semiconductor type hydrogen gas detection sensors detect the hydrogen gas concentration at the installed location. For this reason, the hydrogen gas leaked by the hydrogen gas detection sensor may not be detected depending on the direction and speed of the air flow between the location where the hydrogen gas leaks and the location where the hydrogen gas detection sensor is installed. Therefore, in order to increase the certainty, it is necessary to set the detection sensitivity of the hydrogen gas detection sensor high. However, increasing the detection sensitivity in this way has caused problems such as malfunctions caused by gases other than hydrogen gas and failures due to changes over time.
[0008] 水素ガスの漏洩発生力 水素ガス検知センサにより検知されるまでの検知時間は、 水素ガスの漏洩箇所、漏洩箇所からの水素ガスの流出方向、さらに、漏洩箇所周囲 における空気の流れなどの条件により大きく変動する。特に、大量の水素ガスを保管 する蓄ガス室などにぉ 、ては、水素ガス検知センサが漏洩した水素ガスを検知した 時点では、すでに大量の水素ガスの漏洩している危険性がある。したがって、検知時 間の短縮は、この分野における重要な課題である。  [0008] Hydrogen gas leakage generation force The detection time until it is detected by the hydrogen gas detection sensor includes the hydrogen gas leakage location, the hydrogen gas outflow direction from the leakage location, and the air flow around the leakage location. Fluctuates greatly depending on conditions. In particular, there is a risk that a large amount of hydrogen gas has already leaked when the hydrogen gas sensor detects the leaked hydrogen gas in a gas storage chamber that stores a large amount of hydrogen gas. Therefore, reducing detection time is an important issue in this area.
[0009] また、水素ガスの漏洩箇所の正確な位置を検出するためには、人間が携帯型の水 素ガス検知器を使用して水素ガスが漏洩した状態で探し出す検査作業が必要である 。このような人間による検査作業の中でも大型の水素機器やプラントなどにおいては 、検査箇所が膨大であり検査に時間がかかり、危険性も高くなる。 [0009] In addition, in order to detect the exact position of the hydrogen gas leak location, it is necessary for humans to perform an inspection operation to search for hydrogen gas leaked using a portable hydrogen gas detector. In such a human inspection work, in a large-scale hydrogen device or plant, the number of inspection points is enormous, and the inspection takes time, and the risk increases.
光ファイバ一方式の水素ガス検知センサは、従来における他の方式の水素ガス検 知センサのように設置箇所のみにおいて水素ガスの漏洩を検知するのではなぐ光 ファイバーを敷設した範囲において生じた水素ガスの漏洩を検知できるセンサである 。光ファイバ一方式の水素ガス検知センサは、前述のように、 OTDRの技術と組合せ ることにより、光ファイバ一の敷設ライン上で水素ガスを検知した位置も検出すること が可能となる。このように、光ファイバ一方式の水素ガス検知センサは、従来の水素 ガス検知センサの課題を解決できる新たな水素ガス検知センサとして期待されている  An optical fiber type hydrogen gas detection sensor is different from the conventional hydrogen gas detection sensor in that the hydrogen gas generated in the area where the optical fiber is installed is not detected only at the installation location. It is a sensor that can detect leakage of water. As described above, the optical fiber type hydrogen gas detection sensor can detect the position where hydrogen gas is detected on the laying line of the optical fiber when combined with the OTDR technology. As described above, the optical fiber type hydrogen gas detection sensor is expected as a new hydrogen gas detection sensor that can solve the problems of the conventional hydrogen gas detection sensor.
[0010] しかし、光ファイバ一方式の水素ガス検知センサにおける位置検出精度は、高価な OTDRを用いても数十センチ以下とすることはできず、漏洩位置の特定が困難であつ た。そのため、水素ガスの漏洩位置を正確に検出するためには、最終的には携帯型 の水素ガス検知器などを用いて人間による検査作業が必要であった。また、光フアイ バー方式の水素ガス検知センサに用いられて 、る光ファイバ一は、それ自体が折れ やすぐ取り扱いが困難であった。 [0010] However, the position detection accuracy in the hydrogen gas detection sensor of an optical fiber type is expensive. Even using OTDR, it was not possible to make it less than several tens of centimeters, and it was difficult to identify the leak location. For this reason, in order to accurately detect the leak position of hydrogen gas, it was eventually necessary to perform a human inspection using a portable hydrogen gas detector. In addition, the optical fiber used in the optical fiber type hydrogen gas detection sensor itself was broken and difficult to handle immediately.
課題を解決するための手段  Means for solving the problem
[0011] 上記の課題を解決するために、本発明に係るガス検知センサは、所定の抵抗値を 有する実質的な帯状の抵抗層、 [0011] In order to solve the above problems, a gas detection sensor according to the present invention includes a substantially strip-shaped resistance layer having a predetermined resistance value,
前記抵抗層の長手方向の両端に電気的に接続された第 1の電極と第 2の電極、 前記抵抗層の長手方向の面における少なくとも 1つの面において、長手方向に沿 つて接触するよう配置され、被検知ガスとの接触により電気的特性が変化する材料で 形成された検知膜、および  A first electrode and a second electrode electrically connected to both ends in the longitudinal direction of the resistive layer, and arranged so as to contact along the longitudinal direction on at least one of the longitudinal surfaces of the resistive layer; A sensing film made of a material whose electrical characteristics change upon contact with the gas to be sensed, and
前記検知膜の長手方向の面における少なくとも 1つの面に接触して配置され、前記 抵抗層に対して前記検知膜を介して接合された共通電極、を具備し、  A common electrode disposed in contact with at least one surface in the longitudinal direction of the detection film and bonded to the resistance layer via the detection film;
前記検知膜が長手方向に沿って線状に表出するよう構成されている。  The detection film is configured to be linearly exposed along the longitudinal direction.
[0012] 本発明に係る他の観点のガス検知センサは、所定の抵抗値を有する実質的な面状 の抵抗層、 [0012] A gas detection sensor according to another aspect of the present invention includes a substantially planar resistance layer having a predetermined resistance value,
前記抵抗層における四方の端部に電気的に接続された第 1の電極と第 2の電極と 第 3の電極と第 4の電極、  A first electrode, a second electrode, a third electrode, and a fourth electrode electrically connected to four ends of the resistance layer;
前記抵抗層の一方の面に接触するよう積層され、被検知ガスとの接触により電気的 特性が変化する材料で形成された検知膜、および  A sensing film made of a material that is laminated so as to be in contact with one surface of the resistance layer and whose electrical characteristics change by contact with the gas to be sensed; and
前記抵抗層に対して前記検知膜を介して積層され、導電体で形成された共通電極 、を具備し、  A common electrode formed of a conductor and laminated on the resistance layer via the sensing film;
前記検知膜が面状に表出するよう構成されている。  The detection film is configured to be exposed in a planar shape.
[0013] 本発明に係るガス検知装置は、被検知ガスとの接触により電気的特性が変化する 材料で形成された検知膜を有し、検知面が実質的な帯状に構成されており、被検知 ガスを検知したときガス検知位置に応じて電流分割して出力するガス検知センサ、 前記ガス検知センサに電力を供給するバイアス電源、 前記ガス検知センサ力ゝらの電流分割された信号を演算処理してガス検知位置を算 出する演算器、を具備し、 [0013] The gas detection device according to the present invention includes a detection film formed of a material whose electrical characteristics change by contact with the gas to be detected, and the detection surface is configured in a substantially band shape. Detection Gas detection sensor that outputs a current divided according to the gas detection position when detecting gas, Bias power supply that supplies power to the gas detection sensor, An arithmetic unit for calculating a gas detection position by performing arithmetic processing on the current-divided signal of the gas detection sensor force
前記演算器は、前記ガス検知センサ力ゝらの電流分割された被検知ガスを検知して いないときの信号と検知したときの信号を減算し、その減算結果を加算処理した算出 結果と除算処理した算出結果に基づきガス検知位置を検知するよう構成されている  The computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when it is detected, and adds the subtraction result to the calculation result and the division process It is configured to detect the gas detection position based on the calculated result
[0014] 本発明に係る他の観点のガス検知装置は、被検知ガスとの接触により電気的特性 が変化する材料で形成された検知膜を有し、検知面が実質的な面状に構成されて おり、被検知ガスを検知したときガス検知位置に応じて四方に電流分割して出力する ガス検知センサ、 [0014] A gas detection device according to another aspect of the present invention includes a detection film formed of a material whose electrical characteristics change by contact with a gas to be detected, and the detection surface is configured to have a substantially planar shape. A gas detection sensor that outputs a current divided into four directions according to the gas detection position when a gas to be detected is detected,
前記ガス検知センサに電力を供給するバイアス電源、  A bias power supply for supplying power to the gas detection sensor;
前記ガス検知センサ力ゝらの電流分割された信号を演算処理してガス検知位置を算 出する演算器、を具備し、  An arithmetic unit for calculating a gas detection position by performing arithmetic processing on the current-divided signal of the gas detection sensor force
前記演算器は、前記ガス検知センサ力ゝらの電流分割された被検知ガスを検知して いないときの信号と検知したときの信号を減算し、その減算結果を加算処理した算出 結果と減算処理した算出結果に基づきガス検知位置を検知するよう構成されている  The computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when detected, and adds the subtraction result to the calculation result and the subtraction process. It is configured to detect the gas detection position based on the calculated result
[0015] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスを検知すると抵抗変 化するガス検知センサを有するガス検知装置であって、 [0015] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected,
実質的な帯状に形成された検知膜、  A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、および  A resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film. A common electrode for applying, and
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、を備え、  A first electrode and a second electrode that are not bonded to the detection film and are formed at both ends in the longitudinal direction on the resistance layer;
前記抵抗層を介して前記共通電極と前記第 1の電極との間及び前記共通電極と第 2の電極との間の各抵抗値変化を測定し、前記抵抗値変化に基づいて前記検知膜 のガス検知位置を算出するよう構成されて 、る。 [0016] 本発明に係るさらに他の観点のガス検知装置は、電気的に絶縁性を有し、実質的 な帯状に形成された基材、 Each resistance value change between the common electrode and the first electrode and between the common electrode and the second electrode is measured via the resistance layer, and based on the resistance value change, The gas detection position is configured to be calculated. [0016] A gas detection device according to still another aspect of the present invention is an electrically insulating base material formed in a substantially strip shape,
前記基材の長手方向の面に接合して形成された抵抗層、  A resistance layer formed by bonding to the longitudinal surface of the substrate;
前記抵抗層の長手方向の面に積層され、被検知ガスを検知すると抵抗変化する検 知膜、  A sensing film that is laminated on a longitudinal surface of the resistance layer and changes its resistance when a gas to be detected is detected;
前記検知膜の長手方向の面に形成され、前記検知膜に所定のバイアス電圧を印 加するための共通電極、および  A common electrode formed on a longitudinal surface of the sensing film for applying a predetermined bias voltage to the sensing film; and
前記検知膜の抵抗変化を検出するために前記抵抗層の両端部に設けられた第 1 の電極と第 2の電極、を備え、  A first electrode and a second electrode provided at both ends of the resistance layer to detect a resistance change of the sensing film;
前記抵抗層を介して前記共通電極と前記第 1の電極との間の抵抗値変化および前 記共通電極と第 2の電極との間の抵抗値変化を測定し、前記各抵抗値変化に基づ V、て前記検知膜のガス検知位置を算出するよう構成されて 、る。  A resistance value change between the common electrode and the first electrode and a resistance value change between the common electrode and the second electrode are measured via the resistance layer, and the resistance value change is determined based on each resistance value change. V. The gas detection position of the detection film is calculated.
[0017] 本発明に係るさらに他の観点のガス検知装置は、電気的に絶縁性を有し、実質的 な帯状に形成された基材、 [0017] A gas detector according to still another aspect of the present invention is an electrically insulating base material formed in a substantially strip shape,
前記基材の長手方向の面に接合して形成された共通電極、  A common electrode formed by bonding to the longitudinal surface of the substrate;
前記共通電極の長手方向の面に積層され、被検知ガスを検知すると抵抗変化する 検知膜、  A sensing film that is laminated on the longitudinal surface of the common electrode and changes its resistance when a gas to be detected is detected,
前記検知膜の長手方向の面に積層された抵抗層、および  A resistance layer laminated on a longitudinal surface of the sensing film; and
前記検知膜の抵抗変化を検出するために前記抵抗層の両端部に設けられた第 1 の電極と第 2の電極、を備え、  A first electrode and a second electrode provided at both ends of the resistance layer to detect a resistance change of the sensing film;
前記共通電極を介して前記検知膜に所定のバイアス電圧を印加し、前記抵抗層を 介して前記共通電極と前記第 1の電極との間の抵抗値変化および前記共通電極と 第 2の電極との間の抵抗値変化を測定し、前記各抵抗値変化に基づいて前記検知 膜のガス検知位置を算出するよう構成されている。  A predetermined bias voltage is applied to the detection film via the common electrode, a resistance value change between the common electrode and the first electrode, and the common electrode and the second electrode via the resistance layer. A change in resistance value is measured, and a gas detection position of the detection film is calculated based on each change in resistance value.
[0018] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスを検知すると抵抗変 化するガス検知センサを有するガス検知装置であって、 [0018] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected,
実質的な帯状に形成された検知膜、  A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、 A resistance layer laminated and bonded to one surface of the longitudinal surface of the sensing film; A common electrode for applying a predetermined bias voltage to the detection film, laminated and bonded to another surface in the longitudinal direction of the detection film;
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、および  A first electrode and a second electrode which are not joined to the sensing film and are formed at both ends in the longitudinal direction on the resistance layer; and
前記共通電極と前記第 1の電極との抵抗変化および前記共通電極と第 2の電極と の抵抗変化を検出してガス検知位置を算出する変換手段、を備え、  Conversion means for calculating a gas detection position by detecting a resistance change between the common electrode and the first electrode and a resistance change between the common electrode and the second electrode;
前記変換手段は、前記抵抗層を介して前記共通電極と前記第 1の電極との間を流 れる電流値、および前記共通電極と第 2の電極との間を流れる電流値を電圧値に変 換し、変換された前記電圧値に基づいてガス検知位置を算出する演算器を有する。  The converting means converts a current value flowing between the common electrode and the first electrode through the resistance layer and a current value flowing between the common electrode and the second electrode into a voltage value. In other words, an arithmetic unit that calculates a gas detection position based on the converted voltage value is provided.
[0019] 本発明に係るさらに他の観点のガス検知装置は、可燃ガスを検知すると抵抗変化 するガス検知センサを有するガス検知装置であって、 [0019] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor that changes resistance when a combustible gas is detected,
実質的な帯状に形成された検知膜、  A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、および  A resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film. A common electrode for applying, and
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、を備え、  A first electrode and a second electrode that are not bonded to the detection film and are formed at both ends in the longitudinal direction on the resistance layer;
前記検知膜の温度を 200°C力も 400°Cに加熱し、前記抵抗層を介して前記共通電 極と前記第 1の電極との間及び前記共通電極と前記第 2の電極との間の各抵抗値変 化を測定し、前記抵抗値変化に基づいて前記検知膜のガス検知位置を算出するよう 構成されている。  The temperature of the detection film is heated to 200 ° C. and 400 ° C., and between the common electrode and the first electrode and between the common electrode and the second electrode through the resistance layer. Each resistance value change is measured, and the gas detection position of the detection film is calculated based on the resistance value change.
[0020] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスを検知すると抵抗変 化するガス検知センサを有するガス検知装置であって、  [0020] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor that changes resistance when a gas to be detected is detected,
実質的に矩形状に形成された膜面を有し、前記膜面が直交する X方向と Y方向を 含んで配置された検知膜、  A detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
前記検知膜の一方の面に積層された矩形状の抵抗層、  A rectangular resistive layer laminated on one side of the sensing film;
前記検知膜の他方の面に接して形成され、前記検知膜に所定のバイアス電圧を印 加する共通電極、 前記抵抗層の対向する一対の辺に設けられ、 X方向のガス検知位置を検出するた め X方向に延設された直線状の第 1の電極と第 2の電極、および A common electrode that is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film; A linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction; and
前記抵抗層の対向する他の一対の辺に設けられ、 Y方向のガス検知位置を検出す るため Y方向に延設された直線状の第 3の電極及び第 4の電極、を備えて!/、る。  Provided on the other pair of opposing sides of the resistance layer, and includes linear third electrodes and fourth electrodes extending in the Y direction to detect the gas detection position in the Y direction! /
[0021] 本発明に係るさらに他の観点のガス検知装置は、可燃ガスを検知すると抵抗変化 するガス検知センサを有するガス検知装置であって、 [0021] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor that changes resistance when a combustible gas is detected,
実質的に矩形状に形成された膜面を有し、前記膜面が直交する X方向と Y方向を 含んで配置された検知膜、  A detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
前記検知膜の一方の面に積層された矩形状の抵抗層、  A rectangular resistive layer laminated on one side of the sensing film;
前記検知膜の他方の面に接して形成され、前記検知膜に所定のバイアス電圧を印 加する共通電極、  A common electrode that is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film;
前記抵抗層の対向する一対の辺に設けられ、 X方向のガス検知位置を検出するた め X方向に延設された直線状の第 1の電極と第 2の電極、  A linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction;
前記抵抗層の対向する他の一対の辺に設けられ、 Y方向のガス検知位置を検出す るため Y方向に延設された直線状の第 3の電極と第 4の電極、および  A third linear electrode and a fourth electrode, which are provided on the other pair of opposing sides of the resistance layer and extend in the Y direction to detect a gas detection position in the Y direction; and
前記検知膜の温度を 200°C力も 400°Cの温度に加熱する加熱手段、を備えて 、る  Heating means for heating the temperature of the detection film to a temperature of 200 ° C and 400 ° C
[0022] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスを検知すると電気抵 抗が変化するガス検知センサを有するガス検知装置であって、 [0022] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor whose electrical resistance changes when a gas to be detected is detected,
実質的な帯状に形成され、電気的絶縁性を有する基材、  A base material formed in a substantially strip shape and having electrical insulation,
前記基材の長手方向の面における長辺部に形成された共通電極、  A common electrode formed on the long side of the longitudinal surface of the substrate;
複数の所定領域が所定の間隔を有して直線的に配置された検知膜で構成され、 各検知膜の一端が前記共通電極に接続されたセンサセル、および  A plurality of predetermined regions are configured by detection films arranged linearly with a predetermined interval, and one end of each detection film is connected to the common electrode; and
前記センサセルの検知膜の他端に接続され、前記共通電極と対をなして構成され る検出電極、を有し、  A detection electrode connected to the other end of the detection film of the sensor cell and configured to form a pair with the common electrode;
前記共通電極にバイアス電圧を印加し、前記共通電極と前記検出電極との間の抵 抗値変化を検知して、前記抵抗値変化が検出されるセンサセルの位置に基づいて ガス検知位置を算出するよう構成されている。 [0023] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスが接触すると電気抵 抗が変化する検知膜を有するガス検知センサを持つガス検知装置であって、 電気的絶縁性を有する材料により実質的な帯状に形成され、所定の間隔で直線状 に配置された複数の孔により貫通された基材、 A bias voltage is applied to the common electrode, a resistance value change between the common electrode and the detection electrode is detected, and a gas detection position is calculated based on the position of the sensor cell where the resistance value change is detected. It is configured as follows. [0023] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected comes into contact with the gas detection device, and has electrical insulation properties. A substrate formed by a material having a substantially strip shape and penetrated by a plurality of holes arranged linearly at a predetermined interval;
前記基材の孔の内面に形成された検知膜を有するセンサセル、  A sensor cell having a detection film formed on the inner surface of the hole of the substrate;
前記基材の長手方向の一つの面上に形成され、前記検知膜のそれぞれの一端と 接続された共通電極、および  A common electrode formed on one longitudinal surface of the substrate and connected to one end of each of the sensing films; and
前記共通電極と対をなして前記基材の他方の面上に形成され、それぞれの検知膜 部の他端に形成された複数の検出電極、を有し、  A plurality of detection electrodes formed on the other surface of each of the detection film parts, and formed on the other surface of the base material in pairs with the common electrode;
前記共通電極にバイアス電圧を印加し、前記共通電極とセンサセルの検出電極と の間の抵抗値変化を検知して、前記抵抗値変化が検出されたセンサセルの位置に 基づいて、ガス検知位置を算出するよう構成されている。  A bias voltage is applied to the common electrode, a change in resistance value between the common electrode and the detection electrode of the sensor cell is detected, and a gas detection position is calculated based on the position of the sensor cell where the change in resistance value is detected. It is configured to
[0024] 本発明に係るさらに他の観点のガス検知装置は、被検知ガスを検知すると電気抵 抗が変化する検知膜を有するガス検知センサを持つガス検知装置であって、 電気的に絶縁性を有する材料により実質的に矩形状に形成され、所定のピッチで 格子状の交点の位置に配置された複数の孔により貫通された基材、 [0024] A gas detection device according to still another aspect of the present invention is a gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected is detected, and is electrically insulating. A substrate formed by a material having a substantially rectangular shape and penetrated by a plurality of holes arranged at predetermined grid-intersection positions at a predetermined pitch,
前記基材の孔の内面に形成された検知膜を有する複数のセンサセル、 前記基材の 1つの矩形面上に形成され、前記センサセルのそれぞれの一端に接続 され、所定のバイアス電圧が印加される Xi(i= l〜m)電極で示される列方向の共通 検出電極、  A plurality of sensor cells having a detection film formed on the inner surface of the hole of the base material, formed on one rectangular surface of the base material, connected to one end of each of the sensor cells, and applied with a predetermined bias voltage A common detection electrode in the column direction indicated by the Xi (i = l to m) electrode,
前記基材の他の矩形面上に形成され、前記センサセルのそれぞれの他端に接続 され、前記列方向の共通検出電極における Xi電極と対をなす Yj (j = l〜n)電極で 示される行方向の共通検出電極、を備え、  Yj (j = l to n) electrodes formed on the other rectangular surface of the substrate, connected to the other ends of the sensor cells, and paired with the Xi electrodes in the common detection electrodes in the column direction. A common detection electrode in the row direction,
前記 Xi電極を通して、所定の時間間隔で前記センサセルにノィァス電圧が供給さ れて、前記バイアス電圧が供給される前記 Xi電極と前記 Yj電極との間の抵抗値変化 を検知し、前記抵抗値変化が検出されたセンサセルの位置に基づ 、てガス検知位 置を算出するよう構成されている。  A noise voltage is supplied to the sensor cell through the Xi electrode at a predetermined time interval, a change in resistance value between the Xi electrode and the Yj electrode to which the bias voltage is supplied is detected, and the resistance value change is detected. The gas detection position is calculated based on the position of the sensor cell where the gas is detected.
発明の効果 [0025] 本発明によれば、被検知ガスの漏洩箇所を簡単な構成のガス検知センサおよびガ ス検知装置により、一次元状または二次元状のガス検知領域におけるガス漏洩箇所 を簡単な構成で確実に検知することができるという優れた効果を有する。 図面の簡単な説明 The invention's effect [0025] According to the present invention, a gas leakage sensor in a one-dimensional or two-dimensional gas detection region can be configured with a simple configuration by using a gas detection sensor and a gas detection device with a simple configuration for the leakage portion of the gas to be detected. It has an excellent effect that it can be reliably detected. Brief Description of Drawings
[0026] [図 1]図 1は本発明に係る実施例 1の水素ガス検知センサの概略構成を示す断面図 である。  FIG. 1 is a cross-sectional view showing a schematic configuration of a hydrogen gas detection sensor of Example 1 according to the present invention.
[図 2]図 2は実施例 1における 3種類の共通電極 1の平面形状を示す平面図である。  FIG. 2 is a plan view showing the planar shapes of three types of common electrodes 1 in Example 1. FIG.
[図 3]図 3は本発明の水素ガス検知センサの他の構成を示す断面図である。  FIG. 3 is a cross-sectional view showing another configuration of the hydrogen gas detection sensor of the present invention.
[図 4]図 4は本発明の水素ガス検知センサのさらに他の構成を示す断面図である。  FIG. 4 is a cross-sectional view showing still another configuration of the hydrogen gas detection sensor of the present invention.
[図 5]図 5は図 4の水素ガス検知センサにおける V— V線による断面図である。  FIG. 5 is a cross-sectional view taken along the line V—V in the hydrogen gas detection sensor of FIG.
[図 6]図 6は本発明に係る実施例 1の水素ガス検知センサにおける他の構成を示す 斜視図である。  FIG. 6 is a perspective view showing another configuration of the hydrogen gas detection sensor of Example 1 according to the present invention.
[図 7]図 7は本発明に係る実施例 1における演算器などの構成を示すブロック図であ る。  FIG. 7 is a block diagram showing a configuration of an arithmetic unit and the like in the first embodiment according to the present invention.
[図 8]図 8は水素ガスの検知位置 Xと算出結果 E2との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between hydrogen gas detection position X and calculation result E2.
[図 9]図 9は水素ガス体積濃度と算出結果 E1との関係を示すグラフである。  FIG. 9 is a graph showing the relationship between hydrogen gas volume concentration and calculation result E1.
[図 10]図 10は本発明に係る実施例 2の水素ガス検知センサの構成を示す断面図で ある。  FIG. 10 is a cross-sectional view showing a configuration of a hydrogen gas detection sensor of Example 2 according to the present invention.
[図 11]図 11は本発明に係る実施例 2の水素ガス検知センサの検知面を示す平面図 である。  FIG. 11 is a plan view showing a detection surface of the hydrogen gas detection sensor according to Example 2 of the present invention.
[図 12]図 12は実施例 2の水素ガス検知センサにおける貫通孔の効果を説明するダラ フである。  [FIG. 12] FIG. 12 is a drawing explaining the effect of the through hole in the hydrogen gas detection sensor of Example 2.
[図 13]図 13は実施例 2の水素ガス検知センサにおける水素ガス体積濃度と算出結 果 E1との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation result E1 in the hydrogen gas detection sensor of Example 2.
[図 14]図 14は本発明に係る実施例 3の水素ガス検知センサの構成を示す断面図で ある。  FIG. 14 is a cross-sectional view showing a configuration of a hydrogen gas detection sensor of Example 3 according to the present invention.
[図 15]図 15は本発明に係る実施例 3の構成における実験結果を示すグラフである。  FIG. 15 is a graph showing experimental results in the configuration of Example 3 according to the present invention.
[図 16]図 16は本発明に係る実施例 3の構成における実験結果を示すグラフである。 圆 17]図 17は本発明に係る実施例 4の水素ガス検知センサの概略構成を示す分解 斜視図である。 FIG. 16 is a graph showing experimental results in the configuration of Example 3 according to the present invention. FIG. 17 is an exploded perspective view showing a schematic configuration of the hydrogen gas detection sensor according to the fourth embodiment of the present invention.
[図 18]図 18は実施例 4の水素ガス検知センサにおける共通電極の形状を示す平面 図である。  FIG. 18 is a plan view showing the shape of a common electrode in the hydrogen gas detection sensor of Example 4.
[図 19]図 19は実施例 4の水素ガス検知センサの積層構造を示す断面図である。  FIG. 19 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 4.
[図 20]図 20は実施例 4の水素ガス検知センサの積層構造を示す断面図である。 FIG. 20 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 4.
[図 21]図 21は実施例 4の水素ガス検知センサと演算器の構成を示すブロック図であ る。 FIG. 21 is a block diagram showing a configuration of a hydrogen gas detection sensor and a computing unit of the fourth embodiment.
[図 22]図 22は実施例 4の水素ガス検知センサにおける水素ガス検知位置と算出結 果との関係を示すグラフである。  FIG. 22 is a graph showing the relationship between the hydrogen gas detection position and the calculation result in the hydrogen gas detection sensor of Example 4.
[図 23]図 23は実施例 4の水素ガス検知センサにおける水素ガス体積濃度と算出結 果との関係を示すグラフである。  FIG. 23 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation results in the hydrogen gas detection sensor of Example 4.
圆 24]図 24は本発明に係る実施例 5の水素ガス検知センサの積層構造を示す断面 図である。 24] FIG. 24 is a cross-sectional view showing a laminated structure of the hydrogen gas detection sensor of Example 5 according to the present invention.
[図 25]図 25は実施例 5の水素ガス検知センサの平面図である。  FIG. 25 is a plan view of the hydrogen gas detection sensor of Example 5.
[図 26]図 26は実施例 5の水素ガス検知センサにおける水素ガス検知位置と算出結 果との関係を示すグラフである。  FIG. 26 is a graph showing the relationship between the hydrogen gas detection position and the calculation result in the hydrogen gas detection sensor of Example 5.
[図 27]図 27は実施例 5の水素ガス検知センサにおける水素ガス体積濃度と算出結 果との関係を示すグラフである。  FIG. 27 is a graph showing the relationship between the hydrogen gas volume concentration and the calculation results in the hydrogen gas detection sensor of Example 5.
圆 28]図 28は本発明に係る実施例 6の水素ガス検知センサの積層構造を示す断面 図である。 28] FIG. 28 is a sectional view showing a laminated structure of the hydrogen gas detection sensor according to the sixth embodiment of the present invention.
[図 29]図 29は実施例 6の水素ガス検知センサにおける検知膜の表面温度と応答時 間との関係を示すグラフである。  FIG. 29 is a graph showing the relationship between the surface temperature of the detection film and the response time in the hydrogen gas detection sensor of Example 6.
[図 30]図 30は実施例 6の水素ガス検知センサにおける検知膜の表面温度と算出結 果との関係を示すグラフである。  FIG. 30 is a graph showing the relationship between the surface temperature of the detection film and the calculation results in the hydrogen gas detection sensor of Example 6.
[図 31]図 31は実施例 7の 1次元配列型の水素ガス検知センサを示しており、 (a)は水 素ガス検知センサの平面図、(b)は(a)における W—W線による断面図、(c)は水素 ガス検知センサの裏面図である。 [図 32]図 32は本発明に係る実施例 7におけるガス検知装置の構成を示すブロック図 である。 [FIG. 31] FIG. 31 shows a one-dimensional array type hydrogen gas detection sensor of Example 7, (a) is a plan view of the hydrogen gas detection sensor, and (b) is a W—W line in (a). (C) is a rear view of the hydrogen gas detection sensor. FIG. 32 is a block diagram showing a configuration of a gas detection device according to Embodiment 7 of the present invention.
[図 33]図 33は実施例 7における 1次元配列型の水素ガス検知センサの実験を説明 する図である。  FIG. 33 is a diagram for explaining an experiment of a one-dimensional array type hydrogen gas detection sensor in Example 7.
[図 34]図 34は実施例 7の 1次元配列型の水素ガス検知センサの別の構成を示す平 面図 (a)と断面図 (b)である。  FIG. 34 is a plan view (a) and a sectional view (b) showing another configuration of the one-dimensional arrangement type hydrogen gas detection sensor of the seventh embodiment.
[図 35]図 35は本発明に係る実施例 7におけるガス検知装置の別の構成を示すブロッ ク図である。  FIG. 35 is a block diagram showing another configuration of the gas detection device according to Embodiment 7 of the present invention.
[図 36]図 36は本発明に係る実施例 8のガス検知装置の構成を示すブロック図である  FIG. 36 is a block diagram showing the configuration of the gas detector of the eighth embodiment according to the present invention.
[図 37]図 37は本発明に係る実施例 9の 2次元配列型の水素ガス検知センサの構造 を示す図であり、(a)は平面図、(b)は(a)の水素ガス検知センサにおける Y— Y線に よる断面図である。 FIG. 37 is a view showing the structure of a two-dimensional array type hydrogen gas detection sensor according to Example 9 of the present invention, (a) is a plan view, and (b) is a hydrogen gas detection sensor of (a). FIG. 6 is a cross-sectional view taken along line Y—Y in the sensor.
[図 38]図 38は実施例 9におけるガス検知装置の構成を示すブロック図である。  FIG. 38 is a block diagram showing a configuration of a gas detection device in Example 9.
[図 39]図 39は実施例 9における 2次元配列型の水素ガス検知センサの実験を説明 する図である。 FIG. 39 is a diagram for explaining an experiment of a two-dimensional array type hydrogen gas detection sensor in Example 9.
[図 40]図 40は実施例 9の水素ガス検知センサの異なる構成を示す図である。  FIG. 40 is a diagram showing a different configuration of the hydrogen gas detection sensor of Example 9.
[図 41]図 41は本発明に係る実施例 10のガス検知装置の構成を示すブロック図であ る。  FIG. 41 is a block diagram showing a configuration of a gas detection device according to Example 10 of the present invention.
符号の説明 Explanation of symbols
1 共通電極  1 Common electrode
2 電極  2 electrodes
3 電極  3 electrodes
4 抵抗層  4 Resistance layer
5 検知膜  5 Sensing membrane
6 基材  6 Base material
8 検知部  8 Detector
24 引出し線 26 水素ガス 24 Leader 26 Hydrogen gas
27 バイアス電源  27 Bias power supply
29 電流制限抵抗  29 Current limiting resistor
81 ランド  81 Rand
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下に、本発明に係るガス検知センサおよびガス検知装置の好適な実施の形態を 添付の図面を用いて詳細に説明する。 Hereinafter, preferred embodiments of a gas detection sensor and a gas detection device according to the present invention will be described in detail with reference to the accompanying drawings.
実施例 1  Example 1
[0029] 本発明に係る実施例 1のガス検知センサは、被検知ガスに含まれる水素ガスを検 知できるガス検知領域が 1次元である実質的に線状(1次元状)の水素ガス検知面を 有する水素ガス検知センサである。以下に、実施例 1の水素ガス検知センサを添付 の図 1から図 5を用いて説明する。  [0029] The gas detection sensor according to the first embodiment of the present invention has a substantially linear (one-dimensional) hydrogen gas detection in which the gas detection region capable of detecting hydrogen gas contained in the gas to be detected is one-dimensional. This is a hydrogen gas detection sensor with a surface. Hereinafter, the hydrogen gas detection sensor of Example 1 will be described with reference to FIGS.
[0030] 初めに、実施例 1の水素ガス検知センサの概略構成について図 1を用いて説明す る。図 1は実施例 1の水素ガス検知センサの概略構成を示す断面図である。図 1にお いては、説明を容易なものとするため各要素の厚みなどの寸法は誇張して記載して おり、実際のものと異なっている。  [0030] First, a schematic configuration of the hydrogen gas detection sensor of Example 1 will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a schematic configuration of the hydrogen gas detection sensor of the first embodiment. In FIG. 1, dimensions such as the thickness of each element are exaggerated for easy explanation, and are different from actual ones.
[0031] 図 1に示す実施例 1の水素ガス検知センサ 25は、基材 6の上面に抵抗層 4、検知 膜 5、および共通電極 1が積層されている。共通電極 1は検知膜 5の上面の一部に形 成されており、被検知ガスが検知膜 5に接触するよう構成されている。なお、共通電 極 1は検知膜 5の全てを覆うよう構成して、被検知ガスに含まれる水素ガスが共通電 極 1を通過して検知膜 5に接触できる構成でも良 ヽ。抵抗層 4の両端には第 1の電極 と第 2の電極となる電極 2, 3が設けられている。共通電極 1の両端にはバイアス電源 27が接続されるランド 81, 81が形成されている。  In the hydrogen gas detection sensor 25 of Example 1 shown in FIG. 1, the resistance layer 4, the detection film 5, and the common electrode 1 are laminated on the upper surface of the substrate 6. The common electrode 1 is formed on a part of the upper surface of the detection film 5 so that the gas to be detected is in contact with the detection film 5. The common electrode 1 may be configured to cover the entire detection film 5 so that hydrogen gas contained in the gas to be detected can pass through the common electrode 1 and contact the detection film 5. At both ends of the resistance layer 4, electrodes 1 and 2 are provided as a first electrode and a second electrode. Lands 81 and 81 to which a bias power supply 27 is connected are formed at both ends of the common electrode 1.
[0032] 図 1に示すように、被検知ガスに含まれる水素ガス 26が検知位置 Xにおいて発生し たとき、その検知位置 Xにおいて水素ガス 26が検知膜 5に接触する。水素ガスを接 触して 、な 、非検知状態時にぉ 、て、検知膜 5は略絶縁状態であり高 、抵抗値を有 している。この検知膜 5が水素ガス 26に接触すると、その接触部位である検知膜 5の 検知部 8は半導体化する。半導体化された検知部 8は電気抵抗値が低下して ヽる。 この結果、共通電極 1に接続したバイアス電源 27からの電流は、半導体化した検知 部 8を通り、抵抗層 4において電流分割される。電流分割された電流は、電極 2およ び電極 3を介して出力される。この時出力された電極 2および電極 3からの電流の相 対値を算出することにより、検知膜 5上の水素ガスの検知位置や水素ガスの濃度を検 知することが可能となる。 As shown in FIG. 1, when hydrogen gas 26 contained in the gas to be detected is generated at the detection position X, the hydrogen gas 26 comes into contact with the detection film 5 at the detection position X. In contact with hydrogen gas, the sensing film 5 is substantially insulative and has a high resistance value in a non-detected state. When the detection film 5 comes into contact with the hydrogen gas 26, the detection part 8 of the detection film 5 that is the contact portion becomes a semiconductor. The semiconductor detection unit 8 has a lower electrical resistance value. As a result, the current from the bias power supply 27 connected to the common electrode 1 passes through the semiconductor detection unit 8 and is divided into currents in the resistance layer 4. The current divided current is output via electrode 2 and electrode 3. By calculating the relative values of the currents output from the electrodes 2 and 3 output at this time, it is possible to detect the hydrogen gas detection position and the hydrogen gas concentration on the detection film 5.
[0033] 次に、水素ガス検知領域が 1次元である実施例 1の水素ガス検知センサ 25の構造 について図 1を用いて詳細に説明する。 Next, the structure of the hydrogen gas detection sensor 25 of Example 1 in which the hydrogen gas detection region is one-dimensional will be described in detail with reference to FIG.
実施例 1の水素ガス検知センサ 25において、基材 6には略帯状を有し、電気的に 絶縁材である石英(SiO )が用いられている。この基材 6の検知面側(図 1における上  In the hydrogen gas detection sensor 25 of Example 1, the base material 6 has a substantially band shape, and quartz (SiO 2), which is an electrically insulating material, is used. The detection surface side of this substrate 6 (the top in Fig. 1)
2  2
側)の両端部には電極 2と電極 3で構成された一対の電極が形成されている。さらに 、基材 6の検知面側(上側)には、電極 2と電極 3の一部を覆うように窒化タンタル (Ta N)で形成された略帯状の抵抗層 4が形成されて 、る。電極 2および電極 3にはそれ ぞれ銅 (Cu)により形成された引出し線 24が接続されており、この引出し線 24を介し て後述の演算器 28 (図 7参照)に接続される。抵抗層 4の検知面側(上側)には、水 素ガスを検知すると絶縁状態から半導体状態に状態変化し、電気的特性の抵抗値 が低減する白金分散担持三酸化タングステン (Pt— WO )  A pair of electrodes composed of an electrode 2 and an electrode 3 are formed at both ends of the side. Further, a substantially strip-shaped resistive layer 4 made of tantalum nitride (TaN) is formed on the detection surface side (upper side) of the base material 6 so as to cover a part of the electrodes 2 and 3. A lead wire 24 formed of copper (Cu) is connected to each of the electrodes 2 and 3, and the lead wire 24 is connected to a computing unit 28 (see FIG. 7) described later via the lead wire 24. On the detection surface side (upper side) of the resistance layer 4, when hydrogen gas is detected, the state changes from an insulating state to a semiconductor state, and the resistance value of the electrical characteristics decreases, and the platinum dispersion supported tungsten trioxide (Pt—WO)
3で形成された検知膜 5が 設けられている。検知膜 5は、略帯状を有しており、抵抗層 4を覆うように形成されて いる。また、検知膜 5の両端部の検知面側には、金 (Au)で形成された一対のランド 8 1が形成されて 、る。ランド 81は抵抗層 4の両端にある電極 2および電極 3に対応す る位置、即ち検知膜 5を間にして電極 2および電極 3の略直上に形成されている。ま た、検知膜 5の上部には、金 (Au)で形成された共通電極 1が形成されており、この共 通電極 1により左右一対のランド 81が電気的に接続されて!ヽる。ランド 81には銅 (Cu )で形成された引出し線 24が接続されており、ランド 81は電流制限抵抗 29を介して バイアス電源 27に接続されている。ランド 81は共通電極 1に引出し線 24を接続する ために設けたものである。したがって、共通電極 1と引出し線 24を直接接続する構成 の場合にはランドを設けなくて良い。  The sensing film 5 formed in 3 is provided. The detection film 5 has a substantially band shape and is formed so as to cover the resistance layer 4. In addition, a pair of lands 81 made of gold (Au) are formed on the detection surface side of both ends of the detection film 5. The lands 81 are formed at positions corresponding to the electrodes 2 and 3 on both ends of the resistance layer 4, that is, substantially immediately above the electrodes 2 and 3 with the detection film 5 in between. A common electrode 1 made of gold (Au) is formed on the detection film 5, and the pair of left and right lands 81 are electrically connected by this common electrode 1. A lead wire 24 made of copper (Cu) is connected to the land 81, and the land 81 is connected to the bias power source 27 through a current limiting resistor 29. The land 81 is provided to connect the lead wire 24 to the common electrode 1. Therefore, in the configuration in which the common electrode 1 and the lead wire 24 are directly connected, it is not necessary to provide a land.
[0034] 実施例 1の水素ガス検知センサ 25は、水素ガス検知領域が 1次元であり、電極 2お よび電極 3の間をつなぐ抵抗層 4の上部に形成された略帯状の検知膜 5が水素ガス を検知する構成である。実施例 1の水素ガス検知センサ 25においては、略帯状の検 知膜 5の一部に水素ガスが接触したとき、水素ガスが接触した位置を検出するよう構 成されている。水素ガス検知センサ 25においては、抵抗層 4の両端にある電極 2と電 極 3との間の範囲を検知範囲とし、その検知範囲における検知長さを L (図 1参照)と する。 [0034] The hydrogen gas detection sensor 25 of Example 1 has a one-dimensional hydrogen gas detection region, and a substantially strip-shaped detection film 5 formed on the upper part of the resistance layer 4 that connects between the electrodes 2 and 3. Hydrogen gas It is the structure which detects. The hydrogen gas detection sensor 25 according to the first embodiment is configured to detect a position where the hydrogen gas contacts when a part of the substantially band-shaped detection film 5 contacts the hydrogen gas. In the hydrogen gas detection sensor 25, the range between the electrode 2 and the electrode 3 at both ends of the resistance layer 4 is set as a detection range, and the detection length in the detection range is set to L (see FIG. 1).
図 1に示すように、実施例 1の水素ガス検知センサ 25における共通電極 1は、検知 膜 5の検知範囲の上を覆うように形成されている。しかし、検知膜 5は被検知ガスに暴 露され得る構造を有して 、る。  As shown in FIG. 1, the common electrode 1 in the hydrogen gas detection sensor 25 of Example 1 is formed so as to cover the detection range of the detection film 5. However, the detection film 5 has a structure that can be exposed to the gas to be detected.
[0035] 図 2の(a) , (b)および (c)は、共通電極 1の平面形状を示す平面図であり、 3種類 の共通電極 1の構造を示す。図 2の(a) , (b)および (c)のいずれの構成においても、 共通電極 1は検知膜 5上で電極 2と電極 3の間に形成されており、且つ、検知膜 5が 被検知ガスに暴露されるように空隙部 99を有している。図 2の(a)に示す共通電極 1 は、格子状に形成されており、矩形状の空隙部 99が形成されている。図 2の(b)に示 す共通電極 1は、円形状の空隙部 99が形成されている。図 2の(c)に示す共通電極 1は、検知膜 5の検知面である上面にお 、て長手方向に延びた細!、帯状に形成され ており、共通電極 1の両側にスリット状の空隙部 99が形成されている。以上のように、 図 2の(a) , (b)および (c)に示した共通電極 1は、いずれの構成においても空隙部 9 9を有し、検知膜 5が被検知ガスにより直接暴露される構造である。上記のように構成 された空隙部 99の配置としては、被検知ガスに暴露される検知膜 5の配設領域が検 知面全体にほぼ均一に分布して 、ることが望まし!/、。  [0035] FIGS. 2A, 2B, and 2C are plan views showing the planar shape of the common electrode 1, and show the structures of the three types of common electrodes 1. FIG. In any of the configurations (a), (b), and (c) of FIG. 2, the common electrode 1 is formed on the sensing film 5 between the electrodes 2 and 3, and the sensing film 5 is covered. It has a gap 99 so that it can be exposed to the detection gas. The common electrode 1 shown in FIG. 2 (a) is formed in a lattice shape, and a rectangular gap 99 is formed. In the common electrode 1 shown in FIG. 2 (b), a circular gap 99 is formed. The common electrode 1 shown in (c) of FIG. 2 is formed in a thin, strip-like shape extending in the longitudinal direction on the upper surface, which is the detection surface of the detection film 5, and slits on both sides of the common electrode 1. A gap 99 is formed. As described above, the common electrode 1 shown in FIGS. 2 (a), (b) and (c) has the gap 99 in any configuration, and the detection film 5 is directly exposed to the gas to be detected. Is the structure. As for the arrangement of the gap 99 configured as described above, it is desirable that the arrangement region of the detection film 5 exposed to the gas to be detected is distributed almost uniformly over the entire detection surface! /, .
[0036] 以下に、図 2の(a) , (b)および (c)に示した共通電極 1について、さらに詳細に説 明する。  Hereinafter, the common electrode 1 shown in FIGS. 2A, 2B, and 2C will be described in more detail.
図 2の (a)に示す共通電極 1は、格子状の網目となるよう構成されており矩形状の空 隙部 99を有している。この共通電極 1は、水素ガス検知センサ 25の両側に設けられ たランド 81, 81の間を電気的に接続するよう形成されている。したがって、共通電極 1の網目以外の部分、即ち空隙部 99は、共通電極 1の下側にある検知膜 5が被検知 ガスに暴露されるよう露出されている。共通電極 1の網目形状は、検知範囲ではほぼ 同じ形状となっている。共通電極 1の長手方向である検知方向における網目の間隔 は、被検知ガスに含まれる水素ガスが検知膜 5に接触する範囲より短いことが望まし い。概略的には水素ガスの噴出点力 検知膜 5までの長さより十分短いことが望まし い。 The common electrode 1 shown in FIG. 2 (a) is configured to have a lattice-like mesh, and has a rectangular gap 99. The common electrode 1 is formed so as to electrically connect lands 81 and 81 provided on both sides of the hydrogen gas detection sensor 25. Therefore, the part other than the mesh of the common electrode 1, that is, the gap 99 is exposed so that the detection film 5 under the common electrode 1 is exposed to the gas to be detected. The mesh shape of the common electrode 1 is almost the same in the detection range. Mesh spacing in the detection direction, which is the longitudinal direction of the common electrode 1 It is desirable that the hydrogen gas contained in the gas to be detected is shorter than the range in which the hydrogen gas contacts the detection film 5. In general, it is desirable that the length of the hydrogen gas jet point force detection film 5 is sufficiently shorter than the length.
[0037] 図 2の (b)は、複数の円形状の孔である空隙部 99が設けられた共通電極 1を示す。  [0037] FIG. 2 (b) shows the common electrode 1 provided with a gap 99 which is a plurality of circular holes.
共通電極 1は、水素ガス検知センサ 25の両側に設けられたランド 81, 81の間を電気 的に接続するよう形成されており、且つ共通電極 1の下側にある検知膜 5が水素ガス に暴露されるように複数の孔である空隙部 99が形成されている。したがって、空隙部 99の孔の部分は、検知膜 5が水素ガスに暴露され得る部分である。空隙部 99の孔 の形状は、検知範囲でほぼ同じである。また、共通電極 1の長手方向において、孔は 等間隔に配置されており、検知範囲においてはほぼ同じ長さの間隔を有して配置さ れている。この間隔は、被検知ガスに含まれる水素ガスが検知膜 5に接触する範囲よ り十分短いことが望ましい。概略的には、孔の間隔は水素ガスの噴出点から検知膜 5 までの長さより十分短 、ことが望ま 、。  The common electrode 1 is formed so as to electrically connect the lands 81 and 81 provided on both sides of the hydrogen gas detection sensor 25, and the detection film 5 on the lower side of the common electrode 1 is formed into hydrogen gas. A plurality of voids 99 are formed so as to be exposed. Therefore, the hole portion of the gap 99 is a portion where the detection film 5 can be exposed to hydrogen gas. The shape of the hole in the gap 99 is almost the same in the detection range. Further, the holes are arranged at equal intervals in the longitudinal direction of the common electrode 1, and are arranged with substantially the same length in the detection range. This interval is desirably sufficiently shorter than the range in which the hydrogen gas contained in the gas to be detected contacts the detection film 5. In general, it is desirable that the hole interval be sufficiently shorter than the length from the hydrogen gas ejection point to the detection film 5.
[0038] 図 2の(c)は、水素ガス検知センサ 25の両側に設けられたランド 81の間に線状の 共通電極 1を形成した構成を示す。図 2の(c)に示す共通電極 1は、電気的に接続状 態である膜体で構成された線状の電極であり、水素ガス検知センサ 25の両側のラン ド 81を電気的に接続している。また、線状である共通電極 1の幅は、検知範囲でほぼ 同じであることが望ましい。また、図 2の(c)においては、共通電極 1が検知膜 5の上 面に 1本だけ形成した例で示している力 共通電極 1の本数は複数本でも良い。その 場合は、互いの共通電極 1の間隔は検知範囲でほぼ同じであることが望ましい。  FIG. 2 (c) shows a configuration in which a linear common electrode 1 is formed between lands 81 provided on both sides of the hydrogen gas detection sensor 25. The common electrode 1 shown in FIG. 2 (c) is a linear electrode composed of an electrically connected film body, and electrically connects the land 81 on both sides of the hydrogen gas detection sensor 25. is doing. Moreover, it is desirable that the width of the common electrode 1 that is linear is substantially the same in the detection range. Further, in FIG. 2C, the number of force common electrodes 1 shown in the example in which only one common electrode 1 is formed on the upper surface of the detection film 5 may be plural. In that case, it is desirable that the distance between the common electrodes 1 is substantially the same in the detection range.
[0039] なお、本発明のガス検知センサにおいて、検知膜 5が被検知ガスに暴露される手段 としては、図 2の(a)から (c)に示した構成以外に、共通電極 1を被検知ガスに含まれ る水素ガスに対して透過性を有する材料、例えば金 (Au)、銀 (Ag)、銅 (Cu)などか らなる 1 μ m以下の金属薄膜や、焼結材などの多孔質の導電体などを用いることも可 能である。  In the gas detection sensor of the present invention, the means for exposing the detection film 5 to the gas to be detected is not limited to the configuration shown in (a) to (c) of FIG. Materials that are permeable to hydrogen gas contained in the detection gas, such as metal thin films of 1 μm or less, such as gold (Au), silver (Ag), and copper (Cu), and sintered materials It is also possible to use a porous conductor or the like.
上記のように、実施例 1における水素ガス検知センサの基本構造は、略帯状に形成 された検知膜 5と、この検知膜 5の長手方向の 1つの面に形成された略帯状の抵抗 層 4と、この抵抗層 4と電気的に接触しないように検知膜の長手方向の他の面に形成 された共通電極 1とを有して構成されている。 As described above, the basic structure of the hydrogen gas detection sensor in Example 1 is the detection film 5 formed in a substantially strip shape, and the substantially strip-shaped resistance layer 4 formed on one surface in the longitudinal direction of the detection film 5. And formed on the other surface of the detection film in the longitudinal direction so as not to be in electrical contact with the resistance layer 4 The common electrode 1 is formed.
[0040] 次に、抵抗層 4の両端に設けられている電極 2と電極 3との間の抵抗値(以下、電極 間抵抗)と、検知膜 5が被検知ガスに含まれる水素ガスを検知していない状態および 検知したときの状態における、共通電極 1と電極 2との間の抵抗値 (以下、接合抵抗) および共通電極 1と電極 3との間の抵抗値 (以下、接合抵抗)との関係について説明 する。 [0040] Next, the resistance value between the electrodes 2 and 3 (hereinafter referred to as interelectrode resistance) provided at both ends of the resistance layer 4 and the detection film 5 detect hydrogen gas contained in the gas to be detected. The resistance value between the common electrode 1 and the electrode 2 (hereinafter referred to as junction resistance) and the resistance value between the common electrode 1 and the electrode 3 (hereinafter referred to as junction resistance) in the undetected state and the detected state Explain the relationship.
図 1に示したように、共通電極 1にノ ィァス電源 27を電流制限抵抗 29を介して接続 すると、検知膜 5が水素ガスを検知していない状態では、共通電極 1と電極 2の間お よび共通電極 1と電極 3との間に、電流制限抵抗 29と接合抵抗の合成抵抗に反比例 する電流(以下、バイアス電流)が流れる。  As shown in FIG. 1, when a noise power source 27 is connected to the common electrode 1 through the current limiting resistor 29, the common electrode 1 and the electrode 2 are connected between the common electrode 1 and the electrode 2 when the detection film 5 is not detecting hydrogen gas. In addition, a current (hereinafter referred to as a bias current) that is inversely proportional to the combined resistance of the current limiting resistor 29 and the junction resistance flows between the common electrode 1 and the electrode 3.
[0041] 検知膜 5が水素ガスに暴露されると検知膜 5の暴露された部分が半導体化され、共 通電極 1と電極 2との間および共通電極 1と電極 3との間に流れる電流が増加する。こ の増カロした電流値をもとに、検知膜 5が半導体ィ匕した位置や水素ガスの濃度を検知 することができる。そのため、バイアス電流は、検知膜 5が水素ガスを検知したことによ り増加する電流量より大きい場合には、バイアス電流の変化などの影響を受けて、感 度や分解能、いわゆる、水素ガス検知センサの SZN比が低下する。したがって、接 合抵抗は、電極間抵抗より高い値に設定することが望ましい。接合抵抗の値は、電極 間抵抗の値に対して、少なくとも約 1倍以上に設定すべきであり、望ましくは 10倍以 上であり、より望ましくは 100倍以上が好ましい。 [0041] When the sensing film 5 is exposed to hydrogen gas, the exposed part of the sensing film 5 is made into a semiconductor, and the current flowing between the common electrode 1 and the electrode 2 and between the common electrode 1 and the electrode 3 Will increase. Based on this increased current value, it is possible to detect the position where the detection film 5 is semiconductive and the concentration of hydrogen gas. Therefore, if the bias current is greater than the amount of current that increases due to the detection film 5 detecting hydrogen gas, the sensitivity and resolution, so-called hydrogen gas detection, are affected by changes in the bias current. The SZN ratio of the sensor decreases. Therefore, it is desirable to set the joint resistance to a value higher than the interelectrode resistance. The value of the junction resistance should be set at least about 1 times or more than the value of the interelectrode resistance, preferably 10 times or more, more preferably 100 times or more.
[0042] 水素ガス検知領域が 1次元である水素ガス検知センサにおいては、検知範囲を長 くすると、電極間抵抗が増加する一方で接合抵抗が減少する。したがって、以下に説 明するように、共通電極 1、抵抗層 4および検知膜 5の形状や膜厚を調整し、接合抵 抗と電極間抵抗の比を良好にすることが望ま 、。 [0042] In a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region, when the detection range is increased, the interelectrode resistance increases while the junction resistance decreases. Therefore, as described below, it is desirable to adjust the shape and film thickness of the common electrode 1, the resistance layer 4, and the sensing film 5 to improve the ratio of the junction resistance and the interelectrode resistance.
共通電極 1と各電極 2, 3との間の接合抵抗を大きくするためには、共通電極 1と検 知膜 5との接触面積を減少させるか、抵抗層 4と検知膜 5との接触面積を減少させる 力 または、検知膜 5の膜厚を大きくすることが必要である。また、電極 2と電極 3との 間の電極間抵抗は、抵抗層 4の膜厚を大きくすることにより、減少させることができる。 なお、水素ガス検知領域が 1次元である本発明に係る水素ガス検知センサとしては 、図 1,図 2に示した構成以外に、以下のような構成を有する水素ガス検知センサが ある。以下の説明において、同じ機能、構成を有するものには同じ符号を付して詳細 な説明は省略する。 In order to increase the junction resistance between the common electrode 1 and each of the electrodes 2 and 3, the contact area between the common electrode 1 and the detection film 5 is decreased, or the contact area between the resistance layer 4 and the detection film 5 It is necessary to increase the thickness of the sensing film 5 or the force to decrease Further, the interelectrode resistance between the electrode 2 and the electrode 3 can be reduced by increasing the thickness of the resistance layer 4. As a hydrogen gas detection sensor according to the present invention in which the hydrogen gas detection region is one-dimensional, In addition to the configurations shown in FIGS. 1 and 2, there is a hydrogen gas detection sensor having the following configuration. In the following description, components having the same function and configuration are denoted by the same reference numerals, and detailed description thereof is omitted.
[0043] 図 3は本発明の水素ガス検知センサの他の構成を示す断面図であり、水素ガス検 知領域が 1次元である水素ガス検知センサを示している。図 3に示した水素ガス検知 センサは、基材 6上に共通電極 1、略帯状の検知膜 5、および略帯状の抵抗層 4の順 で積層されて構成されている。抵抗層 4の両端には電極 2および電極 3が設けられて いる。図 3に示した最上位置の抵抗層 4は、前述の図 2の(a)から (c)で示した共通電 極 1の形状と同様に、格子状(図 2の (a)参照)、ホールを有する形状(図 2の (b)参照 )、または線状(図 2の(c)参照)に形成されている。したがって、抵抗層 4の下側にあ る検知膜 5は、被検知ガスに暴露され得る構造を有している。図 3に示した水素ガス 検知センサにおいて、検知範囲は図 3において長さ Lで示す電極 2および電極 3の間 である。  FIG. 3 is a cross-sectional view showing another configuration of the hydrogen gas detection sensor of the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region. The hydrogen gas detection sensor shown in FIG. 3 is configured by laminating a common electrode 1, a substantially strip-shaped detection film 5, and a substantially strip-shaped resistance layer 4 in this order on a substrate 6. Electrodes 2 and 3 are provided on both ends of the resistance layer 4. The uppermost resistive layer 4 shown in FIG. 3 has a lattice shape (see (a) in FIG. 2), similar to the shape of the common electrode 1 shown in FIGS. 2 (a) to (c). It has a shape with holes (see (b) in Fig. 2) or a line (see (c) in Fig. 2). Therefore, the detection film 5 under the resistance layer 4 has a structure that can be exposed to the gas to be detected. In the hydrogen gas detection sensor shown in FIG. 3, the detection range is between electrodes 2 and 3 indicated by length L in FIG.
[0044] なお、図 3に示した水素ガス検知センサの構造において、最上位置の抵抗層 4が図 2の(a)から (c)で示した共通電極 1の形状のように空隙部 99を有して ヽな 、構造で あっても、抵抗層 4が水素ガス透過性を有する材料で有れば良い。例えば、抵抗層 4 としては、低密度に形成された窒化タンタル (TaN)や酸ィ匕クロム(CrO )などの薄膜  In the structure of the hydrogen gas detection sensor shown in FIG. 3, the uppermost resistive layer 4 has a gap 99 as in the shape of the common electrode 1 shown in (a) to (c) of FIG. Even if it has a structure, it is sufficient that the resistance layer 4 is made of a material having hydrogen gas permeability. For example, the resistance layer 4 may be a thin film such as tantalum nitride (TaN) or acid-chromium (CrO) formed at a low density.
2  2
や、金属酸ィ匕物など焼結による多孔質材を用いることが可能である。  It is also possible to use a sintered porous material such as a metal oxide.
[0045] 図 4は本発明の水素ガス検知センサのさらに他の構成を示す断面図であり、水素 ガス検知領域が 1次元である水素ガス検知センサを示している。図 4に示した水素ガ ス検知センサは、基材 6が特別に設けられていない構成である。すなわち、共通電極 1が基材としての機能を有する構造である。図 5は、図 4の水素ガス検知センサにお ける V—V線による断面図である。 FIG. 4 is a cross-sectional view showing still another configuration of the hydrogen gas detection sensor of the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region. The hydrogen gas detection sensor shown in FIG. 4 has a configuration in which the base material 6 is not specially provided. That is, the common electrode 1 has a function as a base material. FIG. 5 is a cross-sectional view taken along the line V-V in the hydrogen gas detection sensor of FIG.
[0046] 図 4に示した水素ガス検知センサにおいては、銅(Cu)、ステンレス鋼 !^)、アル ミニゥム (A1)など導電性が高ぐ検知膜 5の焼結温度である 500°C程度で十分に安 定状態である略帯状の金属箔カ なる共通電極 1を基材として用いて 、る。この共通 電極 1の上には、略帯状の検知膜 5および略帯状の抵抗層 4が順に積層されている 。抵抗層 4の両端には電極 2と電極 3が設けられている。この水素ガス検知センサに おける抵抗層 4は、図 3に示した水素ガス検知センサと同様に、図 2の(a) , (b)また は (c)で示した共通電極 1の形状と同じ形状とする。若しくは、検知膜 5の検知面の全 面に抵抗層 4を形成する場合には、水素ガス透過性を有する材料を用いて抵抗層 4 を形成する。 [0046] In the hydrogen gas detection sensor shown in Fig. 4, the sintering temperature of detection film 5 with high conductivity such as copper (Cu), stainless steel! ^), Aluminum (A1), etc. is about 500 ° C. The common electrode 1, which is a substantially strip-shaped metal foil that is sufficiently stable, is used as a base material. On the common electrode 1, a substantially strip-shaped detection film 5 and a substantially strip-shaped resistance layer 4 are sequentially laminated. Electrodes 2 and 3 are provided on both ends of the resistance layer 4. In this hydrogen gas detection sensor Similarly to the hydrogen gas detection sensor shown in FIG. 3, the resistance layer 4 has the same shape as that of the common electrode 1 shown in (a), (b) or (c) of FIG. Alternatively, when the resistance layer 4 is formed on the entire detection surface of the detection film 5, the resistance layer 4 is formed using a material having hydrogen gas permeability.
[0047] 図 4に示した水素ガス検知センサは、図 5の断面図に示すように、図 2の(c)に示し た空隙部 99の形状を有している。すなわち、図 4の水素ガス検知センサは、抵抗層 4 の両側に線状の検知膜 5が表出した構成であり、抵抗層 4が検知膜 5上の中央部分 に一次元のガス検知領域に沿って帯状に形成されて ヽる。このように構成された水 素ガス検知センサは、共通電極 1として厚みが 0. 05mn!〜 2mm程度の折り曲げ可 能な特性を持つ金属箔を用いることにより、折り曲げ可能な柔軟な形状特性を実現 することが可能となる。  The hydrogen gas detection sensor shown in FIG. 4 has the shape of the gap 99 shown in (c) of FIG. 2, as shown in the sectional view of FIG. That is, the hydrogen gas detection sensor in FIG. 4 has a configuration in which a linear detection film 5 is exposed on both sides of the resistance layer 4, and the resistance layer 4 is formed in a one-dimensional gas detection region in the center of the detection film 5. It is formed in a band shape along. The hydrogen gas sensor configured in this way has a thickness of 0.05m as the common electrode 1! By using a metal foil with a foldable characteristic of about 2 mm, it is possible to realize a flexible shape characteristic that can be bent.
[0048] 図 6は本発明における更に他の構成を有する水素ガス検知センサを示す斜視図で あり、水素ガス検知領域が 1次元である水素ガス検知センサを示している。図 6に示し た水素ガス検知センサは、細長い略帯状の基材 6における検知面側の面上に共通 電極 1、検知膜 5および抵抗層 4が形成された構造を有している。  FIG. 6 is a perspective view showing a hydrogen gas detection sensor having still another configuration according to the present invention, and shows a hydrogen gas detection sensor having a one-dimensional hydrogen gas detection region. The hydrogen gas detection sensor shown in FIG. 6 has a structure in which a common electrode 1, a detection film 5, and a resistance layer 4 are formed on the surface on the detection surface side of a long and narrow strip-shaped base material 6.
図 6に示すように、基材 6の一方の面 (検知面側)の上に略帯状の共通電極 1と略帯 状の抵抗層 4が所定の間隔を有して互いに平行に形成されている。検知膜 5は、共 通電極 1と抵抗層 4との間の基材 6上に形成されており、検知膜 5と共通電極 1が長手 方向に沿って接触し、かつ検知膜 5と抵抗層 4が長手方向に沿って接触するよう構成 されている。図 6の水素ガス検知センサにおいては、電極 2および電極 3が抵抗層 4 の両端に形成されている。図 6に示す構成においては、共通電極 1と抵抗層 4を前述 の図 2の (a)から (c)に示したような形状に構成する必要がなぐ検知膜 5が被検知ガ スに直接的に暴露される構成である。  As shown in FIG. 6, a substantially strip-shaped common electrode 1 and a substantially strip-shaped resistance layer 4 are formed in parallel with each other at a predetermined interval on one surface (detection surface side) of the substrate 6. Yes. The detection film 5 is formed on the base 6 between the common electrode 1 and the resistance layer 4, and the detection film 5 and the common electrode 1 are in contact with each other along the longitudinal direction, and the detection film 5 and the resistance layer are in contact with each other. 4 is configured to contact along the longitudinal direction. In the hydrogen gas detection sensor of FIG. 6, the electrode 2 and the electrode 3 are formed at both ends of the resistance layer 4. In the configuration shown in FIG. 6, the sensing film 5 does not need to be configured in the shape shown in (a) to (c) of FIG. It is a configuration that is exposed.
[0049] [水素ガス検知センサの材料]  [0049] [Material for hydrogen gas detection sensor]
次に、本発明に係る水素ガス検知センサにおける材料について具体的に説明する 基材 6の材料としては、電気的絶縁性を有し、検知膜 5の焼結時の加熱温度 500°C において安定状態であれば用いることができる。具体的な基材 6の材料としては、石 英(SiO )以外に、表面に絶縁処理が施されたシリコン (SiO )、窒化アルミニウム (ANext, materials for the hydrogen gas detection sensor according to the present invention will be described in detail. The material of the base material 6 is electrically insulative and stable at a heating temperature of 500 ° C. when the detection film 5 is sintered. Any state can be used. Concrete material of base material 6 is stone In addition to UK (SiO 2), silicon (SiO 2) and aluminum nitride (A
2 2 twenty two
IN)、アルミナ (A120 )などの絶縁材料を用いることができる。また、榭脂系の材料と  Insulating materials such as IN) and alumina (A120) can be used. In addition, greaves material and
3  Three
しては、例えば、 日光化成株式会社製のタイモルドなどの耐熱型のフエノール系材 料を用いることができる。この場合は、射出成型法を用いることにより平面以外の立体 的な形状を得ることも可能である。さらに、柔軟性のあるシート状の材料としては、例 えば、東レ ·デュポン株式会社のカプトン (登録商標)などのポリイミド系の材料を用い ることができる。ポリイミド系の材料は耐熱温度が最高で 450°C程度であるが、検知膜 5の焼結温度を 450°C程度で行うことにより用いることが可能となる。  For example, a heat-resistant phenolic material such as Timold made by Nikko Kasei Co., Ltd. can be used. In this case, it is also possible to obtain a three-dimensional shape other than a plane by using an injection molding method. Further, as the flexible sheet-like material, for example, a polyimide material such as Kapton (registered trademark) of Toray DuPont Co., Ltd. can be used. Polyimide-based materials have a maximum heat-resistant temperature of about 450 ° C, but can be used by performing the sintering temperature of the detection film 5 at about 450 ° C.
[0050] 抵抗層 4は、蒸着等により形成される薄膜抵抗体、印刷後焼結して形成される厚膜 抵抗体などを用いることが可能である。特に、蒸着等により形成される薄膜抵抗体は 、抵抗層の表面粗が少なぐ抵抗層 4の上に膜厚が均一な検知膜 5を形成することが 容易となり望ましい。薄膜抵抗体の材料としては、タンタル (Ta)などの単一金属、二 ッケルクロム(NiCr)、ニッケルクロム'シリコン合金(NiCr— Si)、タンタル 'シリコン合 金 (Ta— Si)、ニオブ'シリコン合金 (Nb— Si)などの合金薄膜、クロム'酸ィ匕シリコン( Cr-SiO )、タンタル '酸化シリコン (Ta— SiO )などのサーメット薄膜、酸化ルテ -ゥ [0050] As the resistance layer 4, a thin film resistor formed by vapor deposition or the like, a thick film resistor formed by sintering after printing, or the like can be used. In particular, a thin film resistor formed by vapor deposition or the like is desirable because it is easy to form the detection film 5 having a uniform film thickness on the resistance layer 4 where the surface roughness of the resistance layer is small. Thin film resistor materials include single metals such as tantalum (Ta), nickel chrome (NiCr), nickel chrome 'silicon alloy (NiCr—Si), tantalum' silicon alloy (Ta—Si), niobium 'silicon alloy. Alloy thin films such as (Nb—Si), cermet thin films such as chrome 'acid silicon (Cr-SiO 2), tantalum' silicon oxide (Ta—SiO 2), ruthenium oxide
2 2  twenty two
ム(RuO )、酸化クロム(Cr O )、窒化タンタル (TaN)などを用いることができる。  (RuO 2), chromium oxide (Cr 2 O 3), tantalum nitride (TaN), or the like can be used.
2 2 3  2 2 3
[0051] 第 1の電極である電極 2および第 2の電極である電極 3は、導電性が高い材料であ り、検知膜 5の焼結温度である約 500°Cで安定状態であれば用いることができる。ま た、電極自体が被検知ガス中の水素原子を含む可燃ガスに不活性であるほうがより 望ましい。電極 2, 3の材料としては、導電性が高い材料であるマグネシウム(Mg)、 アルミニウム(A1)、チタン (Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、ニッケル(Ni) 、銀 (Ag)などの金属や、炭素 (C)などを用いることが可能である。特に、電極 2, 3の 材料としては、酸ィ匕しにくぐ水素ガスに対して不活性な金 (Au)や銅 (Cu)が望まし い。  [0051] Electrode 2 serving as the first electrode and electrode 3 serving as the second electrode are materials having high conductivity and are stable at about 500 ° C, which is the sintering temperature of the detection film 5. Can be used. It is more desirable that the electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected. Electrodes 2 and 3 are made of highly conductive materials such as magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), and nickel (Ni). Metal such as silver (Ag) or carbon (C) can be used. In particular, the materials for electrodes 2 and 3 are preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
[0052] 検知膜 5としては、被検知ガスに接触することにより電気的な抵抗が変化する性質 を持つ物質であれば用いることが可能である。例えば、酸化スズ (SnO )、三酸化モ  [0052] As the detection film 5, any substance can be used as long as it has a property of changing electrical resistance when it comes into contact with the gas to be detected. For example, tin oxide (SnO), molybdenum trioxide
2  2
リブデン(MnO )、三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジ  Ribden (MnO), tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide
2 3 2  2 3 2
ゥム(Ir(OH) n)、五酸化バナジウム(V O )、酸化ロジウム(Rh O ·χΗ Ο)などを用 いることが可能である。 Um (Ir (OH) n), vanadium pentoxide (VO), rhodium oxide (Rh O · χΗ Ο), etc. It is possible that
共通電極 1は、導電性の高い材料であり、電極自体が被検知ガス中の水素ガスに 対して不活性であるほうがより望しい。共通電極 1の材料としては、導電性の高い材 料であるマグネシウム(Mg)、アルミニウム (A1)、チタン (Ti)、バナジウム(V)、クロム (Cr)、鉄 (Fe)、ニッケル (Ni)、銀 (Ag)などの金属や、炭素 (C)などを用いることが 可能である。特に、共通電極 1の材料としては、酸ィ匕しにくぐ水素ガスに対して不活 性な金 (Au)や銅 (Cu)が望まし 、。  The common electrode 1 is a highly conductive material, and it is more desirable that the electrode itself be inert to the hydrogen gas in the gas to be detected. Common electrode 1 materials are magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), which are highly conductive materials. Metal such as silver (Ag), carbon (C), etc. can be used. In particular, the material for the common electrode 1 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
[0053] [水素ガス検知センサの動作原理] [0053] [Operation principle of hydrogen gas detection sensor]
次に、本発明に係る実施例 1の水素ガス検知センサの水素ガス検知の動作原理に ついて説明する。  Next, the operation principle of hydrogen gas detection of the hydrogen gas detection sensor of Example 1 according to the present invention will be described.
図 1にお!/、て、被検知ガスに含まれる水素ガス 26が矢印 Aで示した位置にお!、て 白金分散担持三酸化タングステンで形成された検知膜 5に接触した場合について説 明する。この白金分散担持三酸ィ匕タングステンは、触媒として lnmから lOnm程度の 粒径を有する白金(Pt)微粒子力 lOnmから lOOnm程度の粒径を有する三酸ィ匕タ ングステン (WO )粒子上に分散担持された構造を持つ。水素ガスは、白金 (Pt)微  In Fig. 1, the case where the hydrogen gas 26 contained in the gas to be detected contacts the detection film 5 formed of tungsten trioxide supported by platinum dispersion at the position indicated by the arrow A! To do. This platinum-dispersed supported tungsten trioxide is dispersed on platinum (Pt) fine particles having a particle size of about lnm to lOnm as a catalyst and dispersed on tungsten trioxide (WO) particles having a particle size of about lOnm to lOOnm. It has a supported structure. Hydrogen gas is platinum (Pt) fine
3  Three
粒子上でプロトン (H+)と電子 (e_)に解離される。解離されたプロトン (H+)は、白金 触媒微粒子上からスピルオーバーし、検知膜 5の主成分である三酸ィ匕タングステン( WO )に拡散し、タングステンブロンズを形成する。三酸ィ匕タングステン (WO )は、タDissociated into protons (H +) and electrons (e _ ) on the particle. The dissociated protons (H +) spill over from the platinum catalyst fine particles and diffuse into tungsten trioxide (WO), which is the main component of the detection film 5, to form tungsten bronzes. Tungsten trioxide (WO)
3 3 ングステンブロンズを形成して 、な 、状態にぉ 、ては、電気的に絶縁に近 、状態で ある。しかし、三酸ィ匕タングステン (WO )は、プロトン (H+)が拡散し、タングステンブ 3 3 Nungsten bronze is formed, and the state is close to electrical insulation. However, tungsten trioxide (WO) diffuses protons (H +)
3  Three
ロンズを形成すると、半導体化し、さらに、水素ガスの濃度が高くなり多くのプロトン( The formation of the Lons makes it a semiconductor, and the concentration of hydrogen gas increases and many protons (
H+)が拡散すると、半導体から導体に近い性質を示すようになる。 When H +) diffuses, it becomes a property close to a conductor from a semiconductor.
一方、共通電極 1に接続されたノ ィァス電源 27より発生する電流は、半導体化した 検知部 8を集中的に流れる。検知部 8を流れる電流は、検知部 8から抵抗層 4を介し て各電極 2, 3に電流分割されて流れる。抵抗層 4を流れる電流は、電極 2および電 極 3までの距離 Xaおよび Xbの比に反比例して電流分割されて、電極 2および電極 3 力 出力される。  On the other hand, the current generated from the noise power source 27 connected to the common electrode 1 flows intensively through the detection unit 8 made semiconductor. The current flowing through the detection unit 8 flows from the detection unit 8 through the resistance layer 4 and is divided into currents 2 and 3. The current flowing through the resistance layer 4 is divided into currents in inverse proportion to the ratio of the distances Xa and Xb to the electrode 2 and the electrode 3, and the output of the electrode 2 and the electrode 3 is output.
[0054] 次に、水素ガス検知センサ 25の電極 2および電極 3から出力された各電流信号を 電圧信号に変換する変換手段である演算器 28の動作について図 7を用いて説明す る。図 7は、実施例 1の水素ガス検知センサ 25からの信号が入力される演算器 28の 構成を示すブロック図である。図 7に示すように、実施例 1のガス検知装置は、水素ガ ス検知センサ 25、バイアス電源 27、演算器 28および電流制限抵抗 29により構成さ れている。 Next, the current signals output from the electrodes 2 and 3 of the hydrogen gas detection sensor 25 are The operation of the computing unit 28, which is a conversion means for converting into a voltage signal, will be described with reference to FIG. FIG. 7 is a block diagram illustrating a configuration of the computing unit 28 to which a signal from the hydrogen gas detection sensor 25 of the first embodiment is input. As shown in FIG. 7, the gas detection device of the first embodiment includes a hydrogen gas detection sensor 25, a bias power source 27, a computing unit 28, and a current limiting resistor 29.
前述のように、実施例 1の水素ガス検知センサ 25においては、水素ガスを検知した 検知膜 5の被爆部分が半導体化した検知部 8となる。その検知膜 5上の検知部 8の位 置を検出するために、検知部 8の抵抗変化は抵抗層 4を用いて電流値に変換されて 演算器 28に入力される。演算器 28においては、電流値が電圧値に変換され演算処 理されるが、その変換手段である演算器 28の動作について以下に説明する。  As described above, in the hydrogen gas detection sensor 25 of the first embodiment, the exposed portion of the detection film 5 that has detected the hydrogen gas is the detection unit 8 that is made into a semiconductor. In order to detect the position of the detection unit 8 on the detection film 5, the resistance change of the detection unit 8 is converted into a current value using the resistance layer 4 and input to the calculator 28. In the arithmetic unit 28, the current value is converted into a voltage value, and the arithmetic processing is performed. The operation of the arithmetic unit 28 as the conversion means will be described below.
[0055] 図 7に示すように、水素ガス検知センサ 25の共通電極 1は、電流制限抵抗 29を介 してバイアス電源 27に接続されて 、る。検知膜 5が水素ガスと接触して 、な 、状態、 すなわち水素ガス検知センサ 25が水素ガスを検知していない状態における共通電 極 1と電極 2との間を流れる電流をバイアス電流 Ilb、共通電極 1と電極 3との間を流 れる電流をバイアス電流 I2bとする。これらのバイアス電流 libおよび I2bは、電極 2お よび電極 3からそれぞれ演算器 28に入力され、オペアンプ 14aおよびオペアンプ 14 bを有して構成される電流電圧変換回路において電圧信号に変換される。変換され た各電圧信号は、アナログデジタル変換素子 15aおよび 15bに送られ、それぞれが デジタル信号に変換される。さら〖こ、変換された各デジタル信号は、除算器 16および 加算器 17に送られる。除算器 16および加算器 17では水素ガスを検知していない状 態の各デジタル信号をバイアス電流 lib, I2bに相当する値として保持する。  As shown in FIG. 7, the common electrode 1 of the hydrogen gas detection sensor 25 is connected to a bias power source 27 via a current limiting resistor 29. When the detection film 5 is in contact with hydrogen gas, the current flowing between the common electrode 1 and the electrode 2 when the hydrogen gas detection sensor 25 is not detecting hydrogen gas is the bias current Ilb, common. The current flowing between electrode 1 and electrode 3 is referred to as bias current I2b. These bias currents lib and I2b are input to the calculator 28 from the electrodes 2 and 3, respectively, and are converted into voltage signals in a current-voltage conversion circuit including the operational amplifier 14a and the operational amplifier 14b. The converted voltage signals are sent to analog-digital conversion elements 15a and 15b, which are converted into digital signals. Furthermore, each converted digital signal is sent to a divider 16 and an adder 17. The divider 16 and the adder 17 hold each digital signal in a state where no hydrogen gas is detected as a value corresponding to the bias current lib, I2b.
[0056] 次に、実施例 1の水素ガス検知センサが水素ガスを検地した状態のとき、すなわち 検知膜 5が水素ガスに接触した状態の場合について説明する。  Next, the case where the hydrogen gas detection sensor of Example 1 has detected hydrogen gas, that is, the detection film 5 is in contact with hydrogen gas will be described.
検知膜 25が水素ガスを検知した状態における共通電極 1と電極 2との間を流れる 電流を II、共通電極 1と電極 3との間を流れる電流を 12とする。前述のバイアス電流 I lb, I2bと同様に、電流 IIおよび 12は、電極 2および電極 3からそれぞれ演算器 28に 入力され、前述の電流電圧変換回路において電圧信号に変換される。変換された電 圧信号は、アナログデジタル変換素子 15aおよび 15bに送られ、それぞれがデジタ ル信号に変換され、除算器 16および加算器 17に送られる。加算器 17および除算器 16においては、保持していたバイアス電流 Ilaおよび I2bに相当するデジタル信号を 、水素ガスを検知した状態のときの電流 IIおよび 12に相当するデジタル信号力 各 々減算し、且つ後述の式 1および式 2に示す加算および除算の演算処理を行う。除 算器 16および加算器 17は、除算および加算の演算処理の結果を、デジタルの電気 信号としてデジタルアナログ変換素子 18aおよび 18bに出力する。デジタルアナログ 変換素子 18aは、アナログの電気信号で除算による算出結果 E2を出力する。デジタ ルアナログ変換素子 18bは、アナログの電気信号で加算による算出結果 E1を出力 する。 The current flowing between the common electrode 1 and the electrode 2 when the detection film 25 detects hydrogen gas is II, and the current flowing between the common electrode 1 and the electrode 3 is 12. Similarly to the bias currents I lb and I2b described above, the currents II and 12 are input to the calculator 28 from the electrodes 2 and 3, respectively, and converted into voltage signals in the current-voltage conversion circuit described above. The converted voltage signal is sent to the analog-digital conversion elements 15a and 15b. And is sent to a divider 16 and an adder 17. In the adder 17 and the divider 16, the digital signals corresponding to the held bias currents Ila and I2b are subtracted from the digital signal forces corresponding to the currents II and 12 when hydrogen gas is detected, respectively. In addition, addition and division calculation processes shown in Equation 1 and Equation 2 described later are performed. The divider 16 and the adder 17 output the result of the division and addition operation processing to the digital / analog conversion elements 18a and 18b as digital electric signals. The digital-to-analog conversion element 18a outputs a calculation result E2 by division with an analog electric signal. The digital-to-analog conversion element 18b outputs a calculation result E1 by addition with an analog electric signal.
[0057] 上記の算出結果 E1および E2は、以下の式(1)および式(2)により算出される。  [0057] The above calculation results E1 and E2 are calculated by the following equations (1) and (2).
[0058] El =k20 X{(ll— lib) + (12— I2b)} (1) [0058] El = k20 X {(ll—lib) + (12—I2b)} (1)
[0059] E2=k4 X (12— I2b) /{(I1— lib) + (12— I2b)} [0059] E2 = k4 X (12— I2b) / {(I1— lib) + (12— I2b)}
(2)  (2)
[0060] 式(1)および式(2)において、 k20、 k4は定数である。  In equations (1) and (2), k20 and k4 are constants.
式(2)においては、図 1に示す水素ガス検知センサにおいて、検知位置が X=0の 場合に算出結果 E2が 0となり、 X=Lの場合に算出結果 E2が 1となる。ここで、 X=0 とは、図 1に示す構成において、検知部 8が電極 2の近接位置であり、検知範囲しの 一方の境界部分の位置である。したがって、 X=Lとは検知部 8が電極 3の近接位置 であり、検知範囲 Lの他方の境界部分である。  In Equation (2), in the hydrogen gas detection sensor shown in FIG. 1, the calculation result E2 is 0 when the detection position is X = 0, and the calculation result E2 is 1 when X = L. Here, X = 0 is the position of one boundary portion of the detection range in the configuration shown in FIG. Therefore, X = L is the position where the detection unit 8 is close to the electrode 3 and the other boundary portion of the detection range L.
[0061] 水素ガスの検知位置力 X=0から X=Lまで変化した場合、水素ガスの検知位置 Xと算出結果 Eとの関係は、縦軸と横軸のグラフで示すと、ほぼ直線で表される関係 である。  [0061] When the detection position force of hydrogen gas changes from X = 0 to X = L, the relationship between the detection position X of hydrogen gas and the calculation result E is almost linear as shown by the vertical and horizontal axis graphs. It is a relationship expressed.
なお、本発明に係る実施例 1の水素ガス検知センサにおいて、演算処理としては上 記の式(1)および式(2)だけに限定されるものではなく、他の式を用いても演算する ことができる。  In the hydrogen gas detection sensor according to the first embodiment of the present invention, the calculation process is not limited to the above formulas (1) and (2), and calculation is also performed using other formulas. be able to.
[0062] 以下、式(2)の演算処理以外の水素ガスの検知位置 Xを示す演算式につ!、て説明 する。  In the following, an arithmetic expression indicating the hydrogen gas detection position X other than the arithmetic processing of Expression (2) will be described.
演算式において、(II一 lib)と(12— I2b)の比を表す項が含まれていれば、検知 位置 Xを算出する演算式として用いることができる。以下に、具体的な水素ガスの検 知位置 Xを示す算出方法の例を記載する。 If the expression contains a term that represents the ratio of (II 1 lib) and (12—I2b), it will be detected. It can be used as an arithmetic expression for calculating the position X. An example of a calculation method showing the specific hydrogen gas detection position X is described below.
下記式(3)は、図 1に示した実施例 1の水素ガス検知センサ 25において、検知位置 力 =0の場合に算出結果 Eが 0となり、 X=Lの場合に算出結果 Eが∞となる演算式 である。式(3)に示す検知位置 Xと算出結果 Eとの関係は、縦軸と横軸のグラフで示 すと、直線で表される関係にはならない。  The following formula (3) is obtained from the hydrogen gas detection sensor 25 of Example 1 shown in FIG. 1 where the calculation result E is 0 when the detection position force = 0, and the calculation result E is ∞ when X = L. This is an arithmetic expression. The relationship between the detection position X and the calculation result E shown in Equation (3) is not a relationship represented by a straight line when shown on the vertical and horizontal graphs.
[0063] E=k5 X (12— I2b) / (I1— lib) (3) [0063] E = k5 X (12—I2b) / (I1—lib) (3)
[0064] また、下記式 (4)は、図 1に示した実施例 1の水素ガス検知センサにおいて、検知 位置力 ¾=0の場合に算出結果 Eが— 1となり、 X=Lの場合に算出結果 Eが 1となる 演算式である。式 (4)の演算において、水素ガスの検知位置力 X=0から Lまで変 化した場合、検知位置 Xと算出結果 Eとの関係は、縦軸と横軸のグラフで示すと、ほ ぼ直線で表される。  [0064] In addition, in the hydrogen gas detection sensor of Example 1 shown in FIG. 1, the following formula (4) is calculated when the detection position force ¾ = 0, and the calculation result E is -1 and when X = L: The calculation result E is 1. In the calculation of equation (4), when the detection position force of hydrogen gas changes from X = 0 to L, the relationship between the detection position X and the calculation result E is almost as shown by the graphs on the vertical and horizontal axes. Represented by a straight line.
[0065] E=k6 X [{(12— I2b) (II— lib)}/  [0065] E = k6 X [{(12— I2b) (II— lib)} /
{(II— Ilb) + (I2— I2b)}] (4)  {(II— Ilb) + (I2— I2b)}] (4)
[0066] 上記の式(2)、式(3)および式 (4)において、検知膜 5が水素ガスに接触した場合 、すなわち水素ガスを検知した場合の電流 IIおよび 12力 バイアス電流 libおよび 12 bに対してその値が十分大きな場合、ノィァス電流 libおよび I2bを無視して算出す ることが可能である。その場合には、式(2)、式(3)および式 (4)は、下記の式(5)、 式(6)および式(7)に示すようになる。  [0066] In the above formulas (2), (3), and (4), when the detection film 5 is in contact with hydrogen gas, that is, when hydrogen gas is detected, current II and 12 force bias current lib and 12 If the value is large enough for b, it can be calculated ignoring the noise currents lib and I2b. In that case, Equation (2), Equation (3), and Equation (4) are as shown in Equation (5), Equation (6), and Equation (7) below.
[0067] E=kl X I2/ (11 +12) (5)  [0067] E = kl X I2 / (11 +12) (5)
[0068] E=k2 X I2/ll (6)  [0068] E = k2 X I2 / ll (6)
[0069] E=k3 X (12— II) / (II +12) (7)  [0069] E = k3 X (12— II) / (II +12) (7)
[0070] 上記のように、水素ガス検知領域が 1次元である実施例 1の水素ガス検知センサ 25 の水素ガスの検知位置 Xは、前述の式(2)力 式(7)で示す演算式により得ることが できる。  [0070] As described above, the hydrogen gas detection position X of the hydrogen gas detection sensor 25 of the first embodiment in which the hydrogen gas detection region is one-dimensional is calculated by the equation (2), the force equation (7). Can be obtained.
実施例 1の水素ガス検知センサ 25において用いたバイアス電源 27は直流電源で 説明したが、本発明のガス検知センサにおけるバイアス電源としては直流電源だけ でなぐ 0. IKHzから ΙΟΚΗζ程度の交流電源でも用いることができる。その場合は、 演算器 28の電流電圧変換部に整流機能を付加する必要がある。 Although the bias power source 27 used in the hydrogen gas detection sensor 25 of Example 1 has been described as a DC power source, the bias power source in the gas detection sensor of the present invention is not limited to a DC power source. 0. Also used in an AC power source of about IKHz to ΙΟΚΗζ be able to. In that case, It is necessary to add a rectification function to the current-voltage converter of the arithmetic unit 28.
また、実施例 1における演算器 28は、水素ガス検知センサ 25からの出力電流をデ ジタル信号に変換して、演算処理を行うが、デジタル信号に変換せずアナログ信号 の状態で回路構成により演算することも可能である。  In addition, the arithmetic unit 28 in the first embodiment converts the output current from the hydrogen gas detection sensor 25 into a digital signal and performs arithmetic processing. It is also possible to do.
[0071] [水素ガス検知センサによる実験結果] [0071] [Experimental result of hydrogen gas detection sensor]
本発明に係る実施例 1の水素ガス検知センサおよびガス検知装置による実験結果 を図 8および図 9を用いて説明する。  Experimental results of the hydrogen gas detection sensor and gas detection device of Example 1 according to the present invention will be described with reference to FIGS.
まず、本実験において用いた 1次元の水素ガス検知領域を有する水素ガス検知セ ンサについて説明する。  First, the hydrogen gas detection sensor with a one-dimensional hydrogen gas detection region used in this experiment will be described.
本実験で用いた水素ガス検知領域が 1次元である水素ガス検知センサは、その検 知範囲 Lである長さが 100mmであり、幅が 3mmであった。基材 6は、長さが 104mm 、幅が 3mm、厚みが lmmの石英(SiO )を用いた。電極 2および電極 3は、金(Au)  The hydrogen gas detection sensor with a one-dimensional hydrogen gas detection region used in this experiment had a detection range L of 100 mm in length and 3 mm in width. The substrate 6 was made of quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm. Electrode 2 and electrode 3 are gold (Au)
2  2
をスパッタ法を用いて、基材 6の両側 2mmに厚み 0. 5 /z mで形成した。抵抗層 4は、 窒化タンタル (TaN)をリアタティブスパッタ法にて、基材 6の両側の縁から lmmの幅 の領域を除いて、中央部分に 102mmで 10 mの厚みで形成した。  Was formed at a thickness of 0.5 / z m on 2 mm on both sides of the substrate 6 by sputtering. The resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion of 102 mm and a thickness of 10 m, except for a region having a width of 1 mm from both edges of the substrate 6.
[0072] 次に、白金分散担持三酸化タングステン (Pt—WO )からなる検知膜 5を形成した。 Next, a detection film 5 made of platinum dispersion-supported tungsten trioxide (Pt—WO 3) was formed.
3  Three
形成方法としては、ゾルゲル法を用いた。具体的には、まず、タングステン酸ナトリウ ムニ水和物(Na WO · 2Η Ο :純正化学株式会社製) 41. 2gをメスフラスコに取り、  A sol-gel method was used as a forming method. Specifically, first, sodium tungstate hydrate (Na WO 2Η Η: manufactured by Junsei Chemical Co., Ltd.) 41. 2 g was placed in a volumetric flask,
2 4 2  2 4 2
純水をカ卩えて 250mLに調製し、 0. 5molZLの無色透明のタングステン酸ナトリウム (Na WO )水溶液を得た。  Pure water was added to prepare 250 mL, and a 0.5 mol ZL colorless and transparent sodium tungstate (Na 2 WO 3) aqueous solution was obtained.
2 4  twenty four
[0073] 次に、陽イオン交換榭脂 (アンバーライト IR120B Na:オルガノ株式会社製)をカラ ム塔に充填し、タングステン酸ナトリウム (Na WO )水溶液を通過させ、タングステン  [0073] Next, cation exchange resin (Amberlite IR120B Na: manufactured by Organo Co., Ltd.) was filled into a column tower, and a sodium tungstate (Na 2 WO) aqueous solution was passed through the column tower.
2 4  twenty four
酸ナトリウム (Na WO )水溶液のナトリウムイオン (Na+)をプロトン (H+)に交換し、薄  The sodium ion (Na +) in the sodium acid (Na WO) aqueous solution is exchanged for protons (H +)
2 4  twenty four
黄色のタングステン酸 (H WO )水溶液を得た。タングステン酸 (H WO )水溶液 13  A yellow tungstic acid (H 2 WO 3) aqueous solution was obtained. Tungstic acid (H WO) aqueous solution 13
2 4 2 4 mLに触媒金属であるへキサクロ口白金酸 (H PtCl · 6Η Ο :和光純薬工業株式会  2 4 2 4 mL of catalyst metal hexacloplatinic acid (H PtCl 6Η Ο: Wako Pure Chemical Industries, Ltd.
2 6 2  2 6 2
社製)を純水に、 0. 5molZL溶解させた水溶液を 4mLと、エタノールを 8mL加えて 均一に分散混合し、白金分散型酸化タングステンのゾルゲル溶液を合成した。上記 ゾルゲル溶液を抵抗層 4の上に一面を覆うように一様に滴下し、ディップ法にてゾル ゲル溶液の塗布を行った。その後、室温にて 1時間乾燥させた後、電気炉を用いて 2 00°Cで 1時間、仮焼成した後、さらに、 500°Cで 1時間、焼成してから室温で冷却し た。このときの検知膜 5の膜厚は 1 μ mであった。 4 mL of an aqueous solution in which 0.5 molZL was dissolved in pure water and 8 mL of ethanol were uniformly dispersed and mixed to synthesize a sol-gel solution of platinum-dispersed tungsten oxide. The sol-gel solution is uniformly dropped on the resistance layer 4 so as to cover the entire surface, and the sol The gel solution was applied. Then, after drying at room temperature for 1 hour, using an electric furnace, pre-baking was carried out at 200 ° C. for 1 hour, followed by baking at 500 ° C. for 1 hour and then cooling at room temperature. At this time, the thickness of the detection film 5 was 1 μm.
[0074] 次に、金 (Au)で構成される共通電極 1をスパッタエ法とメタルマスクを用いて形成 した。共通電極 1は、金 (Au)を前述の図 2の(c)で示した線状の形状であり、幅が 0. 3mmであり、検知膜 5の中央部分に長手方向に沿って 1本のみを形成した。また、図 2の(c)〖こ示したように、検知膜 5の検知面の両側に 2mmの幅の共通電極 1のための ランド 81, 81を形成した。また、共通電極 1の厚みは、スパッタ時間とスパッタ電力を 制御して行い、本実験では 2 mとした。  [0074] Next, a common electrode 1 made of gold (Au) was formed using a sputter method and a metal mask. The common electrode 1 is made of gold (Au) having a linear shape as shown in FIG. 2 (c) and has a width of 0.3 mm. Only formed. Further, as shown in FIG. 2 (c), lands 81, 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface of the detection film 5. The thickness of the common electrode 1 was controlled by controlling the sputtering time and sputtering power, and was 2 m in this experiment.
共通電極 1の形成後、共通電極 1と電極 2および共通電極 1と電極 3の接合抵抗を 測定した。この接合抵抗は、それぞれが約 80k Ωであった。また、電極 2と電極 3の間 の電極間抵抗は、約 75ΚΩであった。  After the formation of common electrode 1, the junction resistances of common electrode 1 and electrode 2 and common electrode 1 and electrode 3 were measured. Each junction resistance was about 80 kΩ. The interelectrode resistance between electrode 2 and electrode 3 was about 75Ω.
[0075] 評価は以下の条件で行った。水素ガス検知領域が 1次元であり、上記のように構成 された実施例 1の水素ガス検知センサ 25において、共通電極 1には、バイアス電源 2 7より直流電圧 5Vを印加した。電流制限抵抗は 10ΚΩとしている。電極 2および電極 3からのバイアス電流は、約 60 μ Αであった。水素ガスを含む被検知ガスの噴出した 箇所には、ガス噴出口の直径が lmmの円形ノズルを用い、噴出方向は上方とした。 また、水素ガス検知センサ 25の設置位置は、ガス噴出口より上方に lmmおよび 3m mの距離に配置した状態で実験を行った。  [0075] Evaluation was performed under the following conditions. In the hydrogen gas detection sensor 25 of Example 1 having a one-dimensional hydrogen gas detection area and configured as described above, a DC voltage of 5 V was applied to the common electrode 1 from the bias power source 27. The current limiting resistor is 10ΚΩ. The bias current from electrodes 2 and 3 was about 60 μΑ. A circular nozzle with a gas outlet diameter of lmm was used at the location where the gas to be detected including hydrogen gas was jetted, and the jet direction was upward. The experiment was conducted with the hydrogen gas detection sensor 25 installed at a distance of lmm and 3 mm above the gas outlet.
[0076] 図 8は、ガス噴出ロカも水素ガス検知センサ 25の検知膜 5までの距離が lmmであ り、被検知ガスの水素ガスの体積濃度が 0. 1%および 1%とした場合における、ノズ ルのガス噴出口の位置である水素ガスの検知位置 Xと、前述の式(2)に示した算出 結果 E2を示すグラフである。図 8のグラフにおいて、横軸が水素ガス検知位置 X[m m]であり、縦軸が算出結果 E2である。図 8において、実線 33は水素ガスの体積濃 度が 0. 1%の場合であり、破線 34は水素ガスの体積濃度が 1. 0%の場合を示す。 なお、式(2)における定数 k4は 1として算出している。また、横軸の水素ガス検知位 置 Xは、図 1に示した検知位置 Xの値であり、 20mmから 80mmまで測定した。  [0076] FIG. 8 shows the case where the distance to the detection film 5 of the hydrogen gas detection sensor 25 is 1 mm and the volume concentration of hydrogen gas of the detected gas is 0.1% and 1%. 4 is a graph showing the hydrogen gas detection position X, which is the position of the nozzle gas outlet, and the calculation result E2 shown in the above equation (2). In the graph of FIG. 8, the horizontal axis is the hydrogen gas detection position X [mm], and the vertical axis is the calculation result E2. In FIG. 8, the solid line 33 indicates the case where the volume concentration of hydrogen gas is 0.1%, and the broken line 34 indicates the case where the volume concentration of hydrogen gas is 1.0%. The constant k4 in equation (2) is calculated as 1. Also, the hydrogen gas detection position X on the horizontal axis is the value of the detection position X shown in Fig. 1 and was measured from 20 mm to 80 mm.
図 8のグラフに示すように、算出結果 E2は、被検知ガスの水素ガスの体積濃度によ らず、水素ガスの検知位置を示しており、水素ガス検知領域が 1次元である水素ガス 検知センサ 25およびガス検知装置として十分に機能することが確認された。 As shown in the graph of Fig. 8, the calculation result E2 depends on the volume concentration of hydrogen gas to be detected. In addition, the hydrogen gas detection position is shown, and it was confirmed that the hydrogen gas detection area 25 is a one-dimensional hydrogen gas detection sensor 25 and a gas detection device.
[0077] 図 9に示すグラフは、ノズルのガス噴出口から水素ガス検知センサ 25の検知膜 5ま での距離が lmmおよび 3mmの場合であり、水素ガス検知位置 Xが検知膜 5の中央 部 (X= 50mm)の場合である。図 9は、被検知ガス中の水素ガスの体積濃度を 0% 力 1%に変化させた時の前述の式(1)による算出結果 E1を示す。図 9のグラフにお いて、横軸が水素ガス体積濃度 [%]を示し、縦軸が加算による算出結果 E1を示す。 図 9において、実線 35はガス噴出口と検知膜 5までの距離が lmm、破線 36はガス 噴出口と検知膜 5までの距離が 3mmの場合を示す。なお、式(1)における定数 k20 は 1 X 102 (V/A)として算出して 、る。 [0077] The graph shown in FIG. 9 is for the case where the distance from the gas outlet of the nozzle to the detection film 5 of the hydrogen gas detection sensor 25 is 1 mm and 3 mm, and the hydrogen gas detection position X is the center of the detection film 5 (X = 50 mm). FIG. 9 shows the calculation result E1 according to the above equation (1) when the volume concentration of hydrogen gas in the gas to be detected is changed from 0% force to 1%. In the graph of Fig. 9, the horizontal axis indicates the hydrogen gas volume concentration [%], and the vertical axis indicates the calculation result E1 by addition. In FIG. 9, the solid line 35 shows the case where the distance from the gas outlet to the detection film 5 is lmm, and the broken line 36 shows the case where the distance from the gas outlet to the detection film 5 is 3 mm. The constant k20 in the equation (1) is calculated as 1 × 10 2 (V / A).
[0078] 図 9に示すように、実線 35で示す距離が lmmの場合、および破線 36で示す距離 力 S 3mmの場合のいずれの場合でも、算出結果 E1は水素ガス体積濃度の増加に伴 つて上昇している。しかし、ガス噴出ロカも検知膜 5までの距離により、算出結果 E1 において差が発生している。これは、ガス噴出ロカも検知膜 5までの距離が長くなる と、検知膜 5に接触する水素ガスの面積が広くなるため、半導体化した検知部 8の範 囲が広くなり、検知膜 5を通過する電流が増加したためと推測できる。これらの結果よ り、ガス噴出ロカ 検知膜 5までの距離が一定にすることにより、算出結果 E1を測定 することで被検知ガス中の水素ガスの体積濃度を測定することが可能となる。  [0078] As shown in FIG. 9, in both cases where the distance indicated by the solid line 35 is lmm and the distance force S indicated by the broken line 36 is 3 mm, the calculation result E1 increases as the hydrogen gas volume concentration increases. It is rising. However, there is a difference in the calculation result E1 due to the distance to the detection film 5 for the gas ejection loca. This is because the area of hydrogen gas contacting the detection film 5 increases as the distance to the detection film 5 becomes longer, and the range of the detection part 8 made into a semiconductor becomes wider. It can be inferred that the current passing therethrough has increased. From these results, it is possible to measure the volume concentration of hydrogen gas in the gas to be detected by measuring the calculation result E1 by making the distance to the gas ejection locus detection film 5 constant.
実施例 2  Example 2
[0079] 以下、本発明に係る実施例 2の水素ガス検知センサについて図 10および図 11を 用いて説明する。実施例 2において、前述の実施例 1の要素と同じ構成、機能を有す るものには同じ符号を付してその説明は省略する。  Hereinafter, a hydrogen gas detection sensor of Example 2 according to the present invention will be described with reference to FIGS. 10 and 11. In the second embodiment, components having the same configuration and function as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図 10は本発明に係る実施例 2の水素ガス検知センサの構成を示す断面図であり、 水素ガス 26を矢印 Aで示した位置で検知した例を示したものである。図 10の断面図 に示すように、実施例 2の水素ガス検知センサは、前述の実施例 1の水素ガス検知セ ンサに、検知膜 5から基材 6まで貫通した貫通孔 23を形成した構造を有する。貫通孔 23は、検知膜 5に接触した水素ガス 26を含む被検知ガスが、検知膜 5から基材 6を 通過して水素ガス検知センサの外部に放出する機能を有する。すなわち、貫通孔 23 は、検知膜 5上で被検知ガスが滞留して拡散しな 、ようにするものである。 FIG. 10 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor according to the second embodiment of the present invention, and shows an example in which hydrogen gas 26 is detected at the position indicated by arrow A. As shown in the cross-sectional view of FIG. 10, the hydrogen gas detection sensor of Example 2 has a structure in which a through hole 23 penetrating from the detection film 5 to the substrate 6 is formed in the hydrogen gas detection sensor of Example 1 described above. Have The through-hole 23 has a function of allowing the gas to be detected including the hydrogen gas 26 in contact with the detection film 5 to pass from the detection film 5 through the base material 6 to the outside of the hydrogen gas detection sensor. That is, the through hole 23 This is to prevent the gas to be detected from staying on the detection film 5 and diffusing.
[0080] 貫通孔 23が形成されていない場合には、水素ガス 26が検知膜 5に接触した後に 検知膜 5上を拡散し、検知膜 5との接触範囲が広がってしまう。しかし、貫通孔 23を 形成した場合には、水素ガス 26が検知膜 5に接触した後、貫通孔 23を通り基材 6より 放出されるため、水素ガスが検知膜上で拡散しにくぐ検知膜 5との接触範囲は広く なりにくい。なお、検知膜 5の検知面が下に向くよう水素ガス検知センサを設置するこ とにより、水素ガス 26が上方向に漏洩している場合には、水素ガスの比重が非常に 軽いため、漏洩した水素ガス 26の大部分が貫通孔 23を通過して水素ガス検知セン サの上方に放出され、水素ガスの殆どが検知膜 5上を拡散することがなくなる。 [0080] When the through hole 23 is not formed, the hydrogen gas 26 diffuses on the detection film 5 after contacting the detection film 5, and the contact range with the detection film 5 is expanded. However, when the through hole 23 is formed, the hydrogen gas 26 comes into contact with the detection film 5 and is then released from the base material 6 through the through hole 23. Therefore, the hydrogen gas is difficult to diffuse on the detection film. The contact area with the membrane 5 is unlikely to be widened. If the hydrogen gas 26 leaks upward by installing a hydrogen gas detection sensor so that the detection surface of the detection film 5 faces downward, the specific gravity of the hydrogen gas is very light. Most of the hydrogen gas 26 passed through the through-hole 23 is released above the hydrogen gas detection sensor, and most of the hydrogen gas does not diffuse on the detection film 5.
[0081] 図 11は、実施例 2の水素ガス検知センサの検知面を示す平面図である。図 11に示 すように、貫通孔 23は、検知膜 5が表出している部分に形成されている。また、実施 例 2の水素ガス検知センサにおける共通電極 1は、図 2の(c)に示した形状を有して いるが、他の形状に形成しても良い。また、貫通孔 23は、検知膜 5以外の部分、例え ば共通電極 1やランド 81にも設けることは可能である。ただし、共通電極 1やランド 81 に設ける場合には、共通電極 1とランド 81のそれぞれの部分が、その機能を奏するよ う電気的な接続状態が保持されるよう形成する必要がある。 FIG. 11 is a plan view showing a detection surface of the hydrogen gas detection sensor according to the second embodiment. As shown in FIG. 11, the through hole 23 is formed in a portion where the detection film 5 is exposed. Further, the common electrode 1 in the hydrogen gas detection sensor of Example 2 has the shape shown in FIG. 2C, but may be formed in other shapes. Further, the through hole 23 can be provided in a portion other than the detection film 5, for example, the common electrode 1 or the land 81. However, when it is provided on the common electrode 1 or the land 81, it is necessary to form each part of the common electrode 1 and the land 81 so that an electrical connection state is maintained so as to perform the function.
[0082] [水素ガス検知センサによる実験結果] [0082] [Experimental result of hydrogen gas detection sensor]
本発明に係る実施例 2の水素ガス検知センサおよびガス検知装置による実験結果 を、図 12および図 13を用いて説明する。図 12および図 13は、水素ガス検知センサ にお 、て貫通孔 23の有無による水素ガスの滞留防止効果を示して 、る。  Experimental results of the hydrogen gas detection sensor and the gas detection device of Example 2 according to the present invention will be described with reference to FIGS. FIG. 12 and FIG. 13 show the effect of preventing the hydrogen gas from staying with the presence or absence of the through hole 23 in the hydrogen gas detection sensor.
本実験において用いた水素ガス検知領域が 1次元である水素ガス検知センサは、 その検知範囲である検知長さ Lが 100mmであり、幅が 3mmであった。基材 6は、長 さが 104mmであり、幅が 3mmであり、厚みが lmmの石英(SiO )を用いた。電極 2  The hydrogen gas detection sensor with a one-dimensional hydrogen gas detection area used in this experiment had a detection length L of 100 mm and a width of 3 mm. The substrate 6 was made of quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm. Electrode 2
2  2
および電極 3は、金(Au)をスパッタ法を用いて、基材 6の両側 2mmに厚み 0. 5 m で形成した。抵抗層 4は、窒化タンタル (TaN)をリアタティブスパッタ法にて、基材 6 の両側の縁から lmmの幅の領域を除いて、中央部分に 102mmで 10 μ mの厚みで 形成した。  The electrode 3 was formed by depositing gold (Au) with a thickness of 0.5 m on 2 mm on both sides of the substrate 6 by sputtering. The resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion with a thickness of 102 μm and a thickness of 10 μm except for a region having a width of 1 mm from both edges of the substrate 6.
[0083] 実施例 2における検知膜 5は、前述の実施例 1の実験において説明した方法と同じ 方法により形成した。すなわち、検知膜 5は、白金分散担持三酸化タングステン (Pt -WO )を触媒焼結後の膜厚が約 1 μ mになるように形成した。 [0083] The detection film 5 in Example 2 is the same as the method described in the experiment of Example 1 described above. Formed by the method. That is, the detection film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide (Pt—WO) was about 1 μm after catalyst sintering.
3  Three
また、実施例 2における共通電極 1についても、前述の実施例 1の実験において説 明した方法と同じ方法により形成した。すなわち、共通電極 1は、金 (Au)を図 2の(c) で示す形状に、幅 0. 3mmで、検知面の中央部分に長手方向に沿って 1本のみを形 成した。また、図 2の(c)〖こ示したように、検知面の両側に 2mmの幅の共通電極 1の ためのランド 81, 81を形成した。成膜後、電極 2および電極 3の電極間抵抗の抵抗 値は、約 75ΚΩであった。また、共通電極 1と電極 2および共通電極 1と電極 3との各 接合抵抗は、それぞれ約 80k Ωであった。バイアス電源は、直流電圧 5Vとし電流制 限抵抗 10K Ωを介して共通電極 1に接続されて!、る。電極 2および電極 3からのバイ ァス電流は、約 60 Aであった。また、貫通孔 23は、直径 0. 1mmであり、表出して いる検知膜 5の部分に 0. 5mmの間隔で形成されている。図 11に示すように、貫通 孔 23は検知面の長手方向に沿って配設された列を 4列形成されて 、る。  Further, the common electrode 1 in Example 2 was formed by the same method as described in the experiment of Example 1 described above. That is, the common electrode 1 was formed of gold (Au) in the shape shown in FIG. 2 (c), with a width of 0.3 mm, and only one in the longitudinal direction at the center of the detection surface. In addition, as shown in FIG. 2 (c), lands 81 and 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface. After film formation, the resistance value between the electrodes 2 and 3 was about 75Ω. The junction resistances of common electrode 1 and electrode 2 and common electrode 1 and electrode 3 were about 80 kΩ, respectively. The bias power supply is connected to the common electrode 1 with a DC voltage of 5V and a current limiting resistor of 10KΩ. The bias current from electrode 2 and electrode 3 was about 60 A. The through-holes 23 have a diameter of 0.1 mm, and are formed in the exposed detection film 5 at intervals of 0.5 mm. As shown in FIG. 11, the through holes 23 are formed in four rows arranged along the longitudinal direction of the detection surface.
水素ガスを含む被検知ガスの発生箇所には、ガス噴出口(図 10)の直径が lmmの 円形状のノズル 11を用い、噴出方向は上方とした。水素ガス検知センサは、ガス噴 出口より上方へ lmmの距離に検知面が配置されるよう設置した。  A circular nozzle 11 with a gas outlet (Fig. 10) with a diameter of lmm was used at the location where the gas to be detected including hydrogen gas was generated, and the jet direction was upward. The hydrogen gas detection sensor was installed so that the detection surface was placed at a distance of lmm above the gas outlet.
図 12は、図 6および図 7に示した実施例 2の水素ガス検知センサにおいて、貫通孔 23の効果を説明するためのグラフである。図 12のグラフにおいて、横軸が水素ガス 検知位置 X [mm]であり、縦軸が算出結果 E2である。図 12において、実線 38は貫 通孔 23が無い場合を示し、破線 37は貫通孔 23がある場合を示す。また、横軸の水 素ガス検知位置 Xは、図 1において検知位置 Xとして示した値である。本実験におい ては、検知位置 Xを 5mmから 95mmまで変更して測定した。なお、本実験において 、水素ガスの体積濃度は 1%としている。  FIG. 12 is a graph for explaining the effect of the through hole 23 in the hydrogen gas detection sensor of Example 2 shown in FIG. 6 and FIG. In the graph of Fig. 12, the horizontal axis is the hydrogen gas detection position X [mm], and the vertical axis is the calculation result E2. In FIG. 12, a solid line 38 indicates a case where the through hole 23 is not provided, and a broken line 37 indicates a case where the through hole 23 is provided. The hydrogen gas detection position X on the horizontal axis is the value indicated as the detection position X in FIG. In this experiment, the detection position X was changed from 5mm to 95mm. In this experiment, the volume concentration of hydrogen gas is 1%.
図 12に示すように、実験結果として、貫通孔 23が無い場合 (実線 38)には、水素ガ スの検知位置 Xが検知面の境界部分(両端)から 10mm程度まで近づくと、算出結果 E2の変化率は少なくなる。一方、貫通孔 23がある場合 (破線 37)には、水素ガスの 検知位置 Xが検知面の境界部分(両端)から 5mm程度まで近づいても算出結果 E2 の変化率は、ほぼ一定であった。 [0085] 図 13は、横軸が水素ガス体積濃度 [%]であり、縦軸が前述の式(1)に示した算出 結果 E1を示すグラフである。図 13において、実線 42は貫通孔 23が無い場合であり 、破線 41は貫通孔 23がある場合である。図 13に示すように、貫通孔 23が無い場合( 実線 42)には、貫通孔 23がある場合 (破線 41)に比較して、水素ガスの体積濃度に 対して算出結果 E1が大きくなつている。これは、貫通孔 23がある場合には、噴出す る水素ガスの濃度が同じでも、水素ガスの検知範囲が小さくなつているためと思われ る。また、貫通孔 23がある場合および貫通孔 23が無い場合のいずれの場合でも、噴 出する水素ガスの濃度が上昇するのに伴って、算出結果 E1は上昇している。 As shown in Fig. 12, when the through hole 23 is not present (solid line 38), as shown in Fig. 12, when the hydrogen gas detection position X approaches 10 mm from the boundary (both ends) of the detection surface, the calculation result E2 The rate of change of is less. On the other hand, when there is a through-hole 23 (broken line 37), the rate of change of the calculation result E2 was almost constant even when the hydrogen gas detection position X was close to about 5mm from the boundary (both ends) of the detection surface. . FIG. 13 is a graph showing the hydrogen gas volume concentration [%] on the horizontal axis and the calculation result E1 shown in the above equation (1) on the vertical axis. In FIG. 13, a solid line 42 indicates a case where there is no through hole 23, and a broken line 41 indicates a case where the through hole 23 is present. As shown in Fig. 13, when the through hole 23 is not present (solid line 42), the calculated result E1 is larger for the volume concentration of hydrogen gas than when the through hole 23 is present (dashed line 41). Yes. This seems to be because when the through-hole 23 is present, the hydrogen gas detection range has become smaller even if the concentration of the hydrogen gas to be ejected is the same. Further, in any case where there is the through hole 23 and no through hole 23, the calculation result E1 increases as the concentration of the hydrogen gas to be ejected increases.
図 12および図 13に示した実験結果から明らかなように、水素ガス 26を排出するた めに貫通孔 23を形成することにより、検知面の境界部分において、算出結果 E2の 変化率の低下を防止することが可能となる。  As is clear from the experimental results shown in FIGS. 12 and 13, by forming the through hole 23 to discharge the hydrogen gas 26, the change rate of the calculation result E2 is reduced at the boundary portion of the detection surface. It becomes possible to prevent.
実施例 3  Example 3
[0086] 以下、本発明に係る実施例 3の水素ガス検知センサについて図 14から図 16を用い て説明する。  Hereinafter, a hydrogen gas detection sensor of Example 3 according to the present invention will be described with reference to FIGS. 14 to 16.
図 14は実施例 3の水素ガス検知センサの構成を示す断面図である。図 15および 図 16は、実施例 3の構成における実験結果を示すグラフである。実施例 3の説明に おいて、前述の実施例 1および実施例 2と同じ機能、構成を有するものには同じ符号 を付してその説明は省略する。  FIG. 14 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor of Example 3. FIG. 15 and FIG. 16 are graphs showing experimental results in the configuration of Example 3. FIG. In the description of the third embodiment, components having the same functions and configurations as those of the first embodiment and the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
図 14の断面図に示すように、実施例 3の水素ガス検知センサは、前述の実施例 1 の水素ガス検知センサに加熱手段としてヒータ 39を取付け、断熱材 32で覆った構造 である。実施例 3の水素ガス検知センサは、加熱手段を設けたことにより、検知膜の 温度を所定の温度に保持することが可能となり、水素ガスに対する応答速度の改善 と、被検知ガスの湿度による影響を無くすことが可能となる。  As shown in the sectional view of FIG. 14, the hydrogen gas detection sensor of Example 3 has a structure in which a heater 39 is attached as a heating means to the hydrogen gas detection sensor of Example 1 described above and covered with a heat insulating material 32. The hydrogen gas detection sensor of Example 3 can maintain the temperature of the detection film at a predetermined temperature by providing a heating means, which improves the response speed to hydrogen gas and affects the humidity of the gas to be detected. Can be eliminated.
[0087] まず、図 14を用いて実施例 3の水素ガス検知領域が 1次元である水素ガス検知セ ンサの構造にっ 、て説明する。 First, the structure of the hydrogen gas detection sensor according to the third embodiment in which the hydrogen gas detection region is one-dimensional will be described with reference to FIG.
実施例 3の水素ガス検知センサの検知部分の基本構造は、前述の図 1に示した実 施例 1の水素ガス検知センサと同じである。実施例 3の水素ガス検知センサにおいて は、実施例 1の水素ガス検知センサの周囲を、水素ガス透過性を有する断熱材 32で 覆い、さらに、基板 6の背面にヒータ 39を取り付けた構造である。水素ガス透過性の 断熱材 32は、耐熱性の高!、発泡ポリエチレンなどの発泡性の樹脂で形成されて!、る 。また、断熱材 32は、厚みが断熱性の観点から lmm程度としており、水素ガス透過 性を確保する観点カゝら 0. 2mm程度の孔が多数形成されている。したがって、断熱 材 32の外部に生じた被検知ガスが孔を通り、内部の水素ガス検知センサに瞬時に 到達する。実施例 3〖こおけるヒータ 39は、白金やタングステンのペーストを印刷した 後、焼結して形成した。 The basic structure of the detection part of the hydrogen gas detection sensor of Example 3 is the same as that of the hydrogen gas detection sensor of Example 1 shown in FIG. In the hydrogen gas detection sensor of Example 3, the heat insulating material 32 having hydrogen gas permeability is provided around the hydrogen gas detection sensor of Example 1. Further, the heater 39 is attached to the back surface of the substrate 6. The heat insulating material 32 that is permeable to hydrogen gas is highly heat-resistant and is formed of a foaming resin such as foamed polyethylene. The heat insulating material 32 has a thickness of about 1 mm from the viewpoint of heat insulation, and has a number of holes of about 0.2 mm from the viewpoint of ensuring hydrogen gas permeability. Therefore, the gas to be detected generated outside the heat insulating material 32 passes through the hole and instantaneously reaches the internal hydrogen gas detection sensor. Example 3 The heater 39 that can be heated was formed by printing a platinum or tungsten paste and then sintering it.
[0088] なお、実施例 3の水素ガス検知センサとしては、図 1に示した実施例 1の水素ガス検 知センサにヒータ 39と断熱材 32を設けた構成の他に、図 10に示した貫通孔 23を有 する実施例 2の水素ガス検知センサにヒータ 39と断熱材 32を設けた構成でも良い。 なお、実施例 3の水素ガス検知センサにおける温度調節は、予めヒータ 39の電流と 電圧の値と、検知膜 5に取り付けた熱電対を用いて温度測定を行い、校正曲線を準 備して行った。  Note that the hydrogen gas detection sensor of Example 3 is shown in FIG. 10, in addition to the configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of Example 1 shown in FIG. A configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of the second embodiment having the through hole 23 may be used. The temperature adjustment in the hydrogen gas detection sensor of Example 3 was performed by measuring the temperature using the current and voltage values of the heater 39 in advance and the thermocouple attached to the detection film 5 and preparing a calibration curve. It was.
[0089] [水素ガス検知センサによる実験結果]  [0089] [Experimental result of hydrogen gas sensor]
本発明に係る実施例 3の水素ガス検知センサにおける実験結果を、図 15および図 16を用いて説明する。図 15は検知膜 5の表面温度の変化と応答時間に関する実験 結果を示すグラフである。図 15において、横軸が検知膜 5の表面温度 [°C]であり、 縦軸が応答時間 [秒]である。図 16は検知膜 5の表面温度と前述の式(1)に示した算 出結果 E 1を示すグラフである。  Experimental results of the hydrogen gas detection sensor according to Example 3 of the present invention will be described with reference to FIGS. FIG. 15 is a graph showing the experimental results regarding the change in the surface temperature of the detection film 5 and the response time. In FIG. 15, the horizontal axis represents the surface temperature [° C] of the sensing film 5, and the vertical axis represents the response time [second]. FIG. 16 is a graph showing the surface temperature of the detection film 5 and the calculation result E 1 shown in the above equation (1).
[0090] 本実験において用いた水素ガス検知センサは、水素ガス検知領域が 1次元であり、 検知範囲である検知長さ Lが 100mmであり、幅が 3mmであった。基材 6としては、長 さが 104mmであり、幅が 3mmであり、厚みが lmmの石英(SiO )を用いた。電極 2  [0090] The hydrogen gas detection sensor used in this experiment had a one-dimensional hydrogen gas detection region, a detection length L as a detection range of 100 mm, and a width of 3 mm. As the substrate 6, quartz (SiO 2) having a length of 104 mm, a width of 3 mm, and a thickness of 1 mm was used. Electrode 2
2  2
および電極 3は、金(Au)をスパッタ法を用いて、基材 6の両側 2mmに厚み 0. 5 m で形成した。抵抗層 4は、窒化タンタル (TaN)をリアタティブスパッタ法にて、基材 6 の両側の縁から lmmの幅の領域を除いて、中央部分に 102mmで 10 μ mの厚みで 形成した。成膜後に測定した電極 2および電極 3電極間抵抗の抵抗値は、約 75ΚΩ であった。また、共通電極 1と電極 2および共通電極 1と電極 3との間の接合抵抗は、 それぞれ約 80k Ωであった。 [0091] 検知膜 5は、白金分散担持三酸化タングステンを触媒焼結後の膜厚が約 1 μ mに なるように形成した。共通電極 1は、前述の実施例 1の実験において説明した方法と 同じ方法により形成した。すなわち、共通電極 1は、金 (Au)を図 2の (c)で示す形状 に、幅 0. 3mmで、検知面の中央部分に長手方向に沿って 1本のみを形成した。ま た、図 2の(c)に示したように、検知膜 5の検知面の両側に 2mmの幅の共通電極 1の ためのランド 81, 81を形成した。成膜後、電極 2および電極 3の電極間抵抗の抵抗 値は、約 75ΚΩであった。本実験において用いた検知膜 5においては、図 11で示し たように貫通孔 23を有する構成とした。貫通孔 23は、直径 0. 1mmとして共通電極 1 以外の部分、すなわち検知膜 5の表出部分に 0. 5mmの間隔で長手方向に沿って 配設された列が 4列形成されて ヽる。 The electrode 3 was formed by depositing gold (Au) with a thickness of 0.5 m on 2 mm on both sides of the substrate 6 by sputtering. The resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion with a thickness of 102 μm and a thickness of 10 μm except for a region having a width of 1 mm from both edges of the substrate 6. The resistance value of the electrode 2 and electrode 3 interelectrode resistance measured after the film formation was about 75Ω. The junction resistances between the common electrode 1 and the electrode 2 and between the common electrode 1 and the electrode 3 were about 80 kΩ, respectively. [0091] The detection film 5 was formed such that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 μm after catalyst sintering. The common electrode 1 was formed by the same method as described in the experiment of Example 1 described above. That is, as for the common electrode 1, only one gold (Au) was formed in the shape shown in FIG. 2 (c) with a width of 0.3 mm along the longitudinal direction at the center of the detection surface. Also, as shown in FIG. 2 (c), lands 81, 81 for the common electrode 1 having a width of 2 mm were formed on both sides of the detection surface of the detection film 5. After film formation, the resistance value between the electrodes 2 and 3 was about 75Ω. The sensing film 5 used in this experiment has a structure having a through hole 23 as shown in FIG. The through-hole 23 has a diameter of 0.1 mm, and four rows arranged along the longitudinal direction at intervals of 0.5 mm are formed in portions other than the common electrode 1, that is, the exposed portion of the detection film 5. .
[0092] 上記のように水素ガス検知センサの各層が形成された後、電流制限抵抗 29を 10K  [0092] After each layer of the hydrogen gas detection sensor is formed as described above, the current limiting resistor 29 is set to 10K.
Ω、 ノィァス電源 27を直流 5Vとし、電流計でバイアス電流の測定を行った。ノィァス 電流は、共通電極 1と電極 2との間のバイアス電流および共通電極 1と電極 3との間 のバイアス電流ともに約 50 μ Αであった。  The bias current was measured with an ammeter with Ω and a noise source 27 of DC 5V. The noise current was about 50 μΑ for both the bias current between common electrode 1 and electrode 2 and the bias current between common electrode 1 and electrode 3.
本実験において、水素ガスを含む被検知ガスが噴出するガス噴出口は上向きに配 置し、ガス噴出口の直径は lmmの円形ノズルを用いた。また、水素ガス検知センサ は、ガス噴出口より上方 3mmの距離に検知膜 5の検知面が下向きとなるように配置し た。  In this experiment, the gas outlet from which the gas to be detected, including hydrogen gas, was placed upward, and a circular nozzle with a diameter of lmm was used. The hydrogen gas detection sensor was placed 3 mm above the gas outlet so that the detection surface of the detection film 5 faced downward.
[0093] 図 15は、本実験の結果を示す検知膜 5の表面温度と応答時間の関係を示すグラフ である。本実験において検知膜 5の表面温度はヒータ 39により加熱し、 20°Cから 150 °Cまで 10°C毎に測定した。応答時間は、水素ガスを含む被検知ガスをガス噴出口か ら噴出させてから、算出結果 E1の値が最終的に安定する値に対して 90%の値に達 するまでの時間を測定し応答時間としている。図 16は、横軸が検知膜 5の表面温度 [ °C]であり、縦軸が前述の式(1)に示した算出結果 E1を示すグラフである。図 15およ び図 16において、実線 69は被検知ガスの相対湿度が 80%RHの場合を示し、破線 68は被検知ガスの相対湿度が 20%RHの場合を示す。  FIG. 15 is a graph showing the relationship between the surface temperature of the detection film 5 and the response time showing the results of this experiment. In this experiment, the surface temperature of the detection film 5 was heated by the heater 39 and measured every 10 ° C from 20 ° C to 150 ° C. The response time is the time from when the gas to be detected including hydrogen gas is ejected from the gas outlet until the value of the calculation result E1 reaches 90% of the final stable value. Response time is assumed. In FIG. 16, the horizontal axis is the surface temperature [° C.] of the detection film 5, and the vertical axis is a graph showing the calculation result E1 shown in the above equation (1). 15 and 16, the solid line 69 indicates the case where the relative humidity of the detected gas is 80% RH, and the broken line 68 indicates the case where the relative humidity of the detected gas is 20% RH.
図 15に示すように、本実験の結果、応答時間は、検知膜 5の表面温度が上昇する のに伴って対数的に早くなつている。検知膜 5の表面温度が 60°Cの場合には、応答 時間が約 10秒であり、検知膜 5の表面温度が約 80°C以上では 5秒程度で、ほぼ一 定となった。 As shown in FIG. 15, as a result of this experiment, the response time becomes logarithmically faster as the surface temperature of the detection film 5 increases. Response when the surface temperature of the sensing film 5 is 60 ° C The time was about 10 seconds, and when the surface temperature of the detection film 5 was about 80 ° C or higher, it was about 5 seconds and was almost constant.
[0094] 図 16に示すように、検知膜 5の表面温度が 60°C以下の場合において、算出結果 E 1の出力は、被検知ガスの相対湿度が 20%RHと 80%RHの場合で大きく異なる。一 方、検知膜 5の表面温度が 60°Cを超える場合には、被検知ガスの相対湿度が 20% RHと 80%RHの場合ともほぼ同じになる。すなわち、図 15および図 16に示した実験 結果から、検知膜 5の表面温度が 60°C以上の場合は、被検知ガスによる湿度依存 性はほぼ見られなくなり、また、応答時間は 10秒以下となる。さらに、検知膜 5の表面 温度が 80°C以上になると応答時間は 5秒以下となる。  [0094] As shown in FIG. 16, when the surface temperature of the detection film 5 is 60 ° C or less, the output of the calculation result E 1 is the output when the relative humidity of the detected gas is 20% RH and 80% RH. to differ greatly. On the other hand, when the surface temperature of the detection film 5 exceeds 60 ° C, it is almost the same when the relative humidity of the gas to be detected is 20% RH and 80% RH. That is, from the experimental results shown in Fig. 15 and Fig. 16, when the surface temperature of the detection film 5 is 60 ° C or higher, the humidity dependence due to the detected gas is almost not seen, and the response time is 10 seconds or less It becomes. Furthermore, when the surface temperature of the detection film 5 exceeds 80 ° C, the response time becomes 5 seconds or less.
さらに、発明者は検知膜 5の温度を約 200°C、 300°C、 400°Cに設定すると、メタン (CH )、エタン (C H )、プロパン (C H )などの水素原子を含む炭化水素系の可燃 In addition, the inventors set the temperature of the detection film 5 to about 200 ° C, 300 ° C, and 400 ° C, and the hydrocarbon system containing hydrogen atoms such as methane (CH 2), ethane (CH 2), and propane (CH 2). Combustible
4 2 6 3 8 4 2 6 3 8
ガスを検知することが可能であることを確認した。特に、検知膜 5の温度が 300°C以 上では、水素原子を含む炭化水素系の可燃ガスを確実に検知することができた。 実施例 4  It was confirmed that gas could be detected. In particular, when the temperature of the detection film 5 was 300 ° C or higher, hydrocarbon combustible gas containing hydrogen atoms could be detected reliably. Example 4
[0095] 以下、本発明に係る実施例 4の水素ガス検知センサおよびガス検知装置にっ 、て 図 17から図 23を用いて説明する。実施例 4の水素ガス検知センサおよびガス検知装 置の説明において、前述の実施例における要素と同じ構成、機能を有するものには 同じ符号を付してその説明は省略する。  Hereinafter, a hydrogen gas detection sensor and a gas detection device according to Embodiment 4 of the present invention will be described with reference to FIGS. In the description of the hydrogen gas detection sensor and the gas detection device of the fourth embodiment, the same reference numerals are given to the components having the same configurations and functions as those of the above-described embodiments, and the description thereof is omitted.
[0096] 実施例 4の水素ガス検知センサは、水素ガス検知領域が 2次元であり、検知膜のガ ス検知部分が面状である。実施例 4の水素ガス検知センサにおいて、電流分割の方 向が 2次元方向であり、電流を検出する電極力 極になっている。  [0096] In the hydrogen gas detection sensor of Example 4, the hydrogen gas detection region is two-dimensional, and the gas detection portion of the detection film is planar. In the hydrogen gas detection sensor of Example 4, the direction of current division is a two-dimensional direction, which is an electrode force electrode for detecting current.
まず、実施例 4の水素ガス検知センサの構造について図 17を用いて説明する。図 17は本発明に係る実施例 4の水素ガス検知センサの概略構成を示す分解斜視図で あり、水素ガス 26を矢印 Bで示した位置で検知する例を示したものである。  First, the structure of the hydrogen gas detection sensor of Example 4 will be described with reference to FIG. FIG. 17 is an exploded perspective view showing a schematic configuration of the hydrogen gas detection sensor according to the fourth embodiment of the present invention, and shows an example in which hydrogen gas 26 is detected at a position indicated by an arrow B.
[0097] 2次元の水素ガス検知領域を有する水素ガス検知センサ 40は、略矩形状の電気的 に絶縁性を有する石英(SiO )の基材 6の上に、窒化タンタル (TaN)の厚膜からなる  [0097] A hydrogen gas detection sensor 40 having a two-dimensional hydrogen gas detection region is a thick film of tantalum nitride (TaN) formed on a substantially rectangular electrically insulating quartz (SiO 2) base material 6. Consist of
2  2
略矩形状の抵抗層 4が形成されている。略矩形状の抵抗層 4の四方の端部には金( Au)で形成された電極 47、電極 48、電極 49および電極 50が設けられている。電極 47、電極 48、電極 49および電極 50には、それぞれ銅(Cu)で形成された引出し線 2 4が接続され、後述する図 21に示す演算器 28に接続されている。また、抵抗層 4の 上には、水素ガスを検知すると絶縁状態力 半導体状態に状態変化し、電気的な抵 抗値が減少する白金分散担持三酸化タングステン (Pt— W03)で形成された略矩 形状の検知膜 5が、電極 47、電極 48、電極 49、電極 50と抵抗層 4を覆うように形成 されている。この検知膜 5の上には、金 (Au)で形成された共通電極 1が設けられて いる。この共通電極 1には銅 (Cu)で形成された引出し線 24が接続され、電流制限 抵抗 29を介してバイアス電源 27に接続されて 、る。 A substantially rectangular resistance layer 4 is formed. An electrode 47, an electrode 48, an electrode 49, and an electrode 50 made of gold (Au) are provided at the four ends of the substantially rectangular resistance layer 4. electrode 47, the electrode 48, the electrode 49, and the electrode 50 are connected to a lead wire 24 made of copper (Cu), and are connected to a computing unit 28 shown in FIG. In addition, on the resistance layer 4, when hydrogen gas is detected, the state changes to an insulating state force semiconductor state, and the electric resistance value decreases, and is substantially formed of platinum dispersion supported tungsten trioxide (Pt-W03). A rectangular detection film 5 is formed so as to cover the electrode 47, the electrode 48, the electrode 49, the electrode 50, and the resistance layer 4. A common electrode 1 made of gold (Au) is provided on the detection film 5. The common electrode 1 is connected to a lead wire 24 formed of copper (Cu), and is connected to a bias power source 27 through a current limiting resistor 29.
[0098] 実施例 4の水素ガス検知センサ 40は、電極 47、電極 48、電極 49および電極 50で 囲まれた検知膜 5の検知面において、その検知面と水素ガスが接触した位置を検出 するものである。検知膜 5上【こお!/、て、 4つの電極 47, 48, 49および 50【こより囲まれ た領域が 2次元の水素ガス検知領域である。この 2次元の水素ガス検知領域にお!、 て、電極 47と電極 48の相対する方向が X方向であり、この X方向の検知範囲の長さ を Lxとする(図 17参照)。また、 2次元の水素ガス検知領域において、電極 49と電極 50の相対する方向が Y方向であり、この Y方向の検知範囲の長さを Lyとする(図 17 参照)。 [0098] The hydrogen gas detection sensor 40 of Example 4 detects a position where the detection surface and the hydrogen gas are in contact with each other on the detection surface of the detection film 5 surrounded by the electrode 47, the electrode 48, the electrode 49, and the electrode 50. Is. On the sensing membrane 5, the area surrounded by the four electrodes 47, 48, 49 and 50 is the two-dimensional hydrogen gas sensing area. In this two-dimensional hydrogen gas detection area, the opposing direction of electrode 47 and electrode 48 is the X direction, and the length of the detection range in the X direction is Lx (see Fig. 17). In the two-dimensional hydrogen gas detection region, the opposing direction of the electrode 49 and the electrode 50 is the Y direction, and the length of the detection range in the Y direction is Ly (see FIG. 17).
[0099] 図 17に示すように、共通電極 1は、検知膜 5の検知範囲を覆うように形成されている 。しかし、共通電極 1は検知膜 5が被検知ガスに暴露され得るように構成されている。 図 18は共通電極 1の形状を示す平面図であり、 (a)は格子状の網目を有する共通電 極 1を示し、 (b)は複数の円形の空隙部 99を有する共通電極 1を示している。  As shown in FIG. 17, the common electrode 1 is formed so as to cover the detection range of the detection film 5. However, the common electrode 1 is configured such that the detection film 5 can be exposed to the gas to be detected. FIG. 18 is a plan view showing the shape of the common electrode 1, where (a) shows the common electrode 1 having a lattice-like mesh, and (b) shows the common electrode 1 having a plurality of circular gaps 99. ing.
実施例 4における共通電極 1は、電極 47、電極 48、電極 49および電極 50で囲ま れた検知範囲の上部に形成されており、且つ、検知範囲内の検知膜 5に対して被検 知ガスが暴露可能な形状である。また、共通電極 1において、検知膜 5が被検知ガス により暴露され得る構成は、検知範囲の全体においてほぼ均一に分布していること が望ましい。  The common electrode 1 in Example 4 is formed in the upper part of the detection range surrounded by the electrode 47, the electrode 48, the electrode 49, and the electrode 50, and the gas to be detected with respect to the detection film 5 in the detection range. Is a shape that can be exposed. Further, in the common electrode 1, it is desirable that the configuration in which the detection film 5 can be exposed to the gas to be detected is distributed almost uniformly throughout the entire detection range.
[0100] 図 18においては、(a)に示す格子状の網目を有する共通電極 1により、または (b) に示す円形の空隙部 99を有する共通電極 1により、検知膜 5が被検知ガスの水素ガ スにより暴露され得る構造を示しているが、図 18に示す以外の形状の空隙部を共通 電極 1に設けて検知膜 5が被検知ガスの水素ガスにより暴露され得る構成とすること も当然可能である。 [0100] In FIG. 18, the detection film 5 is made of the gas to be detected by the common electrode 1 having the lattice-like mesh shown in (a) or by the common electrode 1 having the circular gap 99 shown in (b). The structure that can be exposed by hydrogen gas is shown, but the gaps with shapes other than those shown in Figure 18 are common. Of course, it is possible to provide the electrode 1 so that the detection film 5 can be exposed to hydrogen gas as the gas to be detected.
図 18の(a)に示す共通電極 1は、共通電極 1の周囲に形成されたランド 81が電気 的に接続されるように格子状の網目に形成されている。したがって、網目以外の空隙 部 99は検知膜 5が被検知ガスにより暴露され得る部分である。また、共通電極 1の網 目の形状は、検知範囲内においてほぼ同じ形状となっている。さらに、共通電極 1の 検知方向(図 18における上下左右方向)の網目の間隔は、被検知ガス中の水素ガス が検知膜 5に接触したときの検知方向の長さより十分に短いことが望ましい。より好ま しくは、共通電極 1の検知方向の網目の間隔力 水素ガスの噴出点から検知膜 5まで の長さより十分短 、ことが望ま 、。  The common electrode 1 shown in FIG. 18 (a) is formed in a grid-like mesh so that lands 81 formed around the common electrode 1 are electrically connected. Accordingly, the void 99 other than the mesh is a portion where the detection film 5 can be exposed to the gas to be detected. Further, the shape of the mesh of the common electrode 1 is almost the same within the detection range. Furthermore, it is desirable that the mesh interval in the detection direction of the common electrode 1 (up / down / left / right direction in FIG. 18) is sufficiently shorter than the length of the detection direction when the hydrogen gas in the detection gas contacts the detection film 5. More preferably, the distance between the meshes in the detection direction of the common electrode 1 is sufficiently shorter than the length from the hydrogen gas ejection point to the detection film 5.
[0101] 図 18の(b)に示す共通電極 1は、共通電極 1の周囲に形成されたランド 81を電気 的に接続すると共に、検知膜 5が被検知ガスに暴露され得るように多数の円形の空 隙部 99である孔が形成されている。したがって、ランド 81は共通電極 1の孔以外の 部分により電気的に接続されている。また、空隙部 99である孔の部分は、検知膜 5が 被検知ガスにより暴露され得る部分である。孔の形状は、検知範囲内においてほぼ 同じであり、また、孔の検知方向(図 18における上下左右方向)の形成間隔は、検知 範囲においてほぼ同じ長さである。孔の形成間隔は、被検知ガス中の水素ガスが検 知膜 5に接触する検知方向の長さより十分に短いことが望ましい。より好ましくは、水 素ガスの噴出点力 検知膜 5までの長さより十分短いことが望ましい。  [0101] The common electrode 1 shown in FIG. 18 (b) is electrically connected to the lands 81 formed around the common electrode 1, and a large number of the detection film 5 can be exposed to the gas to be detected. A hole which is a circular gap 99 is formed. Therefore, the land 81 is electrically connected by a portion other than the hole of the common electrode 1. In addition, the hole portion which is the void 99 is a portion where the detection film 5 can be exposed to the gas to be detected. The shape of the hole is almost the same in the detection range, and the formation interval in the detection direction of the hole (the vertical and horizontal directions in FIG. 18) is almost the same length in the detection range. It is desirable that the hole formation interval be sufficiently shorter than the length in the detection direction in which the hydrogen gas in the detection gas contacts the detection film 5. More preferably, it is preferably sufficiently shorter than the length to the hydrogen gas ejection point force detection film 5.
検知膜 5が被検知ガスにより暴露され得る手段としては、共通電極 1を図 18の(a) および (b)で示した形状とする以外に、共通電極 1を水素ガスに対する透過性を有す る材料、例えば、金 (Au)、銀 (Ag)、銅 (Cu)など力 なる 1 μ m以下の厚みを有する 金属薄膜や、焼結材などの多孔質の導電体などを用いることでも可能である。  As a means by which the detection film 5 can be exposed to the gas to be detected, the common electrode 1 has a permeability to hydrogen gas in addition to the shape of the common electrode 1 shown in FIGS. 18 (a) and (b). It is also possible to use metal materials with a thickness of 1 μm or less, such as gold (Au), silver (Ag), and copper (Cu), or porous conductors such as sintered materials. It is.
[0102] 次に、図 17に示した水素ガス検知センサ 40の構造と異なる積層構造を有する、水 素ガス検知領域が 2次元である水素ガス検知センサについて図 19および図 20を用 いて説明する。図 19および図 20は、それぞれの水素ガス検知センサの積層構造を 示す断面図である。図 19および図 20において、(a)は 2次元の水素ガス検知領域に おける水素ガス検知センサの X方向(図 17参照)と平行な線による断面図、(b)は Y 方向(図 17参照)と平行な線による断面図である。 Next, a hydrogen gas detection sensor having a layered structure different from the structure of the hydrogen gas detection sensor 40 shown in FIG. 17 and having a two-dimensional hydrogen gas detection region will be described with reference to FIGS. 19 and 20. . 19 and 20 are cross-sectional views showing the laminated structure of the respective hydrogen gas detection sensors. 19 and 20, (a) is a cross-sectional view taken along a line parallel to the X direction (see Fig. 17) of the hydrogen gas detection sensor in the two-dimensional hydrogen gas detection region, and (b) is Y It is sectional drawing by a line parallel to a direction (refer FIG. 17).
[0103] 図 19に示した水素ガス検知センサは、略矩形状の基材 6上に共通電極 1を形成し 、略矩形状の検知膜 5、および略矩形状の抵抗層 4が順に積層された構造を有する o抵抗層 4の四方の周囲には電極 47、電極 48、電極 49および電極 50が形成されて いる。この抵抗層 4は、図 18の(a)または(b)で示した共通電極 1の形状と同様にす ることが望ましぐこれにより検知膜 5は、被検知ガスに確実に暴露され得る構成とな る。また、抵抗層 4は、図 18の(a)または (b)で示す共通電極 1の形状を有しない場 合は、水素ガス透過性を有するように低密度に形成された窒化タンタル (TaN)や酸 ィ匕クロム (CrO )などの薄膜や、金属酸ィ匕物など焼結による多孔質材を用いることも In the hydrogen gas detection sensor shown in FIG. 19, a common electrode 1 is formed on a substantially rectangular base material 6, and a substantially rectangular detection film 5 and a substantially rectangular resistance layer 4 are sequentially laminated. The electrode 47, the electrode 48, the electrode 49, and the electrode 50 are formed around the four sides of the resistance layer 4 having the above structure. It is desirable that the resistance layer 4 has the same shape as the common electrode 1 shown in FIG. 18 (a) or (b), so that the detection film 5 can be reliably exposed to the gas to be detected. It becomes composition. When the resistance layer 4 does not have the shape of the common electrode 1 shown in FIG. 18 (a) or (b), the tantalum nitride (TaN) formed at a low density so as to have hydrogen gas permeability. It is also possible to use thin films such as metal oxides (CrO) and sintered porous materials such as metal oxides.
2  2
可能である。なお、図 19に示した水素ガス検知センサの検知範囲は、 X方向の長さ L Xおよび Y方向の長さ Lyにより示される電極 47と電極 48の間および電極 49と電極 5 0の間となる。  Is possible. The detection range of the hydrogen gas detection sensor shown in FIG. 19 is between the electrode 47 and the electrode 48 and between the electrode 49 and the electrode 50 indicated by the length LX in the X direction and the length Ly in the Y direction. .
[0104] 図 20に示した水素ガス検知センサは、特別な部材として基材を設けない構成であ る。図 20の水素ガス検知センサにおいては、銅(Cu)、ステンレス(SUS)、アルミ-ゥ ム (A1)など導電性が高ぐ検知膜 5の焼結温度である 500°C程度でも十分に安定状 態である略帯状の金属箔で形成された共通電極 1を基材として用いている。その共 通電極 1の上に、略矩形状の検知膜 5、および略矩形状の抵抗層 4が順に積層され ている。抵抗層 4の四方の周囲には電極 47、電極 48、電極 49および電極 50が形成 されている。この場合の抵抗層 4は、図 18の(a)または (b)で示した共通電極 1の形 状と同様にすることが望ましぐこれにより検知膜 5は、被検知ガスに確実に暴露され 得る構成となる。また、抵抗層 4は、図 18の(a)または (b)で示す共通電極 1の形状を 有しな ヽ場合は、水素ガス透過性を有するように低密度に形成された窒化タンタル ( TaN)や酸化クロム (CrO )などの薄膜や、金属酸化物など焼結による多孔質材を用  [0104] The hydrogen gas detection sensor shown in FIG. 20 has a configuration in which a base material is not provided as a special member. The hydrogen gas sensor in Fig. 20 is sufficiently stable even at about 500 ° C, which is the sintering temperature of the sensing film 5 with high conductivity such as copper (Cu), stainless steel (SUS), and aluminum (A1). The common electrode 1 formed of a substantially strip-shaped metal foil in a state is used as a base material. On the common electrode 1, a substantially rectangular detection film 5 and a substantially rectangular resistance layer 4 are sequentially laminated. An electrode 47, an electrode 48, an electrode 49, and an electrode 50 are formed around the four sides of the resistance layer 4. In this case, it is desirable that the resistance layer 4 has the same shape as that of the common electrode 1 shown in FIG. 18 (a) or (b). As a result, the detection film 5 is surely exposed to the gas to be detected. It can be configured. Further, when the resistance layer 4 does not have the shape of the common electrode 1 shown in FIG. 18 (a) or (b), the tantalum nitride (TaN) formed so as to have hydrogen gas permeability. ) And chromium oxide (CrO) thin films, metal oxides and other porous materials sintered
2  2
いることも可能である。さら〖こ、共通電極 1に厚みが 0. 05mmから 2mm程度の折り曲 げ可能な特性を持つ金属箔を用いることにより、折り曲げ可能な柔軟な形状特性を 有する水素ガス検知センサを実現することが可能となる。  It is also possible. Furthermore, by using a metal foil with a bendable characteristic of 0.05 mm to 2 mm in thickness for the common electrode 1, a hydrogen gas detection sensor having a flexible shape characteristic that can be bent can be realized. It becomes possible.
[0105] 次に、電極 47と電極 48の間の抵抗値(以下、電極間抵抗)、電極 49と電極 50の間 の抵抗値 (以下、電極間抵抗)、検知膜 5が水素ガスを検知 (接触)していない状態に おける共通電極 1に対する各電極 47, 48, 49および 50との抵抗値 (以下、接合抵 抗)の関係について説明する。 [0105] Next, the resistance value between electrode 47 and electrode 48 (hereinafter referred to as interelectrode resistance), the resistance value between electrode 49 and electrode 50 (hereinafter referred to as interelectrode resistance), and detection film 5 detects hydrogen gas. In a state where it is not in contact The relationship of the resistance values (hereinafter referred to as junction resistance) with the electrodes 47, 48, 49 and 50 with respect to the common electrode 1 will be described.
共通電極 1にバイアス電源 27を接続すると、検知膜 5が水素ガスを検知して 、な ヽ 状態では、共通電極 1と電極 47、共通電極 1と電極 48、共通電極 1と電極 49および 共通電極 1と電極 50との間に、電流制限抵抗と接合抵抗の合成抵抗に反比例する 電流(以下、バイアス電流)が流れる。  When the bias power supply 27 is connected to the common electrode 1, the detection film 5 detects hydrogen gas, and in this state, the common electrode 1 and the electrode 47, the common electrode 1 and the electrode 48, the common electrode 1 and the electrode 49, and the common electrode A current that is inversely proportional to the combined resistance of the current limiting resistance and the junction resistance (hereinafter referred to as a bias current) flows between 1 and the electrode 50.
検知膜 5が水素ガスを検知 (接触)すると検知膜 5の一部が半導体化され、共通電 極 1と電極 47、共通電極 1と電極 48、共通電極 1と電極 49および共通電極 1と電極 5 0との間に流れる電流が増加する。この増加した電流値をもとに、検知膜 5が半導体 化した位置や水素ガスの濃度を検知することができる。そのため、バイアス電流は、 検知膜 5が水素ガスを検知したことにより増加する電流量より大き 、と、バイアス電流 の変化などの影響を受け感度や分解能、いわゆる SZN比が低下する。したがって、 接合抵抗は、電極間抵抗より高い値に設定することが望ましい。接合抵抗の値は、電 極間抵抗の値に対して、望ましくは約 1倍以上であり、よい望ましくは 10倍以上であり 、さらに望ましくは 100倍以上が良い。  When the detection film 5 detects (contacts) hydrogen gas, a part of the detection film 5 is converted into a semiconductor, and common electrode 1 and electrode 47, common electrode 1 and electrode 48, common electrode 1 and electrode 49, and common electrode 1 and electrode Current flowing between 50 and 50 increases. Based on this increased current value, it is possible to detect the position where the detection film 5 becomes a semiconductor and the concentration of hydrogen gas. Therefore, the bias current is larger than the amount of current that increases when the detection film 5 detects hydrogen gas, and the sensitivity and resolution, so-called SZN ratio, are affected by changes in the bias current. Therefore, it is desirable to set the junction resistance to a value higher than the interelectrode resistance. The value of the junction resistance is preferably about 1 times or more, preferably 10 times or more, more preferably 100 times or more with respect to the value of the resistance between electrodes.
[0106] 2次元の水素ガス検知領域を有する水素ガス検知センサは、検知範囲を広くすると 、電極間抵抗が増加する一方で接合抵抗が減少する。したがって、以下に説明する 共通電極 1、抵抗層 4および検知膜 5の形状や膜厚を調整し、接合抵抗と電極間抵 抗の比を良好にすることが望ま 、。 [0106] In the hydrogen gas detection sensor having a two-dimensional hydrogen gas detection region, when the detection range is widened, the inter-electrode resistance increases while the junction resistance decreases. Therefore, it is desirable to adjust the shape and film thickness of the common electrode 1, the resistance layer 4 and the sensing film 5 described below to improve the ratio of the junction resistance to the resistance between the electrodes.
接合抵抗は、共通電極 1と検知膜 5の接合する面積を小さくする、抵抗層 4と検知 膜 5の接合する面積を小さくする、または、検知膜 5の膜厚を大きくすることにより、増 大させることができる。また、電極間抵抗は、抵抗層 4の膜厚を大きくすることにより、 減少、させることができる。  Junction resistance is increased by reducing the area where the common electrode 1 and the sensing film 5 are joined, reducing the area where the resistive layer 4 and the sensing film 5 are joined, or increasing the film thickness of the sensing film 5. Can be made. The interelectrode resistance can be reduced by increasing the thickness of the resistance layer 4.
[0107] [水素ガス検知センサの材料] [0107] [Material for hydrogen gas detection sensor]
次に、 2次元の水素ガス検知領域を有する実施例 4の水素ガス検知センサ 40にお ける基材および各層の具体的な材料について説明する。  Next, the base material and specific materials of each layer in the hydrogen gas detection sensor 40 of Example 4 having a two-dimensional hydrogen gas detection region will be described.
基材 6は、電気的に絶縁性を有する材料であり、検知膜 5の焼結時の加熱温度 50 0°Cで安定状態であれば用いることができる。実施例 4の基材 6としては石英(SiO ) を用いたが、石英(SiO )以外には、表面の絶縁処理が施されたシリコン (SiO )、窒 The substrate 6 is an electrically insulating material, and can be used as long as it is in a stable state at a heating temperature of 500 ° C. when the detection film 5 is sintered. The base material 6 of Example 4 is quartz (SiO 2). However, in addition to quartz (SiO 2), silicon (SiO 2) and nitride with surface insulation treatment were used.
2 2 化アルミニウム (A1N)、アルミナ (A120 )などを用いることができる。また、榭脂系の  2 Aluminum dioxide (A1N), alumina (A120), etc. can be used. In addition, rosin-based
3  Three
材料としては、例えば、 日光化成株式会社製のタイモルドなどの耐熱型のフエノール 系の材料を用いることができる。この場合は、射出成型法を用いることで平面以外の 立体的な形状を得ることも可能である。さらに、柔軟性のあるシート状の材料としては 、例えば、東レ 'デュポン株式会社のカプトン (登録商標)などのポリイミド系の材料を 用いることができる。ポリイミド系の材料は耐熱温度が最高で 450°C程度である力 検 知膜 5の焼結温度を 450°C程度で行うことにより用いることができる。  As the material, for example, a heat-resistant phenolic material such as Timold made by Nikko Kasei Co., Ltd. can be used. In this case, it is possible to obtain a three-dimensional shape other than a flat surface by using an injection molding method. Furthermore, as the flexible sheet-like material, for example, a polyimide-based material such as Kapton (registered trademark) manufactured by Toray DuPont can be used. Polyimide-based materials can be used by performing a sintering temperature of the force detection film 5 having a maximum heat resistance of about 450 ° C at about 450 ° C.
[0108] 抵抗層 4は、蒸着等により形成される薄膜抵抗体、印刷後焼結して形成される厚膜 抵抗体などを用いることが可能である。特に、蒸着等により形成される薄膜抵抗体は 、抵抗層の表面粗が少なぐ抵抗層 4の上に膜厚が均一な検知膜 5を形成することが 容易となり望ましい。薄膜抵抗体の材質としては、タンタル (Ta)などの単一金属、二 ッケルクロム(NiCr)、ニッケルクロム'シリコン合金(NiCr— Si)、タンタル 'シリコン合 金 (Ta— Si)、ニオブ'シリコン合金 (Nb— Si)などの合金薄膜、クロム'酸ィ匕シリコン( Cr-SiO )、タンタル '酸化シリコン (Ta— SiO )などのサーメット薄膜、酸化ルテ -ゥ [0108] As the resistance layer 4, a thin film resistor formed by vapor deposition or the like, a thick film resistor formed by sintering after printing, or the like can be used. In particular, a thin film resistor formed by vapor deposition or the like is desirable because it is easy to form the detection film 5 having a uniform film thickness on the resistance layer 4 where the surface roughness of the resistance layer is small. Thin film resistor materials include single metal such as tantalum (Ta), nickel chrome (NiCr), nickel chrome 'silicon alloy (NiCr—Si), tantalum' silicon alloy (Ta—Si), niobium 'silicon alloy. Alloy thin films such as (Nb—Si), cermet thin films such as chrome 'acid silicon (Cr-SiO 2), tantalum' silicon oxide (Ta—SiO 2), ruthenium oxide
2 2  twenty two
ム(RuO )、酸化クロム(Cr O )、窒化タンタル (TaN)などを用いることができる。  (RuO 2), chromium oxide (Cr 2 O 3), tantalum nitride (TaN), or the like can be used.
2 2 3  2 2 3
また、電極 47、電極 48、電極 49および電極 50は、導電性が高い材料であり、検知 膜 5の焼結温度である約 500°Cで安定状態であれば用いることができる。また、電極 自体が被検知ガス中の水素原子を含む可燃ガスに不活性であるほうがより望ましい 。電極 47, 48, 49および 50の材料としては、導電性が高い材料であるマグネシウム Further, the electrode 47, the electrode 48, the electrode 49, and the electrode 50 are materials having high conductivity, and can be used as long as they are stable at about 500 ° C. that is the sintering temperature of the detection film 5. It is more desirable that the electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected. The material of electrodes 47, 48, 49 and 50 is magnesium, which is a highly conductive material.
(Mg)、アルミニウム(A1)、チタン (Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、 -ッケ ル (Ni)、銀 (Ag)などの金属や、炭素 (C)などを用いることが可能である。特に、電極 47, 48, 49および 50の材料としては、酸ィ匕しにくぐ水素ガスに対して不活性な金( Au)や銅(Cu)が望ましい。 (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), silver (Ag) and other metals, carbon (C) Etc. can be used. In particular, the material of the electrodes 47, 48, 49 and 50 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
[0109] 検知膜 5としては、水素ガスに接触することにより電気的特性における抵抗が変化 する性質を持つ物質であれば用いることが可能である。例えば、酸化スズ (SnO )、 [0109] As the detection film 5, any substance can be used as long as it has a property of changing resistance in electrical characteristics when it comes into contact with hydrogen gas. For example, tin oxide (SnO),
2 三酸化モリブデン(MnO )、三酸化タングステン (WO )、二酸化チタン (TiO )、水  2 Molybdenum trioxide (MnO), tungsten trioxide (WO), titanium dioxide (TiO), water
2 3 2 酸化イリジウム(Ir (OH) n)、五酸化バナジウム(V O )、酸化ロジウム(Rh O ·χΗ o)などを用いることが可能である。 2 3 2 Iridium oxide (Ir (OH) n), Vanadium pentoxide (VO), Rhodium oxide (Rh O · χΗ o) etc. can be used.
共通電極 1は、電極は導電性の高い材料であり、電極自体が被検知ガス中の水素 ガスに不活性であるほうがより望しい。共通電極 1の材料としては、導電性の高い材 料であるマグネシウム(Mg)、アルミニウム (A1)、チタン (Ti)、バナジウム(V)、クロム (Cr)、鉄 (Fe)、ニッケル (Ni)、銀 (Ag)などの金属や、炭素 (C)などを用いることが 可能である。特に、共通電極 1の材料としては、酸ィ匕しにくぐ水素ガスに対して不活 性な金 (Au)や銅 (Cu)が望まし 、。  In the common electrode 1, the electrode is a highly conductive material, and it is more desirable that the electrode itself is inert to the hydrogen gas in the gas to be detected. Common electrode 1 materials are magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), which are highly conductive materials. Metal such as silver (Ag), carbon (C), etc. can be used. In particular, the material for the common electrode 1 is preferably gold (Au) or copper (Cu), which is inert to hydrogen gas that is difficult to oxidize.
[0110] [水素ガス検知センサの動作原理] [0110] [Operation principle of hydrogen gas detection sensor]
次に、実施例 4の水素ガス検知センサ 40の水素ガス検知の動作原理について説 明する。  Next, the operation principle of hydrogen gas detection of the hydrogen gas detection sensor 40 of Example 4 will be described.
図 17において、被検知ガスに含まれる水素ガス 26が、矢印 Bで示した位置におい て白金分散担持三酸化タングステンで形成された検知膜 5に接触した場合について 説明する。この白金分散担持三酸ィ匕タングステンは、触媒として lnm力も lOnm程度 の粒径を有する白金(以下 Pt)微粒子が、 lOnmから lOOnm程度の粒径を有する三 酸ィ匕タングステン (W03)粒子上に分散担持された構造を持つ。水素ガスは、白金( Pt)微粒子上でプロトン (H+)と電子 (e_)に解離される。解離されたプロトン (H+)は 、白金触媒微粒子上からスピルオーバーし、検知膜 5の主成分である三酸ィ匕タンダス テン (WO )に拡散し、タングステンブロンズを形成する。三酸ィ匕タングステン (WO ) In FIG. 17, the case where the hydrogen gas 26 contained in the gas to be detected contacts the detection film 5 formed of platinum dispersion-supported tungsten trioxide at the position indicated by the arrow B will be described. This platinum-dispersed supported trioxide-tungsten trioxide is a platinum (hereinafter referred to as Pt) fine particle having a lnm force of about lOnm as a catalyst. It has a dispersed support structure. The hydrogen gas is dissociated platinum (Pt) Proton on microparticles (H +) and electron (e _). The dissociated protons (H +) spill over from the platinum catalyst fine particles, and diffuse into tritandane trioxide (WO), which is the main component of the detection film 5, to form tungsten bronze. Tungsten trioxide (WO)
3 3 はタングステンブロンズを形成して ヽな 、状態にぉ 、ては、電気的に絶縁に近!、状 態である。しかし、三酸ィ匕タングステン (WO )は、プロトン (H+)が拡散し、タンダステ  3 3 is a state in which tungsten bronze is formed and is in a state that is close to electrical insulation. However, tungsten trioxide (WO) diffuses protons (H +)
3  Three
ンブロンズを形成すると、半導体化し、検知膜 5の検知膜 8が導体に近い性質を示す ようになる。  When the bronze is formed, it becomes a semiconductor, and the detection film 8 of the detection film 5 becomes close to a conductor.
[0111] 一方、共通電極 1に接続されたノ ィァス電源 27より発生する電流は、半導体化した 検知部 8の部分を集中的に流れる。検知部 8を流れる電流は、検知部 8から抵抗層 4 を介して各電極 47, 48, 49および 50に電流分割されて流れる。抵抗層 4を流れる電 流は、概略的に、電極 47と電極 48に流れる X方向の電流と、電極 49と電極 50に流 れる Y方向の電流とに分けることができる。 X方向に流れる電流は、電極 47から半導 体化された検知位置までの距離 Xa、および電極 48から半導体化された検知位置ま での距離 Xbの比に反比例して電流分割されて、電極 47と電極 48から電流信号とし て出力される。一方、 Y方向に流れる電流は、電極 49から半導体化された検知位置 までの距離 Ya、および電極 50から半導体ィ匕された検知位置までの距離 Ybの比に 反比例して電流分割されて、電極 49と電極 50から電流信号として出力される。 On the other hand, the current generated from the noise power source 27 connected to the common electrode 1 intensively flows through the semiconductor-made detection unit 8. The current flowing through the detection unit 8 flows from the detection unit 8 through the resistance layer 4 to each of the electrodes 47, 48, 49, and 50 while being divided. The current flowing through the resistance layer 4 can be roughly divided into an X-direction current flowing through the electrodes 47 and 48 and a Y-direction current flowing through the electrodes 49 and 50. The current flowing in the X direction is the distance Xa from the electrode 47 to the semiconducting sensing position, and from the electrode 48 to the semiconducting sensing position. The current is divided in inverse proportion to the ratio of the distance Xb, and is output as a current signal from the electrodes 47 and 48. On the other hand, the current flowing in the Y direction is current-divided in inverse proportion to the ratio of the distance Ya from the electrode 49 to the detection position made semiconductor and the distance Yb from the electrode 50 to the detection position made semiconductor, 49 and electrode 50 output as current signals.
[0112] 次に、実施例 4の水素ガス検知センサ 40の各電極 47, 48, 49, 50から出力された 電流信号を電圧信号に変換する変換手段である演算器 28の動作について図 21を 用いて説明する。図 21は、実施例 4の水素ガス検知センサ 40からの信号が入力され る演算器 28の構成を示すブロック図である。  Next, FIG. 21 shows the operation of the computing unit 28 which is a conversion means for converting the current signal output from each electrode 47, 48, 49, 50 of the hydrogen gas detection sensor 40 of Example 4 into a voltage signal. It explains using. FIG. 21 is a block diagram illustrating a configuration of the computing unit 28 to which a signal from the hydrogen gas detection sensor 40 according to the fourth embodiment is input.
前述のように、実施例 4の水素ガス検知センサ 40においては、水素ガスを検知した 検知膜 5の被爆部分が半導体化した検知部 8となる。その検知膜 5上の検知部 8の位 置を検出するために、検知部 8の抵抗変化は抵抗層 4を用いて電流値に変換されて 演算部 28に入力される。演算器 28においては、電流値が電圧値に変換され演算処 理されるが、その変換手段である演算器 28の動作について以下に説明する。  As described above, in the hydrogen gas detection sensor 40 of Example 4, the exposed portion of the detection film 5 that has detected hydrogen gas is the detection unit 8 that is made into a semiconductor. In order to detect the position of the detection unit 8 on the detection film 5, the resistance change of the detection unit 8 is converted into a current value using the resistance layer 4 and input to the calculation unit 28. In the arithmetic unit 28, the current value is converted into a voltage value, and the arithmetic processing is performed. The operation of the arithmetic unit 28 as the conversion means will be described below.
[0113] 図 21に示すように、 2次元の水素ガス検知領域を有する実施例 4の水素ガス検知 センサ 40は、共通電極 1が電流制限抵抗 29を介してバイアス電源 27に接続されて いる。検知膜 5が水素ガスと接触していない状態において、共通電極 1と電極 47との 間を流れる電流をバイアス電流 Iab、共通電極 1と電極 48との間を流れる電流をバイ ァス電流 Ibb、共通電極 1と電極 49との間を流れる電流をバイアス電流 Icb、共通電 極 1と電極 50との間を流れる電流をバイアス電流 Idbとする。これらのバイアス電流 la b、 Ibb、 Icbおよび Idbiま、各電極 47, 48, 49および 50力らそれぞれ演算器 28に人 力され、オペアンプ 14a, 14b, 14cおよびオペアンプ 14dにより構成される電流電圧 変換回路 14により電圧信号に変換される。変換された各電圧信号は、アナログデジ タル変換素子 15a, 15b, 15cおよび 15dに送られ、それぞれがデジタル信号に変換 される。さらに、変換された各デジタル信号は、除算器 16a, 16bおよび加算器 17に 送られる。除算器 16a, 16bおよび加算器 17では水素ガスを検知していない状態の 各デジタル信号をバイアス電流 lab, Ibb, Icbおよび Idbに相当する値として保持する  As shown in FIG. 21, in the hydrogen gas detection sensor 40 of Example 4 having a two-dimensional hydrogen gas detection region, the common electrode 1 is connected to the bias power source 27 via the current limiting resistor 29. When the detection film 5 is not in contact with hydrogen gas, the current flowing between the common electrode 1 and the electrode 47 is bias current Iab, and the current flowing between the common electrode 1 and electrode 48 is the bias current Ibb, The current flowing between the common electrode 1 and the electrode 49 is defined as a bias current Icb, and the current flowing between the common electrode 1 and the electrode 50 is defined as a bias current Idb. These bias currents la b, Ibb, Icb, and Idbi, and each electrode 47, 48, 49, and 50 power are input to the calculator 28, and are composed of operational amplifiers 14a, 14b, 14c, and operational amplifier 14d. It is converted into a voltage signal by the circuit 14. The converted voltage signals are sent to analog / digital conversion elements 15a, 15b, 15c and 15d, which are converted into digital signals. Further, each converted digital signal is sent to dividers 16a and 16b and adder 17. Dividers 16a and 16b and adder 17 hold each digital signal in a state where no hydrogen gas is detected as values corresponding to bias currents lab, Ibb, Icb and Idb.
[0114] 次に、実施例 4の水素ガス検知センサ 40の検知膜 5が水素ガスを検知した状態の 場合について説明する。 [0114] Next, in a state where the detection film 5 of the hydrogen gas detection sensor 40 of Example 4 detected hydrogen gas. The case will be described.
検知膜 5が水素ガスを検知した状態において、共通電極 1と電極 47との間を流れる 電流を Ia、共通電極 1と電極 48との間を流れる電流を Ib、共通電極 1と電極 49との間 を流れる電流を Ic、共通電極 1と電極 50との間を流れる電流を Idとする。  When the detection film 5 detects hydrogen gas, the current flowing between the common electrode 1 and the electrode 47 is Ia, the current flowing between the common electrode 1 and the electrode 48 is Ib, and the current between the common electrode 1 and the electrode 49 is The current flowing between them is Ic, and the current flowing between the common electrode 1 and the electrode 50 is Id.
前述のバイアス電流 lab, Ibb, Icbおよび Idbと同様に、電流 Ia、 Ib、 Icおよび Idは、 電極 47, 48, 49および 50からそれぞれ演算器 28に入力され、オペアンプで構成さ れる電流電圧変換回路において電圧信号に変換される。変換された各電圧信号は 、アナログデジタル変換素子 15a, 15b, 15cおよび 15dに送られ、それぞれがデジ タル信号に変換され、除算器 16a, 16bおよび加算器 17に送られる。除算器 16a, 1 6bおよび加算器 17においては、保持していたバイアス電流 lab, Ibb, Icbおよび Idb に相当するデジタル信号を、 la, lb, Icおよび Idに相当するデジタル信号力も各々減 算し、後述する式 (8)から式(10)に示す加算および除算の演算処理を行う。これら の加算および除算による算出結果は、デジタルの電気信号としてデジタルアナログ 変換素子 18a, 18bおよび 18cに入力される。デジタルアナログ変換素子 18cはアナ ログの電気信号で加算による算出結果 E3を出力する。デジタルアナログ変換素子 1 8aは X方向の除算による算出結果 E4Xを出力し、デジタルアナログ変換素子 18bは Y方向の除算による算出結果 E4Yを出力する。 X方向の算出結果 E4Xは検知膜 5 上の X方向の水素ガスの検知位置を示す算出結果であり、 Y方向の除算結果 E4Y は検知膜 5上の Y方向の水素ガスの検知位置を示す算出結果である。  Similar to the bias currents lab, Ibb, Icb and Idb described above, the currents Ia, Ib, Ic and Id are input to the calculator 28 from the electrodes 47, 48, 49 and 50, respectively. It is converted into a voltage signal in the circuit. The converted voltage signals are sent to analog / digital conversion elements 15a, 15b, 15c and 15d, respectively, which are converted into digital signals and sent to dividers 16a, 16b and adder 17. In the dividers 16a, 16b and the adder 17, the digital signals corresponding to the bias currents lab, Ibb, Icb and Idb that have been held are subtracted from the digital signal forces corresponding to la, lb, Ic and Id, respectively. Then, calculation processing of addition and division shown in Expression (8) to Expression (10) described later is performed. The calculation results by addition and division are input to the digital / analog conversion elements 18a, 18b and 18c as digital electric signals. The digital / analog conversion element 18c outputs the calculation result E3 by the addition of the analog electrical signal. The digital / analog conversion element 18a outputs the calculation result E4X by division in the X direction, and the digital / analog conversion element 18b outputs the calculation result E4Y by division in the Y direction. Calculation result in X direction E4X is the calculation result indicating the detection position of hydrogen gas in the X direction on the detection film 5, and division result E4Y is the calculation result indicating the detection position of hydrogen gas in the Y direction on the detection film 5 It is a result.
[0115] 上記の算出結果 E3, E4X, E4Yは、以下の式 (8) , (9)および(10)により算出さ れる。 [0115] The above calculation results E3, E4X, E4Y are calculated by the following equations (8), (9), and (10).
[0116] E3=k21 X{(la— lab) + (lb— Ibb) + (Ic— Icb)  [0116] E3 = k21 X {(la— lab) + (lb— Ibb) + (Ic— Icb)
+ (Id— Idb)} (8)  + (Id— Idb)} (8)
[0117] E4X=kl3 X (lb— Ibb) /{ (la— lab) [0117] E4X = kl3 X (lb— Ibb) / {(la— lab)
+ (lb— Ibb)} (9)  + (lb— Ibb)} (9)
[0118] E4Y=kl4 X (Id— Idb) /{ (Ic— Icb) [0118] E4Y = kl4 X (Id— Idb) / {(Ic— Icb)
+ (Id— Idb)} (10)  + (Id— Idb)} (10)
[0119] 上記の式(8) ,式(9)および式(10)において、 k21、kl3、K14は定数である。 [0120] 式(9)は、図 17に示した実施例 4の水素ガス検知センサ 40において、検知位置が X= 0の場合に算出結果 E4Xが 0となり、 X= Lxの場合に算出結果 E4Xが 1となる。 ここで、 X=0とは、図 17に示す構成において、半導体化した検知部 8が電極 47の近 接位置であり、 X方向の検知範囲 Lの一方の境界部分の位置である。したがって、 X =Lとは検知部 8が電極 48の近接位置であり、 X方向の検知範囲 Lの他方の境界部 分の位置である。 In the above formulas (8), (9), and (10), k21, kl3, and K14 are constants. [0120] In the hydrogen gas detection sensor 40 of Example 4 shown in FIG. 17, the calculation result E4X is 0 when the detection position is X = 0, and the calculation result E4X is when X = Lx. Becomes 1. Here, X = 0 is the position where the semiconductor detection unit 8 is in the vicinity of the electrode 47 in the configuration shown in FIG. 17 and the position of one boundary portion of the detection range L in the X direction. Therefore, X = L is the position where the detection unit 8 is close to the electrode 48 and the position of the other boundary portion of the detection range L in the X direction.
[0121] また、式(10)は、検知位置が Y=0の場合に算出結果 E4Yが 0となり、 Y=Lyの場 合に算出結果 E4Yが 1となる。ここで、 Y=0とは、図 17に示す構成において、半導 体ィ匕した検知部 8が電極 49の近接位置であり、 Υ方向の検知範囲 Lの一方の境界部 分の位置である。したがって、 Y=Lとは検知部 8が電極 50の近接位置であり、 Y方 向の検知範囲 Lの他方の境界部分の位置である。  [0121] In addition, the calculation result E4Y is 0 when the detection position is Y = 0, and the calculation result E4Y is 1 when Y = Ly. Here, Y = 0 is the position where the detection unit 8 which is a semiconductor is close to the electrode 49 in the configuration shown in FIG. 17, and is the position of one boundary part of the detection range L in the vertical direction. . Therefore, Y = L is the position where the detection unit 8 is close to the electrode 50 and the position of the other boundary portion of the detection range L in the Y direction.
[0122] 式(9)および式(10)は、水素ガスの検知位置力 =0から =1^:まで変化した場 合、および Y=0から Y=Lyまで変化した場合、水素ガスの検知位置 X、 Yと算出結 果 E4X、 E4Yとの関係は、縦軸と横軸のグラフで示すと、ほぼ直線で表される関係で ある。  [0122] Equations (9) and (10) indicate that the hydrogen gas detection potential changes from = 0 to = 1 ^: and from Y = 0 to Y = Ly. The relationship between the positions X and Y and the calculation results E4X and E4Y is a relationship represented by a straight line when shown on the vertical and horizontal graphs.
なお、本発明に係る実施例 4の水素ガス検知センサ 40において、演算処理として は上記の式(9)および式(10)だけに限定されるものではなぐ他の式を用いても演 算することができる。  In the hydrogen gas detection sensor 40 according to the fourth embodiment of the present invention, the calculation process is not limited to the above formulas (9) and (10), and the calculation can be performed using other formulas. be able to.
[0123] 以下、式(9)および式(10)以外の水素ガスの検知位置を示す演算式について説 明する。  [0123] An arithmetic expression indicating the hydrogen gas detection position other than Expression (9) and Expression (10) will be described below.
X方向の演算式に(la— lab)と(lb— Ibb)の比を表す項、および Y方向の演算式に (Ic— Icb)と(Id— Idb)の比を表す項が含まれて!/、れば、水素ガスの検知位置を示 す演算式として用いることができる。以下に、具体的な水素ガス検知位置を示す算出 方法の例を記載する。  The expression for the X direction contains a term representing the ratio of (la—lab) to (lb—Ibb), and the expression for the Y direction contains a term representing the ratio of (Ic—Icb) to (Id—Idb). If! /, It can be used as an arithmetic expression to indicate the hydrogen gas detection position. An example of a calculation method that shows the specific hydrogen gas detection position is described below.
[0124] 下記式(11)は、図 17に示した実施例 4の水素ガス検知センサ 40において、検知 位置力 ¾= 0の場合に算出結果 EXが 0となり、 X= Lxの場合に算出結果 EXが∞と なる演算式である。また、式(12)は、検知位置が Y=0の場合に算出結果 EYが 0と なり、 Y=Lyの場合に算出結果 ΕΥが∞となる演算式である。式(11)および式(12) とも水素ガス検知位置と算出結果 Eとの関係は、縦軸と横軸のグラフで示すと、直線 で表される関係にはならな 、。 [0124] In the hydrogen gas detection sensor 40 of Example 4 shown in FIG. 17, the following formula (11) is calculated when the detection position force ¾ = 0, and the calculation result EX is 0, and when X = Lx This is an arithmetic expression in which EX becomes ∞. Equation (12) is an arithmetic expression in which the calculation result EY is 0 when the detection position is Y = 0, and the calculation result ΕΥ is ∞ when Y = Ly. Equation (11) and Equation (12) In both cases, the relationship between the hydrogen gas detection position and the calculation result E cannot be expressed as a straight line when shown on the vertical and horizontal graphs.
[0125] EX=kl5X (lb— Ibb) /(la— lab) (11) [0125] EX = kl5X (lb— Ibb) / (la— lab) (11)
[0126] EY=kl6X (Id— Idb)Z(Ic— Icb) (12) [0126] EY = kl6X (Id— Idb) Z (Ic— Icb) (12)
[0127] また、下記式(13)は、図 17に示した実施例 4の水素ガス検知センサ 40において、 検知位置力 ¾= 0の場合に算出結果 EXが— 1となり、 X= Lxの場合に算出結果 EX 力 となる演算式である。また、式(14)の演算において、検知位置が Y=0の場合に 算出結果 ΕΥが— 1となり、 Y=Lyの場合に算出結果 ΕΥが 1となる演算式である。式 (13)および式(14)の演算において、水素ガスの検知位置力 X=0から Lまで変化 した場合、水素ガス検知位置と算出結果 Eとの関係は、縦軸と横軸のグラフで示すと ほぼ直線で表される。  [0127] In addition, in the hydrogen gas detection sensor 40 of Example 4 shown in Fig. 17, the following expression (13) is obtained when the detection position force ¾ = 0 and the calculation result EX is -1 and X = Lx This is the calculation formula for the calculation result EX force. In the calculation of equation (14), the calculation result ΕΥ is −1 when the detection position is Y = 0, and the calculation result ΕΥ is 1 when the detection position is Y = Ly. In the calculations of Equations (13) and (14), when the hydrogen gas detection position force changes from X = 0 to L, the relationship between the hydrogen gas detection position and the calculation result E is indicated by the vertical and horizontal axes. It is represented by a straight line.
[0128] EX=kl7X [{(lb— Ibb) - (la— lab)}/  [0128] EX = kl7X [{(lb— Ibb)-(la— lab)} /
{ (la— lab) + (lb— Ibb) }] (13)  {(la— lab) + (lb— Ibb)}] (13)
[0129] EY=kl8X [{(Id— Idb) - (Ic— Icb)}/  [0129] EY = kl8X [{(Id— Idb)-(Ic— Icb)} /
{ (Ic— Icb) + (Id— Idb) }] (14)  {(Ic— Icb) + (Id— Idb)}] (14)
[0130] 上記の式(8)から式(14)において、水素ガス検知センサ 40の出力電流である la, I b, Icおよび Idが、バイアス電流 lab, Ibb, Icbおよび Idbに対して十分大きな値である 場合には、バイアス電流 lab, Ibb, Icbおよび Idbを無視して演算することが可能であ る。その場合には、式 (8)から式(14)は、下記の式(15)力も式(21)に示すようにな る。  [0130] In the above formulas (8) to (14), the output currents la, Ib, Ic and Id of the hydrogen gas detection sensor 40 are sufficiently larger than the bias currents lab, Ibb, Icb and Idb. If it is a value, it is possible to calculate by ignoring the bias currents lab, Ibb, Icb and Idb. In that case, Equation (8) to Equation (14) are as shown in Equation (21) below.
[0131] E3=k22X (Ia+Ib+Ic+Id) (15)  [0131] E3 = k22X (Ia + Ib + Ic + Id) (15)
[0132] EX=k7XIb/(lb+Ia) (16)  [0132] EX = k7XIb / (lb + Ia) (16)
[0133] EY=k8XId/(lc+Id) (17)  [0133] EY = k8XId / (lc + Id) (17)
[0134] EX=k9XIb/la (18)  [0134] EX = k9XIb / la (18)
[0135] EY=klOXId/lc (19)  [0135] EY = klOXId / lc (19)
[0136] EX=kllX (lb-Ia)/(la+Ib) (20)  [0136] EX = kllX (lb-Ia) / (la + Ib) (20)
[0137] EY=kl2X (Id— Ic)/(lc+Id) (21)  [0137] EY = kl2X (Id— Ic) / (lc + Id) (21)
[0138] 上記のように、図 17に示した 2次元の水素ガス検知領域を有する実施例 4の水素ガ ス検知センサ 40において、水素ガス検知位置は、式(8)から式(21)で示す演算式 により算出することができる。 As described above, the hydrogen gas of Example 4 having the two-dimensional hydrogen gas detection region shown in FIG. In the hydrogen detection sensor 40, the hydrogen gas detection position can be calculated by an arithmetic expression expressed by the equations (8) to (21).
実施例 4の水素ガス検知センサ 40にお!/、て用いたバイアス電源 27は直流電源で 説明したが、本発明のガス検知センサにおけるバイアス電源としては直流電源だけ でなぐ 0. ΙΚΗζから ΙΟΚΗζ程度の交流電源でも用いることができる。その場合は、 演算器 28の電流電圧変換部に整流機能を付加する必要がある。  The bias power supply 27 used in the hydrogen gas detection sensor 40 of Example 4 is described as a DC power supply. However, the DC power supply alone is not the only bias power supply in the gas detection sensor of the present invention. The AC power supply can be used. In that case, it is necessary to add a rectification function to the current-voltage converter of the arithmetic unit 28.
また、実施例 4における演算器 28は、水素ガス検知センサ 40からの出力電流をデ ジタル信号に変換して、演算を行うが、デジタル信号に変換せずアナログ信号の状 態で回路構成により演算することも可能である。  In addition, the arithmetic unit 28 in the fourth embodiment converts the output current from the hydrogen gas detection sensor 40 into a digital signal and performs an operation, but does not convert it into a digital signal but performs an operation according to a circuit configuration in an analog signal state. It is also possible to do.
[0139] [水素ガス検知センサによる実験結果] [0139] [Experimental result of hydrogen gas detection sensor]
本発明に係る実施例 4の水素ガス検知センサ 40およびガス検知装置における実験 結果を図 22および図 23を用いて説明する。  Experimental results of the hydrogen gas detection sensor 40 and the gas detection device of Example 4 according to the present invention will be described with reference to FIGS. 22 and 23. FIG.
まず、本実験において用いた 2次元の水素ガス検知領域を有する水素ガス検知セ ンサについて説明する。  First, the hydrogen gas detection sensor with a two-dimensional hydrogen gas detection region used in this experiment will be described.
本実験で用いた水素ガス検知領域が 2次元である水素ガス検知センサ 40は、その 検知範囲の X方向の長さ Lx、および Y方向の長さ Lyをそれぞれ 100mmとした。基 材 6は、 X方向の長さが 104mm、 Y方向の長さが 104mm、厚みが lmmの石英(Si 02)を用いた。電極 47、電極 48、電極 49および電極 50は、金(Au)を用いて形成し 、基材 6の 4辺の縁部分内側に幅 2mm、厚み 0. 5 mで形成した。抵抗層 4は、基 材 6の 4辺の縁部分内側 lmmを除いて、中央部分 102mmに窒化タンタル (TaN)を 3 μ mの厚みで形成した。  In the hydrogen gas detection sensor 40 having a two-dimensional hydrogen gas detection region used in this experiment, the length Lx in the X direction and the length Ly in the Y direction of the detection range were each 100 mm. As the base material 6, quartz (Si 02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used. The electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed using gold (Au), and were formed with a width of 2 mm and a thickness of 0.5 m inside the edge portions of the four sides of the substrate 6. The resistance layer 4 was formed by forming tantalum nitride (TaN) with a thickness of 3 μm in the central portion 102 mm except for the inner side lmm of the four sides of the base material 6.
[0140] 検知膜 5は、白金分散担持三酸化タングステンを触媒焼結後の膜厚が約 1 μ mに なるように形成した。形成方法としては、ゾルゲル法を用いた。具体的には、まず、タ ングステン酸ナトリウム二水和物(Na WO · 2Η O :純正化学株式会社製) 41. 2gを [0140] The sensing film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 μm after catalyst sintering. A sol-gel method was used as a forming method. Specifically, first, sodium tungstateate dihydrate (Na WO 2Η O: manufactured by Junsei Chemical Co., Ltd.) 41.2 g
2 4 2  2 4 2
メスフラスコに取り、純水をカ卩えて 250mLに調製し、 0. 5molZLの無色透明のタン ダステン酸ナトリウム (Na WO )水溶液を得た。  The sample was placed in a volumetric flask and adjusted to 250 mL with pure water, to obtain a 0.5 molZL colorless and transparent aqueous sodium tandateate (Na 2 WO 3) solution.
2 4  twenty four
[0141] 次に、陽イオン交換榭脂 (アンバーライト IR120B Na:オルガノ株式会社製)をカラ ム塔に充填し、タングステン酸ナトリウム (Na WO )水溶液を通過させ、タングステン 酸ナトリウム (Na WO )水溶液のナトリウムイオン (Na+)をプロトン (H+)に交換し、薄 [0141] Next, cation exchange resin (Amberlite IR120B Na: manufactured by Organo Corporation) was filled into a column tower, and a sodium tungstate (Na 2 WO) aqueous solution was passed through the column tower. The sodium ion (Na +) in the sodium acid (Na WO) aqueous solution is exchanged for protons (H +)
2 4  twenty four
黄色のタングステン酸 (H WO )水溶液を得た。タングステン酸 (H WO )水溶液 13  A yellow tungstic acid (H 2 WO 3) aqueous solution was obtained. Tungstic acid (H WO) aqueous solution 13
2 4 2 4  2 4 2 4
mLに触媒金属であるへキサクロ口白金酸 (H PtCl · 6Η Ο :和光純薬工業株式会  mL of catalyst metal hexachloroplatinic acid (H PtCl 6Η Η: Wako Pure Chemical Industries, Ltd.
2 6 2  2 6 2
社製)を純水に、 0. 5molZL溶解させた水溶液を 4mLと、エタノールを 8mL加えて 均一に分散混合し、白金分散型酸化タングステンのゾルゲル溶液を合成した。上記 ゾルゲル溶液を抵抗層 4の上に一面を覆うように一様に滴下し、ディップ法にてゾル ゲル溶液の塗布を行った。その後、室温にて 1時間乾燥させた後、電気炉を用いて 2 00°Cで 1時間、仮焼成した後、さらに、 500°Cで 1時間焼成してから室温で冷却した 。このときの検知膜 5の膜厚は 1 μ mであった。  4 mL of an aqueous solution in which 0.5 molZL was dissolved in pure water and 8 mL of ethanol were uniformly dispersed and mixed to synthesize a sol-gel solution of platinum-dispersed tungsten oxide. The sol-gel solution was uniformly dropped on the resistance layer 4 so as to cover the entire surface, and the sol-gel solution was applied by a dipping method. Then, after drying at room temperature for 1 hour, using an electric furnace, pre-baked at 200 ° C. for 1 hour, and further fired at 500 ° C. for 1 hour and then cooled at room temperature. At this time, the thickness of the detection film 5 was 1 μm.
[0142] 次に、金 (Au)で構成される共通電極 1をスパッタ法とメタルマスクを用いて形成し た。共通電極 1は、金 (Au)を前述の図 18の(a)で示したように、格子状の網目を有 するように、幅 0. 1mmで、 2. 5mm間隔で、 X方向および Y方向に 39本ずつ設けた 。また、共通電極 1の周囲に 2mm幅のランド 81を設けた。また、共通電極 1の厚みは 、スパッタ時間とスパッタ電力を制御して行い、本実験では 2 mとした。  [0142] Next, the common electrode 1 made of gold (Au) was formed using a sputtering method and a metal mask. As shown in FIG. 18 (a), the common electrode 1 is 0.1 mm wide and 2.5 mm apart so that it has a lattice-like mesh as shown in FIG. 39 in each direction. A land 81 having a width of 2 mm was provided around the common electrode 1. The thickness of the common electrode 1 was controlled by controlling the sputtering time and sputtering power, and was 2 m in this experiment.
共通電極 1の形成後、共通電極 1と電極 47、共通電極 1と電極 48、共通電極 1と電 極 49および共通電極 1と電極 50の各接合抵抗を測定した。接合抵抗は、それぞれ 5 Ok Ωであった。また、電極 47と電極 48、および電極 49と電極 50の各電極間抵抗の 抵抗値は、それぞれ約 50ΚΩであった。  After the formation of common electrode 1, the junction resistances of common electrode 1 and electrode 47, common electrode 1 and electrode 48, common electrode 1 and electrode 49, and common electrode 1 and electrode 50 were measured. The junction resistance was 5 OkΩ each. The resistance values of the interelectrode resistances of the electrode 47 and the electrode 48 and the electrode 49 and the electrode 50 were about 50Ω.
[0143] 評価は以下の条件で行った。水素ガス検知領域が 2次元であり、上記のように構成 された実施例 4の水素ガス検知センサ 40において、共通電極 1には、ノ ィァス電源 2 7より直流電圧 5Vを印加した。電流制限抵抗は 5ΚΩとしている。電極 47、電極 48、 電極 49および電極 50からのバイアス電流は、約 100 Aであった。水素ガスを含む 被検知ガスの噴出した箇所には、ガス噴出口の直径が lmmの円形ノズルを用い、 噴出方向は上方とした。また、水素ガス検知センサ 40の設置位置は、ガス噴出口より 上方に lmmおよび 3mmの距離に配置した状態で実験を行った。  [0143] The evaluation was performed under the following conditions. In the hydrogen gas detection sensor 40 of Example 4 configured as described above, the hydrogen gas detection region is two-dimensional, and a DC voltage of 5 V was applied to the common electrode 1 from the noise power source 27. The current limiting resistance is 5ΚΩ. The bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A. A circular nozzle with a gas outlet diameter of lmm was used at the location where the detected gas containing hydrogen gas was ejected, and the ejection direction was upward. The experiment was conducted with the hydrogen gas detection sensor 40 installed at a distance of 1 mm and 3 mm above the gas outlet.
[0144] 図 22は、ガス噴出ロカ 水素ガス検知センサ 40の検知膜 5までの距離が lmmで あり、被検知ガスの水素ガスの体積濃度 0. 1%および 1%とした場合における水素ガ ス検知位置と算出結果 (E4X, E4Y)との関係を示すグラフである。図 22の(a)は X 方向におけるノズル位置である水素ガス検知位置 Xと算出結果 E4Xとの関係を示す グラフであり、 (b)は Y方向における水素ガス検知位置 Yと算出結果 E4Yとの関係を 示すグラフである。なお、前述の式(9)および式(10)における定数 kl3および kl4 は 1として算出している。また、図 22のグラフにおいて、実線 33は、水素ガスの体積 濃度が 0. 1%の場合を示し、破線 34は、水素ガスの体積濃度 1. 0%の場合を示す 。また、横軸の水素ガス検知位置 X, Yは、図 17に示した検知位置 X, Yの値であり、 20mmから 80mmまで測定した。 [0144] Fig. 22 shows the hydrogen gas when the distance to the detection film 5 of the gas jetting hydrogen hydrogen detection sensor 40 is lmm and the volume concentration of hydrogen gas of the detected gas is 0.1% and 1%. It is a graph which shows the relationship between a detection position and a calculation result (E4X, E4Y). (A) in Fig. 22 is X 5 is a graph showing the relationship between the hydrogen gas detection position X, which is the nozzle position in the direction, and the calculation result E4X, and (b) is a graph showing the relationship between the hydrogen gas detection position Y in the Y direction and the calculation result E4Y. The constants kl3 and kl4 in the above formulas (9) and (10) are calculated as 1. In the graph of FIG. 22, a solid line 33 indicates a case where the volume concentration of hydrogen gas is 0.1%, and a broken line 34 indicates a case where the volume concentration of hydrogen gas is 1.0%. In addition, the hydrogen gas detection positions X and Y on the horizontal axis are the values of the detection positions X and Y shown in FIG. 17 and were measured from 20 mm to 80 mm.
図 22の(a)および (b)のグラフに示すように、算出結果 E4Xおよび E4Yは、被検知 ガスの水素ガスの体積濃度によらず、水素ガスの検知位置を示しており、水素ガス検 知領域が 2次元である水素ガス検知センサ 40として十分に機能することを確認され た。  As shown in the graphs (a) and (b) of Fig. 22, the calculation results E4X and E4Y show the hydrogen gas detection position regardless of the volume concentration of the hydrogen gas to be detected. It has been confirmed that it functions well as a hydrogen gas detection sensor 40 whose knowledge area is two-dimensional.
[0145] 図 23に示すグラフは、水素ガス検知位置 X, Yが 2次元の水素ガス検知領域の中 央部(X= 50mm, Y= 50mm)であり、ガス噴出口(ノズル口)から 2次元の水素ガス 検知領域の検知面までの距離が lmmおよび 3mmにおいて、被検知ガス中の水素 ガスの体積濃度を 0%から 1%まで変化させた場合の加算結果 E3を示す。図 23にお いて、実線 35は、ガス噴出ロカゝら検知面までの距離が lmmの場合であり、破線 36 はガス噴出ロカゝら検知面までの距離が 3mmの場合を示す。なお、前述の式 (8)に おける定数 k21は、 1 X 103 (V/A)として算出して 、る。 [0145] In the graph shown in Fig. 23, the hydrogen gas detection positions X and Y are the center of the two-dimensional hydrogen gas detection area (X = 50 mm, Y = 50 mm), and 2 from the gas outlet (nozzle port). The addition result E3 is shown when the volume concentration of hydrogen gas in the gas to be detected is changed from 0% to 1% when the distance to the detection surface of the three-dimensional hydrogen gas detection region is lmm and 3mm. In Fig. 23, the solid line 35 represents the case where the distance from the gas ejection locus to the detection surface is lmm, and the broken line 36 represents the case where the distance from the gas ejection locus to the detection surface is 3 mm. The constant k21 in the above equation (8) is calculated as 1 × 10 3 (V / A).
[0146] 図 23に示すように、実線で示す距離が lmmの場合、および破線で示す距離が 3m mの場合のいずれの場合でも、算出結果 E3は水素濃度の上昇に伴って上昇してい る。しかし、ガス噴出ロカ 検知膜 5までの距離により、算出結果 E3において差が発 生している。これは、ガス噴出ロカも検知膜 5までの距離が長くなると、検知膜 5に接 触する水素ガスの面積が広くなるため、半導体ィ匕した検知部 8の範囲が広くなり、検 知膜 5を通過する電流が増加したためと推測できる。これらの結果より、ガス噴出口か ら検知膜 5までの距離を一定とすることにより、算出結果 E3を測定することで被検知 ガス中の水素ガスの体積濃度を測定することが可能となる。  [0146] As shown in FIG. 23, the calculation result E3 increases as the hydrogen concentration increases, regardless of whether the distance indicated by the solid line is lmm or the distance indicated by the broken line is 3 mm. . However, there is a difference in the calculation result E3 depending on the distance to the gas ejection locus detection film 5. This is because the area of the hydrogenated gas in contact with the detection film 5 increases as the distance to the detection film 5 also increases, so the range of the detection part 8 that is semiconductor-coated increases. It can be presumed that the current passing through has increased. From these results, it is possible to measure the volume concentration of hydrogen gas in the gas to be detected by measuring the calculation result E3 by keeping the distance from the gas ejection port to the detection film 5 constant.
実施例 5  Example 5
[0147] 以下、本発明に係る実施例 5の水素ガス検知センサについて図 24から図 27を用い て説明する。実施例 5において、前述の各実施例の要素と同じ構成、機能を有するも のには同じ符号を付してその説明は省略する。 [0147] Hereinafter, the hydrogen gas detection sensor of Example 5 according to the present invention will be described with reference to Figs. I will explain. In the fifth embodiment, components having the same configurations and functions as those of the respective embodiments described above are denoted by the same reference numerals, and description thereof is omitted.
図 24は、実施例 5の水素ガス検知センサの積層構造を示す断面図であり、水素ガ スを矢印 Bで示した位置で検知した例を示したものである。実施例 5の水素ガス検知 センサは、 2次元の水素ガス検知領域を有するガス検知センサである。  FIG. 24 is a cross-sectional view showing the laminated structure of the hydrogen gas detection sensor of Example 5, and shows an example in which hydrogen gas is detected at the position indicated by arrow B. The hydrogen gas detection sensor of Example 5 is a gas detection sensor having a two-dimensional hydrogen gas detection region.
実施例 5の水素ガス検知センサは、前述の実施例 4の水素ガス検知センサに、検 知膜 5から基材 6まで貫通した貫通孔 23を形成した構造を有する。貫通孔 23は、検 知膜 5に接触した水素ガスを含む被検知ガスが、検知膜 5から基材 6を通過して水素 ガス検知センサの外部に放出する機能を有する。すなわち、貫通孔 23は、検知膜 5 上で被検知ガスが滞留して拡散しな 、ようにするものである。  The hydrogen gas detection sensor of Example 5 has a structure in which a through hole 23 penetrating from the detection film 5 to the substrate 6 is formed in the hydrogen gas detection sensor of Example 4 described above. The through-hole 23 has a function of allowing a gas to be detected including hydrogen gas in contact with the detection film 5 to pass from the detection film 5 through the substrate 6 to the outside of the hydrogen gas detection sensor. In other words, the through-hole 23 prevents the gas to be detected from staying on the detection film 5 and diffusing.
[0148] 図 25は実施例 5の水素ガス検知センサの平面図であり、検知面を示す図である。 FIG. 25 is a plan view of the hydrogen gas detection sensor of Example 5, showing the detection surface.
図 25に示すように、貫通孔 23は、格子状の網目を有する共通電極 1から表出してい る検知膜 5の部分に設けられている。なお、実施例 5においては、共通電極 1として、 前述の図 18の(a)に示した網目状のものを用いて!/、るが、ほかの形状を有するもの も用いることもできる。また、貫通孔 23は、検知膜 5以外の部分にも形成することは可 能である。ただし、共通電極 1やランド 81に設ける場合には、共通電極 1とランド 81の それぞれの部分が、その機能を奏するよう電気的な接続状態が保たれるよう貫通孔 2 3を形成する必要がある。  As shown in FIG. 25, the through hole 23 is provided in the portion of the detection film 5 exposed from the common electrode 1 having a lattice-like mesh. In Example 5, the common electrode 1 has a mesh shape as shown in FIG. 18 (a) described above, but other shapes can also be used. Further, the through hole 23 can be formed in a portion other than the detection film 5. However, when it is provided in the common electrode 1 or the land 81, it is necessary to form the through-hole 23 so that the respective portions of the common electrode 1 and the land 81 are maintained in an electrically connected state so as to perform their functions. is there.
[0149] [水素ガス検知センサによる実験結果] [0149] [Experimental result of hydrogen gas detection sensor]
本発明に係る実施例 5の水素ガス検知センサおよびガス検知装置による実験結果 を、図 26および図 27を用いて説明する。図 26および図 27は、水素ガス検知センサ にお 、て貫通孔 23の有無による水素ガスの滞留防止効果を示して 、る。  Experimental results of the hydrogen gas detection sensor and gas detection device of Example 5 according to the present invention will be described with reference to FIGS. 26 and 27. FIG. FIG. 26 and FIG. 27 show the effect of preventing the hydrogen gas from staying with the presence or absence of the through hole 23 in the hydrogen gas detection sensor.
本実験において用!、た水素ガス検知領域が 2次元である水素ガス検知センサは、 その検知範囲の X方向の長さ Lx、および Y方向の長さ Lyがそれぞれ 100mmである 。基材 6としては、 X方向の長さが 104mmであり、 Y方向の長さが 104mmであり、厚 みが lmmの石英(Si02)を用いた。電極 47、電極 48、電極 49および電極 50は、金 (Au)をスパッタ法を用いて、基材 6の四辺に幅 2mmで、厚み 0. 5 mで形成した。 抵抗層 4は、窒化タンタル (TaN)をリアタティブスパッタ法にて、基材 6の周囲の縁部 分 lmmを除いて、中央部分に 102mmで 3 mの厚みで形成した。 The hydrogen gas detection sensor used in this experiment has a two-dimensional hydrogen gas detection area. The detection range has a length Lx in the X direction and a length Ly in the Y direction of 100 mm. As the substrate 6, quartz (Si02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used. The electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed with a width of 2 mm and a thickness of 0.5 m on four sides of the base material 6 by sputtering gold (Au). Resistive layer 4 is made of tantalum nitride (TaN) by the reactive sputtering method and the peripheral edge of substrate 6 Excluding the minute lmm, it was formed in the center part with a thickness of 102mm and 3m.
[0150] 実施例 5における検知膜 5は、前述の実施例 1の実験において説明した方法と同じ 方法により形成した。すなわち、検知膜 5は、白金分散担持三酸化タングステンを触 媒焼結後の膜厚が約 1 μ mになるように形成した。 [0150] The detection film 5 in Example 5 was formed by the same method as described in the experiment of Example 1 described above. That is, the detection film 5 was formed so that the film thickness after platinum dispersion-supported tungsten trioxide was about 1 μm after catalyst sintering.
また、実施例 5における共通電極 1についても、前述の実施例 1の実験において説 明した方法と同じ方法により形成した。すなわち、共通電極 1は、金 (Au)を図 18の( a)で示した形状に、幅 0. lmm、間隔 2. 5mm、 X方向、 Y方向の本数が 39本ずつ になるように形成した。また、検知面の周囲には 2mmの幅のランド 81を形成した。成 膜後、電極 47と電極 48、および電極 49と電極 50の電極間抵抗の抵抗値は、それぞ れ約 50ΚΩであった。また、共通電極 1に対する各電極 47, 48, 49および 50との各 接合抵抗は、それぞれ約 50k Ωであった。バイアス電源は、直流電圧 5Vとし電流制 限抵抗 10ΚΩを介して共通電極 1に接続されている。電極 47、電極 48、電極 49お よび電極 50からの各バイアス電流は、約 100 Aであった。なお、実験時のバイアス 電源 27の電圧も 5Vとした。また、貫通孔 23は、表出している検知膜 5の部分に直径 0. 15mmで、 X方向における間隔と Y方向における間隔がそれぞれ 0. 5mmで多数 個形成している。  Further, the common electrode 1 in Example 5 was also formed by the same method as described in the experiment of Example 1 described above. That is, the common electrode 1 is made of gold (Au) in the shape shown in FIG. 18A, with a width of 0.1 mm, a spacing of 2.5 mm, and a number of 39 in the X and Y directions. did. A land 81 having a width of 2 mm was formed around the detection surface. After the film formation, the resistance values of the interelectrode resistances of the electrode 47 and the electrode 48 and the electrode 49 and the electrode 50 were about 50Ω. The junction resistance of each electrode 47, 48, 49 and 50 with respect to the common electrode 1 was about 50 kΩ. The bias power supply is connected to the common electrode 1 with a DC voltage of 5V through a current limiting resistor of 10Ω. Each bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A. The voltage of the bias power supply 27 during the experiment was also 5V. In addition, a large number of through holes 23 are formed in the exposed detection film 5 with a diameter of 0.15 mm, with an interval in the X direction and an interval in the Y direction of 0.5 mm.
[0151] 水素ガスを含む被検知ガスの発生箇所には、ガス噴出口の直径が lmmの円形ノ ズル 11を用い、噴出方向は上方とした。また、水素ガス検知センサは、ガス噴出口よ り上方へ lmmの距離に検知面が配置されるよう設置した。  [0151] A circular nozzle 11 having a gas outlet diameter of lmm was used at the location where the detected gas containing hydrogen gas was generated, and the jet direction was set upward. The hydrogen gas detection sensor was installed so that the detection surface was placed at a distance of 1 mm above the gas outlet.
図 26は、図 24および図 25に示した実施例 5の水素ガス検知センサにおいて、貫 通孔 23の効果を説明するためのグラフである。図 26の(a)に示したグラフにおいて、 横軸が X方向の水素ガス検知位置 X [mm]であり、縦軸が X方向の算出結果 E4Xで ある。図 26の(b)に示したグラフにおいて、横軸が Y方向の水素ガス検知位置 Y[m m]であり、縦軸が Y方向の算出結果 E4Yである。また、図 26の(a)および (b)におい て、実線 38は貫通孔 23が無い場合を示し、破線 37は貫通孔 23がある場合を示す。  FIG. 26 is a graph for explaining the effect of the through hole 23 in the hydrogen gas detection sensor of Example 5 shown in FIGS. 24 and 25. In the graph shown in Fig. 26 (a), the horizontal axis is the hydrogen gas detection position X [mm] in the X direction, and the vertical axis is the calculation result E4X in the X direction. In the graph shown in (b) of FIG. 26, the horizontal axis is the hydrogen gas detection position Y [mm] in the Y direction, and the vertical axis is the calculation result E4Y in the Y direction. In FIGS. 26 (a) and (b), the solid line 38 shows the case where there is no through hole 23, and the broken line 37 shows the case where there is a through hole 23.
[0152] 図 26の(a)の X方向のノズル 11位置である水素ガス検知位置 Xは、前述の実施例 4の説明にお!/ヽて用いた図 17における Xの値で 5mmから 95mmまでの範囲にお!ヽ て測定した。また、図 26の(b)の Y方向のノズル位置である水素ガス検知位置 Yは、 図 17の Yの値で、 5mmから 95mmまでの範囲において測定した。この実験におい ては、ノズル 11のガス噴出口から噴出する水素ガスの体積濃度は 1%としている。 図 26のグラフから明らかなように、貫通孔 23が無い場合 (実線 38)は、水素ガスの 検知位置が X方向および Y方向とも検知面の境界部分から 1 Omm程度まで近づくと 、算出結果 E4Xおよび E4Yの変化率は少なくなる。一方、貫通孔 23がある場合 (破 線 37)には、水素ガスの検知位置が検知面の境界部分から 10mm程度まで近づい ても算出結果 E4Xおよび E4Yの変化率はほぼ一定であった。 [0152] The hydrogen gas detection position X, which is the 11 position of the nozzle X in the X direction in Fig. 26 (a), is the value of X in Fig. 17 used in the description of Example 4 above. Measured over the range up to. In addition, the hydrogen gas detection position Y, which is the nozzle position in the Y direction in FIG. The Y value in Fig. 17 was measured in the range from 5mm to 95mm. In this experiment, the volume concentration of hydrogen gas ejected from the gas ejection port of the nozzle 11 is set to 1%. As can be seen from the graph in FIG. 26, when there is no through hole 23 (solid line 38), the calculation result E4X when the hydrogen gas detection position approaches 1 Omm from the boundary of the detection surface in both the X and Y directions. And the rate of change of E4Y is less. On the other hand, when there was a through hole 23 (broken line 37), the rate of change of the calculation results E4X and E4Y was almost constant even when the hydrogen gas detection position approached about 10 mm from the boundary of the detection surface.
[0153] 図 27は、横軸が水素ガス体積濃度 [%]であり、縦軸が前述の式 (8)に示した算出 結果 E3を示すグラフである。図 27において、実線 42は貫通孔 23が無い場合を示し 、破線 41は貫通孔 23がある場合を示す。図 27に示すように、貫通孔 23が無い場合 (実線 42)には、貫通孔 23がある場合 (破線 41)に比較して、水素ガスの体積濃度に 対して算出結果 E3が大きくなつている。これは、貫通孔 23を有する場合には、噴出 する水素ガスの濃度が同じでも、水素ガスの検知範囲が小さくなつているためと思わ れる。また、貫通孔 23がある場合および貫通孔 23が無い場合のいずれの場合でも、 噴出する水素ガスの濃度が上昇するのに伴って、算出結果 E3が上昇している。 図 26および図 27に示した実験結果から明らかなように、水素ガスを排出するため に貫通孔 23を形成することにより、検知面の境界部分において、算出結果 E4Xおよ び E4Yの変化率の低下を防止することができる。 In FIG. 27, the horizontal axis is the hydrogen gas volume concentration [%], and the vertical axis is the graph showing the calculation result E3 shown in the above equation (8). In FIG. 27, a solid line 42 indicates a case where the through hole 23 is not present, and a broken line 41 indicates a case where the through hole 23 is present. As shown in Fig. 27, when there is no through hole 23 (solid line 42), the calculation result E3 is larger for the volume concentration of hydrogen gas than when there is a through hole 23 (dashed line 41). Yes. This is probably because the detection range of the hydrogen gas has become smaller when the through-hole 23 is provided, even if the concentration of the hydrogen gas to be ejected is the same. Further, in any case where there is a through hole 23 and no through hole 23, the calculation result E3 increases as the concentration of the hydrogen gas to be ejected increases. As is clear from the experimental results shown in Fig. 26 and Fig. 27, the rate of change in the calculated results E4X and E4Y at the boundary of the detection surface is obtained by forming the through hole 23 to discharge hydrogen gas. A decrease can be prevented.
実施例 6  Example 6
[0154] 以下、本発明に係る実施例 6の水素ガス検知センサについて図 28から図 30を用い て説明する。  [0154] Hereinafter, a hydrogen gas detection sensor according to Example 6 of the present invention will be described with reference to FIGS.
図 28は実施例 6の水素ガス検知センサの構成を示す断面図であり、水素ガスを矢 印 Aで示した位置で検知した例を示したものである。図 29および図 30は、実施例 6 の構成における実験結果を示すグラフである。実施例 6の説明において、前述の各 実施例と同じ機能、構成を有するものには同じ符号を付してその説明は省略する。 図 28の断面図に示すように、実施例 6の水素ガス検知センサは、前述の実施例 4 の水素ガス検知センサに加熱手段としてヒータ 39を取付け、断熱材 32で覆った構造 である。実施例 6の水素ガス検知センサは、加熱手段を設けたことにより、検知膜の 温度を所定の温度に保持することが可能となり、水素ガスに対する応答速度の改善 と、被検知ガスの湿度による影響を無くすことが可能となる。 FIG. 28 is a cross-sectional view showing the configuration of the hydrogen gas detection sensor of Example 6, and shows an example in which hydrogen gas is detected at a position indicated by an arrow A. FIG. FIG. 29 and FIG. 30 are graphs showing experimental results in the configuration of Example 6. FIG. In the description of the sixth embodiment, components having the same functions and configurations as those of the previous embodiments are denoted by the same reference numerals, and the description thereof is omitted. As shown in the sectional view of FIG. 28, the hydrogen gas detection sensor of Example 6 has a structure in which a heater 39 is attached as a heating means to the hydrogen gas detection sensor of Example 4 described above and covered with a heat insulating material 32. The hydrogen gas detection sensor of Example 6 is provided with a heating means, thereby The temperature can be maintained at a predetermined temperature, the response speed to hydrogen gas can be improved, and the influence of the humidity of the gas to be detected can be eliminated.
[0155] まず、図 28を用いて実施例 6の 2次元の水素ガス検知領域を有する水素ガス検知 センサの構造にっ 、て説明する。  First, the structure of the hydrogen gas detection sensor having the two-dimensional hydrogen gas detection region of Example 6 will be described with reference to FIG.
実施例 6の水素ガス検知センサの検知部分の基本構造は、前述の図 17に示した 実施例 4の 2次元の水素ガス検知領域を有する水素ガス検知センサと同じである。実 施例 6の水素ガス検知センサにおいては、実施例 4の水素ガス検知センサの周囲を 、水素ガス透過性の断熱材 32で覆い、さらに、基板 6の背面にヒータ 39を取り付けた 構造である。水素ガス透過性の断熱材 32は、耐熱性の高い発泡ポリウレタンなどの 発泡性の樹脂で形成されている。また、断熱材 32は、厚みが断熱性の観点から lm m程度としており、水素ガス透過性を確保する観点から 0. 2mm程度の孔が多数形 成されている。したがって、断熱材 32の外部に生じた被検知ガスは、断熱材 3の孔を 通り、内部の水素ガス検知センサに瞬時に接触する構成である。実施例 6におけるヒ ータ 39は、白金やタングステンのペーストを印刷した後に焼結して形成した。  The basic structure of the detection part of the hydrogen gas detection sensor of the sixth embodiment is the same as that of the hydrogen gas detection sensor having the two-dimensional hydrogen gas detection area of the fourth embodiment shown in FIG. The hydrogen gas detection sensor of Example 6 has a structure in which the periphery of the hydrogen gas detection sensor of Example 4 is covered with a hydrogen gas-permeable heat insulating material 32, and a heater 39 is attached to the back surface of the substrate 6. . The heat insulating material 32 that is permeable to hydrogen gas is formed of a foamable resin such as foam polyurethane having high heat resistance. The heat insulating material 32 has a thickness of about 1 mm from the viewpoint of heat insulating properties, and has a number of holes of about 0.2 mm from the viewpoint of ensuring hydrogen gas permeability. Therefore, the gas to be detected generated outside the heat insulating material 32 passes through the holes of the heat insulating material 3 and instantaneously contacts the internal hydrogen gas detection sensor. The heater 39 in Example 6 was formed by printing a platinum or tungsten paste and then sintering.
[0156] なお、実施例 6の水素ガス検知センサとしては、図 17に示した実施例 4の水素ガス 検知センサにヒータ 39と断熱材 32を設けた構成の他に、図 24に示した貫通孔 23を 有する実施例 5の水素ガス検知センサにヒータ 39と断熱材 32を設けた構成でも良い なお、実施例 6の水素ガス検知センサにおける温度調節は、予めヒータ 39の電流と 電圧の値と、検知膜 5に取り付けた熱電対を用いて温度測定を行い、校正曲線を準 備して行った。  [0156] The hydrogen gas detection sensor of Example 6 includes the penetration shown in Fig. 24 in addition to the configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of Example 4 shown in Fig. 17. A configuration in which the heater 39 and the heat insulating material 32 are provided in the hydrogen gas detection sensor of the embodiment 5 having the holes 23 may be used. Temperature adjustment in the hydrogen gas detection sensor of the embodiment 6 is based on the current and voltage values of the heater 39 in advance. Then, the temperature was measured using a thermocouple attached to the sensing film 5, and a calibration curve was prepared.
[0157] [水素ガス検知センサによる実験結果] [0157] [Experimental result of hydrogen gas sensor]
本発明に係る実施例 6の水素ガス検知センサにおける実験結果を、図 29および図 30を用いて説明する。図 29は検知膜 5の表面温度の変化と応答時間の実験結果を 示す。図 29において、横軸が検知膜 5の表面温度 [°C]であり、縦軸が応答時間 [秒 ]である。図 30は検知膜 5の表面温度と前述の式 (8)に示した算出結果 E3を示す。 図 30において、横軸が検知膜 5の表面温度 [°C]であり、縦軸が算出結果 E3である。 図 29および図 30において、破線 68は被検知ガスの相対湿度が 20%RHの場合を 示し、実線 69は、被検知ガスの相対湿度が 80%RHの場合を示す。 Experimental results of the hydrogen gas detection sensor according to Example 6 of the present invention will be described with reference to FIGS. 29 and 30. FIG. FIG. 29 shows the experimental results of the change in the surface temperature of the detection film 5 and the response time. In FIG. 29, the horizontal axis represents the surface temperature [° C.] of the detection film 5, and the vertical axis represents the response time [second]. FIG. 30 shows the surface temperature of the detection film 5 and the calculation result E3 shown in the above equation (8). In FIG. 30, the horizontal axis represents the surface temperature [° C] of the detection film 5, and the vertical axis represents the calculation result E3. In Fig. 29 and Fig. 30, broken line 68 indicates the case where the relative humidity of the gas to be detected is 20% RH. The solid line 69 shows the case where the relative humidity of the gas to be detected is 80% RH.
[0158] 本実験において用いた水素ガス検知センサは、水素ガス検知領域が 2次元であり、 検知範囲である X方向の検知長さ Lxおよび Y方向の検知長さ Lyが 1 OOmmであつた 。基材 6としては、 X方向の長さが 104mmであり、 Y方向の長さが 104mmであり、厚 みが lmmの石英(Si02)を用いた。電極 47、電極 48、電極 49および電極 50は、金 (Au)をスパッタ法を用いて、基材 6の四辺に幅 2mmに厚み 0. 5 mで形成した。抵 抗層 4は、窒化タンタル (TaN)をリアタティブスパッタ法にて、基材 6の周囲の縁から lmmの幅の領域を除いて、中央部分に 102mmで 3 mの厚みで形成した。検知膜 5は、白金分散担持三酸化タングステンを触媒焼結後の膜厚が約 1 μ mになるよう〖こ 形成した。共通電極 1は、金 (Au)を図 18の(a)で示す形状に、幅 0. lmm,間隔 2. 5mm、 X方向および Y方向の本数が 39本ずつになるように設けた。検知面の周囲に は 2mmの幅のランド 81を設けた。水素ガス検知センサの周囲には、 lmmの厚みの 発泡性の榭脂からなる断熱材 32を形成した。また、断熱材 32には 0. 2mmの孔を多 数個設けた。 [0158] The hydrogen gas detection sensor used in this experiment has a two-dimensional hydrogen gas detection area, and the detection range is a detection length Lx in the X direction and a detection length Ly in the Y direction of 1 OOmm. As the substrate 6, quartz (Si02) having a length in the X direction of 104 mm, a length in the Y direction of 104 mm, and a thickness of 1 mm was used. The electrode 47, the electrode 48, the electrode 49, and the electrode 50 were formed by sputtering gold (Au) on the four sides of the substrate 6 with a width of 2 mm and a thickness of 0.5 m. The resistance layer 4 was formed by tantalum nitride (TaN) by a reactive sputtering method at a central portion of 102 mm and a thickness of 3 m, except for a region having a width of 1 mm from the peripheral edge of the substrate 6. The detection film 5 was formed so that the thickness of the platinum dispersion-supported tungsten trioxide was about 1 μm after catalyst sintering. The common electrode 1 was provided with gold (Au) in the shape shown in FIG. 18 (a) so that the width was 0.1 mm, the interval was 2.5 mm, and the number in the X and Y directions was 39 each. A land 81 with a width of 2 mm was provided around the detection surface. Around the hydrogen gas detection sensor, a heat insulating material 32 made of foaming resin having a thickness of 1 mm was formed. The heat insulating material 32 was provided with a number of 0.2 mm holes.
[0159] その後、電極間抵抗を測定し、電極 47と電極 48の電極間抵抗、および電極 49と 電極 50の電極間抵抗の各抵抗値は、それぞれ約 50ΚΩであった。また、共通電極 1 に対する電極 47、電極 48、電極 49および電極 50との各接合抵抗は、それぞれ約 5 Ok Ωであった。ノ ィァス電源は、直流電圧 5Vとし電流制限抵抗 10ΚΩを介して共 通電極 1に接続した。電極 47、電極 48、電極 49および電極 50からのバイアス電流 は、約 100 Aであった。なお、本実験時のバイアス電源 27の電圧は 5Vとした。  [0159] Thereafter, the interelectrode resistance was measured, and the interelectrode resistance between the electrode 47 and the electrode 48 and the interelectrode resistance between the electrode 49 and the electrode 50 were about 50Ω. In addition, each junction resistance of the electrode 47, the electrode 48, the electrode 49, and the electrode 50 with respect to the common electrode 1 was about 5 OkΩ. The noise power source was connected to the common electrode 1 with a DC voltage of 5V and a current limiting resistance of 10ΚΩ. The bias current from electrode 47, electrode 48, electrode 49, and electrode 50 was about 100 A. Note that the voltage of the bias power supply 27 in this experiment was 5V.
[0160] 本実験において、水素ガスを含む被検知ガスが噴出するガス噴出口は上向きに配 置し、ガス噴出口の直径は lmmの円形ノズルを用いた。また、 2次元の水素ガス検 知領域を有する水素ガス検知センサは、ガス噴出口より上方 3mmの距離に検知膜 5 の検知面が下向きとなるように配置した。  [0160] In this experiment, the gas outlet from which the gas to be detected including hydrogen gas was ejected was placed upward, and a circular nozzle with a diameter of lmm was used. In addition, the hydrogen gas detection sensor having a two-dimensional hydrogen gas detection region was arranged at a distance of 3 mm above the gas outlet so that the detection surface of the detection film 5 faced downward.
[0161] 本実験の結果を図 29および図 30に示しており、図 29は検知面 5の表面温度と応 答時間の関係を示すグラフであり、図 30は検知膜 5の表面温度と算出結果 E3の関 係を示すグラフである。図 29および図 30において、破線 68は被検知ガスの相対湿 度が 20%RHの場合を示し、実線 69は被検知ガスの相対湿度が 80%の場合を示す 。また、応答時間は、水素ガスを含む被検知ガスをガス噴出口から噴出させてから、 算出結果 E3の値が最終的に安定した値に対して 90%に達するまでの時間を測定し て応答時間とした。 [0161] The results of this experiment are shown in Fig. 29 and Fig. 30, and Fig. 29 is a graph showing the relationship between the surface temperature of the sensing surface 5 and the response time, and Fig. 30 is the surface temperature of the sensing film 5 and the calculated value. It is a graph showing the relationship of the result E3. In FIGS. 29 and 30, the broken line 68 indicates the case where the relative humidity of the detected gas is 20% RH, and the solid line 69 indicates the case where the relative humidity of the detected gas is 80%. . The response time is measured by measuring the time from when the gas to be detected including hydrogen gas is ejected from the gas outlet until the calculated E3 value finally reaches 90% of the stable value. It was time.
図 29に示すように、本実験の結果、応答時間は、検知膜 5の表面温度が上昇する のに伴って対数的に早くなつている。検知膜 5の表面温度が 60°Cの場合には、応答 時間が約 10秒であり、検知膜 5の表面温度が約 80°C以上の場合には 5秒程度で、 ほぼ一定となった。  As shown in FIG. 29, as a result of this experiment, the response time becomes logarithmically faster as the surface temperature of the detection film 5 increases. When the surface temperature of the detection film 5 is 60 ° C, the response time is about 10 seconds, and when the surface temperature of the detection film 5 is about 80 ° C or more, it takes about 5 seconds and is almost constant. .
[0162] 図 30に示すように、検知膜 5の表面温度が 60°C以下の場合においては、算出結 果 E3の出力は、被検知ガスの相対湿度が 20%RHと 80%RHの場合で大きく異なる 。一方、検知面の表面温度が 60°Cを超える場合には、被検知ガスの相対湿度が 20 %RHと 80%RHの場合ともほぼ同じになる。すなわち、図 29および図 30に示した実 験結果から、検知膜 5の表面温度が 60°C以上の場合は、被検知ガスによる湿度依 存性はほぼ見られなくなり、また、応答時間は 10秒以下となる。さらに、検知膜 5の表 面温度が 80°C以上になると応答時間は 5秒以下となる。  [0162] As shown in Fig. 30, when the surface temperature of the detection film 5 is 60 ° C or less, the calculation result E3 output is when the relative humidity of the detected gas is 20% RH and 80% RH. It differs greatly. On the other hand, when the surface temperature of the detection surface exceeds 60 ° C, it is almost the same when the relative humidity of the gas to be detected is 20% RH and 80% RH. That is, from the experimental results shown in FIG. 29 and FIG. 30, when the surface temperature of the detection film 5 is 60 ° C. or higher, the humidity dependence due to the detected gas is almost not seen, and the response time is 10 Less than a second. Furthermore, when the surface temperature of the sensing film 5 exceeds 80 ° C, the response time becomes 5 seconds or less.
さらに、発明者は検知膜 5の温度を約 200°C、 300°C、 400°Cに設定すると、メタン (CH )、エタン (C H )、プロパン (C H )などの水素原子を含む炭化水素系の可燃 In addition, the inventors set the temperature of the detection film 5 to about 200 ° C, 300 ° C, and 400 ° C, and the hydrocarbon system containing hydrogen atoms such as methane (CH 2), ethane (CH 2), and propane (CH 2). Combustible
4 2 6 3 8 4 2 6 3 8
ガスを検知することが可能であることを確認した。特に、検知膜 5の温度が 300°C以 上では、水素原子を含む炭化水素系の可燃ガスを確実に検知することができた。 実施例 7  It was confirmed that gas could be detected. In particular, when the temperature of the detection film 5 was 300 ° C or higher, hydrocarbon combustible gas containing hydrogen atoms could be detected reliably. Example 7
[0163] 以下、本発明に係る実施例 7の水素ガス検知センサについて図 31から図 35を用い て説明する。実施例 7の水素ガス検知センサの説明において、前述の実施例におけ る要素と同じ構成、機能を有するものには同じ符号を付してその説明は、省略する。 実施例 7の水素ガス検知センサは、前述の実施例 1および実施例 2で説明した水素 ガス検知センサの構成において、抵抗層を使用しない構成であり、微小なセンサセ ルを 1次元状 (線状)に配置したものである。  Hereinafter, a hydrogen gas detection sensor of Example 7 according to the present invention will be described with reference to FIGS. 31 to 35. FIG. In the description of the hydrogen gas detection sensor of the seventh embodiment, components having the same configuration and function as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted. The hydrogen gas detection sensor of Example 7 has a configuration in which the resistive layer is not used in the configuration of the hydrogen gas detection sensor described in Example 1 and Example 2 above, and a minute sensor cell is formed in a one-dimensional shape (linear shape). ).
[0164] 実施例 7の水素ガス検知センサは、微少なセンサセルを複数個有しており、各セン サセルは所定の間隔を有して略直線状(1次元状)に配列されている。以下、実施例 7の水素ガス検知センサを 1次元配列型の水素ガス検知センサと称す。各センサセ ルは、水素ガスが接触すると電気的な抵抗値が変化する所定の小領域を有する検 知膜を持っている。実施例 7の水素ガス検知センサは、センサセルの抵抗値の変化 から、水素ガス検知位置を算出するガス検知センサである。以下に、図 31から図 34 を用いて説明する。 The hydrogen gas detection sensor of Example 7 has a plurality of minute sensor cells, and the sensor cells are arranged in a substantially straight line (one-dimensional shape) with a predetermined interval. Hereinafter, the hydrogen gas detection sensor of Example 7 is referred to as a one-dimensional array type hydrogen gas detection sensor. Each sensor sensor The sensor has a detection film having a predetermined small area whose electrical resistance value changes when it comes into contact with hydrogen gas. The hydrogen gas detection sensor of Example 7 is a gas detection sensor that calculates a hydrogen gas detection position from a change in the resistance value of the sensor cell. This will be described below with reference to FIGS.
図 31の(a)は、実施例 7の 1次元配列型の水素ガス検知センサ 110の平面図であ る。図 31の(b)は、図 31の(a)における W—W線による断面図である。図 31の(c)は 、図 31の(a)に示した 1次元配列型の水素ガス検知センサ 110の裏面図である。 図 31に示す 1次元配列型の水素ガス検知センサ 110は、略帯状に形成され電気 的に絶縁性を有する石英(SiO )の基材 101を有し、その基材 101の裏面に共通電  FIG. 31A is a plan view of the one-dimensional array type hydrogen gas detection sensor 110 of the seventh embodiment. FIG. 31 (b) is a cross-sectional view taken along the line WW in FIG. 31 (a). FIG. 31 (c) is a back view of the one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 (a). A one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 has a base material 101 made of quartz (SiO 2) that is formed in a substantially band shape and is electrically insulating.
2  2
極 102が形成されている。共通電極 102は基材 101の裏面における長手方向に沿 つて略帯状に形成されて 、る。  A pole 102 is formed. The common electrode 102 is formed in a substantially strip shape along the longitudinal direction on the back surface of the substrate 101.
[0165] センサセル 103を構成する検知膜は、水素ガスを検知すると電気的に絶縁状態か ら半導体状態又は導体状態に状態変化する白金分散担持三酸化タングステン (Pt -WO )で構成されている。センサセル 103の検知膜は、基材 101の表裏を貫通す[0165] The detection film constituting the sensor cell 103 is made of platinum-dispersed supported tungsten trioxide (Pt-WO) that changes its state from an electrically insulating state to a semiconductor state or a conductor state when hydrogen gas is detected. The detection film of the sensor cell 103 penetrates the front and back of the substrate 101.
3 Three
る貫通孔 106の内面に形成されており、基材 101の裏面の共通電極 102と、基材 10 1の表面の各貫通孔 106の周りに形成された検出電極 104とに接合されて形成され ている。貫通孔 106は、基材 101の長手方向に沿って直線上に配置されている。し たがって、貫通孔 106に形成されたセンサセル 103は 1次元配列となる直線上に配 設されている。  Formed on the inner surface of the through-hole 106 and bonded to the common electrode 102 on the back surface of the substrate 101 and the detection electrode 104 formed around each through-hole 106 on the surface of the substrate 101. ing. The through holes 106 are arranged on a straight line along the longitudinal direction of the substrate 101. Therefore, the sensor cells 103 formed in the through holes 106 are arranged on a straight line that is a one-dimensional array.
[0166] 上記のように、実施例 7の 1次元配列型の水素ガス検知センサ 110において、基材 101の表面には各センサセル 103と一対をなす検出電極 104が形成されており、各 検出電極 104は共通電極 102に接合している検知膜に接続されている。基材 101の 裏面に形成された共通電極 102は、全てのセンサセル 103の検知膜に接続されてい る。各検出電極 104には引出し線 108が接続されており、後述する位置検出装置 11 5A (図 35参照)に接続される。共通電極 102は、電流制限抵抗 112を介してバイァ ス電源 111に接続される。  [0166] As described above, in the one-dimensional array type hydrogen gas detection sensor 110 of Example 7, the detection electrode 104 paired with each sensor cell 103 is formed on the surface of the base 101, and each detection electrode is formed. 104 is connected to a sensing film bonded to the common electrode 102. The common electrode 102 formed on the back surface of the substrate 101 is connected to the detection films of all the sensor cells 103. A lead wire 108 is connected to each detection electrode 104, and is connected to a position detection device 115A (see FIG. 35) described later. The common electrode 102 is connected to the bias power supply 111 via the current limiting resistor 112.
[0167] 図 31で示す実施例 7の 1次元配列型の水素ガスセンサ 110は、基材 101の表面か ら裏面までを貫通する貫通孔 106を有することにより、基材 101の表面に接触した水 素ガスを含む被検知ガスを、貫通孔 106を通して裏面に排出することが可能となる。 これにより、基材 101の表面の水素ガスが基材 101の表面を拡散することがなぐ噴 出した水素ガスに接触するセンサセル 103の範囲が広がることを防止できる構成とな る。 A one-dimensional array type hydrogen gas sensor 110 of Example 7 shown in FIG. 31 has a through-hole 106 penetrating from the front surface to the back surface of the base material 101, so that the water in contact with the surface of the base material 101 The gas to be detected including the raw gas can be discharged to the back surface through the through hole 106. Accordingly, it is possible to prevent the range of the sensor cell 103 in contact with the ejected hydrogen gas from spreading the hydrogen gas on the surface of the base material 101 from diffusing on the surface of the base material 101.
なお、図 31に示した構成においては、貫通孔 106をセンサセル 103のみに形成し た例で説明したが、本発明はこのような構成に限定されるものではなぐ水素ガスを 基材 101の表面力も裏面に排出する貫通孔を、例えばセンサセル 103以外の基材 1 01の部分や、共通電極 102の部分や、検出電極 104の部分に、適当な間隔で設け てもよい。  In the configuration shown in FIG. 31, the example in which the through hole 106 is formed only in the sensor cell 103 has been described. However, the present invention is not limited to such a configuration. For example, through-holes for discharging the force to the back surface may be provided at appropriate intervals in the base material 101 other than the sensor cell 103, the common electrode 102, and the detection electrode 104, for example.
[0168] 次に、実施例 7の 1次元配列型の水素ガス検知センサ 110における水素ガス検知 の動作原理にっ 、て説明する。  Next, the operation principle of hydrogen gas detection in the one-dimensional array type hydrogen gas detection sensor 110 according to the seventh embodiment will be described.
図 31の(b)において、被検知ガスに含まれる水素ガス 126が矢印 Cで示した位置 でセンサセル 103に接触する。センサセル 103を形成する白金分散担持三酸化タン ダステンは、触媒として lnmから 10nm程度の粒径の白金(Pt)微粒子が、 10nmか ら lOOnm程度の粒径の三酸ィ匕タングステン (WO )微粒子上に分散担持されて!、る  In FIG. 31B, the hydrogen gas 126 contained in the gas to be detected contacts the sensor cell 103 at the position indicated by the arrow C. The platinum dispersion-supported tungsten trioxide, which forms the sensor cell 103, is a platinum (Pt) fine particle with a particle size of about lnm to 10nm as a catalyst, and a tungsten trioxide (WO) particle with a particle size of about 10nm to lOOnm. To be dispersed and supported!
3  Three
。この白金 (Pt)微粒子上で水素ガス 126はプロトン (H+)と電子 (e— )に解離される。 解離されたプロトン (H+)は、白金触媒微粒子上からスピルオーバーし、センサセル 1 03の主成分である三酸化タングステン (WO )に拡散し、タングステンブロンズを形成  . On the platinum (Pt) fine particles, the hydrogen gas 126 is dissociated into protons (H +) and electrons (e—). The dissociated proton (H +) spills over the platinum catalyst fine particles and diffuses into tungsten trioxide (WO), the main component of sensor cell 103, forming tungsten bronze.
3  Three
する。三酸ィ匕タングステン (WO )は、タングステンブロンズを形成していない状態に  To do. Tungsten trioxide (WO) has not formed tungsten bronze.
3  Three
おいて、電気的に絶縁に近い状態である力 プロトン (H+)が拡散し、タングステンブ ロンズを形成すると、半導体化し、さらに、水素ガスの濃度が高くなり多くのプロトン( H+)が拡散すると、半導体から導体に近い性質を示すようになる。一般に、センサセ ル 103の抵抗値は、センサセル 103に接触した水素ガス濃度と比例関係にある。図 3 1の(b)に示したように、センサセル 124が水素ガスに接触すると、センサセル 124は 半導体化し、その検知膜は、他のセンサセル 103と比較して、抵抗値が大幅に低下 する。このように、抵抗値が低下した検知膜を有するセンサセル 103にバイアス電源 111よりバイアス電圧が印加されて 、ると、電流が多く流れるようになる。  In this case, when the proton (H +), which is in an electrically close state, diffuses and forms tungsten bronze, it becomes a semiconductor, and when the concentration of hydrogen gas increases and many protons (H +) diffuse, It shows a property close to a conductor from a semiconductor. In general, the resistance value of the sensor cell 103 is proportional to the hydrogen gas concentration in contact with the sensor cell 103. As shown in (b) of FIG. 31, when the sensor cell 124 comes into contact with hydrogen gas, the sensor cell 124 becomes a semiconductor, and the resistance value of the detection film is significantly lower than that of the other sensor cells 103. As described above, when a bias voltage is applied from the bias power supply 111 to the sensor cell 103 having the detection film having a lowered resistance value, a large amount of current flows.
[0169] 図 32は実施例 7のガス検知装置の構成を示すブロック図であり、水素ガス検知セン サ 110およびこの水素ガス検知センサ 110に接続された位置検出装置 115を示して いる。以下、図 32を用いてガス漏洩箇所を検出するためのガス検知装置の動作につ いて説明する。なお、図 32においては、センサセル 103を等価回路により示す。 FIG. 32 is a block diagram showing the configuration of the gas detection device according to the seventh embodiment. A position detector 115 and a position detector 115 connected to the hydrogen gas detection sensor 110 are shown. Hereinafter, the operation of the gas detection device for detecting a gas leakage point will be described with reference to FIG. In FIG. 32, the sensor cell 103 is shown by an equivalent circuit.
[0170] 各センサセル 103は、共通電極 102が接続され、電流制限抵抗 112を介してバイ ァス電源 111よりバイアス電圧が印加されている。また、各センサセル 103は、各検 出電極 104を介して、オペアンプ 113と帰還抵抗 114で構成される各電流電圧変換 回路 130に接続される。各センサセル 103からの電流信号は、各電流電圧変換回路 130により電圧信号に変換され、マルチプレクサ 117に入力される。マルチプレクサ 1 17は、パーソナルコンピュータ(以下、 PCと略称) 120から指令を受けた制御回路 11 9の制御信号により、各電圧電流変換回路 130からの電圧信号の中から 1つの電圧 信号を選択し、その電圧信号を AZD変換回路 118に入力する。 AZD変換回路 11 8では、 PC120の力も指令を受けた制御回路 119の制御信号により、マルチプレク サ 117からの電圧信号をアナログデジタル変換し、 PC120に送信する。 PC120は、 AZD変換回路 118からの信号に基づき演算処理を行い、各センサセル 103を流れ る電流量に相当する電圧値を算出する。 Each sensor cell 103 is connected to a common electrode 102, and a bias voltage is applied from a bias power supply 111 via a current limiting resistor 112. Each sensor cell 103 is connected to each current-voltage conversion circuit 130 composed of an operational amplifier 113 and a feedback resistor 114 via each detection electrode 104. The current signal from each sensor cell 103 is converted into a voltage signal by each current-voltage conversion circuit 130 and input to the multiplexer 117. The multiplexer 117 selects one voltage signal from the voltage signals from each voltage-current conversion circuit 130 according to the control signal from the control circuit 119 received a command from the personal computer (hereinafter abbreviated as PC) 120, The voltage signal is input to the AZD conversion circuit 118. In the AZD conversion circuit 118, the voltage signal from the multiplexer 117 is converted from analog to digital by the control signal of the control circuit 119 that has received the command of the PC 120, and transmitted to the PC 120. The PC 120 performs arithmetic processing based on the signal from the AZD conversion circuit 118 and calculates a voltage value corresponding to the amount of current flowing through each sensor cell 103.
水素ガスの検知動作は、まず 1次元配列型の水素ガス検知センサ 110が水素ガス を検知していない状態にする。その状態における各センサセル 103に流れる電流量 に相当する電圧値を測定し、その測定値を各センサセル 103のオフセット値として、 PC 120内に記録する。  In the hydrogen gas detection operation, first, the one-dimensional array type hydrogen gas detection sensor 110 is in a state where it does not detect hydrogen gas. A voltage value corresponding to the amount of current flowing through each sensor cell 103 in that state is measured, and the measured value is recorded in PC 120 as an offset value of each sensor cell 103.
[0171] 次に、 1次元配列型の水素ガス検知センサ 110が水素ガスを検知した状態にして、 各センサセル 103を流れる電流量に相当する電圧値を計測し、その計測値を各セン サセル 103の水素ガス検知時の計測値として PC120内に記録する。その後、 PC12 0内に蓄積された各センサセル 103の水素ガス検知時の計測値力も前記のオフセッ ト値を減算し、その減算した値を水素ガス検出時のセンサセル 103の出力信号の変 化値として PC 120内に記録する。各センサセル 103の出力信号の変化値は、各セン サセル 103の電気的な抵抗値の変化に相当する電圧値であり、検知した水素ガスの 濃度と比例関係にある。  Next, with the one-dimensional array type hydrogen gas detection sensor 110 detecting hydrogen gas, a voltage value corresponding to the amount of current flowing through each sensor cell 103 is measured, and the measured value is measured for each sensor cell 103. Recorded in PC120 as measured value when hydrogen gas is detected. Then, the measured value force at the time of hydrogen gas detection of each sensor cell 103 accumulated in the PC 120 is also subtracted from the offset value, and the subtracted value is used as a change value of the output signal of the sensor cell 103 at the time of hydrogen gas detection. Record in PC 120. The change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
上記のように演算処理することにより、 1次元配列型の水素ガス検知センサ 110の 各センサセル 103が検知した水素ガスの濃度に比例する信号の変化値の分布が求 められ、水素ガスを検知した位置を算出することができる。 By performing arithmetic processing as described above, one-dimensional array type hydrogen gas detection sensor 110 A distribution of change values of signals proportional to the concentration of hydrogen gas detected by each sensor cell 103 is obtained, and the position where hydrogen gas is detected can be calculated.
[0172] 次に、水素ガスを検知した位置の算出方法の 1例について説明する。まず、水素ガ スの検知位置が 1箇所の場合は、各センサセル 103の出力信号の変化値が最も大き いセンサセル 103の位置を、水素ガスを検知した位置とする方法を用いる。この位置 は、水素ガスの濃度が高い位置である。  [0172] Next, an example of a method for calculating the position where hydrogen gas is detected will be described. First, when the detection position of hydrogen gas is one, a method is used in which the position of the sensor cell 103 having the largest change value of the output signal of each sensor cell 103 is set as the position where hydrogen gas is detected. This position is a position where the concentration of hydrogen gas is high.
水素ガスを検知位置が複数の場合は、連続して配置された 3点のセンサセル 103 において、両隣のセンサセル 103の出力信号の変化値より大きい値を示すセンサセ ル 103の位置を、水素ガスを検知した位置とする方法を用いる。  When there are multiple hydrogen gas detection positions, the hydrogen gas is detected at the position of the sensor cell 103 that shows a value greater than the change value of the output signal of the adjacent sensor cell 103 in the three consecutively arranged sensor cells 103. The method of setting the position is used.
[0173] 実施例 7の 1次元配列型の水素ガス検知センサ 110における実験結果を、図 33の  [0173] The experimental results in the one-dimensional array type hydrogen gas detection sensor 110 of Example 7 are shown in FIG.
(a)および (b)を用いて説明する。  This will be described with reference to (a) and (b).
図 33の(a)は、本実験において用いた 1次元配列型の水素ガス検知センサ 110の 断面図である。図 33の(a)に示した構成は前述の図 31に示した構成と基本的に同じ である。図 33の(a)に示すように、本実験で用いた水素ガス検知センサ 110は、 12 個のセンサセル 103を有している。以下、各センサセル 103には一端側力も順番に X 1から XI 2までの番号を付して、各センサセル 103を特定してその番号で説明する。  FIG. 33 (a) is a cross-sectional view of the one-dimensional array type hydrogen gas detection sensor 110 used in this experiment. The configuration shown in (a) of FIG. 33 is basically the same as the configuration shown in FIG. 31 described above. As shown in FIG. 33 (a), the hydrogen gas detection sensor 110 used in this experiment has twelve sensor cells 103. In the following, each sensor cell 103 is given a number from X 1 to XI 2 in order of the one-end side force, and each sensor cell 103 is identified and described with that number.
[0174] 図 33においては、 1次元配列型の水素ガス検知センサ 110がセンサセル X3とセン サセル X8の箇所で水素ガスを検知した例を示している。バイアス電源 111は、直流 電圧 5Vを共通電極 102に印加している。電流制限抵抗 112は 10ΚΩである。各検 出電極 104からのバイアス電流は、約 1 Aであった。水素ガスを含む被検知ガスを 噴出するノズルは、ガス噴出口の直径が lmmの円形であり、噴出方向は下向きであ る。図 33において、噴出方向を矢印 Cで示し、ノズルはセンサセル X3とセンサセル X 8に被検知ガスを吹き付ける位置に配置されている。被検知ガスは、体積 1%の水素 ガスを含む空気とした。  FIG. 33 shows an example in which the one-dimensional array type hydrogen gas detection sensor 110 detects hydrogen gas at the sensor cell X3 and the sensor cell X8. The bias power supply 111 applies a DC voltage of 5 V to the common electrode 102. The current limiting resistor 112 is 10Ω. The bias current from each detection electrode 104 was about 1 A. The nozzle that ejects the gas to be detected, including hydrogen gas, has a circular shape with a gas outlet diameter of lmm, and the ejection direction is downward. In FIG. 33, the ejection direction is indicated by an arrow C, and the nozzles are arranged at positions where the gas to be detected is blown to the sensor cell X3 and the sensor cell X8. The gas to be detected was air containing 1% volume of hydrogen gas.
[0175] 図 33の(b)は、本実験において測定された、各センサセル XIから XI 2の信号の変 化値に相当する電圧値を示す。被検知ガスを噴出するノズルが配置されているセン サセル X3およびセンサセル X8は、その測定電圧値が他のセンサセル 103より高い 値となっている。したがって、本実験で用いた 1次元配列型の水素ガス検知センサが 、複数の水素ガスの検知位置を正確に検出していることを確認した。 [0175] Fig. 33 (b) shows voltage values corresponding to the change values of the signals of the sensor cells XI to XI2 measured in this experiment. The sensor cell X3 and the sensor cell X8 in which the nozzle for ejecting the gas to be detected is arranged have a higher measured voltage value than the other sensor cells 103. Therefore, the one-dimensional array type hydrogen gas detection sensor used in this experiment It was confirmed that multiple hydrogen gas detection positions were accurately detected.
次に、本実験において用いた 1次元配列型の水素ガス検知センサの作成方法につ いて、図 31の(a)、(b)および (c)を用いて説明する。  Next, a method for producing a one-dimensional array type hydrogen gas detection sensor used in this experiment will be described with reference to FIGS. 31 (a), (b) and (c).
[0176] 本実験において用いた 1次元の水素ガス検知センサの基材 101には、長さ 60mm 、幅 5mm、厚み 0. 5mmの石英(SiO )を用いた。基材 101には、センサセル 103の [0176] As the base material 101 of the one-dimensional hydrogen gas detection sensor used in this experiment, quartz (SiO 2) having a length of 60 mm, a width of 5 mm, and a thickness of 0.5 mm was used. The base material 101 includes the sensor cell 103.
2  2
貫通孔 106を形成するため、直径 Φ 3mmの貫通孔を 5mmピッチ間隔で 12個形成 した。  In order to form the through holes 106, 12 through holes having a diameter of 3 mm were formed at intervals of 5 mm.
基材 101の裏面の共通電極 102は、金(Au)をスパッタ法を用いて、厚み 0. 5 m に形成した。基材 101の表面に形成する検出電極 104は、金 (Au)をスノッタ法を用 いて、各貫通孔 106を中心として基材 101の幅方向に 5mmの長さで、長手方向に 4 mmの長さで、厚み 0. 5 μ mで 12個形成した。なお、共通電極 102および検出電極 104をスパッタリングする際には、貫通孔 106の内部に金 (Au)が蒸着されないように マスキングした。  The common electrode 102 on the back surface of the base material 101 was formed to a thickness of 0.5 m using gold (Au) by sputtering. The detection electrode 104 formed on the surface of the base material 101 has a length of 5 mm in the width direction of the base material 101 and a length of 4 mm in the longitudinal direction around each through-hole 106 using gold (Au) using a notch method. Twelve were formed with a length of 0.5 μm. Note that when sputtering the common electrode 102 and the detection electrode 104, masking was performed so that gold (Au) was not deposited inside the through hole 106.
[0177] 次に、センサセル 103となる白金分散担持三酸ィ匕タングステン (Pt—WO )で構成  [0177] Next, it is composed of platinum dispersion-supported tungsten trioxide (Pt—WO) serving as the sensor cell 103.
3 される検知膜を形成した。検知膜の形成方法としては、ゾルゲル法を用いた。具体的 には、まず、タングステン酸ナトリウム二水和物(Na WO · 2Η Ο :純正化学株式会  3 The sensing film to be formed was formed. A sol-gel method was used as a method for forming the detection film. Specifically, first, sodium tungstate dihydrate (Na WO 2Η Η: Pure Chemical Co., Ltd.)
2 4 2  2 4 2
社製) 41. 2gをメスフラスコに取り、純水をカ卩えて 250mLに調製し、 0. 5mol/Lの 無色透明のタングステン酸ナトリウム(Na WO )水溶液を得た。  41.2 g was taken in a volumetric flask, and pure water was added to prepare 250 mL to obtain a 0.5 mol / L colorless and transparent aqueous solution of sodium tungstate (Na 2 WO 3).
2 4  twenty four
[0178] 次に、陽イオン交換榭脂 (アンバーライト IR120B Na:オルガノ株式会社製)をカラ ム塔に充填し、タングステン酸ナトリウム (Na W04)水溶液を通過させ、タングステン  [0178] Next, a cation exchange resin (Amberlite IR120B Na: manufactured by Organo Corporation) was packed into a column tower, and a sodium tungstate (Na W04) aqueous solution was passed through it.
2  2
酸ナトリウム (Na WO )水溶液のナトリウムイオン (Na + )をプロトン (H + )に交換し、  Exchange sodium ions (Na +) in sodium acid (Na WO) aqueous solution with protons (H +),
2 4  twenty four
薄黄色のタングステン酸 (H WO )水溶液を得た。タングステン酸 (H WO )水溶液  A pale yellow tungstic acid (H 2 WO 3) aqueous solution was obtained. Tungstic acid (H WO) aqueous solution
2 4 2 4  2 4 2 4
13mLに触媒金属であるへキサクロ口白金酸 (H PtCl · 6Η Ο :和光純薬工業株式  13 mL of catalytic metal hexacro-platinic acid (H PtCl 6Η Ο: Wako Pure Chemical Industries Ltd.
2 6 2  2 6 2
会社製)を純水に、 0. 5molZL溶解させた水溶液を 4mLと、エタノールを 8mL加え て均一に分散混合し、白金分散型酸化タングステンのゾルゲル溶液を合成した。  4mL of an aqueous solution in which 0.5molZL was dissolved in pure water and 8mL of ethanol were uniformly dispersed and mixed to synthesize a sol-gel solution of platinum-dispersed tungsten oxide.
[0179] 上記ゾルゲル溶液を、基材 101の貫通孔 106の内面およびその周囲 lmmの部分 に塗布した。塗布は、前記貫通孔 106およびその周囲 lmm以外の部分をマスキン グした基材 101を前記ゾルゲル液中にディップすることにより行った。基材 101のディ ップ時間は約 20秒で、基材 101をゾルゲル溶液から引き上げた後に窒素ガスを吹き 付けて、余分なゾルゲル液を除去した。 [0179] The sol-gel solution was applied to the inner surface of the through-hole 106 of the substrate 101 and the surrounding lmm portion. The coating was performed by dipping the substrate 101 on which the portions other than the through hole 106 and the surrounding lmm were masked into the sol-gel solution. Base material 101 The rip time was about 20 seconds, and the substrate 101 was lifted from the sol-gel solution, and then nitrogen gas was blown to remove excess sol-gel solution.
その後、室温にて 1時間乾燥させた後にマスキングを除去し、さらに、電気炉を用い て 200°Cで 1時間仮焼成した。このように 200°Cで焼成した後、 500°Cで 3時間焼成 してから室温にて冷却した。このときのセンサセル 103の検知膜の膜厚は 0. 3 μ mで めつに。  Then, after drying at room temperature for 1 hour, the masking was removed, and further pre-baked at 200 ° C. for 1 hour using an electric furnace. After firing at 200 ° C. in this way, firing was performed at 500 ° C. for 3 hours and then cooled at room temperature. At this time, the thickness of the detection film of the sensor cell 103 is 0.3 μm.
上記のように製作した 1次元配列型の水素ガス検知センサ 110にお 、て、共通電 極 102と各検出電極 104との間の各抵抗値 (以下、接合抵抗と略称)を測定した。各 接合抵抗は、それぞれ約 5Μ Ωであった。  In the one-dimensional array type hydrogen gas detection sensor 110 manufactured as described above, each resistance value between the common electrode 102 and each detection electrode 104 (hereinafter referred to as junction resistance) was measured. Each junction resistance was about 5 Ω.
[0180] 図 34は、前述の図 31に示した 1次元配列型の水素ガス検知センサ 110と異なる構 造を有する 1次元配列型の水素ガス検知センサ 11 OAを示す。 FIG. 34 shows a one-dimensional array type hydrogen gas detection sensor 11 OA having a structure different from that of the one-dimensional array type hydrogen gas detection sensor 110 shown in FIG. 31 described above.
図 34の(a)および (b)に示した 1次元配列型の水素ガス検知センサ 110Aは、細長 い略帯板状の基材 101の一方の面(表面)に、共通電極 102、センサセル 103の検 知膜および検出電極 104を形成した構造を有する。図 34の(a)は水素ガス検知セン サ 110Aの平面図であり、(b)は、(a)の水素ガス検知センサ 110Aの X— X線による 断面図である。  The one-dimensional array type hydrogen gas detection sensor 110A shown in FIGS. 34 (a) and 34 (b) has a common electrode 102, a sensor cell 103 on one surface (front surface) of an elongated substantially strip-like substrate 101. The detection film and the detection electrode 104 are formed. 34 (a) is a plan view of the hydrogen gas detection sensor 110A, and FIG. 34 (b) is a cross-sectional view of the hydrogen gas detection sensor 110A of FIG.
[0181] 図 34に示した 1次元配列型の水素ガス検知センサ 110Aは、電気的に絶縁性を有 する略帯板状の石英(SiO )の基材 101の表面の一部に共通電極 102が形成され  [0181] The one-dimensional array type hydrogen gas detection sensor 110A shown in FIG. 34 has a common electrode 102 on a part of the surface of a substantially strip-shaped quartz (SiO 2) base material 101 having electrical insulation properties. Formed
2  2
ている。共通電極 102は、基材 101の表面において所定幅を有して長手方向に沿つ て細長い略帯状に形成されている。また、基材 101の表面には、水素ガスを検知す ると電気的に絶縁状態から半導体状態に状態変化する白金分散担持三酸化タンダ ステン (Pt— WO )の検知膜であるセンサセル 103が複数の微少領域に形成されて  ing. The common electrode 102 has a predetermined width on the surface of the base material 101 and is formed in a substantially strip shape along the longitudinal direction. Further, on the surface of the base material 101, a plurality of sensor cells 103, which are detection films of platinum-dispersed supported tandane trioxide (Pt—WO) that changes from an electrically insulated state to a semiconductor state when hydrogen gas is detected, are provided. Formed in the minute area of
3  Three
いる。センサセル 103は所定の間隔を有して略直線状に配置されており、且つ、全て のセンサセル 103の一端が共通電極 102に電気的に接続するように配置されている 。さらに、基材 101の表面には各センサセル 103に対応して検出電極 104が形成さ れている。それぞれの検出電極 104はセンサセル 103を間にして共通電極 102と対 をなしており、各検出電極 104と共通電極 102とはセンサセル 103を介して接続され ている。センサセル 103の水素ガスの検知領域は、センサセル 103と共通電極 101 の接続部分と、センサセル 103と検出電極 104の接続部分との間となる。検知信号と なる電流信号を出力する引出し線 108は、その一端が各検出電極 104の端に接続さ れ、他端が位置検出装置 115の電流電圧変換回路 130 (図 32参照)に接続される。 上記のように構成された図 34の 1次元配列型の水素ガス検知センサ 110Aにお ヽ ては、共通電極 102が電流制限抵抗 112を介してバイアス電源 111に接続されてお り、図 32に示した水素ガス検知センサ 110と同様に被検知ガスに含まれる水素ガス を検知できる構成となる。 Yes. The sensor cells 103 are arranged in a substantially straight line with a predetermined interval, and one end of all the sensor cells 103 is arranged to be electrically connected to the common electrode 102. Furthermore, detection electrodes 104 are formed on the surface of the substrate 101 corresponding to the sensor cells 103. Each detection electrode 104 is paired with the common electrode 102 with the sensor cell 103 in between, and each detection electrode 104 and the common electrode 102 are connected via the sensor cell 103. The detection area of hydrogen gas in the sensor cell 103 is the same as that of the sensor cell 103 and the common electrode 101. Between the sensor cell 103 and the detection electrode 104. One end of the lead line 108 that outputs a current signal as a detection signal is connected to the end of each detection electrode 104, and the other end is connected to the current-voltage conversion circuit 130 (see FIG. 32) of the position detection device 115. . In the one-dimensional array type hydrogen gas detection sensor 110A of FIG. 34 configured as described above, the common electrode 102 is connected to the bias power supply 111 via the current limiting resistor 112, and FIG. Similar to the hydrogen gas detection sensor 110 shown, the hydrogen gas contained in the gas to be detected can be detected.
[0182] 図 34の 1次元配列型の水素ガス検知センサ 110Aは、貫通孔が不要な構成であり 、構造が簡易である。但し、図 34の水素ガス検知センサ 110Aは、基材 101の表面 カゝら裏面へ水素ガスを含む被検知ガスを排出する機能を有していないため、基材 10 1の表面で水素ガスが拡散し、水素ガスを検知したセンサセルの範囲が広がりやすく 、水素ガスの検知位置の検出精度が低下する場合がある。 [0182] The one-dimensional array type hydrogen gas detection sensor 110A of Fig. 34 has a configuration that does not require a through hole and has a simple structure. However, since the hydrogen gas detection sensor 110A in FIG. 34 does not have a function of discharging the gas to be detected including hydrogen gas from the front surface to the back surface of the base material 101, the hydrogen gas is detected on the surface of the base material 101. The range of the sensor cell that has diffused and detected hydrogen gas tends to expand, and the detection accuracy of the hydrogen gas detection position may be reduced.
図 34に示した構成において、被検知ガスを排出する貫通孔を適当な間隔を有して 形成し、水素ガス検出感度を向上させることは、もちろん可能である。なお、貫通孔の 位置は、センサセル 103上に設けてもよいし、それ以外に設けてもよい。  In the configuration shown in FIG. 34, it is of course possible to improve the hydrogen gas detection sensitivity by forming through holes for discharging the gas to be detected with appropriate intervals. Note that the position of the through hole may be provided on the sensor cell 103 or may be provided elsewhere.
[0183] 図 35は、前述の図 32に示した位置検出装置 115と異なる構成を有する位置検出 装置 115 Aを用いたガス検知装置を示すブロック図である。 FIG. 35 is a block diagram showing a gas detection device using position detection device 115 A having a configuration different from that of position detection device 115 shown in FIG. 32 described above.
以下に、図 35に示したガス検知装置における、 1次元配列型の水素ガス検知セン サ 110による水素ガス検知位置の算出方法について説明する。図 35に示した位置 検出装置 115Aは、電流電圧変換回路 130が 1つであり、簡易な回路構成を実現で きる特徴を有する。  A method for calculating the hydrogen gas detection position by the one-dimensional array type hydrogen gas detection sensor 110 in the gas detection device shown in FIG. 35 will be described below. The position detection device 115A shown in FIG. 35 has a single current-voltage conversion circuit 130 and has a feature that a simple circuit configuration can be realized.
図 35に示した 1次元配列型の水素ガス検知センサ 110としては、前述の図 31およ び図 34で示した 1次元配列型の水素ガス検知センサのいずれの構造でも用いること が可能である。なお、図 35においては、センサセル 103を等価回路により示している  As the one-dimensional arrangement type hydrogen gas detection sensor 110 shown in FIG. 35, any structure of the one-dimensional arrangement type hydrogen gas detection sensor shown in FIG. 31 and FIG. 34 described above can be used. . In FIG. 35, the sensor cell 103 is shown by an equivalent circuit.
[0184] 各センサセル 103に接続された検出電極 104は、切り換えスィッチである検出スィ ツチ 134の複数の端子に接続されている。この検出スィッチ 134のコモン端子には、 電流制限抵抗 112を介してバイアス電源 111に接続されて!、る。検出スィッチ 134は 、パーソナルコンピュータ(以下、 PCと略称) 120に制御回路 119を介して接続され ており、 PC120の指令により、任意の 1つのセンサセル 103にバイアス電圧を印加す る機能を有する。各センサセル 103に接続された共通電極 102は、帰還抵抗 114と オペアンプ 113で構成された電流電圧変換回路 130に接続されて!ヽる。電流電圧変 換回路 130は、 PC120で制御される AZD変換回路 118に接続されている。そして 、 AZD変換回路 118の出力は PC120に入力される。 [0184] The detection electrode 104 connected to each sensor cell 103 is connected to a plurality of terminals of a detection switch 134 which is a switching switch. The common terminal of the detection switch 134 is connected to the bias power supply 111 via the current limiting resistor 112. Detection switch 134 It is connected to a personal computer (hereinafter abbreviated as PC) 120 via a control circuit 119, and has a function of applying a bias voltage to any one sensor cell 103 in accordance with a command from the PC 120. The common electrode 102 connected to each sensor cell 103 is connected to a current-voltage conversion circuit 130 composed of a feedback resistor 114 and an operational amplifier 113. The current / voltage conversion circuit 130 is connected to the AZD conversion circuit 118 controlled by the PC 120. The output of the AZD conversion circuit 118 is input to the PC 120.
以上のように、図 35に示した 1次元配列型のガス検知装置においては、図 31およ び図 34の水素ガス検知センサにおける共通電極 102と検出電極 104とは接続方向 が異なっている。  As described above, in the one-dimensional array type gas detection device shown in FIG. 35, the connection directions of the common electrode 102 and the detection electrode 104 in the hydrogen gas detection sensor shown in FIGS. 31 and 34 are different.
次に、図 35に示した位置検出装置 115Aの動作原理について説明する。  Next, the operation principle of the position detection device 115A shown in FIG. 35 will be described.
まず、 1次元配列型の水素ガス検知センサ 110が、水素ガスを検知していない状態 にする。この水素ガスを検知していない状態において、 PC120は、検出スィッチ 134 を切換えて、測定するセンサセル 103にバイアス電圧を印加する。バイアス電圧が印 カロされた各センサセル 103は、バイアス電圧によりセンサセル 103が水素ガスを検知 して 、な 、状態の電流( =バイアス電流)を電流電圧変換回路 130に出力する。電 流電圧変換回路 130は、そのバイアス電流を電流電圧変換して電圧信号とし、 / D変換回路 118に入力する。 AZD変換回路 118は、入力された電圧信号をデジタ ル信号に変換して PC120へ送信する。 PC120は、バイアス電圧が印加されている センサセル 103のバイアス電流に相当するデジタル信号をオフセット値として記録す る。 PC120は、このように順次検出スィッチ 134を切換えて、全てのセンサセル 103 のオフセット値を記録する。  First, the one-dimensional array type hydrogen gas detection sensor 110 is in a state where it does not detect hydrogen gas. In a state where the hydrogen gas is not detected, the PC 120 switches the detection switch 134 and applies a bias voltage to the sensor cell 103 to be measured. Each sensor cell 103 to which the bias voltage has been applied detects the hydrogen gas based on the bias voltage, and outputs a current (= bias current) of the state to the current-voltage conversion circuit 130. The current-voltage conversion circuit 130 converts the bias current into a voltage signal, which is converted into a voltage signal and input to the / D conversion circuit 118. The AZD conversion circuit 118 converts the input voltage signal into a digital signal and transmits it to the PC 120. The PC 120 records a digital signal corresponding to the bias current of the sensor cell 103 to which the bias voltage is applied as an offset value. The PC 120 sequentially switches the detection switches 134 in this way, and records the offset values of all the sensor cells 103.
次に、 1次元配列型の水素ガス検知センサ 110が、水素ガスを検知している状態に する。この水素ガスを検知している状態において、 PC120は、検出スィッチ 134を切 り替え、測定するセンサセル 103に順次バイアス電圧を印加する。このとき、バイアス 電圧が印加された各センサセル 103は、水素ガスを検知している状態の電流信号を 電流電圧変換回路 130に出力する。電流電圧変換回路 130は、電流信号を変換し て電圧信号を形成し、 AZD変換回路 118に出力する。 AZD変換回路 118は、入 力された電圧信号をデジタル信号に変換して、 PC120に送信する。 PC120は、バイ ァス電圧が印加されているセンサセル 103の電流信号に相当するデジタル信号を、 水素ガス検知時の計測値として記録する。 PC120は、このように順次検出スィッチ 1 34を切換えて、全てのセンサセル 103の水素ガス検知時の計測値を記録する。 Next, the one-dimensional array type hydrogen gas detection sensor 110 is in a state of detecting hydrogen gas. In the state of detecting this hydrogen gas, the PC 120 switches the detection switch 134 and sequentially applies a bias voltage to the sensor cell 103 to be measured. At this time, each sensor cell 103 to which the bias voltage is applied outputs a current signal in a state of detecting hydrogen gas to the current-voltage conversion circuit 130. The current / voltage conversion circuit 130 converts the current signal to form a voltage signal and outputs the voltage signal to the AZD conversion circuit 118. The AZD conversion circuit 118 converts the input voltage signal into a digital signal and transmits it to the PC 120. PC120 A digital signal corresponding to the current signal of the sensor cell 103 to which the false voltage is applied is recorded as a measurement value when hydrogen gas is detected. The PC 120 sequentially switches the detection switches 134 in this way, and records the measurement values when all the sensor cells 103 detect the hydrogen gas.
[0186] 次に、 PC120は各センサセル 103の水素ガス検知時の計測値から前記のオフセッ ト値を減算する。そして、 PC120は、減算した値を水素ガス検出時のセンサセル 103 の出力信号の変化値として PC 120内に記録する。各センサセル 103の出力信号の 変化値は、各センサセル 103の電気的な抵抗値の変化に相当する電圧値であり、検 知した水素ガスの濃度と比例関係がある。 [0186] Next, the PC 120 subtracts the offset value from the measured value when the hydrogen gas is detected in each sensor cell 103. Then, the PC 120 records the subtracted value in the PC 120 as a change value of the output signal of the sensor cell 103 when hydrogen gas is detected. The change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
次に、水素ガスを検知した位置の算出方法の 1例について説明する。まず、水素ガ スの検知位置が 1箇所の場合は、各センサセル 103の出力信号の変化値が最も大き いセンサセル 103の位置を、水素ガスを検知した位置とする方法を用いる。この位置 は、水素ガスの濃度が高い位置である。  Next, an example of a method for calculating the position where hydrogen gas is detected will be described. First, when the detection position of hydrogen gas is one, a method is used in which the position of the sensor cell 103 having the largest change value of the output signal of each sensor cell 103 is set as the position where hydrogen gas is detected. This position is a position where the concentration of hydrogen gas is high.
水素ガスを検知位置が複数の場合は、連続して配置された 3点のセンサセル 103 において、両隣のセンサセル 103の出力信号の変化値より大きい値を示すセンサセ ル 103の位置を、水素ガスを検知した位置とする方法を用いる。  When there are multiple hydrogen gas detection positions, the hydrogen gas is detected at the position of the sensor cell 103 that shows a value greater than the change value of the output signal of the adjacent sensor cell 103 in the three consecutively arranged sensor cells 103. The method of setting the position is used.
上記のように、図 35で示す構成の位置検出装置 115 Aを用 、ても 1次元配列型の 水素検知センサの水素ガス検知位置を高精度に算出できる。  As described above, the position detection device 115A having the configuration shown in FIG. 35 can be used to calculate the hydrogen gas detection position of the one-dimensional array type hydrogen detection sensor with high accuracy.
実施例 8  Example 8
[0187] 次に、本発明に係る実施例 8のガス検知装置について説明する。実施例 8のガス検 知装置は、実施例 7で説明した 1次元配列型の水素ガス検知センサ 110と位置検出 装置 115Bとを有して構成されている。実施例 8のガス検知装置における位置検出装 置 115Bは、 1次元の抵抗分割式の構成を有しており、簡易な回路で構成できる特徴 を有する。  Next, a gas detection apparatus according to Example 8 of the present invention will be described. The gas detection apparatus according to the eighth embodiment includes the one-dimensional array type hydrogen gas detection sensor 110 and the position detection apparatus 115B described in the seventh embodiment. The position detection device 115B in the gas detection device of the eighth embodiment has a one-dimensional resistance division type configuration and can be configured with a simple circuit.
[0188] 実施例 8のガス検知装置の構成について図 36を用いて説明する。図 36は、実施 例 8のガス検知装置の構成を示すブロック図である。実施例 8における 1次元配列型 の水素ガス検知センサ 110は、前述の実施例 7における図 31および図 34で示した 1 次元配列型の水素ガス検知センサと同じ構造である。 1次元配列型の水素検知セン サ 110の各センサセル 103 (図 36においては等価回路で示す)に接続された検出電 極 104は、隣接する検出電極 104と電流分割抵抗 141を介して接続されている。 1次 元配列型の水素ガス検知センサ 110の両端の検出電極 104の出力信号は、電流電 圧変換回路 130aまたは電流電圧変換回路 130bに入力されるよう接続されている。 一方、共通電極 102は、電流制限抵抗 112を介してバイアス電源 111に接続されて いる。 The configuration of the gas detector of Example 8 will be described with reference to FIG. FIG. 36 is a block diagram illustrating a configuration of the gas detection device according to the eighth embodiment. The one-dimensional arrangement type hydrogen gas detection sensor 110 in the eighth embodiment has the same structure as the one-dimensional arrangement type hydrogen gas detection sensor shown in FIGS. 31 and 34 in the seventh embodiment. Detecting power connected to each sensor cell 103 (shown as an equivalent circuit in FIG. 36) of the one-dimensional array type hydrogen detecting sensor 110 The pole 104 is connected to the adjacent detection electrode 104 via a current dividing resistor 141. The output signals of the detection electrodes 104 at both ends of the one-dimensional array type hydrogen gas detection sensor 110 are connected to be input to the current-voltage conversion circuit 130a or the current-voltage conversion circuit 130b. On the other hand, the common electrode 102 is connected to a bias power supply 111 via a current limiting resistor 112.
[0189] 電流電圧変換回路 130aおよび 130bのそれぞれの出力信号は、 AZD変換回路 1 18aおよび 118bに入力されてアナログ信号力もデジタル信号に変換される。 Α/Ό 変換回路 118aおよび 118bから出力された各デジタル信号は、加算器 130と除算器 139にそれぞれ入力される。さらに、加算器 138および除算器 139からの各デジタル 信号は、 DZA変換回路 140aおよび 140bにおいて、それぞれがデジタル信号から アナログ信号に変換される。 DZA変換回路 140aからの電圧信号は第 1の出力 142 として出力され、 DZA変換回路 140bからの電圧信号は第 2の出力 143として出力 される。  [0189] The output signals of the current-voltage conversion circuits 130a and 130b are input to the AZD conversion circuits 118a and 118b, and the analog signal power is also converted into digital signals. The digital signals output from the Α / Ό conversion circuits 118a and 118b are input to the adder 130 and the divider 139, respectively. Further, each digital signal from the adder 138 and the divider 139 is converted from a digital signal to an analog signal in the DZA conversion circuits 140a and 140b, respectively. The voltage signal from the DZA conversion circuit 140a is output as the first output 142, and the voltage signal from the DZA conversion circuit 140b is output as the second output 143.
[0190] 次に、図 36を用いて実施例 8における位置検出装置 115Bの動作原理について説 明する。  Next, the operation principle of the position detection device 115B in Embodiment 8 will be described using FIG.
前述のように、 1次元配列型の水素ガス検知センサ 110の検出電極 104は、隣接 する検出電極 104と電流分割抵抗 141で接続されている。また、 1次元配列型の水 素ガス検知センサ 110の両端の検出電極 104は、電流電圧変換回路 130a、 130b の入力に接続されている。各検出電極 104からの出力電流は、電流電圧変換回路 1 30aと電流電圧変換回路 130bとの間に接続された電流分割用抵抗 141により電流 分割され、電流電圧変換回路 130aおよび電流電圧変換回路 130bに入力される。  As described above, the detection electrode 104 of the one-dimensional array type hydrogen gas detection sensor 110 is connected to the adjacent detection electrode 104 by the current dividing resistor 141. The detection electrodes 104 at both ends of the one-dimensional array type hydrogen gas detection sensor 110 are connected to the inputs of the current-voltage conversion circuits 130a and 130b. The output current from each detection electrode 104 is current-divided by a current dividing resistor 141 connected between the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b, and the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b. Is input.
[0191] 実施例 8において、 1次元配列型の水素ガス検知センサ 110が水素ガスを検知して いない状態における電流電圧変換回路 130aに流れる電流を Ilb、電流電圧変換回 路 130bに流れる電流を I2bとする。電流 libおよび I2bは、電流電圧変換回路 130a および電流電圧変換回路 130bにおいて電圧信号に変換される。変換された電圧信 号は、 AZD変換回路 118aおよび AZD変換回路路 118bに送られて、デジタル信 号に変換される。変換されたデジタル信号は、加算器 138および除算器 139に送ら れる。加算器 138および除算器 139では、このときの各デジタル信号を水素ガスを検 知していない状態のバイアス電流 I lb、 I2bに相当する値として保持する。 [0191] In Example 8, the current flowing through the current-voltage conversion circuit 130a is Ilb and the current flowing through the current-voltage conversion circuit 130b is I2b when the one-dimensional array type hydrogen gas detection sensor 110 is not detecting hydrogen gas. And The currents lib and I2b are converted into voltage signals in the current-voltage conversion circuit 130a and the current-voltage conversion circuit 130b. The converted voltage signal is sent to the AZD conversion circuit 118a and the AZD conversion circuit path 118b to be converted into a digital signal. The converted digital signal is sent to an adder 138 and a divider 139. The adder 138 and divider 139 detect the hydrogen gas from each digital signal at this time. Hold as a value corresponding to bias currents I lb and I2b in an unknown state.
[0192] 次に、 1次元配列型の水素ガス検知センサのセンサセル 103が水素ガスを検知し た状態とする。この水素ガスを検知した状態における電流電圧変換回路 130aに流 れる電流を II、電流電圧変換回路 130bに流れる電流を 12とする。前述のバイアス電 流と同様に、電流 IIおよび 12を電流電圧変換の後にデジタル信号に変換し、加算器 138および除算器 139に送られる。加算器 138および除算器 139においては、保持 していたバイアス電流 libおよび I2bに相当するデジタル信号を、水素ガスを検知し たときの電流 IIおよび 12に相当するデジタル信号力も各々減算する。そして、加算器 138および除算器 139では、下記の式(22)および式(23)に相当する加算および除 算の演算処理を行う。これらの加算および除算の算出結果は、デジタルの電気信号 として出力され、 DZA変換回路 140aおよび 140bによりアナログの電気信号の算出 結果 E1および E2として出力される。 Next, assume that the sensor cell 103 of the one-dimensional array type hydrogen gas detection sensor detects hydrogen gas. It is assumed that the current flowing through the current-voltage conversion circuit 130a in the state where the hydrogen gas is detected is II, and the current flowing through the current-voltage conversion circuit 130b is 12. Similar to the bias current described above, currents II and 12 are converted to digital signals after current-voltage conversion and sent to adder 138 and divider 139. In the adder 138 and the divider 139, the digital signals corresponding to the bias currents lib and I2b held are also subtracted from the digital signal forces corresponding to the currents II and 12 when hydrogen gas is detected, respectively. The adder 138 and the divider 139 perform addition and division arithmetic processing corresponding to the following equations (22) and (23). The calculation results of these additions and divisions are output as digital electrical signals, and are output as analog electrical signal calculation results E1 and E2 by the DZA conversion circuits 140a and 140b.
[0193] El =k31 X{(I1— lib) + (12— I2b)} (22) [0193] El = k31 X {(I1— lib) + (12— I2b)} (22)
[0194] E2=k32 X (12— I2b) /{(ll— lib) + (12— I2b)} [0194] E2 = k32 X (12—I2b) / {(ll—lib) + (12—I2b)}
(23)  (twenty three)
[0195] 式(22)および(23)〖こおける k31、 k32は定数である。  [0195] k31 and k32 in equations (22) and (23) are constants.
上記の(22)および(23)において、算出結果 E1は、センサセル 103に接触した水 素ガスの濃度と面積にほぼ比例し、算出結果 E2は、水素ガスを検知したセンサセル 103の位置を示す。  In the above (22) and (23), the calculation result E1 is substantially proportional to the concentration and area of the hydrogen gas in contact with the sensor cell 103, and the calculation result E2 indicates the position of the sensor cell 103 that has detected hydrogen gas.
水素ガス検知位置を示す算出式としては、上記の式(23)以外には、以下の式(24 )または式 (25)を用いることが可能である。  As a calculation formula indicating the hydrogen gas detection position, in addition to the above formula (23), the following formula (24) or formula (25) can be used.
[0196] E3=k33 X (12— I2b)Z(Il— lib) (24)  [0196] E3 = k33 X (12—I2b) Z (Il—lib) (24)
[0197] E4=k34 X〔{(I2—I2b) - (II— lib)}/  [0197] E4 = k34 X [{(I2—I2b)-(II— lib)} /
{ (II— Ilb) + (I2— I2b)}] (25)  {(II— Ilb) + (I2— I2b)}] (25)
[0198] 式(23)、式(24)および式(25)において、検知膜を持つセンサセル 103が水素ガ スを検知した場合の電流 IIおよび 12が、バイアス電流 libおよび I2bに対して十分大 きな場合には、バイアス電流 libおよび I2bを無視して算出することが可能である。そ の場合、式(23)、式(24)および式(25)は、以下の式(26)、式(27)および式(28) となる。 [0198] In equations (23), (24), and (25), the currents II and 12 when the sensor cell 103 with the sensing film detects hydrogen gas are sufficiently larger than the bias currents lib and I2b. In such a case, the bias current lib and I2b can be ignored for calculation. In that case, Equation (23), Equation (24), and Equation (25) are converted into the following Equation (26), Equation (27), and Equation (28). It becomes.
[0199] E2=k32 X I2/ (11 +12) (26)  [0199] E2 = k32 X I2 / (11 +12) (26)
[0200] E3=k33 X I2/ll (27) [0200] E3 = k33 X I2 / ll (27)
[0201] E4=k34 X (12— II) / (II +12) (28) [0201] E4 = k34 X (12— II) / (II +12) (28)
[0202] 実施例 8においてはバイアス電源 111として直流電源を用いた例で説明した力 バ ィァス電源 111は直流電源に限定されるものではなぐ 0. IKHzから ΙΟΚΗζ程度の 交流電源でもよい。その場合には、位置検出装置 115Bの電流電圧変換回路 130a および 130bに整流機能を付加する必要がある。  [0202] In the eighth embodiment, the power bias power supply 111 described in the example in which the DC power supply is used as the bias power supply 111 is not limited to the DC power supply, and may be an AC power supply of about IKHz to ΙΟΚΗζ. In that case, it is necessary to add a rectification function to the current-voltage conversion circuits 130a and 130b of the position detection device 115B.
また、実施例 8において、位置検出装置 115Bは、水素ガス検知センサ 110からの 出力電流をデジタル信号に変換して、演算処理を行う構成であるが、デジタル信号 に変換せずアナログ信号の状態で演算する回路構成でもよい。  In the eighth embodiment, the position detection device 115B is configured to convert the output current from the hydrogen gas detection sensor 110 into a digital signal and perform arithmetic processing. However, the position detection device 115B is not converted into a digital signal but in an analog signal state. A circuit configuration for calculation may be used.
実施例 9  Example 9
[0203] 次に、本発明に係る実施例 9の水素ガス検知センサについて図 37から図 40を用い て説明する。実施例 9の水素ガス検知センサは、水素ガス検知領域が 2次元であり、 複数のセンサセルが 2次元の面状に配列されて構成されている。  [0203] Next, a hydrogen gas detection sensor of Example 9 according to the present invention will be described with reference to FIGS. In the hydrogen gas detection sensor of Example 9, the hydrogen gas detection region is two-dimensional, and a plurality of sensor cells are arranged in a two-dimensional plane.
実施例 9の 2次元配列型の水素ガス検知センサは、略矩形状で電気的に絶縁性を 有する基材に、水素ガスを検知すると電気的な抵抗値が変化する複数の微小領域 の検知膜が、行方向および列方向にそれぞれ略等間隔で 2次元の格子状をなすよう に配列されている。実施例 9の水素ガス検知センサにおいては、複数の微小領域の 検知膜の抵抗値の変化から、水素ガスを検知した位置を算出して 、る。  The two-dimensional array type hydrogen gas detection sensor of Example 9 is a detection film of a plurality of minute regions in which an electrical resistance value changes when hydrogen gas is detected on a substantially rectangular and electrically insulating base material. Are arranged in a two-dimensional lattice pattern at approximately equal intervals in the row and column directions. In the hydrogen gas detection sensor of Example 9, the position where hydrogen gas is detected is calculated from the change in the resistance value of the detection film in a plurality of minute regions.
[0204] 図 37は、実施例 9の 2次元配列型の水素ガス検知センサの構造を示す図であり、 ( a)が平面図であり、 (b)が(a)に示した水素ガス検知センサにおける Y— Y線による 断面図である。  [0204] FIG. 37 is a diagram showing the structure of the two-dimensional array type hydrogen gas detection sensor of Example 9, (a) is a plan view, and (b) is the hydrogen gas detection shown in (a). FIG. 6 is a cross-sectional view taken along line Y—Y in the sensor.
実施例 9の 2次元配列型の水素ガス検知センサ 125は、略矩形状に形成され電気 的に絶縁性を有する石英(SiO )の基材 101と、基材 101の表面に列方向に繋がつ  The two-dimensional array-type hydrogen gas detection sensor 125 of Example 9 is formed in a substantially rectangular shape and is made of an electrically insulating quartz (SiO 2) base material 101 and is connected to the surface of the base material 101 in the column direction.
2  2
た共通検出電極 133と、基材 101の裏面に行方向に繋がった共通検出電極 132と、 貫通孔の内面に形成され基材 101の表裏にある共通検出電極 132, 133に接続さ れた検知膜を有するセンサセル 103とにより構成されている。 [0205] センサセル 103を構成する検知膜は、水素ガスを検知すると電気的に絶縁状態か ら半導体状態に状態変化する白金分散担持三酸化タングステン (Pt— WO )で構成 Common detection electrode 133, common detection electrode 132 connected to the back surface of substrate 101 in the row direction, and detection connected to common detection electrodes 132, 133 formed on the inner surface of the through-hole and on the front and back of substrate 101 And a sensor cell 103 having a film. [0205] The detection film constituting the sensor cell 103 is composed of platinum-dispersed tungsten trioxide (Pt—WO) that changes its state from an electrically insulating state to a semiconductor state when hydrogen gas is detected.
3 されている。センサセル 103の検知膜は、基材 101の表裏を貫通する貫通孔 106の 内面に形成されており、基材 101の表面に形成された行方向の共通検出電極 133と 基材 101の裏面に形成された列方向の共通検出電極 132とに接合されて 、る。基材 101において、貫通孔 106は互いに略垂直な行方向および列方向に等間隔である 2 次元の格子の交点の位置に形成されている。したがって、貫通孔 106に形成された センサセル 103は 2次元配列(面状配列)となる。  3 has been done. The detection film of the sensor cell 103 is formed on the inner surface of the through hole 106 penetrating the front and back of the base material 101, and is formed on the back side of the base material 101 and the common detection electrode 133 in the row direction formed on the surface of the base material 101. It is joined to the common detection electrode 132 in the column direction. In the base material 101, the through holes 106 are formed at the intersections of two-dimensional lattices that are equally spaced in the row and column directions that are substantially perpendicular to each other. Therefore, the sensor cells 103 formed in the through holes 106 are in a two-dimensional array (planar array).
基材 101の裏面において、複数の行方向の共通検出電極 132は、各行方向に平 行で直線状に配列された各センサセル 103の一端を接続するように形成されて!、る 。また、基材 101の表面において、複数の列方向の共通検出電極 133が、各列方向 に平行で直線状に配列された各センサセル 103の一部を接続するように形成されて いる。  On the back surface of the substrate 101, a plurality of common detection electrodes 132 in the row direction are formed so as to connect one end of each sensor cell 103 arranged in a straight line in the row direction. Further, on the surface of the substrate 101, a plurality of common detection electrodes 133 in the column direction are formed so as to connect a part of the sensor cells 103 arranged in a straight line parallel to the column direction.
[0206] 図 37の(a)に示すように、実施例 9の 2次元配列型の水素ガス検知センサ 125にお いては、行方向の共通検出電極 132および列方向の共通検出電極 133は、基材 10 1の端面に設けられた各引出し線 108に接続されている。  As shown in FIG. 37 (a), in the two-dimensional array type hydrogen gas detection sensor 125 of Example 9, the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction are It is connected to each lead line 108 provided on the end face of the base 101.
貫通孔 106を形成することにより、基材 101の表面側に接触した被検知ガスの水素 ガス 126を、貫通孔 106を通して基材 101の裏面に排出することが可能となる。この ように、センサセル 103の中心部に基材 101の表面力 基材 101の裏面まで貫通し た貫通孔 106を形成することにより、基材 101の表面に沿って拡散することが防止さ れ、水素ガスに接触するセンサセル 103の範囲の増加を防止することができる。また 、貫通孔 106は、基材 101の表面から裏面まで貫通した孔であればよぐセンサセル 103が構成されていない領域で、基材 101の部分や、行方向および列方向の共通 検出電極の部分に設けてもよ!、。  By forming the through hole 106, it is possible to discharge the hydrogen gas 126 of the gas to be detected contacting the surface side of the substrate 101 to the back surface of the substrate 101 through the through hole 106. Thus, by forming the through hole 106 penetrating to the back surface of the base material 101 at the center of the sensor cell 103, the surface force of the base material 101 is prevented from diffusing along the surface of the base material 101, An increase in the range of the sensor cell 103 in contact with the hydrogen gas can be prevented. The through hole 106 is an area where the sensor cell 103 is not formed as long as it is a hole penetrating from the front surface to the back surface of the base material 101, and is a part of the base material 101 or a common detection electrode in the row direction and the column direction. You can place it in the part!
[0207] 図 37の(a)に示すように、行方向の共通検出電極 132は、行 Y1から行 Ynまで設 けられ、列方向の共通検出電極 133は、列 XIから列 Xmまで設けられている。個々 のセンサセル 103の表示は、表示すべきセンサセル 103の位置に置!、て交わる行方 向の共通検出電極 132と列方向の共通検出電極 133を用いて、(Xi、 Yj)で示す。こ こで、 iは、 1から m、 jは、 1から nの範囲である。 [0207] As shown in FIG. 37 (a), the common detection electrode 132 in the row direction is provided from the row Y1 to the row Yn, and the common detection electrode 133 in the column direction is provided from the column XI to the column Xm. ing. The display of each sensor cell 103 is indicated by (Xi, Yj) using the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction which are placed at the position of the sensor cell 103 to be displayed. This Where i is in the range of 1 to m and j is in the range of 1 to n.
[0208] 基材 101は、電気的な絶縁性を有する材料でセンサセル 103の焼結時の加熱温 度 500°Cで安定であれば用いることができる。具体的な基材 101の材料としては、石 英(SiO )以外に、表面の絶縁処理が施されたシリコン (SiO )、窒化アルミニウム (A[0208] The substrate 101 can be used as long as it is a material having electrical insulation and is stable at a heating temperature of 500 ° C when the sensor cell 103 is sintered. Specific materials for the substrate 101 include silicon (SiO 2), aluminum nitride (A
2 2 twenty two
IN)、アルミナ (Al O )などを用いることができる。また、榭脂系の材料としては、 日光  IN), alumina (Al 2 O 3), and the like can be used. In addition, as a rosin-based material, Nikko
2 3  twenty three
化成株式会社製のタイモルドなどの耐熱型のフエノール系の材料も用いることができ る。この場合は、射出成型法を用いることにより平面以外の立体的な形状を得ることも 可能である。さらに、柔軟性のあるシート状の材料としては、東レ 'デュポン株式会社 のカプトン (登録商標)などのポリイミド系の材料も用いることができる。ポリイミド系の 材料は耐熱温度が最高で 450°C程度である力 センサセル 103の焼結温度を 450 °C程度で行うことにより用いることが可能となる。  A heat-resistant phenolic material such as Tymold from Kasei Co., Ltd. can also be used. In this case, a three-dimensional shape other than a flat surface can be obtained by using an injection molding method. Furthermore, as a flexible sheet-like material, polyimide-based materials such as Kapton (registered trademark) of Toray DuPont Co., Ltd. can be used. Polyimide materials can be used when the sintering temperature of the force sensor cell 103, which has a maximum heat-resistant temperature of about 450 ° C, is about 450 ° C.
[0209] 行方向の共通検出電極 132および列方向の共通検出電極 133は、導電性が高い 材料で、センサセル 103の焼結温度である約 500°Cで安定であれば用いることがで きる。また、共通検出電極自体が被検知ガス中の水素原子を含む可燃ガスに対して 不活性であるほうがより望ましい。共通検出電極 132, 133の材料としては、導電性 が高 、材料であるマグネシウム(Mg)、アルミニウム (A1)、チタン (Ti)、バナジウム(V )、クロム (Cr)、鉄 (Fe)、ニッケル (Ni)、銀 (Ag)などの金属や、炭素(C)などを用い ることが可能である。特に、共通検出電極 132, 133の材料としては、酸ィ匕しにくぐ 水素ガスに対して不活性な金 (Au)や銅 (Cu)が望ま Uヽ。  [0209] The common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction are materials having high conductivity, and can be used as long as they are stable at the sintering temperature of the sensor cell 103 of about 500 ° C. In addition, it is more desirable that the common detection electrode itself is inert to the combustible gas containing hydrogen atoms in the gas to be detected. Common sensing electrodes 132 and 133 are made of highly conductive materials such as magnesium (Mg), aluminum (A1), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), and nickel. It is possible to use metals such as (Ni) and silver (Ag), and carbon (C). In particular, as the material of the common detection electrodes 132 and 133, gold (Au) and copper (Cu) that are inert to hydrogen gas are desirable.
[0210] センサセル 103は、水素ガスと接触することにより電気的な特性が変化する性質を 持つ物質であれば用いることが可能である。例えば、酸化スズ (SnO )、三酸化モリ  [0210] The sensor cell 103 can be any material that has a property that its electrical characteristics change when it comes into contact with hydrogen gas. For example, tin oxide (SnO), molybdenum trioxide
2  2
ブデン(MnO )、三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジゥ  Buden (MnO), tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide
2 3 2  2 3 2
ム(Ir(OH) n)、五酸化バナジウム(V O )、酸化ロジウム(Rh O ·χΗ Ο)などを用い  (Ir (OH) n), vanadium pentoxide (V O), rhodium oxide (Rh O · χΗ Ο), etc.
2 5 2 3 2  2 5 2 3 2
ることが可能である。また、塗料の顔料であるピロロピロールに窒素ガスを混ぜた有機 物質なども用いることができる。特に、ピロロピロールを用いる場合には、自然乾燥の みで用いることができる。この場合には、 500°C程度の焼結工程が不要であるため、 基材 101や電極などの材料選択の範囲が大きく広がる。  Is possible. In addition, organic substances such as pyrrolopyrrole, which is a pigment of paint, mixed with nitrogen gas can also be used. In particular, when pyrrolopyrrole is used, it can be used only by natural drying. In this case, since a sintering process of about 500 ° C. is not required, the range of materials selection such as the base material 101 and the electrode is greatly expanded.
[0211] [水素ガス検知センサの動作原理] 次に、実施例 9の水素ガス検知センサの水素ガス検知の動作原理について説明す る。 [0211] [Operation principle of hydrogen gas sensor] Next, the operation principle of hydrogen gas detection of the hydrogen gas detection sensor of Example 9 will be described.
図 37において、被検知ガスに含まれる水素ガス 126は、矢印 Cで示した位置にお V、て白金分散担持三酸化タングステンで形成されたセンサセル 124に接触した場合 について説明する。センサセル 103を構成する白金分散担持三酸化タングステン (P t-WO )は、触媒として lnmから 10nm程度の粒径を有する白金(Pt)微粒子が、 1 In FIG. 37, the case where the hydrogen gas 126 contained in the gas to be detected comes into contact with the sensor cell 124 formed of platinum dispersion-supported tungsten trioxide V at the position indicated by the arrow C will be described. The platinum dispersion supported tungsten trioxide (Pt-WO) constituting the sensor cell 103 has platinum (Pt) fine particles having a particle diameter of about 1 nm to 10 nm as a catalyst.
3 Three
Onmから 1 OOnm程度の粒径を有する三酸ィ匕タングステン (WO )粒子上に分散担持  Dispersion supported on tungsten trioxide (WO) particles with a particle size of about 1 OOnm from Onm
3  Three
された構造を持つ。この白金 (Pt)微粒子上で水素ガス 126はプロトン (H+)と電子 (e— )に解離される。解離されたプロトン (H+)は、白金触媒微粒子上力 スピルオーバー し、センサセル 103の主成分である三酸ィ匕タングステン (WO )に拡散し、タンダステ  With a structured. On the platinum (Pt) fine particles, the hydrogen gas 126 is dissociated into protons (H +) and electrons (e—). The dissociated proton (H +) spills over the platinum catalyst fine particles and diffuses into the tungsten trioxide (WO), which is the main component of the sensor cell 103.
3  Three
ンブロンズを形成する。三酸化タングステン (WO )は、タングステンブロンズを形成し  Form bronze. Tungsten trioxide (WO) forms tungsten bronze
3  Three
ていない状態において、電気的に絶縁に近い状態である。しかし、三酸化タンダステ ン (WO )は、プロトン (H+)が拡散し、タングステンブロンズを形成すると、半導体化し In a state where it is not, it is a state that is electrically close to insulation. However, tandane trioxide (WO) becomes a semiconductor when protons (H +) diffuse and form tungsten bronze.
3 Three
、さらに、水素ガスの濃度が高くなり多くのプロトン (H+)が拡散すると、半導体から導 体に近い性質を示すようになる。  In addition, when the concentration of hydrogen gas increases and many protons (H +) diffuse, the properties of a semiconductor close to that of a conductor are exhibited.
[0212] 一般に、センサセル 103の抵抗値は、センサセル 103に接触した水素ガスの濃度と 比例関係にある。このように、水素ガスに接触したセンサセル 124は、半導体化され、 他のセンサセル 103に比較して抵抗値が下がり、バイアス電源 111よりバイアス電圧 が印加されると電流が多く流れる。  [0212] In general, the resistance value of the sensor cell 103 is proportional to the concentration of hydrogen gas in contact with the sensor cell 103. As described above, the sensor cell 124 in contact with the hydrogen gas is made into a semiconductor, has a resistance value lower than that of the other sensor cells 103, and a large amount of current flows when a bias voltage is applied from the bias power supply 111.
[0213] 図 38は実施例 9の 2次元配列型の水素ガス検知センサ 125からの信号が入力され る電流電圧変換回路 130などを有するガス検知装置を示すブロック図である。  FIG. 38 is a block diagram showing a gas detection apparatus having a current-voltage conversion circuit 130 to which a signal from the two-dimensional array type hydrogen gas detection sensor 125 of Example 9 is inputted.
図 38において、 2次元配列型の水素ガス検知センサ 125の各センサセル 103 (図 3 8においては、センサセル 103を等価回路で示す)は、該当する行方向の共通検出 電極 132と該当する列方向の共通検出電極 133に接続されている。各行方向の共 通検出電極 132は、対応する検出スィッチ 134に接続され、さらに、電流制限抵抗 1 12を介してバイアス電源 111に接続されて!、る。各列方向の共通検出電極 133は、 対応する電流電圧変換回路 130に接続されている。各列方向の共通検出電極 133 からの電流信号は、電圧信号に変換されてマルチプレクサ 117に入力される。マル チプレクサ 117は、パーソナルコンピュータ(以下、 PCと略称) 120から指令を受けた 制御回路 119の制御信号により、各電流電圧変換回路 130からの電圧信号の中か ら 1つの電圧信号を選択する。選択された電圧信号は、 AZD変換回路 118に入力 される。 AZD変換回路 118では、 PC120のから指令を受けた制御回路 119の制御 信号により、マルチプレクサ 117からの信号をアナログデジタル変換し、 PC120に送 信する。 PC120は、 AZD変換回路 118からの信号に基づき演算処理を行い、各セ ンサセル 103を流れる電流量に相当する電圧値を算出する。 In FIG. 38, each sensor cell 103 of the two-dimensional array type hydrogen gas detection sensor 125 (in FIG. 38, the sensor cell 103 is shown by an equivalent circuit) is connected to the common detection electrode 132 in the corresponding row direction and the corresponding column direction. The common detection electrode 133 is connected. The common detection electrode 132 in each row direction is connected to the corresponding detection switch 134 and further connected to the bias power supply 111 via the current limiting resistor 112. The common detection electrode 133 in each column direction is connected to the corresponding current-voltage conversion circuit 130. The current signal from the common detection electrode 133 in each column direction is converted into a voltage signal and input to the multiplexer 117. Maru The chiplexer 117 selects one voltage signal from the voltage signals from each current-voltage conversion circuit 130 according to the control signal of the control circuit 119 that receives a command from the personal computer (hereinafter abbreviated as PC) 120. The selected voltage signal is input to the AZD conversion circuit 118. In the AZD conversion circuit 118, the signal from the multiplexer 117 is converted from analog to digital by the control signal of the control circuit 119 that has received a command from the PC 120, and transmitted to the PC 120. The PC 120 performs arithmetic processing based on the signal from the AZD conversion circuit 118, and calculates a voltage value corresponding to the amount of current flowing through each sensor cell 103.
[0214] 次に、 2次元配列型の水素ガス検知センサからの信号に基づき演算処理を行う場 合の動作にっ 、て説明する。  [0214] Next, the operation in the case of performing arithmetic processing based on the signal from the two-dimensional array type hydrogen gas detection sensor will be described.
まず、 2次元配列型の水素ガス検知センサが水素ガスを検知して 、な 、状態にす る。測定する行方向の共通電極 132に対応する検出スィッチ 134を接続する。そして 、各列方向の共通電極 132に流れる電流量に相当する電圧値を計測する。このとき 、検出スィッチ 134が接続された行方向の共通電極 132の行番号 Yjと、マルチプレ クサ 117で電圧測定を行った列方向の共通電極 133の列番号 XIより、計測されたセ ンサセルの位置を表す (Xi、 Yj)の位置情報と、センサセル 103のオフセット値とを P C120〖こ記録する。同様に、順次検出スィッチ 134を切り替えて、全てのセンサセル 1 03の位置情報とオフセット値を関連付けて記録する。  First, a two-dimensional array type hydrogen gas detection sensor detects hydrogen gas and puts it into a state. A detection switch 134 corresponding to the common electrode 132 in the row direction to be measured is connected. Then, a voltage value corresponding to the amount of current flowing through the common electrode 132 in each column direction is measured. At this time, the position of the sensor cell measured from the row number Yj of the common electrode 132 in the row direction to which the detection switch 134 is connected and the column number XI of the common electrode 133 in the column direction for which the voltage measurement was performed by the multiplexer 117 is performed. (Xi, Yj) representing the position information and the offset value of the sensor cell 103 are recorded. Similarly, the detection switches 134 are sequentially switched, and the positional information and offset values of all sensor cells 103 are associated and recorded.
[0215] その後、 2次元配列型の水素ガス検知センサが水素ガスを検知した状態にして、前 述のオフセット値を記録した方法と同じ方法により、全てのセンサセル 103に流れる 電流量に相当する電圧値を計測する。このとき計測された各センサセル 103の位置 情報と計測値を、水素ガスを検知したときの計測値として PC120内に記録する。その 後、 PC120内に蓄積された各センサセル 103ごとに、水素ガスを検知したときの計 測値力もオフセット値を減算し、各センサセル 103の出力信号の変化値として PC12 0に記録する。各センサセル 103の出力信号の変化値は、各センサセル 103の電気 的な抵抗値の変化に相当する電圧値であり、検知した水素ガスの濃度と比例関係に ある。  [0215] After that, the voltage corresponding to the amount of current flowing through all the sensor cells 103 is obtained in the same manner as the method of recording the offset value described above in the state where the hydrogen gas detection sensor of the two-dimensional array type detects hydrogen gas. Measure the value. The position information and measurement values of each sensor cell 103 measured at this time are recorded in the PC 120 as measurement values when hydrogen gas is detected. After that, for each sensor cell 103 stored in the PC 120, the measured value force when hydrogen gas is detected is also subtracted from the offset value and recorded in the PC 120 as the change value of the output signal of each sensor cell 103. The change value of the output signal of each sensor cell 103 is a voltage value corresponding to the change of the electrical resistance value of each sensor cell 103, and is proportional to the detected hydrogen gas concentration.
これにより、 2次元配列型の水素ガス検知センサの各センサセル 103が検知した水 素ガスの濃度に比例する信号の変化値の分布が求められ、水素ガス検知位置を算 出することができる。 As a result, a distribution of signal change values proportional to the hydrogen gas concentration detected by each sensor cell 103 of the two-dimensional array type hydrogen gas detection sensor is obtained, and the hydrogen gas detection position is calculated. Can be issued.
[0216] 実施例 9のガス検知装置を用いた実験結果を、図 39の(a)および (b)を用いて説 明する。  [0216] The experimental results using the gas detector of Example 9 will be described with reference to (a) and (b) of FIG.
図 39の(a)は、本実験において用いた 2次元配列型の水素ガスセンサの平面図で ある。この 2次元配列型のセンサは、前述の図 37を用いて説明した水素ガス検知セ ンサ 125と基本的に同じである。  FIG. 39 (a) is a plan view of the two-dimensional array type hydrogen gas sensor used in this experiment. This two-dimensional array type sensor is basically the same as the hydrogen gas detection sensor 125 described with reference to FIG.
[0217] 図 39の(a)に示すように、本実験で用いた水素ガス検知センサ 125は、行方向に 1 2行、列方向に 12列の 144個のセンサセル 103を有している。以下、行方向の共通 検出電極 132には、一端側から Y1から Y12までの番号を付し、また、列方向の共通 検出電極 133には、一端側から XIから XI 2までの番号を付して、行方向と列方向の 交点に配置されたセンサセル 103を特定して、その番号 (Xi、 Yj)で説明する。なお、 iおよび jは、 1から 12の範囲である。  As shown in (a) of FIG. 39, the hydrogen gas detection sensor 125 used in this experiment has 144 sensor cells 103 having 12 rows in the row direction and 12 columns in the column direction. Hereinafter, common detection electrodes 132 in the row direction are numbered from Y1 to Y12 from one end, and common detection electrodes 133 in the column direction are numbered from XI to XI2 from one end. Thus, the sensor cells 103 arranged at the intersections in the row direction and the column direction are identified and described by their numbers (Xi, Yj). I and j are in the range of 1-12.
[0218] 本実験において、バイアス電圧 111は、直流電圧 5Vであり、行方向の共通検出電 極 132に検出スィッチ 134を介して印加した。電流制限抵抗 112は、 10ΚΩとしてい る。各列方向の共通検出電極 133からのバイアス電流は、ほぼ一定で約: L Aであ つた。水素ガスを含む被検知ガスを噴出するノズルは、ガス噴出口の直径が lmmの 円形であり、噴出方向は上方とした。また、ノズルの設置位置は、センサセル (X4、 Y 4)、センサセル(X6、 Y6)およびセンサセル (X9、 Y8)の下方 lmmの距離に 3箇所 配置した。被検知ガスは、体積 1%の水素ガスを含む空気とした。  [0218] In this experiment, the bias voltage 111 was a DC voltage of 5V, and was applied to the common detection electrode 132 in the row direction via the detection switch 134. The current limiting resistor 112 is 10 Ω. The bias current from the common detection electrode 133 in each column direction was almost constant and about: LA. The nozzle that ejects the gas to be detected, including hydrogen gas, was circular with a gas outlet diameter of lmm, and the ejection direction was upward. Three nozzles were placed at a distance of lmm below the sensor cell (X4, Y4), sensor cell (X6, Y6), and sensor cell (X9, Y8). The gas to be detected was air containing 1% hydrogen gas.
[0219] 図 39の (b)は、各センサセル 103の出力信号の変化値である電圧値を示す。被検 知ガスを噴出するノズルが近接して配置されている、センサセル (X4、 Y4)、センサ セル (Χ6、 Υ6)およびセンサセル (Χ9、 Υ8)の電圧値は、ほかのセンサセル 103の 電圧値より高くなつている。したがって、 2次元配列型の水素ガス検知センサ力 複数 の水素ガスの検知位置を正確に検出していることを確認した。  [0219] (b) of FIG. 39 shows a voltage value which is a change value of the output signal of each sensor cell 103. The voltage of the sensor cell (X4, Y4), sensor cell (Χ6, お よ び 6) and sensor cell (Χ9, Υ8), where the nozzles for injecting the gas to be detected are located close to each other, are the voltage values of the other sensor cells 103. It is getting higher. Therefore, it was confirmed that the detection position of multiple hydrogen gases was accurately detected.
[0220] 次に、実験において用いた 2次元配列型の水素ガス検知センサの作成方法につい て説明する。  [0220] Next, a method for producing a two-dimensional array type hydrogen gas detection sensor used in the experiment will be described.
本実験において用いた実施例 9の 2次元配列型の水素ガス検知センサの基材 101 には、長さ 65mm、幅 65mm、厚み 0. 5mmの石英(SiO )を用いた。基材 101には 、センサセル 103を形成するため、直径 Φ 3mmの貫通孔 106を縦横 5mmピッチ間 隔で格子状に 144個形成した。 Quartz (SiO 2) having a length of 65 mm, a width of 65 mm, and a thickness of 0.5 mm was used for the base material 101 of the two-dimensional array type hydrogen gas detection sensor of Example 9 used in this experiment. For base material 101 In order to form the sensor cell 103, 144 through-holes 106 having a diameter of 3 mm were formed in a lattice form at intervals of 5 mm in length and width.
[0221] 基材 101の裏面の行方向の共通検出電極 132は、金 (Au)をスパッタ法を用いて、 貫通孔 106の周囲に幅 4mm、長さ 65mm、厚み 0. 5 μ mで形成した。基材 101の 表面の列方向の共通検出電極 133は、金 (Au)をスパッタ法を用いて、貫通孔 106 の周囲に幅 4mm、長さ 65mm、厚み 0. 5 mで形成した。なお、行方向の共通検出 電極 132および列方向の共通検出電極 133の形成は、貫通孔 106の内部に金 (Au )が蒸着されないように、マスクを用いてスパッタを行った。  [0221] The common detection electrode 132 in the row direction on the back surface of the substrate 101 is formed with a width of 4 mm, a length of 65 mm, and a thickness of 0.5 μm around the through-hole 106 by sputtering gold (Au). did. The common detection electrode 133 in the row direction on the surface of the base material 101 was formed with a width of 4 mm, a length of 65 mm, and a thickness of 0.5 m around the through hole 106 by using a sputtering method of gold (Au). The common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction were formed by sputtering using a mask so that gold (Au) was not deposited inside the through hole 106.
[0222] 次に、貫通孔 106の内面には白金分散担持三酸ィ匕タングステン (Pt—WO )で構  [0222] Next, the inner surface of the through-hole 106 is composed of platinum dispersion-supported trioxide-tungsten (Pt—WO).
3 成された検知膜を形成した。その検知膜の形成方法としては、ゾルゲル法を用いた。 具体的には、まず、タングステン酸ナトリウム二水和物(Na WO · 2Η Ο :純正化学  3 The formed sensing film was formed. A sol-gel method was used as a method for forming the detection film. Specifically, first, sodium tungstate dihydrate (Na WO · 2Η Ο: Pure Chemical)
2 4 2  2 4 2
株式会社製) 41. 2gをメスフラスコに取り、純水をカ卩えて 250mLに調製し、 0. 5mol ZLの無色透明のタングステン酸ナトリウム (Na WO )水溶液を得た。  (Made by Co., Ltd.) 41. 2 g was taken in a volumetric flask, and pure water was added to prepare 250 mL to obtain a 0.5 mol ZL colorless and transparent aqueous solution of sodium tungstate (Na 2 WO 3).
2 4  twenty four
[0223] 次に、陽イオン交換榭脂 (アンバーライト IR120B Na:オルガノ株式会社製)をカラ ム塔に充填し、タングステン酸ナトリウム (Na WO )水溶液を通過させ、タングステン  [0223] Next, cation exchange resin (Amberlite IR120B Na: manufactured by Organo Corporation) was packed in a column tower, and a sodium tungstate (Na 2 WO) aqueous solution was passed through it.
2 4  twenty four
酸ナトリウム (Na WO )水溶液のナトリウムイオン (Na + )をプロトン (H + )に交換し、  Exchange sodium ions (Na +) in sodium acid (Na WO) aqueous solution with protons (H +),
2 4  twenty four
薄黄色のタングステン酸 (H WO )水溶液を得た。タングステン酸 (H WO )水溶液  A pale yellow tungstic acid (H 2 WO 3) aqueous solution was obtained. Tungstic acid (H WO) aqueous solution
2 4 2 4  2 4 2 4
13mLに触媒金属であるへキサクロ口白金酸 (H PtCl · 6Η Ο :和光純薬工業株式  13 mL of catalytic metal hexacro-platinic acid (H PtCl 6Η Ο: Wako Pure Chemical Industries Ltd.
2 6 2  2 6 2
会社製)を純水に、 0. 5molZL溶解させた水溶液を 4mLと、エタノールを 8mL加え て均一に分散混合し、白金分散型酸化タングステンのゾルゲル溶液を合成した。  4mL of an aqueous solution in which 0.5molZL was dissolved in pure water and 8mL of ethanol were uniformly dispersed and mixed to synthesize a sol-gel solution of platinum-dispersed tungsten oxide.
[0224] 上記のゾルゲル溶液を、貫通孔 106の内面および基材 101の表面および裏面の 貫通孔 106の周囲 0. 5mmの部分に塗布した。塗布は、貫通孔 106およびその周囲 0. 5mm以外の部分をマスキングした基材 101を前記ゾルゲル液中にディップするこ とで行った。基材 101のディップ時間は約 20秒で、基材 101をゾルゲル溶液から弓 I き上げ、その後に窒素ガスを吹き付けて余分なゾルゲル液を除去した。  [0224] The above sol-gel solution was applied to the inner surface of through-hole 106 and the portion of 0.5 mm around through-hole 106 on the front and back surfaces of substrate 101. The coating was performed by dipping the substrate 101 masked with the portion other than the through-hole 106 and the surrounding area of 0.5 mm into the sol-gel solution. The dip time of the base material 101 was about 20 seconds. The base material 101 was lifted from the sol-gel solution, and then nitrogen gas was blown to remove excess sol-gel solution.
[0225] さらに、室温にて 1時間乾燥させた後マスキングを除去して、電気炉を用いて 200 °Cで 1時間仮焼成した。 200°Cで 1時間仮焼成した後、さらに 500°Cで 1時間焼成し てから室温で冷却した。このとき、センサセル 103は、基材 101の表面と裏面との間を 結ぶ貫通孔 106の形状となる。またセンサセル 103の膜厚は 0. 5 mであった。 上記のように作製された各センサセル 103について、行方向の共通検出電極 132 および列方向の共通検出電極 133の間の抵抗値 (以下、接合抵抗と略称)を測定し た。各センサセル 103の接合抵抗は、平均で約 5Μ Ωであり、ほぼ均一であった。 [0225] Further, after drying at room temperature for 1 hour, the masking was removed, and calcining was performed at 200 ° C for 1 hour using an electric furnace. After calcining at 200 ° C for 1 hour, it was further calcined at 500 ° C for 1 hour and then cooled at room temperature. At this time, the sensor cell 103 is located between the front surface and the back surface of the base material 101. The shape of the connecting through hole 106 is obtained. The film thickness of the sensor cell 103 was 0.5 m. For each sensor cell 103 fabricated as described above, a resistance value (hereinafter referred to as a junction resistance) between the common detection electrode 132 in the row direction and the common detection electrode 133 in the column direction was measured. The junction resistance of each sensor cell 103 was about 5ΜΩ on average and was almost uniform.
[0226] 図 40は前述の図 37に示した水素ガス検知センサと異なる構成を有する水素ガス 検知センサ 125Aを示す図であり、 (a)は平面図、(b)は(a)に示した水素ガス検知セ ンサ 125Aの Z— Z線による断面図である。図 40に示す 2次元配列型の水素ガス検 知センサ 125Aは、図 37で示した水素ガス検知センサ 125と殆ど同様の構造である 力 基材 101の表面力も裏面へ水素ガスを含む検知ガスを排出するための貫通孔が 形成されてない点が異なる。し力し、図 40の水素ガス検知センサ 125Aは、図 37の 2 次元配列型の水素ガス検知センサ 125と基本的な機能は同じである。但し、基材 10 1の表面力も裏面へ水素ガスを含む被検知ガスを排出する機能を有して 、な 、ため 、基材 101の表面で水素ガスが拡散して、水素ガスを検知したセンサセルの範囲が 広がりやすぐ水素ガスの検知位置の検出精度が低下する場合がある。 FIG. 40 is a view showing a hydrogen gas detection sensor 125A having a configuration different from that of the hydrogen gas detection sensor shown in FIG. 37, wherein (a) is a plan view and (b) is shown in (a). FIG. 4 is a cross-sectional view of the hydrogen gas detection sensor 125A taken along line ZZ. The two-dimensional array type hydrogen gas detection sensor 125A shown in FIG. 40 has almost the same structure as the hydrogen gas detection sensor 125 shown in FIG. 37. The difference is that there is no through-hole for discharging. However, the hydrogen gas detection sensor 125A in FIG. 40 has the same basic function as the two-dimensional array type hydrogen gas detection sensor 125 in FIG. However, the surface force of the base material 101 also has a function of discharging the gas to be detected including hydrogen gas to the back surface. Therefore, the sensor cell in which the hydrogen gas diffuses on the surface of the base material 101 and the hydrogen gas is detected. The detection range of the hydrogen gas detection position may be reduced.
実施例 10  Example 10
[0227] 次に、本発明に係る実施例 10のガス検知装置について説明する。実施例 10のガ ス検知装置は、前述の実施例 9において図 35および図 36を用いて説明した 2次元 配列型の水素ガス検知センサ 125を用いて構成されたガス検知装置である。実施例 10のガス検知装置は、 2次元の抵抗分割式の位置検出装置を用いたものである。実 施例 10のガス検知装置に用いられる位置検出装置は、簡易な回路で構成できる特 徴を有する。  [0227] Next, a gas detector of Example 10 according to the present invention will be described. The gas detection device according to the tenth embodiment is a gas detection device configured using the two-dimensional array type hydrogen gas detection sensor 125 described with reference to FIGS. 35 and 36 in the ninth embodiment. The gas detection device of Example 10 uses a two-dimensional resistance division type position detection device. The position detection device used in the gas detection device of Example 10 has a feature that can be configured with a simple circuit.
[0228] 図 41は、実施例 10のガス検知装置の構成を示すブロック図であり、前述の実施例 FIG. 41 is a block diagram showing the configuration of the gas detection device according to the tenth embodiment.
9の 2次元配列型の水素ガス検知センサ 125に 2次元の抵抗分割式の位置検出装 置 115Cを設けたものである。 The two-dimensional array type hydrogen gas detection sensor 125 is provided with a two-dimensional resistance division type position detection device 115C.
列方向の共通検出電極 133は、隣接する列方向の共通検出電極 133と電流分割 抵抗 141により接続されている。両端の列方向の共通検出電極 133は、水素ガス検 知センサ 125の列方向の出力電極 Xa、 Xbとなる。  The common detection electrode 133 in the column direction is connected to the common detection electrode 133 in the adjacent column direction by a current dividing resistor 141. The common detection electrodes 133 in the column direction at both ends become the output electrodes Xa and Xb in the column direction of the hydrogen gas detection sensor 125.
[0229] 一方、行方向の共通検出電極 132は、隣接する行方向の共通検出電極 132と電 流分割抵抗 141により接続されている。両端の行方向の共通検出電極 132は、水素 ガス検知センサ 125の行方向の出力電極 Ya、 Ybとなる。 On the other hand, the common detection electrode 132 in the row direction is electrically connected to the common detection electrode 132 in the adjacent row direction. They are connected by a flow dividing resistor 141. The common detection electrodes 132 in the row direction at both ends become the output electrodes Ya and Yb in the row direction of the hydrogen gas detection sensor 125.
各出力電極 Xa, Xb, Yaおよび Ybは、各電流電圧変換回路 130a, 130b, 130c および 130dにそれぞれ接続される。電流電圧変換回路 130aおよび 130bは、オペ アンプを用いて構成されており、このオペアンプの反転入力端子には、それぞれ出 力電極 Xaおよび Xbが接続されている。また、非反転入力端子には、ノィァス電源 1 11が接続されている。電流電圧変換回路 130aおよび 130bのオペアンプは、出力 電極 Xa、 Xbを介して、 2次元配列型の水素ガス検知センサにセンサセル 103の抵抗 変化検出用のバイアス電圧を印加して 、る。電流電圧変換回路 130aおよび 130bの オペアンプの出力は、バイアス電圧除去用と電圧反転用の加算減算回路 135aおよ び 135bにそれぞれ入力される。加算減算回路 135aおよび 135bの出力は、 AZD 変換回路 118に入力される。  The output electrodes Xa, Xb, Ya and Yb are connected to the current-voltage conversion circuits 130a, 130b, 130c and 130d, respectively. The current-voltage conversion circuits 130a and 130b are configured by using operational amplifiers, and output electrodes Xa and Xb are connected to the inverting input terminals of the operational amplifiers, respectively. In addition, a noise power supply 111 is connected to the non-inverting input terminal. The operational amplifiers of the current-voltage conversion circuits 130a and 130b apply a bias voltage for detecting a change in resistance of the sensor cell 103 to the two-dimensional array type hydrogen gas detection sensor via the output electrodes Xa and Xb. The outputs of the operational amplifiers of the current-voltage conversion circuits 130a and 130b are input to the addition / subtraction circuits 135a and 135b for removing the bias voltage and for reversing the voltage, respectively. The outputs of the addition / subtraction circuits 135a and 135b are input to the AZD conversion circuit 118.
[0230] 電流電圧変換回路 130cおよび 130dは、オペアンプを用いて構成されており、この オペアンプの反転入力端子には、それぞれ出力電極 Yaおよび Ybが接続されている 。また、このオペアンプの非反転入力端子は接地されている。電流電圧変換回路 13 0c、 130dからの出力は、それぞれ AZD変換回路 118c, 118dにそれぞれ入力さ れる。 AZD変換回路 118a, 118bからの出力は、除算器 139aおよび加算器 138に それぞれ入力される。一方、 AZD変換回路 118c, 118dからの出力は、除算器 13 9bおよび加算器 138にそれぞれ入力される。除算器 139a, 139bおよび加算器 13 8からの各出力は、 DZA変換回路 140a, 140b, 140cに入力され、デジタル信号 力 Sアナログ信号に変換される。 [0230] The current-voltage conversion circuits 130c and 130d are configured using operational amplifiers, and output electrodes Ya and Yb are connected to the inverting input terminals of the operational amplifiers, respectively. The non-inverting input terminal of this operational amplifier is grounded. Outputs from the current-voltage conversion circuits 130c and 130d are input to the AZD conversion circuits 118c and 118d, respectively. Outputs from the AZD conversion circuits 118a and 118b are input to a divider 139a and an adder 138, respectively. On the other hand, outputs from the AZD conversion circuits 118c and 118d are input to the divider 139b and the adder 138, respectively. Outputs from the dividers 139a and 139b and the adder 138 are input to the DZA conversion circuits 140a, 140b, and 140c, and converted into a digital signal power S analog signal.
[0231] 次に、実施例 10における位置検出装置 115Cの動作原理について説明する。  Next, the operation principle of the position detection device 115C in Embodiment 10 will be described.
全てのセンサセル 103が水素ガスを検知して!/ヽな 、状態にぉ 、て、電極 Xaに流れ る電流を Iab、電極 Xbに流れる電流を Ibb、電極 Yaに流れる電流を Icb、電極 Xbに 流れる電流を Idbとする。このときの電流 lab, Ibb, Icbおよび Idbは、電流電圧変換 回路 130a, 130b, 130cおよび 130d【こお!ヽて電圧信号【こ変換される。電流電圧変 換回路 130aおよび 130bの各電圧信号は、加算減算回路 135aおよび 135bにそれ ぞれ入力され、バイアス電源 111で発生するバイアス電圧を減算し、さらに電圧信号 の符号を反転させる。これにより、電流電圧変換回路 130c, 130dと電圧が同極性と なる。 When all the sensor cells 103 detect the hydrogen gas !, the current flowing to the electrode Xa is Iab, the current flowing to the electrode Xb is Ibb, the current flowing to the electrode Ya is Icb, and the electrode Xb is Let Idb be the flowing current. At this time, the currents lab, Ibb, Icb and Idb are converted into current-voltage conversion circuits 130a, 130b, 130c and 130d. The voltage signals of the current-voltage conversion circuits 130a and 130b are input to the addition / subtraction circuits 135a and 135b, respectively, and the bias voltage generated by the bias power supply 111 is subtracted, and further the voltage signal The sign of is reversed. As a result, the voltage has the same polarity as the current-voltage conversion circuits 130c and 130d.
[0232] 加算減算回路 135a, 135bおよび電流電圧変換回路 130c, 130dからの各信号 は、 AZD変換回路 118a, 118b, 118cおよび 118dにおいてデジタル信号に変換 される。変換されたデジタル信号は、除算器 139a, 139bおよび加算器 138に送ら れる。除算器 139a, 139bおよび加算器 138ではこの状態の各デジタル信号をバイ ァス電流 lab, Ibb, Icbおよび Idbに相当する値として保持する。  [0232] The signals from the addition / subtraction circuits 135a and 135b and the current-voltage conversion circuits 130c and 130d are converted into digital signals by the AZD conversion circuits 118a, 118b, 118c and 118d. The converted digital signal is sent to dividers 139a and 139b and adder 138. Dividers 139a and 139b and adder 138 hold the digital signals in this state as values corresponding to bias currents lab, Ibb, Icb, and Idb.
[0233] 次に、実施例 10における 2次元配列形の水素ガス検知センサ 125のセンサセル 10 3が水素ガスを検知した状態とする。この状態において、電極 Xaに流れる電流を Ia、 電極 Xbに流れる電流を Ib、電極 Yaに流れる電流を Ic、電極 Ybに流れる電流を Idと する。  Next, it is assumed that the sensor cell 103 of the two-dimensionally arranged hydrogen gas detection sensor 125 in Example 10 has detected hydrogen gas. In this state, the current flowing through the electrode Xa is Ia, the current flowing through the electrode Xb is Ib, the current flowing through the electrode Ya is Ic, and the current flowing through the electrode Yb is Id.
前述のバイアス電流と同様に、電流 la, lb, Icおよび Idを電流電圧変換した後、デ ジタル信号に変換し、そのデジタル信号を除算器 139a, 139bおよび加算器 138に 送る。除算器 139a, 139bおよび力卩算器 138においては、保持していたバイアス電 流 lab, Ibb, Icbおよび Idbに相当するデジタル信号を、 la, lb, Icおよび Idに相当す るデジタル信号力 各々減算し、下記の式(29)から式(31)に相当する加算および 除算による演算処理を行う。これらの加算および除算による算出結果はデジタルの 電気信号として出力し、 D, A変換回路 140a, 140bおよび 140cによりアナログの 電気信号の算出結果 E5、X方向の除算による算出結果 E6Xおよび Y方向の除算に よる算出結果 E7Yに変換される。 X方向の算出結果 E6Xは、 X方向の水素ガスの検 知位置を示す算出結果であり、 Y方向の算出結果 E7Yは、 Y方向の水素ガスの検知 位置を示す算出結果である。  Similarly to the bias current described above, the currents la, lb, Ic, and Id are converted into current signals, converted into digital signals, and the digital signals are sent to the dividers 139a and 139b and the adder 138. In the dividers 139a and 139b and the power calculator 138, the digital signals corresponding to the bias currents lab, Ibb, Icb, and Idb that have been held are converted into digital signals corresponding to la, lb, Ic, and Id, respectively. Subtraction is performed, and arithmetic processing is performed by addition and division corresponding to equations (29) to (31) below. The calculation results of these additions and divisions are output as digital electric signals, and the D, A conversion circuits 140a, 140b, and 140c calculate the analog electric signals E5, the calculation results by the X direction division, and the E6X and Y direction divisions Calculated by E7Y. The calculation result E6X in the X direction is a calculation result indicating the detection position of the hydrogen gas in the X direction, and the calculation result E7Y in the Y direction is a calculation result indicating the detection position of the hydrogen gas in the Y direction.
[0234] E5=k35 X {(la lab) + (lb Ibb) + (Ic Icb)  [0234] E5 = k35 X ((la lab) + (lb Ibb) + (Ic Icb)
+ (Id— Idb》 (29)  + (Id— Idb) (29)
[0235] E6X=k36 X (lb -Ibb) /{(la -lab) + (lb -Ibb)}  [0235] E6X = k36 X (lb -Ibb) / {(la -lab) + (lb -Ibb)}
(30)  (30)
[0236] E7Y=k37 X (Id— Idb)Z{(Ic— Icb) + (Id -Idb)}  [0236] E7Y = k37 X (Id— Idb) Z {(Ic— Icb) + (Id -Idb)}
(31) [0237] 式(29) , (30)および(31)において、 k35、 k36、 K37は定数である。 (31) In formulas (29), (30), and (31), k35, k36, and K37 are constants.
[0238] 次に、式(30)および式(31)の演算処理以外の水素ガス検知位置を示す除算を用 V、た演算式にっ 、て説明する。 [0238] Next, an explanation will be given using an arithmetic expression using V for division indicating the hydrogen gas detection position other than the arithmetic processing of Expression (30) and Expression (31).
演算式において、 X方向が(la— lab)と(lb— Ibb)、 Y方向が(Ic一 Icb)と(Id— Idb )の比を表す項が含まれて!/、れば、水素ガスの検知位置を示す演算式として用いる ことができる。以下に、具体的な水素ガス検知位置を示す算出方法の例を記載する  In the formula, the X direction contains (la—lab) and (lb—Ibb), and the Y direction contains the ratio of (Ic – Icb) and (Id—Idb)! / It can be used as an arithmetic expression indicating the detection position. An example of a calculation method that indicates a specific hydrogen gas detection position is described below.
[0239] E8X=k38 X (lb— Ibb)Z(Ia— lab) (32) [0239] E8X = k38 X (lb— Ibb) Z (Ia— lab) (32)
[0240] E9Y=k39 X (Id— Idb)Z(Ic— Icb) (33) [0240] E9Y = k39 X (Id— Idb) Z (Ic— Icb) (33)
[0241] 式 (32)および (33)【こお!ヽて、 k38、 k39iま定数である。 [0241] Equations (32) and (33) are constants, k38 and k39i.
[0242] E10X=k40 X〔{(Ib—Ibb) [0242] E10X = k40 X [{(Ib—Ibb)
一(la— lab) }/{ (la— lab) + (lb— Ibb)}〕  One (la— lab)} / {(la— lab) + (lb— Ibb)}]
(34)  (34)
[0243] El lY=k41 X [{(Id-Idb)  [0243] El lY = k41 X [{(Id-Idb)
(lc-Icb)}/{(lc-Icb) + (Id-Idb)}]  (lc-Icb)} / {(lc-Icb) + (Id-Idb)}]
(35)  (35)
[0244] 式(34)および式(35)において、 k40、 k41は定数である。  [0244] In the equations (34) and (35), k40 and k41 are constants.
上記のように、前述の式(30)および式(31)の演算式以外に、式(32)力 式(35) の演算式を用いて水素ガス検知を行うことができる。  As described above, hydrogen gas detection can be performed using the arithmetic expression of the expression (32) and the force expression (35) in addition to the arithmetic expressions of the above expressions (30) and (31).
また、式(29)から式(35)において、水素ガス検知センサ 125の出力電流である la , lb, Icおよび Id力 バイアス電流 lab, Ibb, Icbおよび Idbに対して十分大きな場合 には、ノィァス電流を無視して算出することが可能である。その場合、式(29)から式 (35)は以下の式 (36)力 式 (42)で表される。  In addition, in equations (29) to (35), if the output currents la, lb, Ic and Id force bias currents of the hydrogen gas detection sensor 125 are sufficiently large with respect to lab, Ibb, Icb and Idb, It is possible to calculate by ignoring the current. In this case, equations (29) to (35) are expressed by the following equation (36) and force equation (42).
[0245] E5=k35 X (Ia+Ib+Ic+Id) (36)  [0245] E5 = k35 X (Ia + Ib + Ic + Id) (36)
[0246] E6X=k36 X Ib/ (lb+Ia) (37)  [0246] E6X = k36 X Ib / (lb + Ia) (37)
[0247] E7Y=k37 X Id/ (Ic+Id) (38)  [0247] E7Y = k37 X Id / (Ic + Id) (38)
[0248] E8X=k38 X Ib/la (39)  [0248] E8X = k38 X Ib / la (39)
[0249] E9Y=k39 X Id/lc (40) [0250] E10X=k40 X (lb - la) / (la + lb) (41) [0249] E9Y = k39 X Id / lc (40) [0250] E10X = k40 X (lb-la) / (la + lb) (41)
[0251] El lY=k41 X (ld-Ic) / (lc+Id) (42) [0251] El lY = k41 X (ld-Ic) / (lc + Id) (42)
[0252] 式(36)力ら式(42)にお!/、て、 K35、 k36、 k37、 k38、 k39、 k40、 k41iま定数で ある。  [0252] In equation (36) force equation (42)! /, K35, k36, k37, k38, k39, k40, k41i are constants.
上記のように、図 41に示した実施例 10の 2次元配列型の水素ガス検知センサにお V、ては、水素ガス検知位置を式(29)力も式 (42)を用いて算出することができる。  As described above, in the two-dimensional array type hydrogen gas detection sensor of Example 10 shown in FIG. 41, V, the hydrogen gas detection position should be calculated using Equation (29) and Equation (42) as well. Can do.
[0253] 実施例 10のガス検知装置にぉ 、て用いたバイアス電源 111は直流電源で説明し たが、本発明のガス検知装置におけるバイアス電源としては直流電源だけでなぐ 0 . ΙΚΗζから ΙΟΚΗζ程度の交流電源でも用いることができる。その場合は、位置検 出装置 115Cの電流電圧変換回路 130aゝ 130bゝ 130cおよび 130dに整流機會を 付加する必要がある。 The bias power supply 111 used in the gas detection apparatus of the tenth embodiment has been described as a DC power supply. However, the bias power supply in the gas detection apparatus of the present invention is not limited to a DC power supply. The AC power supply can be used. In that case, it is necessary to add a rectifier to the current-voltage conversion circuits 130a to 130b 130c and 130d of the position detection device 115C.
また、実施例 10における位置検出装置 115Cは、水素ガス検知センサ 125からの 出力電流をデジタル信号に変換して、演算処理を行うが、デジタル信号に変換せず アナログ信号の状態で回路構成により演算処理することも可能である。  In addition, the position detection device 115C in the tenth embodiment converts the output current from the hydrogen gas detection sensor 125 into a digital signal and performs an arithmetic process, but does not convert the digital signal into an analog signal and calculates the circuit configuration. It is also possible to process.
[0254] 以上のように、実施例 1から実施例 10に例示した本発明によれば、半導体方式で 分布型の水素ガス検知センサを実現することができる。特に、従来においては、光フ アイバー方式の水素ガス検知センサで実現していた水素ガス検知領域が 1次元 (線 状)である水素ガス検知センサを、本発明の半導体方式のガス検知センサで実現す ることができると共に、さらにガス検知領域が 2次元(面状)であるガス検知センサを実 現することができる。また、本発明においては、ガス検知センサにおける検知膜の温 度を上昇させることにより、応答速度の向上や湿度の影響を排除できること構成とす ることが可能となった。  [0254] As described above, according to the present invention illustrated in the first to tenth embodiments, a distributed hydrogen gas detection sensor can be realized in a semiconductor system. In particular, the hydrogen gas detection sensor that has been one-dimensional (linear) in the hydrogen gas detection area that was previously realized with the optical fiber hydrogen gas detection sensor is realized with the semiconductor gas detection sensor of the present invention. In addition, a gas detection sensor having a two-dimensional (planar) gas detection area can be realized. In the present invention, it is possible to improve the response speed and eliminate the influence of humidity by increasing the temperature of the detection film in the gas detection sensor.
さらに、本発明によれば、ガス検知領域が 1次元の線状の構成や、 2次元の面状の 構成を検知膜と抵抗層の積層構造だけでなぐ微小なセンサセルを複数用いて 1次 元の線状や 2次元の面状に配置してガス検知センサを構成することができる。  Furthermore, according to the present invention, the gas detection region is one-dimensional using a plurality of minute sensor cells that connect a one-dimensional linear configuration or a two-dimensional planar configuration with only a laminated structure of a detection film and a resistance layer. A gas detection sensor can be configured by arranging in a linear or two-dimensional plane.
産業上の利用可能性  Industrial applicability
[0255] 本発明によれば、水素機器や配管における水素漏洩箇所を簡易に高精度で応答 性よく検出することができ、水素漏洩箇所の発見までの時間や手間を大幅に削減で きるものであり、水素機器などの安全性確保に大いに貢献でき有用である。 [0255] According to the present invention, it is possible to easily and accurately detect a hydrogen leak location in hydrogen equipment and piping, and to greatly reduce the time and effort until the discovery of a hydrogen leak location. It is useful because it can greatly contribute to ensuring the safety of hydrogen equipment.

Claims

請求の範囲 The scope of the claims
[1] 所定の抵抗値を有する実質的な帯状の抵抗層、  [1] a substantially strip-shaped resistive layer having a predetermined resistance value,
前記抵抗層の長手方向の両端に電気的に接続された第 1の電極と第 2の電極、 前記抵抗層の長手方向の面における少なくとも 1つの面において、長手方向に沿 つて接触するよう配置され、被検知ガスとの接触により電気的特性が変化する材料で 形成された検知膜、および  A first electrode and a second electrode electrically connected to both ends in the longitudinal direction of the resistive layer, and arranged so as to contact along the longitudinal direction on at least one of the longitudinal surfaces of the resistive layer; A sensing film made of a material whose electrical characteristics change upon contact with the gas to be sensed, and
前記検知膜の長手方向の面における少なくとも 1つの面に接触して配置され、前記 抵抗層に対して前記検知膜を介して接合された共通電極、を具備するガス検知セン サであって、  A gas detection sensor comprising a common electrode disposed in contact with at least one surface in a longitudinal direction of the detection film and bonded to the resistance layer via the detection film;
前記検知膜が長手方向に沿って線状に表出するよう構成されたガス検知センサ。  A gas detection sensor configured such that the detection film is linearly exposed along the longitudinal direction.
[2] 前記抵抗層と前記検知膜と前記共通電極が積層されて構成され、最上位の層に空 隙部が形成されて前記検知膜が長手方向に沿って表出するよう構成された請求項 1 に記載のガス検知センサ。 [2] The resistance layer, the detection film, and the common electrode are stacked and configured such that a space is formed in the uppermost layer so that the detection film is exposed along the longitudinal direction. Item 1. The gas detection sensor according to item 1.
[3] 電気的絶縁性を有する帯状の基材をさらに具備し、前記基材上に前記抵抗層と前 記検知膜と前記共通電極を設けた請求項 1に記載のガス検知センサ。 [3] The gas detection sensor according to claim 1, further comprising a strip-like base material having electrical insulation, wherein the resistance layer, the detection film, and the common electrode are provided on the base material.
[4] 電気的絶縁性を有する実質的な帯状の基材をさらに具備し、前記基材上に前記抵 抗層と前記検知膜と前記共通電極の順に積層し、最上位の前記共通電極に空隙部 が形成されて前記検知膜が長手方向に沿って表出するよう構成された請求項 1に記 載のガス検知センサ。 [4] A substantially strip-shaped base material having electrical insulation is further provided, and the resistance layer, the detection film, and the common electrode are sequentially laminated on the base material, and the topmost common electrode is stacked. The gas detection sensor according to claim 1, wherein an air gap is formed so that the detection film is exposed along a longitudinal direction.
[5] 電気的絶縁性を有する実質的な帯状の基材をさらに具備し、前記基材上に前記共 通電極と前記検知膜と前記抵抗層の順に積層し、最上位の前記抵抗層に空隙部が 形成されて前記検知膜が長手方向に沿って表出するよう構成された請求項 1に記載 のガス検知センサ。  [5] A substantially strip-shaped base material having electrical insulation is further provided, and the common electrode, the detection film, and the resistance layer are stacked in this order on the base material, and the uppermost resistance layer is formed. The gas detection sensor according to claim 1, wherein a void portion is formed so that the detection film is exposed along a longitudinal direction.
[6] 所定の抵抗値を有する実質的な面状の抵抗層、 [6] A substantially planar resistive layer having a predetermined resistance value,
前記抵抗層における四方の端部に電気的に接続された第 1の電極と第 2の電極と 第 3の電極と第 4の電極、  A first electrode, a second electrode, a third electrode, and a fourth electrode electrically connected to four ends of the resistance layer;
前記抵抗層の一方の面に接触するよう積層され、被検知ガスとの接触により電気的 特性が変化する材料で形成された検知膜、および 前記抵抗層に対して前記検知膜を介して積層され、導電体で形成された共通電極 、を具備するガス検知センサであって、 A sensing film made of a material that is laminated so as to be in contact with one surface of the resistance layer and whose electrical characteristics change by contact with the gas to be sensed; and A gas detection sensor comprising a common electrode, which is laminated with respect to the resistance layer via the detection film and formed of a conductor,
前記検知膜が面状に表出するよう構成されたガス検知センサ。  A gas detection sensor configured to expose the detection film in a planar shape.
[7] 積層された前記抵抗層と前記検知膜と前記共通電極において、最上位の層に空 隙部が形成されて前記検知膜が面状に表出するよう構成された請求項 6に記載のガ ス検知センサ。 [7] The laminated structure of the resistance layer, the sensing film, and the common electrode, wherein a space is formed in the uppermost layer so that the sensing film is exposed in a planar shape. Gas detection sensor.
[8] 電気的絶縁性を有する実質的な面状の基材をさらに具備し、前記基材上に前記抵 抗層と前記検知膜と前記共通電極を積層した請求項 6に記載のガス検知センサ。  [8] The gas detection according to claim 6, further comprising a substantially planar base material having electrical insulation, wherein the resistance layer, the detection film, and the common electrode are laminated on the base material. Sensor.
[9] 被検知ガスとの接触により電気的特性が変化する材料で形成された検知膜を有し 、検知面が実質的な帯状に構成されており、被検知ガスを検知したときガス検知位置 に応じて電流分割して出力するガス検知センサ、  [9] It has a detection film made of a material whose electrical characteristics change by contact with the gas to be detected, and the detection surface has a substantially band shape, and when the gas to be detected is detected, the gas detection position Gas detection sensor that divides current according to the output,
前記ガス検知センサに電力を供給するバイアス電源、  A bias power supply for supplying power to the gas detection sensor;
前記ガス検知センサ力ゝらの電流分割された信号を演算処理してガス検知位置を算 出する演算器、を具備するガス検知装置であって、  A gas detection device comprising a calculator for calculating a gas detection position by calculating a current-divided signal of the gas detection sensor force;
前記演算器は、前記ガス検知センサ力ゝらの電流分割された被検知ガスを検知して いないときの信号と検知したときの信号を減算し、その減算結果を加算処理した算出 結果と除算処理した算出結果に基づきガス検知位置を検知するよう構成されたガス 検知装置。  The computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when it is detected, and adds the subtraction result to the calculation result and the division process A gas detection device configured to detect a gas detection position based on the calculated result.
[10] 被検知ガスとの接触により電気的特性が変化する材料で形成された検知膜を有し 、検知面が実質的な面状に構成されており、被検知ガスを検知したときガス検知位置 に応じて四方に電流分割して出力するガス検知センサ、  [10] It has a detection film made of a material whose electrical characteristics change by contact with the gas to be detected, and the detection surface is configured to be a substantial surface, and gas detection is performed when the gas to be detected is detected. Gas detection sensor that outputs current divided in four directions according to the position,
前記ガス検知センサに電力を供給するバイアス電源、  A bias power supply for supplying power to the gas detection sensor;
前記ガス検知センサ力ゝらの電流分割された信号を演算処理してガス検知位置を算 出する演算器、を具備するガス検知装置であって、  A gas detection device comprising a calculator for calculating a gas detection position by calculating a current-divided signal of the gas detection sensor force;
前記演算器は、前記ガス検知センサ力ゝらの電流分割された被検知ガスを検知して いないときの信号と検知したときの信号を減算し、その減算結果を加算処理した算出 結果と減算処理した算出結果に基づきガス検知位置を検知するよう構成されたガス 検知装置。 [11] 被検知ガスを検知すると抵抗変化するガス検知センサを有するガス検知装置であ つて、 The computing unit subtracts the signal when the gas detection target gas divided by the gas detection sensor force is not detected and the signal when detected, and adds the subtraction result to the calculation result and the subtraction process. A gas detection device configured to detect a gas detection position based on the calculated result. [11] A gas detection device having a gas detection sensor whose resistance changes when a gas to be detected is detected,
実質的な帯状に形成された検知膜、  A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、および  A resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film. A common electrode for applying, and
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、を備え、  A first electrode and a second electrode that are not bonded to the detection film and are formed at both ends in the longitudinal direction on the resistance layer;
前記抵抗層を介して前記共通電極と前記第 1の電極との間及び前記共通電極と第 2の電極との間の各抵抗値変化を測定し、前記抵抗値変化に基づいて前記検知膜 のガス検知位置を算出するよう構成されたガス検知装置。  Each resistance value change between the common electrode and the first electrode and between the common electrode and the second electrode is measured via the resistance layer, and based on the resistance value change, A gas detection device configured to calculate a gas detection position.
[12] 電気的に絶縁性を有し、実質的な帯状に形成された基材、 [12] A base material that is electrically insulative and formed in a substantially strip shape,
前記基材の長手方向の面に接合して形成された抵抗層、  A resistance layer formed by bonding to the longitudinal surface of the substrate;
前記抵抗層の長手方向の面に積層され、被検知ガスを検知すると抵抗変化する検 知膜、  A sensing film that is laminated on a longitudinal surface of the resistance layer and changes its resistance when a gas to be detected is detected;
前記検知膜の長手方向の面に形成され、前記検知膜に所定のバイアス電圧を印 加するための共通電極、および  A common electrode formed on a longitudinal surface of the sensing film for applying a predetermined bias voltage to the sensing film; and
前記検知膜の抵抗変化を検出するために前記抵抗層の両端部に設けられた第 1 の電極と第 2の電極、を備え、  A first electrode and a second electrode provided at both ends of the resistance layer to detect a resistance change of the sensing film;
前記抵抗層を介して前記共通電極と前記第 1の電極との間の抵抗値変化および前 記共通電極と第 2の電極との間の抵抗値変化を測定し、前記各抵抗値変化に基づ いて前記検知膜のガス検知位置を算出するよう構成されたガス検知装置。  A resistance value change between the common electrode and the first electrode and a resistance value change between the common electrode and the second electrode are measured via the resistance layer, and the resistance value change is determined based on each resistance value change. A gas detection device configured to calculate a gas detection position of the detection film.
[13] 電気的に絶縁性を有し、実質的な帯状に形成された基材、 [13] A base material that is electrically insulating and formed in a substantially strip shape,
前記基材の長手方向の面に接合して形成された共通電極、  A common electrode formed by bonding to the longitudinal surface of the substrate;
前記共通電極の長手方向の面に積層され、被検知ガスを検知すると抵抗変化する 検知膜、  A sensing film that is laminated on the longitudinal surface of the common electrode and changes its resistance when a gas to be detected is detected,
前記検知膜の長手方向の面に積層された抵抗層、および  A resistance layer laminated on a longitudinal surface of the sensing film; and
前記検知膜の抵抗変化を検出するために前記抵抗層の両端部に設けられた第 1 の電極と第 2の電極、を備え、 In order to detect a change in resistance of the sensing film, a first layer provided at both ends of the resistance layer. An electrode and a second electrode,
前記共通電極を介して前記検知膜に所定のバイアス電圧を印加し、前記抵抗層を 介して前記共通電極と前記第 1の電極との間の抵抗値変化および前記共通電極と 第 2の電極との間の抵抗値変化を測定し、前記各抵抗値変化に基づいて前記検知 膜のガス検知位置を算出するよう構成されたガス検知装置。  A predetermined bias voltage is applied to the detection film via the common electrode, a resistance value change between the common electrode and the first electrode, and the common electrode and the second electrode via the resistance layer. A gas detection device configured to measure a change in resistance value between and to calculate a gas detection position of the detection film based on each change in resistance value.
[14] 前記被検知ガスが水素を含むガスであり、前記検知膜は、水素分子を吸着し、プロ トンに解離する作用を有する触媒と、解離されたプロトンを吸着することにより電気抵 抗率が低下する金属酸化物とを有して構成され、 [14] The gas to be detected is a gas containing hydrogen, and the detection film adsorbs hydrogen molecules and dissociates them into protons, and an electric resistivity by adsorbing the dissociated protons. With a metal oxide that decreases,
前記触媒の主たる成分は、白金 (Pt)またはパラジウム (Pd)の何れか一を含み、 前記金属酸化物の主たる成分は、酸化スズ (SnO )、三酸ィ匕モリブデン (MnO ) ,  The main component of the catalyst includes either platinum (Pt) or palladium (Pd), and the main component of the metal oxide is tin oxide (SnO), molybdenum trioxide (MnO),
2 3 三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジウム(Ir (OH) n)、  2 3 Tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide (Ir (OH) n),
3 2  3 2
五酸化バナジウム(V O )、または、酸化ロジウム(Rh O ·χΗ Ο)の何れか一の金  Gold of either vanadium pentoxide (V O) or rhodium oxide (Rh O · χΗ Ο)
2 5 2 3 2  2 5 2 3 2
属酸ィ匕物を含む請求項 9乃至請求項 13のいずれかの一項に記載のガス検知装置。  The gas detection device according to any one of claims 9 to 13, comprising a genus acid salt.
[15] 前記被検知ガスが水素を含むガスであり、前記検知膜は、水素分子を吸着し、プロ トンに解離する作用を有する触媒と、解離されたプロトンを吸着することにより電気抵 抗率が低下する金属酸化物とを有して構成され、 [15] The gas to be detected is a gas containing hydrogen, and the detection film adsorbs hydrogen molecules and dissociates into protons and an electric resistivity by adsorbing the dissociated protons. With a metal oxide that decreases,
前記触媒の主たる成分は、白金 (Pt)またはパラジウム (Pd)の何れか一を含み、 前記金属酸化物の主たる成分は、酸化スズ (SnO )、三酸ィ匕モリブデン (MnO ) ,  The main component of the catalyst includes either platinum (Pt) or palladium (Pd), and the main component of the metal oxide is tin oxide (SnO), molybdenum trioxide (MnO),
2 3 三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジウム(Ir (OH) n)、  2 3 Tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide (Ir (OH) n),
3 2  3 2
五酸化バナジウム(V O )、または、酸化ロジウム(Rh O ·χΗ Ο)の何れか一の金  Gold of either vanadium pentoxide (V O) or rhodium oxide (Rh O · χΗ Ο)
2 5 2 3 2  2 5 2 3 2
属酸化物を含み、  Including a metal oxide,
前記触媒は、粒子径が 10nm以下の微粒子であって、粒子径が 10nmから lOOnm の前記金属酸ィ匕物微粒子に分散担持された構造を有する請求項 9乃至請求項 13 の!、ずれかの一項に記載のガス検知装置。  14. The catalyst according to any one of claims 9 to 13, wherein the catalyst is a fine particle having a particle size of 10 nm or less, and has a structure in which the catalyst is dispersed and supported on the metal oxide fine particle having a particle size of 10 nm to lOO nm. The gas detection device according to any one of the deviations.
[16] 前記検知膜上に形成される前記共通電極は、前記検知膜が被検知ガスに暴露さ れ得る空隙部を有する請求項 11に記載のガス検知装置。 16. The gas detection device according to claim 11, wherein the common electrode formed on the detection film has a gap that allows the detection film to be exposed to a gas to be detected.
[17] 被検知ガスを検知すると抵抗変化するガス検知センサを有するガス検知装置であ つて、 実質的な帯状に形成された検知膜、 [17] A gas detection device having a gas detection sensor whose resistance changes when a gas to be detected is detected, A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、  A resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film. A common electrode for applying,
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、および  A first electrode and a second electrode which are not joined to the sensing film and are formed at both ends in the longitudinal direction on the resistance layer; and
前記共通電極と前記第 1の電極との抵抗変化および前記共通電極と第 2の電極と の抵抗変化を検出してガス検知位置を算出する変換手段、を備え、  Conversion means for calculating a gas detection position by detecting a resistance change between the common electrode and the first electrode and a resistance change between the common electrode and the second electrode;
前記変換手段は、前記抵抗層を介して前記共通電極と前記第 1の電極との間を流 れる電流値、および前記共通電極と第 2の電極との間を流れる電流値を電圧値に変 換し、変換された前記電圧値に基づいてガス検知位置を算出する演算器を有するガ ス検知装置。  The converting means converts a current value flowing between the common electrode and the first electrode through the resistance layer and a current value flowing between the common electrode and the second electrode into a voltage value. In other words, a gas detection device having an arithmetic unit that calculates a gas detection position based on the converted voltage value.
[18] 前記検知膜が被検知ガスを検知した状態において、前記共通電極と前記第 1の電 極との間を流れる電流値を II、前記共通電極と前記第 2の電極との間を流れる電流 値を 12とし、 klを定数としたときに、  [18] In a state where the detection film detects the gas to be detected, the current value flowing between the common electrode and the first electrode is II, and the current flows between the common electrode and the second electrode. When the current value is 12 and kl is a constant,
E=kl X I2/ (11 +12)  E = kl X I2 / (11 +12)
より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。  The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[19] 前記検知膜が被検知ガスを検知した状態において、前記共通電極と前記第 1の電 極との間を流れる電流値を II、前記共通電極と前記第 2の電極との間を流れる電流 値を 12とし、 k2を定数としたときに、 [19] In a state where the detection film detects the gas to be detected, the current value flowing between the common electrode and the first electrode is II, and the current flows between the common electrode and the second electrode. When the current value is 12 and k2 is a constant,
E=k2 X I2/ll  E = k2 X I2 / ll
より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。  The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[20] 前記検知膜が被検知ガスを検知した状態において、前記共通電極と前記第 1の電 極との間を流れる電流値を II、前記共通電極と前記第 2の電極との間を流れる電流 値を 12とし、 k3を定数としたときに、 [20] In a state where the detection film detects the gas to be detected, the current value flowing between the common electrode and the first electrode is II, and the current flows between the common electrode and the second electrode. When the current value is 12 and k3 is a constant,
E=k3 X (I2-I1) / (I1 +I2) より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。 E = k3 X (I2-I1) / (I1 + I2) The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[21] 前記検知膜が被検知ガスを検知しな!ヽ状態における前記共通電極と前記第 1の電 極との間を流れるバイアス電流の値を lib、前記共通電極と第 2の電極間を流れるバ ィァス電流を I2bとし、 [21] The detection film does not detect the gas to be detected! The value of the bias current flowing between the common electrode and the first electrode in the saddle state is lib, and the bias current flowing between the common electrode and the second electrode is I2b.
前記検知膜が被検知ガスを検知した状態における前記共通電極と前記第 1の電極 との間を流れる電流値を II、前記共通電極と第 2の電極との間を流れる電流値を 12と し、 k4を定数としたときに、  The current value flowing between the common electrode and the first electrode in a state where the detection film detects the gas to be detected is II, and the current value flowing between the common electrode and the second electrode is 12. , Where k4 is a constant
E=k4 X (12— I2b) / ( (II— lib) + (12— I2b) )  E = k4 X (12— I2b) / ((II— lib) + (12— I2b))
より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。  The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[22] 前記検知膜が被検知ガスを検知しな!ヽ状態における前記共通電極と前記第 1の電 極との間を流れるバイアス電流の値を lib、前記共通電極と第 2の電極との間を流れ るバイアス電流を I2bとし、 [22] The detection film does not detect the gas to be detected! The value of the bias current flowing between the common electrode and the first electrode in the saddle state is lib, and the bias current flowing between the common electrode and the second electrode is I2b.
前記検知膜が被検知ガスを検知した状態における前記共通電極と前記第 1の電極 との間を流れる電流値を II、前記共通電極と第 2の電極との間を流れる電流値を 12と し、 k5を定数としたときに、  The current value flowing between the common electrode and the first electrode in a state where the detection film detects the gas to be detected is II, and the current value flowing between the common electrode and the second electrode is 12. , Where k5 is a constant
E=k5 X (12— I2b) / (I1— lib)  E = k5 X (12—I2b) / (I1—lib)
より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。  The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[23] 前記検知膜が被検知ガスを検知しな!ヽ状態における前記共通電極と前記第 1の電 極との間を流れるバイアス電流の値を lib、前記共通電極と第 2の電極との間を流れ るバイアス電流を I2bとし、 [23] When the detection film does not detect the gas to be detected, the value of the bias current flowing between the common electrode and the first electrode in the soot state is represented by lib, and the common electrode and the second electrode The bias current flowing between them is I2b,
前記検知膜が被検知ガスを検知した状態における前記共通電極と前記第 1の電極 との間を流れる電流値を II、前記共通電極と第 2の電極との間を流れる電流値を 12と し、 k6を定数としたときに、  The current value flowing between the common electrode and the first electrode in a state where the detection film detects the gas to be detected is II, and the current value flowing between the common electrode and the second electrode is 12. , Where k6 is a constant
E=k6 X [{(12— I2b) (II— Ilb)}/{(I1— lib)  E = k6 X [{(12— I2b) (II— Ilb)} / {(I1— lib)
+ (12— I2b)}] より算出される値 Eに応じて前記検知膜上のガス検知位置を検出するよう構成された 請求項 17に記載のガス検知装置。 + (12— I2b)}] The gas detection device according to claim 17, wherein the gas detection device is configured to detect a gas detection position on the detection film in accordance with a value E calculated from the above.
[24] 前記第 1の電極、前記検知膜及び前記抵抗層を貫通する孔を有することを特徴と する請求項 9乃至請求項 11のいずれか一項に記載のガス検知装置。 24. The gas detection device according to claim 9, further comprising a hole penetrating the first electrode, the detection film, and the resistance layer.
[25] 前記検知膜の温度を 60°Cから 150°Cに加熱する加熱手段を有することを特徴とす る請求項 9乃至請求項 11の 、ずれか一項に記載のガス検知装置。 [25] The gas detection device according to any one of [9] to [11], further comprising heating means for heating the temperature of the detection film from 60 ° C to 150 ° C.
[26] 可燃ガスを検知すると抵抗変化するガス検知センサを有するガス検知装置であつ て、 [26] A gas detection device having a gas detection sensor that changes resistance when a combustible gas is detected.
実質的な帯状に形成された検知膜、  A sensing film formed in a substantially belt-like shape,
前記検知膜の長手方向の面における 1つの面に接合して積層された抵抗層、 前記検知膜の長手方向の面における他の面に接合して積層され、前記検知膜に 所定のバイアス電圧を印加するための共通電極、および  A resistive layer bonded and stacked on one surface of the detection film in the longitudinal direction, and bonded and stacked on another surface of the detection film in the longitudinal direction, and a predetermined bias voltage is applied to the detection film. A common electrode for applying, and
前記検知膜と接合せず、前記抵抗層上の長手方向の両端部に形成された第 1の 電極と第 2の電極、を備え、  A first electrode and a second electrode that are not bonded to the detection film and are formed at both ends in the longitudinal direction on the resistance layer;
前記検知膜の温度を 200°C力も 400°Cに加熱し、前記抵抗層を介して前記共通電 極と前記第 1の電極との間及び前記共通電極と前記第 2の電極との間の各抵抗値変 化を測定し、前記抵抗値変化に基づいて前記検知膜のガス検知位置を算出するよう 構成されたガス検知装置。  The temperature of the detection film is heated to 200 ° C. and 400 ° C., and between the common electrode and the first electrode and between the common electrode and the second electrode through the resistance layer. A gas detection device configured to measure each resistance value change and calculate a gas detection position of the detection film based on the resistance value change.
[27] 被検知ガスを検知すると抵抗変化するガス検知センサを有するガス検知装置であ つて、 [27] A gas detection device having a gas detection sensor whose resistance changes when a gas to be detected is detected,
実質的に矩形状に形成された膜面を有し、前記膜面が直交する X方向と Y方向を 含んで配置された検知膜、  A detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
前記検知膜の一方の面に積層された矩形状の抵抗層、  A rectangular resistive layer laminated on one side of the sensing film;
前記検知膜の他方の面に接して形成され、前記検知膜に所定のバイアス電圧を印 加する共通電極、  A common electrode that is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film;
前記抵抗層の対向する一対の辺に設けられ、 X方向のガス検知位置を検出するた め X方向に延設された直線状の第 1の電極と第 2の電極、および  A linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction; and
前記抵抗層の対向する他の一対の辺に設けられ、 Y方向のガス検知位置を検出す るため Y方向に延設された直線状の第 3の電極及び第 4の電極、 Provided on the other pair of opposing sides of the resistance layer to detect the gas detection position in the Y direction. A linear third electrode and a fourth electrode extending in the Y direction,
を備えたガス検知装置。  Gas detector equipped with.
[28] 電気的絶縁性を有する基材を具備し、前記基材上に前記抵抗層、前記検知層お よび前記共通電極を順に積層した請求項 27に記載のガス検知装置。 28. The gas detection device according to claim 27, comprising a base material having electrical insulation, wherein the resistance layer, the detection layer, and the common electrode are sequentially stacked on the base material.
[29] 電気的絶縁性を有する基材を具備し、前記基材上に前記共通電極、前記検知膜 および前記抵抗層を順に積層した請求項 27に記載のガス検知装置。 29. The gas detection device according to claim 27, further comprising a base material having electrical insulation, wherein the common electrode, the detection film, and the resistance layer are sequentially stacked on the base material.
[30] 前記被検知ガスが水素を含むガスであり、前記検知膜は、水素分子を吸着しプロト ンに解離する作用を有する触媒と、解離されたプロトンを吸着することにより電気抵抗 率が低下する金属酸化物とを有し、 [30] The gas to be detected is a gas containing hydrogen, and the detection film has a catalyst having an action of adsorbing hydrogen molecules and dissociating into protons, and adsorbing the dissociated protons to reduce the electrical resistivity. And a metal oxide
前記触媒の主たる成分は、白金 (Pt)またはパラジウム (Pd)の何れか一つを含み、 前記金属酸化物の主たる成分は、酸化スズ (SnO )、三酸ィ匕モリブデン (MnO ) ,  The main component of the catalyst contains either one of platinum (Pt) or palladium (Pd), and the main component of the metal oxide is tin oxide (SnO), molybdenum trioxide (MnO),
2 3 三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジウム(Ir (OH) n)、  2 3 Tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide (Ir (OH) n),
3 2  3 2
五酸化バナジウム(V O )、または、酸化ロジウム(Rh O · χΗ Ο)の何れか一つを  Either vanadium pentoxide (V O) or rhodium oxide (Rh O · χΗ Ο)
2 5 2 3 2  2 5 2 3 2
含む請求項 27に記載のガス検知装置。  28. The gas detection device according to claim 27.
[31] 前記触媒は、粒子径が 10nm以下の微粒子であって、粒子径が 10nmから lOOnm の前記金属酸化物微粒子に分散担持された構造を有する請求項 27に記載のガス 検知装置。 31. The gas detection device according to claim 27, wherein the catalyst is a fine particle having a particle size of 10 nm or less and has a structure in which the catalyst is dispersed and supported on the metal oxide fine particle having a particle size of 10 nm to lOO nm.
[32] 前記検知膜上に形成された前記共通電極は、前記検知膜が被検知ガスに暴露さ れるための空隙部を有する請求項 27に記載のガス検知装置。  32. The gas detection device according to claim 27, wherein the common electrode formed on the detection film has a gap for exposing the detection film to a gas to be detected.
[33] 前記共通電極と前記第 1の電極との間および前記共通電極と前記第 2の電極との 間の抵抗値変化を検出し、前記抵抗値変化に基づ!ヽてガス検知位置の X方向の位 置を算出する X方向変換手段と、 [33] A change in resistance value between the common electrode and the first electrode and between the common electrode and the second electrode is detected and based on the change in resistance value! X direction conversion means that calculates the X direction position of the gas detection position;
前記共通電極と前記第 3の電極との間および前記共通電極と第 4の電極との間の 抵抗値変化を検出し、前記抵抗値変化に基づ!ヽてガス検知位置の Y方向の位置を 算出する Y方向変換手段と、を備え、  A change in resistance value between the common electrode and the third electrode and between the common electrode and the fourth electrode is detected, and based on the change in resistance value, a gas detection position in the Y direction is detected. Y direction conversion means for calculating
前記 X方向変換手段と前記 Y方向変換手段は、前記第 1の電極から第 4の電極ま での各電極の電流値を電圧値に変換し、変換された前記電圧値に基づ!、て前記ガ ス検知位置を算出する演算器を有する請求項 27に記載のガス検知装置。 [34] 被検知ガスを検知した状態における前記共通電極と前記第 1の電極との間を流れ る電流値を Ia、前記共通電極と前記第 2の電極との間を流れる電流値を Ib、前記共 通電極と前記第 3の電極との間を流れる電流値を Ic、前記共通電極と前記第 4の電 極との間を流れる電流値を Idとし、 k7、 k8を定数としたとき〖こ、 The X direction conversion means and the Y direction conversion means convert the current value of each electrode from the first electrode to the fourth electrode into a voltage value, and based on the converted voltage value! 28. The gas detection device according to claim 27, further comprising an arithmetic unit that calculates the gas detection position. [34] Ia is a current value flowing between the common electrode and the first electrode in a state where a gas to be detected is detected, and Ib is a current value flowing between the common electrode and the second electrode. When the current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and k7 and k8 are constants. This
EX=k7 X Ib/ (Ia + Ib)  EX = k7 X Ib / (Ia + Ib)
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、 The gas detection position in the X direction on the detection film is detected according to the value EX calculated by
EY=k8 X Id/ (Ic+Id) EY = k8 X Id / (Ic + Id)
より算出される値 EYに応じて前記検知膜上の Y方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。  34. The gas detection device according to claim 33, configured to detect a gas detection position in the Y direction on the detection film in accordance with a value EY calculated from the above.
[35] 被検知ガスを検知した状態における前記共通電極と前記第 1の電極との間を流れ る電流値を Ia、前記共通電極と前記第 2の電極との間を流れる電流値を Ib、前記共 通電極と前記第 3の電極との間を流れる電流値を Ic、前記共通電極と前記第 4の電 極との間を流れる電流値を Idとし、 k9、 klOを定数としたときに、 [35] The current value flowing between the common electrode and the first electrode in a state where the gas to be detected is detected is Ia, the current value flowing between the common electrode and the second electrode is Ib, When the current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and k9 and klO are constants. ,
EX=k9 X Ib/la  EX = k9 X Ib / la
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、 EY=klO X Id/lc  The gas detection position in the X direction on the detection film is detected according to the value EX calculated from EY = klO X Id / lc
より算出される値 EYに応じて前記検知膜上の Y方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。  34. The gas detection device according to claim 33, configured to detect a gas detection position in the Y direction on the detection film in accordance with a value EY calculated from the above.
[36] 被検知ガスを検知した状態における前記共通電極と前記第 1の電極との間を流れ る電流値を Ia、前記共通電極と前記第 2の電極との間を流れる電流値を Ib、前記共 通電極と前記第 3の電極との間を流れる電流値を Ic、前記共通電極と前記第 4の電 極との間を流れる電流値を Idとし、 kl l、 kl2を定数としたときに、 [36] Ia is a current value flowing between the common electrode and the first electrode in a state where a gas to be detected is detected, and Ib is a current value flowing between the common electrode and the second electrode. When the current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and kl l and kl2 are constants In addition,
EX=kl l X (Ib-Ia) / (Ia + Ib)  EX = kl l X (Ib-Ia) / (Ia + Ib)
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、 EY=kl2 X (Id— Ic) / (Ic+Id)  The gas detection position in the X direction on the detection film is detected according to the value EX calculated from EY = kl2 X (Id— Ic) / (Ic + Id)
より算出される値 EYに応じて前記検知膜上の X方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。  34. The gas detection device according to claim 33, configured to detect a gas detection position in the X direction on the detection film in accordance with a value EY calculated from the above.
[37] 前記検知膜が被検知ガスを検知して!/ヽな!ヽ状態における前記共通電極と前記第 1 の電極との間を流れるバイアス電流を labとし、前記共通電極と前記第 2の電極との 間を流れるバイアス電流を Ibbとし、前記共通電極と前記第 3の電極との間を流れる バイアス電流を Icbとし、前記共通電極と前記第 4の電極との間を流れるバイアス電流 を Idbとし、 [37] The detection film detects the gas to be detected! / Cunning! The common electrode and the first electrode in the saddle state The bias current flowing between the common electrode and the second electrode is defined as lab, the bias current flowing between the common electrode and the second electrode is defined as Ibb, and the bias current flowing between the common electrode and the third electrode is defined as Icb, and bias current flowing between the common electrode and the fourth electrode is Idb,
前記検知膜が被検知ガスを検知した状態における前記共通電極と前記第 1の電極 との間を流れる電流値を laとし、前記共通電極と前記第 2の電極との間を流れる電流 値を lbとし、前記共通電極と前記第 3の電極との間を流れる電流値を Icとし、前記共 通電極と前記第 4の電極との間を流れる電流値を Idとし、 kl3、 kl4を定数としたとき に、  The current value flowing between the common electrode and the first electrode when the detection film detects the gas to be detected is la, and the current value flowing between the common electrode and the second electrode is lb. The current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and kl3 and kl4 are constants. sometimes,
EX=kl3 X (lb -Ibb) /{(la -lab) + (lb -Ibb)}  EX = kl3 X (lb -Ibb) / {(la -lab) + (lb -Ibb)}
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、The gas detection position in the X direction on the detection film is detected according to the value EX calculated by
EY=kl4 X (ld-Idb) /{(lc-Icb) + (Id -Idb)} EY = kl4 X (ld-Idb) / {(lc-Icb) + (Id -Idb)}
より算出される値 EYに応じて前記検知膜上の Y方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。 34. The gas detection device according to claim 33, configured to detect a gas detection position in the Y direction on the detection film in accordance with a value EY calculated from the above.
前記検知膜が被検知ガスを検知して ヽな ヽ状態における前記共通電極と前記第 1 の電極との間を流れるバイアス電流を labとし、前記共通電極と前記第 2の電極との 間を流れるバイアス電流を Ibbとし、前記共通電極と前記第 3の電極との間を流れる バイアス電流を Icbとし、前記共通電極と前記第 4の電極との間を流れるバイアス電流 を Idbとし、  A bias current flowing between the common electrode and the first electrode when the detection film detects a gas to be detected and is in a distorted state is defined as lab, and flows between the common electrode and the second electrode. The bias current is Ibb, the bias current flowing between the common electrode and the third electrode is Icb, the bias current flowing between the common electrode and the fourth electrode is Idb,
前記検知膜が被検知ガスを検知したときにおける前記共通電極と前記第 1の電極 との間を流れる電流値を laとし、前記共通電極と前記第 2の電極との間を流れる電流 値を lbとし、前記共通電極と前記第 3の電極との間を流れる電流値を Icとし、前記共 通電極と前記第 4の電極との間を流れる電流値を Idとし、 kl5、 kl6を定数としたとき に、  When the detection film detects the gas to be detected, the current value flowing between the common electrode and the first electrode is la, and the current value flowing between the common electrode and the second electrode is lb The current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and kl5 and kl6 are constants. sometimes,
EX=kl5 X (lb— Ibb) Z (la— lab)  EX = kl5 X (lb— Ibb) Z (la— lab)
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、The gas detection position in the X direction on the detection film is detected according to the value EX calculated by
EY=kl6 X (ld-Idb) / (lc-Icb) EY = kl6 X (ld-Idb) / (lc-Icb)
より算出される値 EYに応じて前記検知膜上の Y方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。 The gas detection position in the Y direction on the detection film is detected according to the value EY calculated from 34. The gas detection device according to claim 33 configured.
[39] 前記検知膜が被検知ガスを検知して!/ヽな!ヽ状態における前記共通電極と前記第 1 の電極との間を流れるバイアス電流を labとし、前記共通電極と前記第 2の電極との 間を流れるバイアス電流を Ibbとし、前記共通電極と前記第 3の電極との間を流れる バイアス電流を Icbとし、前記共通電極と前記第 4の電極との間を流れるバイアス電流 を Idbとし、 [39] The detection film detects the gas to be detected! / Cunning! The bias current flowing between the common electrode and the first electrode in the saddle state is lab, the bias current flowing between the common electrode and the second electrode is Ibb, and the common electrode and the third electrode A bias current flowing between the common electrode and the fourth electrode is Icb, and a bias current flowing between the common electrode and the fourth electrode is Idb.
前記検知膜が被検知ガスを検知したときにおける前記共通電極と前記第 1の電極 との間を流れる電流値を laとし、前記共通電極と前記第 2の電極との間を流れる電流 値を lbとし、前記共通電極と前記第 3の電極との間を流れる電流値を Icとし、前記共 通電極と前記第 4の電極との間を流れる電流値を Idとし、 kl8、 kl9を定数としたとき に、  When the detection film detects the gas to be detected, the current value flowing between the common electrode and the first electrode is la, and the current value flowing between the common electrode and the second electrode is lb The current value flowing between the common electrode and the third electrode is Ic, the current value flowing between the common electrode and the fourth electrode is Id, and kl8 and kl9 are constants. sometimes,
EX=kl7 X{(lb-Ibb) (la-Iab)}/{ (la -lab)  EX = kl7 X {(lb-Ibb) (la-Iab)} / {(la -lab)
+ (lb -Ibb) }  + (lb -Ibb)}
より算出される値 EXに応じて前記検知膜上の X方向のガス検知位置を検出し、 EY=kl8 X { (Id— Idb)— (Ic— Icb) }/{ (Ic— Icb)  The gas detection position in the X direction on the detection film is detected according to the value EX calculated from EY = kl8 X {(Id— Idb) — (Ic— Icb)} / {(Ic— Icb)
+ (Id -Idb) }  + (Id -Idb)}
より算出される値 EYに応じて前記検知膜上の Y方向のガス検知位置を検出するよう 構成された請求項 33に記載のガス検知装置。  34. The gas detection device according to claim 33, configured to detect a gas detection position in the Y direction on the detection film in accordance with a value EY calculated from the above.
[40] 前記共通電極、前記検知膜および前記抵抗層を貫通する孔を有する請求項 27〖こ 記載のガス検知装置。 40. The gas detection device according to claim 27, further comprising a hole penetrating the common electrode, the detection film, and the resistance layer.
[41] 前記検知膜の温度を 60°Cから 150°Cの温度に加熱する加熱手段を有する請求項 [41] The heating means for heating the temperature of the detection film from 60 ° C to 150 ° C.
27に記載のガス検知装置。 27. The gas detection device according to 27.
[42] 可燃ガスを検知すると抵抗変化するガス検知センサを有するガス検知装置であつ て、 [42] A gas detection device having a gas detection sensor whose resistance changes when a combustible gas is detected,
実質的に矩形状に形成された膜面を有し、前記膜面が直交する X方向と Y方向を 含んで配置された検知膜、  A detection film having a film surface formed in a substantially rectangular shape and disposed so as to include the X direction and the Y direction in which the film surfaces are orthogonal to each other;
前記検知膜の一方の面に積層された矩形状の抵抗層、  A rectangular resistive layer laminated on one side of the sensing film;
前記検知膜の他方の面に接して形成され、前記検知膜に所定のバイアス電圧を印 加する共通電極、 It is formed in contact with the other surface of the detection film and applies a predetermined bias voltage to the detection film. Common electrode to be applied,
前記抵抗層の対向する一対の辺に設けられ、 X方向のガス検知位置を検出するた め X方向に延設された直線状の第 1の電極と第 2の電極、  A linear first electrode and a second electrode provided on a pair of opposing sides of the resistance layer and extending in the X direction to detect a gas detection position in the X direction;
前記抵抗層の対向する他の一対の辺に設けられ、 Y方向のガス検知位置を検出す るため Y方向に延設された直線状の第 3の電極と第 4の電極、および  A third linear electrode and a fourth electrode, which are provided on the other pair of opposing sides of the resistance layer and extend in the Y direction to detect a gas detection position in the Y direction; and
前記検知膜の温度を 200°C力も 400°Cの温度に加熱する加熱手段、  Heating means for heating the temperature of the detection film to a temperature of 200 ° C and 400 ° C;
を備えたガス検知装置。  Gas detector equipped with.
[43] 被検知ガスを検知すると電気抵抗が変化するガス検知センサを有するガス検知装 置であって、 [43] A gas detection device having a gas detection sensor whose electrical resistance changes when a gas to be detected is detected,
実質的な帯状に形成され、電気的絶縁性を有する基材、  A base material formed in a substantially strip shape and having electrical insulation,
前記基材の長手方向の面における長辺部に形成された共通電極、  A common electrode formed on the long side of the longitudinal surface of the substrate;
複数の所定領域が所定の間隔を有して直線的に配置された検知膜で構成され、 各検知膜の一端が前記共通電極に接続されたセンサセル、および  A plurality of predetermined regions are configured by detection films arranged linearly with a predetermined interval, and one end of each detection film is connected to the common electrode; and
前記センサセルの検知膜の他端に接続され、前記共通電極と対をなして構成され る検出電極、を有し、  A detection electrode connected to the other end of the detection film of the sensor cell and configured to form a pair with the common electrode;
前記共通電極にバイアス電圧を印加し、前記共通電極と前記検出電極との間の抵 抗値変化を検知して、前記抵抗値変化が検出されるセンサセルの位置に基づいて ガス検知位置を算出するよう構成されたガス検知装置。  A bias voltage is applied to the common electrode, a resistance value change between the common electrode and the detection electrode is detected, and a gas detection position is calculated based on the position of the sensor cell where the resistance value change is detected. The gas detector configured as described above.
[44] 前記基材は、所定の間隔で前記基材を貫通する孔を有する請求項 43に記載のガ ス検知装置。 44. The gas detection device according to claim 43, wherein the base material has holes penetrating the base material at predetermined intervals.
[45] 被検知ガスが接触すると電気抵抗が変化する検知膜を有するガス検知センサを持 つガス検知装置であって、  [45] A gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected comes into contact with the gas,
電気的絶縁性を有する材料により実質的な帯状に形成され、所定の間隔で直線状 に配置された複数の孔により貫通された基材、  A substrate formed by a material having electrical insulation properties into a substantial band shape and penetrated by a plurality of holes arranged linearly at predetermined intervals;
前記基材の孔の内面に形成された検知膜を有するセンサセル、  A sensor cell having a detection film formed on the inner surface of the hole of the substrate;
前記基材の長手方向の一つの面上に形成され、前記検知膜のそれぞれの一端と 接続された共通電極、および  A common electrode formed on one longitudinal surface of the substrate and connected to one end of each of the sensing films; and
前記共通電極と対をなして前記基材の他方の面上に形成され、それぞれの検知膜 部の他端に形成された複数の検出電極、を有し、 Each sensing film is formed on the other surface of the base material in a pair with the common electrode. A plurality of detection electrodes formed on the other end of the unit,
前記共通電極にバイアス電圧を印加し、前記共通電極とセンサセルの検出電極と の間の抵抗値変化を検知して、前記抵抗値変化が検出されたセンサセルの位置に 基づいて、ガス検知位置を算出するよう構成されたガス検知装置。  A bias voltage is applied to the common electrode, a change in resistance value between the common electrode and the detection electrode of the sensor cell is detected, and a gas detection position is calculated based on the position of the sensor cell where the change in resistance value is detected. A gas detector configured to do.
[46] 前記検出電極間を所定の抵抗値の抵抗体で接続し、前記共通電極と前記検出電 極との間の抵抗値変化に基づいて、ガス検知位置を算出するよう構成された請求項 [46] The gas detection position is calculated based on a resistance value change between the common electrode and the detection electrode by connecting the detection electrodes with a resistor having a predetermined resistance value.
43又は請求項 45に記載のガス検知装置。 The gas detection device according to claim 43 or 45.
[47] 被検知ガスを検知すると電気抵抗が変化する検知膜を有するガス検知センサを持 つガス検知装置であって、 [47] A gas detection device having a gas detection sensor having a detection film whose electrical resistance changes when a gas to be detected is detected,
電気的に絶縁性を有する材料により実質的に矩形状に形成され、所定のピッチで 格子状の交点の位置に配置された複数の孔により貫通された基材、  A base material that is formed in a substantially rectangular shape by an electrically insulating material, and is penetrated by a plurality of holes arranged at lattice-shaped intersections at a predetermined pitch;
前記基材の孔の内面に形成された検知膜を有する複数のセンサセル、 前記基材の 1つの矩形面上に形成され、前記センサセルのそれぞれの一端に接続 され、所定のバイアス電圧が印加される Xi(i= l〜m)電極で示される列方向の共通 検出電極、  A plurality of sensor cells having a detection film formed on the inner surface of the hole of the base material, formed on one rectangular surface of the base material, connected to one end of each of the sensor cells, and applied with a predetermined bias voltage A common detection electrode in the column direction indicated by the Xi (i = l to m) electrode,
前記基材の他の矩形面上に形成され、前記センサセルのそれぞれの他端に接続 され、前記列方向の共通検出電極における Xi電極と対をなす Yj (j = l〜n)電極で 示される行方向の共通検出電極、を備え、  Yj (j = l to n) electrodes formed on the other rectangular surface of the substrate, connected to the other ends of the sensor cells, and paired with the Xi electrodes in the common detection electrodes in the column direction. A common detection electrode in the row direction,
前記 Xi電極を通して、所定の時間間隔で前記センサセルにノィァス電圧が供給さ れて、前記バイアス電圧が供給される前記 Xi電極と前記 Yj電極との間の抵抗値変化 を検知し、前記抵抗値変化が検出されたセンサセルの位置に基づ 、てガス検知位 置を算出するよう構成されたガス検知装置。  A noise voltage is supplied to the sensor cell through the Xi electrode at a predetermined time interval, a change in resistance value between the Xi electrode and the Yj electrode to which the bias voltage is supplied is detected, and the resistance value change is detected. A gas detection device configured to calculate a gas detection position based on a position of a sensor cell in which gas is detected.
[48] 前記検出電極の行番号と列番号を検知してガス検知位置を算出するよう構成され た請求項 47に記載のガス検知装置。  48. The gas detection device according to claim 47, wherein the gas detection position is calculated by detecting a row number and a column number of the detection electrode.
[49] 前記行方向の共通検出電極間及び列方向の共通検出電極間を所定の抵抗値を 有する抵抗体で接続し、前記センサセルの行方向及び列方向の共通検出電極の両 端部の検出膜の抵抗値変化に基づいてガス検知位置を算出するよう構成された請 求項 47に記載のガス検知装置。 [50] 前記被検知ガスが水素を含むガスであり、前記センサセルの検知膜は、水素分子 を吸着しプロトンに解離する作用を有する触媒と、解離されたプロトンを吸着すること により電気抵抗率が低下する金属酸化物とを有し、 [49] The common detection electrodes in the row direction and the common detection electrodes in the column direction are connected by a resistor having a predetermined resistance value, and detection of both ends of the common detection electrodes in the row direction and the column direction of the sensor cell is performed. 48. The gas detection device according to claim 47, configured to calculate a gas detection position based on a change in the resistance value of the film. [50] The gas to be detected is a gas containing hydrogen, and the detection film of the sensor cell has a catalyst having an action of adsorbing hydrogen molecules and dissociating into protons, and an electric resistivity by adsorbing the dissociated protons. A metal oxide that decreases,
前記触媒の主たる成分は、白金 (Pt)またはパラジウム (Pd)の何れか一を含み、 前記金属酸化物の主たる成分は、酸化スズ (SnO )、三酸ィ匕モリブデン (MnO ) ,  The main component of the catalyst includes either platinum (Pt) or palladium (Pd), and the main component of the metal oxide is tin oxide (SnO), molybdenum trioxide (MnO),
2 3 三酸化タングステン (WO )、二酸化チタン (TiO )、水酸化イリジウム(Ir (OH) n)、  2 3 Tungsten trioxide (WO), titanium dioxide (TiO), iridium hydroxide (Ir (OH) n),
3 2  3 2
五酸化バナジウム(V O )、または、酸化ロジウム(Rh O · χΗ Ο)の何れか一の金  Gold, either vanadium pentoxide (V O) or rhodium oxide (Rh O · χΗ Ο)
2 5 2 3 2  2 5 2 3 2
属酸化物を含む請求項 43に記載のガス検知装置。  44. The gas detection device according to claim 43, comprising a metal oxide.
[51] 前記触媒は、粒子径が 10nm以下の微粒子であって、粒子径が 10nmから lOOnm の前記金属酸化物微粒子に分散担持された構造を有する請求項 50に記載のガス 検知装置。 51. The gas detection device according to claim 50, wherein the catalyst is a fine particle having a particle diameter of 10 nm or less and has a structure in which the catalyst is dispersed and supported on the metal oxide fine particle having a particle diameter of 10 nm to lOO nm.
PCT/JP2005/023370 2004-12-21 2005-12-20 Gas detection sensor and gas detector WO2006068142A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-368795 2004-12-21
JP2004368795A JP2008057975A (en) 2004-12-21 2004-12-21 Hydrogen gas sensor and combustible gas detection sensor
JP2005238160A JP2008057976A (en) 2005-08-19 2005-08-19 Hydrogen gas detection sensor
JP2005-238160 2005-08-19

Publications (1)

Publication Number Publication Date
WO2006068142A1 true WO2006068142A1 (en) 2006-06-29

Family

ID=36601742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023370 WO2006068142A1 (en) 2004-12-21 2005-12-20 Gas detection sensor and gas detector

Country Status (1)

Country Link
WO (1) WO2006068142A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261634A (en) * 2007-04-10 2008-10-30 Mikuni Corp Hydrogen sensor
WO2015188362A1 (en) * 2014-06-12 2015-12-17 潘国新 Optical fiber hydrogen sensor and manufacturing method thereof
US11686697B2 (en) 2020-09-24 2023-06-27 International Business Machines Corporation Multifunctional heterojunction metal oxide gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114161A (en) * 2001-10-04 2003-04-18 Tatsuta Electric Wire & Cable Co Ltd Detecting wire for position of liquid leakage and liquid leakage detection system using the same
JP2004125513A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Hydrogen sensor and electrolytic water generator equipped with hydrogen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114161A (en) * 2001-10-04 2003-04-18 Tatsuta Electric Wire & Cable Co Ltd Detecting wire for position of liquid leakage and liquid leakage detection system using the same
JP2004125513A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Hydrogen sensor and electrolytic water generator equipped with hydrogen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261634A (en) * 2007-04-10 2008-10-30 Mikuni Corp Hydrogen sensor
WO2015188362A1 (en) * 2014-06-12 2015-12-17 潘国新 Optical fiber hydrogen sensor and manufacturing method thereof
US11686697B2 (en) 2020-09-24 2023-06-27 International Business Machines Corporation Multifunctional heterojunction metal oxide gas sensor

Similar Documents

Publication Publication Date Title
JP2008057976A (en) Hydrogen gas detection sensor
US4441981A (en) Gas sensor
KR940018663A (en) Gas sensor
KR101851277B1 (en) Nox sensor
RU2010128564A (en) GAS SENSOR
JP2011506976A5 (en)
JP2009540334A (en) Ammonia sensor with heterogeneous electrodes
JPS61256251A (en) Electrochemical element
Ueda et al. Effects of composition and structure of sensing electrode on NO2 sensing properties of mixed potential-type YSZ-based gas sensors
Park et al. Selective gas detection with catalytic filter
JP2001505316A (en) Gas sensor
WO2006068142A1 (en) Gas detection sensor and gas detector
JP3032168B2 (en) Gas sensor
Yang et al. Polymer electrolytes as humidity sensors: progress in improving an impedance device
Do et al. Planar solid-state amperometric hydrogen gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al2O3 electrode
US9664633B2 (en) Resistive hydrogen sensor
KR20000068983A (en) Gas sensor
US11761923B2 (en) Amperometric electrochemical sensors, sensor systems and detection methods
Mori et al. Development of ethanol and toluene sensing devices with a planar-type structure based on YSZ and modified Pt electrodes
Shen et al. Alumina substrate-supported electrochemical device for potential application as a diesel particulate matter sensor
KR20180122701A (en) Current measurement Electrochemical sensors, sensor systems and detection methods (Amperometric electrochemical sensors,
Takaichi et al. Response of specific resistance distribution in electrolyte membrane to load change at PEFC operation
JP2006162365A (en) Hydrogen gas detection sensor
KR20180135258A (en) Sensor for sensing multi-gas and method for manufacturing the same
JP3273127B2 (en) Solid electrolyte thick film laminated CO sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820116

Country of ref document: EP

Kind code of ref document: A1