JP3693033B2 - 発光素子およびその製造方法 - Google Patents

発光素子およびその製造方法 Download PDF

Info

Publication number
JP3693033B2
JP3693033B2 JP2002092180A JP2002092180A JP3693033B2 JP 3693033 B2 JP3693033 B2 JP 3693033B2 JP 2002092180 A JP2002092180 A JP 2002092180A JP 2002092180 A JP2002092180 A JP 2002092180A JP 3693033 B2 JP3693033 B2 JP 3693033B2
Authority
JP
Japan
Prior art keywords
light
light emitting
film
layer
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092180A
Other languages
English (en)
Other versions
JP2003288988A (ja
Inventor
徹哉 佐藤
三紀子 松尾
尚子 武部
久則 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002092180A priority Critical patent/JP3693033B2/ja
Publication of JP2003288988A publication Critical patent/JP2003288988A/ja
Application granted granted Critical
Publication of JP3693033B2 publication Critical patent/JP3693033B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Description

【0001】
【発明の属する技術分野】
本発明は薄膜エレクトロルミネセンス(EL)素子に関し、例えば平面型自発光表示装置をはじめ通信、照明その他の用途に供する各種光源として使用可能な自発光の素子に関するものである。
【0002】
【従来の技術】
近年、平面型の表示装置としてはLCDパネルが幅広く用いられているが、依然として応答速度が遅い、視野角が狭い等の欠点があり、またこれらを改善した多くの新方式においても特性が十分でなかったり、パネルとしてのコストが高くなるなどの課題がある。そのような中で、自発光で視認性に優れ、応答速度も速く広範囲な応用が期待できる新たな発光素子としての薄膜EL素子に期待が集まっている。特に、室温で蒸着や塗布などの簡単な成膜工程を用いることのできる有機材料を素子の全部または一部の層に用いる薄膜EL素子は、有機EL素子とも呼ばれ、上述の特徴に加えて製造コストの魅力もあり多くの研究が行われている。
【0003】
薄膜EL素子(有機EL素子)は電極から電子、正孔を注入しその再結合によって発光を得るものであり、古くから多くの研究がなされてきたが、一般にその発光効率は低く実用的な発光素子への応用とは程遠いものであった。
【0004】
そのような中で、1987年にTangらによって提案された素子(C.W.Tang and S.A.Vanslyke:Appl.Phys.Lett.51(1987)913.)は、透明基板上に正孔注入電極、正孔輸送層、発光層、陰極を有する構成の素子であって、正孔注入電極としてITO、正孔輸送層として膜厚75nmのジアミン誘導体層、発光層として膜厚60nmのアルミキノリン錯体層、陰極として電子注入性と安定性を併せ持つMgAg合金を用いたものであった。特に陰極の改良もさることながら、透明性に優れたジアミン誘導体を採用することにより、75nmの膜厚においても十分な透明性を維持することができ、且つこの膜厚においては十分にピンホ−ル等の無い均一な薄膜が得られるので、発光層も含めた素子の総膜厚を十分に薄く(150nm程度)することが可能となり、比較的低電圧で高輝度の発光が得られるようになった。具体的には、10V以下の低い電圧で1000cd/m2以上の高い輝度と、1.5lm/W以上の高い効率を実現している。このTangらの報告がきっかけとなって、陰極のさらなる改良や、電子注入層の挿入、正孔注入層の挿入などの素子構成上の工夫など、現在に至るまで活発な検討が続けられている。
【0005】
以下、現在一般に検討されている薄膜EL(有機EL)素子について概説する。
【0006】
素子の各層は、透明基板上に正孔注入電極、正孔輸送層、発光層、陰極の順に積層して形成し、正孔注入電極と正孔輸送層間に正孔注入層を設けたり、発光層と陰極間に電子輸送層、さらに陰極との界面に電子注入層を設けることもある。
このように、各層に役割を機能分離させて担わせる事により各層に適切な材料選択が可能となり素子の特性も向上する。
【0007】
透明基板としては一般にコーニング1737等のガラス基板が広く用いられている。板厚は0.7mm程度が強度と重量の観点から扱いやすい。
【0008】
正孔注入電極としてはITOのスパッタ膜、エレクトロンビーム蒸着膜、イオンプレーティング膜等の透明電極が用いられる。膜厚は必要とされるシートレジスタンス値と可視光透過率から決定されるが、有機EL素子では比較的駆動電流密度が高いため、シートレジスタンスを小さくするために100nm以上の厚さで用いられることが多い。
【0009】
正孔輸送層はN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニルベンジジン(以下、TPDと称する)、N,N’−ビス(α−ナフチル)−N,N’−ジフェニルベンジジン(以下、NPDと称する)等、Tangらの用いたジアミン誘導体、特に日本国特許第2037475号に開示されたQ1−G−Q2構造のジアミン誘導体の真空蒸着膜が幅広く用いられている。これらの材料は一般に透明性に優れ、80nm程度の膜厚でもほぼ透明であり、且つ成膜性にも優れるためピンホールなどの欠陥のない膜が得られ、素子の総膜厚を100nm程度にまで薄くしても短絡など信頼性上の問題が発生し難い特徴がある。
【0010】
発光層もTangらの報告と同様に、トリス(8−キノリノラト)アルミニウム(以下、Alqと称する)等の電子輸送性発光材料を真空蒸着により数十nmの膜厚に形成して用いる構成が一般的である。種々の発光色を実現するなどの目的で、発光層は比較的薄膜とし、電子輸送層を20nm程度積層した、所謂ダブルヘテロ構造が採用されることもある。
【0011】
陰極はTangらの提案したMgAg合金あるいはAlLi合金など、仕事関数が低く電子注入障壁の低い金属と比較的仕事関数が大きく安定な金属との合金、またはLiFなど種々の電子注入層とアルミニウムなどとの積層陰極が用いられることが多い。
【0012】
また、このような正孔輸送層/電子輸送性発光層の積層構成とは別に、正孔輸送性発光層/電子輸送層の構成や、正孔輸送層/発光層/電子輸送層の構成も幅広く用いられている。いずれの層構成を用いた場合も透明基板、正孔注入電極、および陰極は上述のようなものが同様に用いられている。
【0013】
また、近年は燐光発光材料を電荷輸送材料(ホスト材料)中にドープした燐光発光層を用いた有機EL素子の検討も幅広く行われており、特に正孔ブロック層を有する素子構成で極めて高い効率が報告されている(例えば、USP6303238号、USP6097147号、Appl.Phys.Lett.,vol.75,no.1,p.4−6,July5th,1999など)。
【0014】
また、素子寿命に関しては、正孔ブロック層をBCPからBAlqとすることで大幅に向上できることが報告されている(Proc.of SPIE,vol.4105,p175−182,2000)。
【0015】
【発明が解決しようとする課題】
このように、燐光発光材料をドープした燐光発光層を、特定の正孔ブロック層と組み合わせて用いることにより、極めて高い発光効率が得られることが報告されているが、寿命に関しては必ずしも十分な値が得られていないのが現状である。
【0016】
特に、緑色燐光発光材料としてAppl.Phys.Lett.,vol.75,no.1,p.4−6,July5th,1999で、はじめて有機EL素子に用いられたIr(ppy)3を燐光発光材料としてCBP中にドープして発光層として用いて、且つ正孔ブロック層としてBAlqを用いた素子において、大幅な長寿命化が実現できることが報告されているが、赤色素子・青色素子においては十分な寿命は得られていない(Proc.of SPIE,vol.4105,p175−182,2000)。
【0017】
【課題を解決するための手段】
このような状況に鑑み、筆者等は種々の燐光発光材料とホスト材料を用いて発光層を形成し、且つ種々の正孔ブロック層と組み合わせた場合の燐光有機EL素子の寿命をつぶさに調べた結果、特定の材料を特定の組合せで用いた場合に、顕著な長寿命を得ることが出来て、反対に特定の材料を特定の組合せで用いた場合に、極端に寿命が短くなることを見出して本発明を完成させるに至った。
【0033】
具体的には、の発明の発光素子は、一対の電極間に配置された発光領域と、少なくとも一つの電荷阻止領域を有する発光素子であって、前記発光領域は、燐光発光材料とホスト材料とを含有し、前記発光領域と前記電荷阻止領域との間に、両者の混合を防止する網目状架橋構造膜を有することを特徴とする発光素子である。
【0034】
の発明の発光素子は、前記網目状架橋構造膜が、プラズマ重合膜であることを特徴とする発光素子である。
【0035】
の発明の発光素子は、前記網目状架橋構造膜が、アモルファスカーボン膜であることを特徴とする発光素子である。
【0036】
の発明の発光素子は、前記網目状架橋構造膜が、n型アモルファスカーボン膜であることを特徴とする発光素子である。
【0037】
の発明の発光素子は、前記n型アモルファスカーボン膜が、含窒素複素環式化合物を原料としたプラズマCVD膜であることを特徴とする発光素子である。
【0040】
第6の発明の発光素子は、一対の電極間に配置された発光層と、前記発光層と接する有機層とを有する発光素子であって、前記発光層が、燐光発光材料と、ホスト材料とを含有し、前記有機層の前記発光層と接する側の一部が、前記燐光発光材料の分子内永久双極子モーメントより4.1デバイ以上大きい分子内永久双極子モーメントを有する化合物を含
有することを特徴とする発光素子である。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態に係る有機EL素子について説明する。
【0042】
(実施の形態1)
本実施の形態の発光素子は、少なくとも一対の電極間に配置された発光領域を有する構成を有する。ここで少なくとも一対の電極間に配置された発光領域とは、少なくとも正孔注入電極と、前記正孔注入電極と対向して設けた電子注入電極と、両者に直接的または間接的に狭持された発光層などの、少なくとも一対の電極と、その間のどこかに配置された発光層を意味する。
【0043】
本実施の形態においては、通常の発光素子と同様に適当な透明または不透明の基板を用い、当該基板上に上記の素子構成を形成する手法を用いることが出来る。発光を素子外に取り出すために、通常、一対の電極の少なくとも片側は透明または少なくとも半透明な電極が用いられる。基板のある面側に形成されているのが透明または半透明電極である場合、その基板も透明または半透明基板を用いるのが通常である。基板は、本実施の形態の発光素子を坦持出来るものであればよく、コーニング1737ガラスなどの通常のガラス基板が用いられる事が多いが、ポリエステルその他の樹脂フィルムなども用いる事が出来る。
【0044】
本実施の形態における正孔注入電極は、陽極として働いて素子中に正孔を注入することが可能であればよいが、正孔注入電極を透明電極とすることが多い。その場合は一般にITO(インジウム錫酸化物)膜を用いる事が多く、ITO膜はその透明性を向上させあるいは抵抗率を低下させる目的でスパッタ、エレクトロンビーム蒸着、イオンプレーティング等の成膜方法が行われており、また抵抗率や形状制御の目的で種々の後処理が行われる事も多い。また、膜厚は必要とされるシートレジスタンス値と可視光透過率から決定されるが、有機EL素子では比較的駆動電流密度が高いため、シートレジスタンスを小さくするために100nm以上の厚さで用いられることが多い。本発明の正孔注入電極にはこれらの通常のITO膜を用いる事が出来る他、IDIXOをはじめとする種々の改良された透明導電層も幅広く用いることができる。また、導電性粉体を分散した透明導電性塗料の塗布膜その他の電極を用いる事も出来る。
【0045】
本実施の形態における発光領域は、少なくとも燐光発光材料をホスト材料中に共蒸着などの方法によりドープして得た発光層からなる。燐光発光材料にはAppl.Phys.Lett.,vol.75,no.1,p.4−6,July5th,1999で、はじめて有機EL素子に用いられたfac Ir(ppy)3をはじめとする各種の重金属錯体を幅広く用いることが出来る。また、ホスト材料は素子設計に応じた電荷輸送能を有するとともに、燐光発光材料の3重項励起子を非発光失活させない材料であればよく、Appl.Phys.Lett.,vol.75,no.1,p.4−6,July5th,1999での報告以来、CBPが幅広く用いられており、本発明にも好適に用いられる。
【0046】
本実施の形態における正孔ブロック層には、Proc.of SPIE,vol.4105,p175−182,2000で用いられたBAlqのような各種の金属錯体や、特開2001−267082号公報に開示されているような電子不足化合物群、例えば4,4,8,8−テトラエチルピラザボール、1,3,5,7−テトラメチルピラザボール等を幅広く用いることが出来る。
【0047】
本実施の形態においては上述のようにその材料としては汎用のものを幅広く用いることが出来るが、その組合せが特定の関係にあることによって、著しい長寿命化を実現できるものである。また、その界面に特定の混合防止手段を設けることにより、著しい長寿命化を実現できるものである。
【0048】
本実施の形態のその他の層においても、一般的な正孔注入層、正孔輸送層、電子輸送層を幅広く用いることが出来る。正孔注入層としてはITOの表面粗さの平滑化や正孔注入効率の向上による低駆動電圧化、長寿命化などの目的のために、スターバーストアミン(例えば、特開平3−308688号)、オリゴアミン(例えば、国際公開特許WO96/22273号)等を用いることが多く、バッファ層と称することもある。正孔輸送層としては前述のTPD、NPDの他、特開平11−260559に開示されているような特定のブレンド型正孔輸送層を用いて優れた特性を実現する技術と組み合わせて用いることも出来る。電子輸送層としてはTangらがトリス(8−キノリノラト)アルミニウムを用いて以来、幅広く検討されている金属錯体系はもちろん、オキサジアゾール誘導体、トリアゾール誘導体その他の材料も幅広く用いることが出来る。
【0049】
本実施の形態における電子注入電極は、従来の技術で述べたようにTangらの提案したMgAg合金あるいはAlLi合金など、仕事関数が低く電子注入障壁の低い金属と比較的仕事関数が大きく安定な金属との合金を用いることができる他、LiとAlの積層陰極、LiFとAlの積層陰極など、一般に報告されている種々の構成の陰極を用いることができる。
【0050】
本実施の形態において、その要部は、発光層と電荷阻止層を構成する化合物の分子内永久双極子モーメントが、各請求項に特定して明記したように、大きく異なる関係にあることである。
【0051】
筆者らは、燐光発光材料をホスト材料中にドープした発光層と正孔ブロック層を組み合わせた有機EL素子の寿命に関して、種々の燐光発光材料、ホスト材料、正孔ブロック材料を用いて、種々の組合せで素子を作成し寿命試験を行った。また、劣化前後における素子のインピーダンススペクトル測定、断面観察、断面元素分析、HPLC蛍光分析、表面元素分析のdepth−profile等の手法により、劣化メカニズムの特定を試みた。その結果、上記の構成を有する有機EL素子の連続通電発光時の輝度半減寿命と、材料の組合せに特定の関係があることを見出して本発明を完成させるに至った。
【0052】
すなわち、界面を挟んで直接に接する燐光発光材料およびホスト材料と、正孔ブロック材料の分子内永久双極子モーメントが大きく異なる場合には、極めて輝度低下(発光効率の低下)が小さく、反対に分子内永久双極子モーメントが同程度の場合には、極めて輝度低下(発光効率の低下)が大きいことを見出した。
【0053】
これは試験前後の分析から、分子内永久双極子モーメントが大きく異なる場合には、劣化試験前後での界面の乱れがほとんど認められないのに対して、分子内永久双極子モーメントが同程度の場合には、劣化試験後にはほとんど界面と称すべき境界が無くなり、相互の材料が交じり合った状態になっているため、正孔ブロック層の正孔ブロック能が低下し、また正孔ブロック能の低下により正孔ブロック層内に侵入した正孔は、正孔ブロック層材料をカチオン化するので、金属錯体の解離を引き起こしやすく、これがさらなる正孔ブロック能の低下に繋がるという悪循環によって、効率低下が引き起こされていることがわかった。
【0054】
ここで、『分子内永久双極子モーメントが大きく異なる』とは、片方の分子内永久双極子モーメントが、例えばfac Ir(ppy)3のように極めて小さく、反対にもう片方の分子内永久双極子モーメントが十分に大きいことを意味し、より具体的には請求項に記した特定の条件の場合に効果が認められた。
【0055】
また、『分子内永久双極子モーメントが同程度』とは、片方の分子内永久双極子モーメントが、例えばfac Ir(ppy)3のように極めて小さい場合には、反対のもう片方の分子内永久双極子モーメントも同程度に小さく、また片方の分子内永久双極子モーメントが、例えばFIrpic(Ir(III){ビス(4,6−ジフルオロフェニル)ピリジナト−N,C2’}ピコリネイト)のように大きい場合には、反対のもう片方の分子内永久双極子モーメントも同程度に大きいことを意味する。
【0056】
なお、本検討に用いた各種の化合物の分子内永久双極子モーメントは、汎用の計算機シミュレーションツールを用いて計算したものである。ほとんどの分子はChambridgesoft社製Chem3D上でMOPAC97エンジンを用いてハミルトニアンAM1またはPM3で最適化構造を求めた。中心金属がAlの場合はAM1とPM3の両方で計算したが、分子内双極子モーメントの値には大きな違いは認められなかった。中心金属がGaの場合は、PM3でのみ計算を行った。中心金属がIrなど重金属の場合は、非経験的分子軌道法により計算を行った。具体的には、Gaussian社製Gaussian98Wを用いて計算を行った。Ir等重金属を含む錯体の計算は、周期表の第三周期以下を有効殻ポテンシャルで表したLANL2DZ基底を用いた。MOPAC97での計算を行ったAl錯体、Ga錯体についても、一部の化合物についてはSTO−3G基底を用いた。いずれの場合もHF法によるものである。
【0057】
【実施例】
次に、具体的な実施例に基づいてさらに詳細に説明するが、本発明の実施の形態はこれらの具体的な実施例に限定されるものではない。個々の発光材料、特に入手先を示した化合物以外は、定法により当社研究室内で合成して、十分な精製を行った後に用いた。
【0058】
(実施例1)
透明基板上に正孔注入電極を形成した基板として、市販のITO付きガラス基板(三容真空株式会社製、サイズ100×100mm×t=0.7mm、シート抵抗約14Ω/□)を用い、電子注入電極との重なりにより発光面積が1.4×1.4mmとなるようにフォトリソグラフィーによりパターン化した。フォトリソグラフィー後の基板処理は市販のレジスト剥離液(ジメチルスルホキシドとN−メチル−2−ピロリドンとの混合溶液)に浸漬して剥離を行った後、アセトンでリンスし、さらに発煙硝酸中に1分間浸漬して完全にレジストを除去した。ITO表面の洗浄は、基板の裏面表面の両面を十分に行い、テトラメチルアンモニウムハイドロオキサイドの0.238%水溶液を十分に供給しながら、ナイロンブラシによる機械的な擦り洗浄を行った。その後、純水で十分にすすぎ、スピン乾燥を行った。その後、市販のプラズマリアクター(ヤマト科学株式会社製、PR41型)の中で、酸素流量20sccm、圧力0.2Torr、高周波出力300Wの条件で1分間の酸素プラズマ処理を行った。
【0059】
このように準備した正孔注入電極付基板を真空槽内に配置した。真空蒸着装置は市販の高真空蒸着装置(日本真空技術株式会社製、EBV−6DA型)を改造した装置を用いた。主たる排気装置は排気速度1500リットル/minのターボ分子ポンプ(大阪真空株式会社製、TC1500)であり、到達真空度は約1×10-6Torr以下であり、全ての蒸着は2〜3×10-6Torrの範囲で行った。また、全ての有機化合物の蒸着はタングステン製の抵抗加熱式蒸着ボートに直流電源(菊水電子株式会社製、PAK10−70A)を接続して行った。
【0060】
このようにして真空層中に配置した正孔注入電極付基板上に、正孔輸送層としてN,N’−ビス(4’−ジフェニルアミノ−4−ビフェニリル)−N,N’−ジフェニルベンジジン(TPT、保土ヶ谷化学株式会社製)を蒸着速度0.3nm/sで、4−N,N−ジフェニルアミノ−α−フェニルスチルベン(PS)を蒸着速度0.01nm/sで共蒸着し、膜厚約80nmのブレンド型正孔輸送層を形成した。
【0061】
次に、発光層として、fac Ir(ppy)3(ケミプロ化成株式会社製、facトリス(2−フェニルピリジン)イリジウム)とCBP(ケミプロ化成株式会社製、4,4’−N,N’−ジカルバゾルビフェニル)をそれぞれ、0.02nm/s、0.3nm/sの蒸着速度で膜厚約40nmに形成した。
【0062】
次に、正孔ブロック層としてBAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)を0.3nm/sの蒸着速度で膜厚約10nmに形成した。
【0063】
次に、電子輸送層としてトリス(8−キノリノラト)アルミニウム(Alq3、同仁化学株式会社製)を0.3nm/sの蒸着速度で膜厚約20nmに形成した。
【0064】
次に、陰極として、AlLi合金(高純度化学株式会社製、Al/Li重量比99/1)から低温でLiのみを、約0.1nm/sの蒸着速度で膜厚約1nmに形成し、続いて、そのAlLi合金をさらに昇温しLiが出尽くした状態から、Alのみを、約1.5nm/sの蒸着速度で膜厚約100nmに形成し、積層型の陰極とした。
【0065】
上記工程により作成した有機EL素子を、蒸着槽内を乾燥窒素でパージした後、乾燥窒素雰囲気下で、コーニング7059ガラス製の蓋を接着剤(アネルバ株式会社製、商品名スーパーバックシール953−7000)で貼り付けてサンプルとした。
【0066】
このようにして得た有機EL素子サンプルは、次のようにして評価を行った。
【0067】
初期の評価は素子の蒸着後、ガラス蓋を接着してから12時間後に常温常湿の通常の実験室環境で行い、1000cd/m2発光時の駆動電圧を評価した。また、初期輝度が1000cd/m2となる電流値で、常温常湿の通常の実験室環境で直流定電流駆動で連続発光試験を行った。この試験から、輝度が半減(500cd/m2)に達した時間を寿命として評価した。
【0068】
DC駆動電源は直流定電流電源(アドバンテスト株式会社製、商品名マルチチャンネルカレントボルテージコントローラーTR6163)を用い、電圧電流特性を測定するとともに、輝度は輝度計(東京光学機械株式会社製、商品名トプコンルミネセンスメーターBM−8)によって測定した。輝度ムラ、黒点(非発光部)等の発光画像品質を、50倍の光学顕微鏡により観察した。
【0069】
また、劣化前後の素子分析、化合物の分子内双極子モーメントの計算も行った。これらの結果を(表1)に示す。
【0070】
【表1】
Figure 0003693033
【0071】
本実施例1によれば、高い発光効率を有し、低い駆動電圧で、連続発光試験においても輝度低下が小さく、黒点や輝度ムラなどの不具合も無く、極めて長期間にわたって安定して使用できる発光素子を実現できた。
【0072】
(実施例2)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、BAlqCl((4’−クロロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0073】
その結果を(表1)に示す。
【0074】
(実施例3)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、GaMq2BF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0075】
その結果を(表1)に示す。
【0076】
(実施例4)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、GaMq2BCl((4’−クロロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0077】
その結果を(表2)に示す。
【0078】
【表2】
Figure 0003693033
【0079】
(実施例5)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、GaMq2B((1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0080】
その結果を(表2)に示す。
【0081】
(実施例6)
実施例1の発光層の形成において、fac Ir(ppy)3(ケミプロ化成株式会社製、facトリス(2−フェニルピリジン)イリジウム)の代わりに、FIrpic(Ir(III){ビス(4,6−ジフルオロフェニル)ピリジナト−N,C2’}ピコリネイト)を用い、且つ、正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、TPPRZ(アルドリッチ製、4,4,8,8,−テトラキス(1H−ピラゾール−1−イル)ピラザボール)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0082】
その結果を(表2)に示す。
【0083】
(比較例1)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、GaMq2Cl(ビス(2−メチル−8−キノリノラト)ガリウムクロライド)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0084】
その結果を(表3)に示す。
【0085】
【表3】
Figure 0003693033
【0086】
(比較例2)
実施例1の正孔ブロック層の形成において、BAlqF((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)の代わりに、BAlq((1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)を用いた以外は実施例1と同様にして有機EL素子サンプルを作成した。
【0087】
その結果を(表3)に示す。
【0088】
(比較例3)
実施例6の正孔ブロック層の形成において、TPPRZ(アルドリッチ製、4,4,8,8,−テトラキス(1H−ピラゾール−1−イル)ピラザボール)の代わりに、BAlq((1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム)を用いた以外は実施例6と同様にして有機EL素子サンプルを作成した。
【0089】
その結果を(表3)に示す。
【0090】
(実施例7)
比較例2の発光層の形成後、正孔ブロック層BAlqの形成前に、含窒素複素環式化合物の一例として、ピリジンを原料としたプラズマ重合法(プラズマCVD法)により、網目状架橋構造を有する膜の一例として、n型カーボン層(アモルファスカーボン膜)を2nm形成した以外は比較例2と同様にして有機EL素子サンプルを作成した。
【0091】
その結果を(表4)に示す。
【0092】
【表4】
Figure 0003693033
【0093】
なお、(表1)から(表4)において、各実施例および比較例の素子構成は略号によって略記されており、
TPTは、N,N’−ビス(4’−ジフェニルアミノ−4−ビフェニリル)−N,N’−ジフェニルベンジジン、
PSは、4−N,N−ジフェニルアミノ−α−フェニルスチルベン、
Ir(ppy)3は、facトリス(2−フェニルピリジン)イリジウム)、
CBPは、4,4’−N,N’−ジカルバゾルビフェニル、
BAlqFは、((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム、
BAlqClは、((4’−クロロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)アルミニウム、
GaMq2BFは、((4’−フルオロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム、
GaMq2BClは、((4’−クロロ−1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム、
GaMq2Bは、((1,1’−ビフェニル)−4−オラト)ビス(2−メチル−8−キノリノラト)ガリウム、
FIrpicは、Ir(III){ビス(4,6−ジフルオロフェニル)ピリジナト−N,C2’}ピコリネイト、
TPPRZは、4,4,8,8,−テトラキス(1H−ピラゾール−1−イル)ピラザボール、
Alq3は、トリス(8−キノリノラト)アルミニウム、
Alは、アルミニウム、
Liは、リチウム、
を表し、左から積層構成を表す記号として/で区切ってITO電極側から順に記載した。( )内の数字は膜厚をnmで示し、+はドーピング混合など両成分の共存膜を示す。
【0094】
以上、本発明に係る発光素子およびその製造方法について説明したが、本発明の要部は、発光層と電荷阻止層を構成する化合物の分子内永久双極子モーメントが、異なる関係にあることである。
【0095】
これにより、高い発光効率を有し、低い駆動電圧で、連続発光試験においても輝度低下が小さく、黒点や輝度ムラなどの不具合も無く、極めて長期間にわたって安定して使用できる発光素子を実現できた。

Claims (6)

  1. 一対の電極間に配置された発光領域と、少なくとも一つの電荷阻止領域とを有する発光素子であって、
    前記発光領域は、燐光発光材料とホスト材料とを含有し、
    前記発光領域と前記電荷阻止領域との間に、両者の混合を防止する網目状架橋構造膜を有することを特徴とする発光素子。
  2. 前記網目状架橋構造膜が、プラズマ重合膜であることを特徴とする請求項1に記載の発光素子。
  3. 前記網目状架橋構造膜が、アモルファスカーボン膜であることを特徴とする請求項1に記載の発光素子。
  4. 前記網目状架橋構造膜が、n型アモルファスカーボン膜であることを特徴とする請求項1に記載の発光素子。
  5. 前記n型アモルファスカーボン膜が、含窒素複素環式化合物を原料としたプラズマCVD膜であることを特徴とする請求項4に記載の発光素子。
  6. 一対の電極間に配置された発光層と、前記発光層と接する有機層とを有する発光素子であって、
    前記発光層が、燐光発光材料と、ホスト材料とを含有し、
    前記有機層の前記発光層と接する側の少なくとも一部が、前記燐光発光材料の分子内永久双極子モーメントより4.1デバイ以上大きい分子内永久双極子モーメントを有する化合物を含有することを特徴とする発光素子。
JP2002092180A 2002-03-28 2002-03-28 発光素子およびその製造方法 Expired - Fee Related JP3693033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092180A JP3693033B2 (ja) 2002-03-28 2002-03-28 発光素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092180A JP3693033B2 (ja) 2002-03-28 2002-03-28 発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2003288988A JP2003288988A (ja) 2003-10-10
JP3693033B2 true JP3693033B2 (ja) 2005-09-07

Family

ID=29237081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092180A Expired - Fee Related JP3693033B2 (ja) 2002-03-28 2002-03-28 発光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP3693033B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296328A1 (en) * 2004-02-06 2007-12-27 Idemitsu Kosan Co., Ltd. Organic Electroluminescent Device
WO2010079678A1 (ja) * 2009-01-09 2010-07-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US11444251B2 (en) 2016-11-29 2022-09-13 Merck Patent Gmbh Organic electroluminescent element

Also Published As

Publication number Publication date
JP2003288988A (ja) 2003-10-10

Similar Documents

Publication Publication Date Title
US7445856B2 (en) Organic electroluminescent device
Picciolo et al. Organic light-emitting devices with saturated red emission using 6, 13-diphenylpentacene
US7868321B2 (en) Organic light emitting device and flat display including the same
US7592075B2 (en) Organic electroluminescence element
EP1205527B2 (en) Organic electroluminescence device
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
US7045952B2 (en) OLEDs with mixed host emissive layer
US20090115329A1 (en) Organic el device
US20070015006A1 (en) White organic light emitting diode
EP1422765A2 (en) Highly efficient organic electroluminescent device
JP2007027092A (ja) 白色有機発光素子及びその製造方法
JP2004319424A (ja) 有機電界発光ディスプレイ装置
US8877356B2 (en) OLED device with stabilized yellow light-emitting layer
WO2006121105A1 (ja) 有機エレクトロルミネッセンス素子
Kwong et al. Current status of electrophosphorescent device stability
US20060051563A1 (en) Organic electroluminescence device
US7061175B2 (en) Efficiency transparent cathode
JP2004296224A (ja) 発光素子
CN110957435A (zh) 一种基于tta延迟荧光的有机电致发光器件
JP2002313582A (ja) 発光素子及び表示装置
TWI473315B (zh) 有機發光裝置
JP3693033B2 (ja) 発光素子およびその製造方法
JP2000106279A (ja) 有機薄膜el素子
EP1227528A2 (en) Organic light emitting devices having a modified electron-transport layer
JP3910010B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees