JP3692966B2 - Vacuum double container and sealing method - Google Patents

Vacuum double container and sealing method Download PDF

Info

Publication number
JP3692966B2
JP3692966B2 JP2001160979A JP2001160979A JP3692966B2 JP 3692966 B2 JP3692966 B2 JP 3692966B2 JP 2001160979 A JP2001160979 A JP 2001160979A JP 2001160979 A JP2001160979 A JP 2001160979A JP 3692966 B2 JP3692966 B2 JP 3692966B2
Authority
JP
Japan
Prior art keywords
double container
vacuum double
brazing material
tapered portion
sealed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001160979A
Other languages
Japanese (ja)
Other versions
JP2002345655A (en
Inventor
光紀 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiger Corp
Original Assignee
Tiger Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiger Corp filed Critical Tiger Corp
Priority to JP2001160979A priority Critical patent/JP3692966B2/en
Publication of JP2002345655A publication Critical patent/JP2002345655A/en
Application granted granted Critical
Publication of JP3692966B2 publication Critical patent/JP3692966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属製の内ビンと外ビンとの間に密閉空間を有する真空二重容器とその封口方法に関する。
【0002】
【従来の技術】
一般に魔法瓶やジャーと呼ばれる保温容器は、ステンレススチールのような板金のプレス成形によって製作された内ビンと外ビンからなる。例えば図8に示すように、内ビン51と外ビン52の開口縁部53は互いに溶接され、内ビン51と外ビン52との間に密閉空間54が形成される。通常は外ビン52の底面55に形成された排気孔56から密閉空間54内の空気を抜くことにより、内ビン51と外ビン52との間に真空層を形成し、真空二重容器(保温容器)50が形成される。最近は電気ポットでも、この種の真空二重容器をタンクとして採用し電気ヒータの通電なしで保温を行うことができるものが商品化されている。
【0003】
真空二重容器50の排気及び封口工程において、排気前の真空二重容器50は外ビン52の底面55が上になるように伏せた状態で所定の台に載置される。そして、複数の真空二重容器50が載置された台が準備室(低真空室)、真空室、ろう付け室、冷却室を順番に通過する間に、各真空二重容器50の排気及び封口が行われる。
【0004】
従来、排気孔56から密閉空間54内の空気を抜いた後に排気孔56を封口するためのろう材として、鉛入りガラスを用いていた。鉛入りガラスは無鉛ガラスに比べて低温で溶融するのでろう材として適している。鉛入りガラスのろう材は、押し出し成形と切断によって製造されることから略円筒形状を有している。このようなろう材を排気前の真空二重容器50の底面55に形成された排気孔56を含む凹部57に予め置いておく。そして、真空室で真空二重容器50の排気が行われた後に、ろう付け室でろう材が溶融して排気孔56を封口する。
【0005】
なお、ろう材を各真空二重容器50の凹部57に置く作業はピンセット等を用いた手作業により行っていた。また、凹部57に置かれたろう材が例えば載置台の移動時や排気時の振動によって真空二重容器50が揺れたときに凹部57から飛び出してしまうことがないように、凹部57を覆う薄板片が底面55に溶接される場合もあった。この場合は薄板片の底面55に溶接されていない側を持ち上げて凹部57にろう材をセットするように作業していた。
【0006】
【発明が解決しようとする課題】
上記のような従来の真空二重容器の排気及び封口工程において予め凹部57にろう材を置く作業は手作業であるために工数がかかり、コスト低減の障壁となっていた。特に、凹部57を覆う薄板片が設けられている場合に、その薄板片の一端側を持ち上げるようにして凹部57にろう材をセットする作業は手間がかかるので、作業性の改善が求められていた。
【0007】
また、従来使用されていた鉛入りガラスのろう材は、鉛が人体に害を及ぼす可能性があることや真空二重容器のリサイクルが容易でなくなること等の短所を有する。このため、無鉛ガラスのろう材を使用することが検討された。前述のように従来の鉛入りガラスのろう材が略円筒形状を有するのに対し、無鉛ガラスのろう材は自由落下によって略球状を有するように製造することが行いやすい。この略球形状のろう材は従来の略円筒形状のろう材に比べて任意の方向に転がりやすい性質を有する。
【0008】
そこで、本発明は、真空二重容器の外ビンの底面の形状を工夫し略球形状のろう材を用いることにより、真空二重容器の排気及び封口工程におけるろう材のセット作業の機械化を可能にすることを目的とする。
【0009】
【課題を解決するための手段】
本発明による真空二重容器は、金属製の内ビンと外ビンとの間に密閉空間を有する真空二重容器において、外ビンの底面に凹状のテーパー部が形成され、テーパー部の最下部又は最下部近傍に密閉空間と連通する1又は複数の排気孔が設けられ、テーパー部のテーパー角は、密閉空間の排気の際の振動により真空二重容器が傾くときの最大傾斜角より大であり、略球形状のろう材を用いて排気孔が封口されていることを特徴とする。
【0010】
このような構成によれば、真空二重容器の排気及び封口工程において、外ビンの底面が上になるように伏せた状態の真空二重容器のテーパー部の上方から略球形状のろう材を落下すれば、ろう材がテーパー部を転がってテーパー部の最下部又は最下部近傍に形成された排気孔の近傍にセットされる。排気時の振動等によってろう材がテーパー部の最下部又は最下部近傍から外周方向に移動することがあっても、振動が止めばろう材は再びテーパー部の傾斜面に沿って転がり最下部又は最下部近傍に戻る。したがって、従来のように手作業によらずに、ろう材のセットを自動化(機械化)することが可能になる。特に、テーパー部のテーパー角が密閉空間の排気の際の振動により真空二重容器が傾くときの最大傾斜角より大であるので、テーパー部の最下部又は最下部近傍にセットされたろう部材が振動によってテーパー部の外周部へ移動する可能性が小さくなる。
【0016】
本発明による真空二重容器の封口方法は、金属製の内ビンと外ビンとの間に密閉空間を有する真空二重容器において、外ビンの底面に凹状のテーパー部を形成すると共にテーパー部の最下部又は最下部近傍に密閉空間と連通する1又は複数の排気孔を設け、テーパー部のテーパー角は、密閉空間の排気の際の振動により真空二重容器が傾くときの最大傾斜角より大であり、外ビンの底面が上になるように真空二重容器を伏せた状態で所定の台に載置し、テーパー部の上方から球状のろう材を落下し、該ろう材をテーパー部の最下部又は最下部近傍へ自然転落させ、真空室で密閉空間の排気を行った後、テーパー部の最下部又は最下部近傍に位置するろう材を溶かすことにより排気孔を封口することを特徴とする。このような封口方法によれば、従来のように手作業によらずに、ろう材のセットを自動化(機械化)することが可能になる。特に、テーパー部のテーパー角が密閉空間の排気の際の振動により真空二重容器が傾くときの最大傾斜角より大であるので、テーパー部の最下部又は最下部近傍にセットされたろう部材が振動によってテーパー部の外周部へ移動する可能性が小さくなる。
【0018】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態を説明する。
【0019】
図1は、本発明の第1の実施形態に係る真空二重容器の一例を示しており、(a)は底面図、(b)は底面を上にした側面視の断面図である。この真空二重容器10はステンレススチールのような金属板のプレス成形によって製作された内ビン11と外ビン12からなる。内ビン11と外ビン12の開口縁部13は互いに溶接され、内ビン11と外ビン12との間に密閉空間14が形成される。
【0020】
外ビン12の底面15には、中央部が窪んだ凹状のテーパー部16が形成されている。図示の例ではテーパー部16の半径が底面15の半径の略1/2であるが、少なくとも1/3程度あればよい。テーパー部16の外周には環状の壁部17が形成され、その外側には環状の予備凹部18が形成されている。但し、図示のように1つの環状の予備凹部18を設ける代わりに、複数の予備凹部を環状に配置してもよい。この予備凹部18は、テーパー部16から環状の壁部17を乗り越えてこぼれ出たろう材を保持する働きを有する。また、テーパー部16の中央部には段状に窪んだ凹部19が形成され、その底面には密閉空間14と外部を連通する小孔(排気孔)20が形成されている。
【0021】
図2は、テーパー部16の中央部に設けられた凹部19及び排気孔20を示す拡大図である。(a)は底面図であり、(b)は(a)におけるb−b断面を示している。凹部19は、図2(a)に示すように平面視楕円形(異形)であり図2(b)に示すようにテーパー部16から段状に窪んでいる。また、凹部19の底面に形成された排気孔20は、図2(a)に示すように矩形である。
【0022】
図2(b)において二点鎖線で示す円21は排気孔20の封口に使用される略球形のろう材であり、真空二重容器10の封口工程においてろう付け室で溶融する前の状態を示している。ろう材21は無鉛ガラスで製造される。
【0023】
真空二重容器10の封口工程において、排気前の真空二重容器10は外ビン12の底面15が上になるように伏せた状態で所定の台に載置される。そして、複数の真空二重容器10が所定の位置に載置された台が準備室(低真空室)、真空室、ろう付け室、冷却室を順番に通過する間に、ろう材21の供給、真空二重容器10の排気及び封口(ろう材21の溶融)が自動的に行われる。なお、密閉空間14の排気及び封口後にゲッター22を用いて内ビン11及び外ビン12の金属中に含まれているガスを燃焼させることにより、密閉空間14の真空度が高められる。
【0024】
ろう材21の供給は専用の機械によって真空二重容器10ごとに1個ずつ自動的に行われる。つまり、各真空二重容器10のテーパー部16の上方から球状のろう材21を落下すると、ろう材21はテーパー部16のテーパー面上を自然転落し、その中央部に設けられた凹部19に保持される。
【0025】
図2(b)に示すように、凹部19の短径dはろう材21の直径Dより小さく、溶融前のろう材21は凹部19の底面19aから浮いた状態で保持されている。また、凹部19は平面視異形(楕円形)であるので略球形状のろう材21が凹部の開口を完全に塞ぐことがない。したがって、排気孔20を介した密閉空間14と外部との連通が確保され密閉空間14の排気が円滑に行われる。
【0026】
上記の説明から明らかなように、凹部19の平面視形状は円形でない異形であればよく、必ずしも楕円形に限る必要は無い。例えば長方形や長円形でもよい。また、排気孔20の平面視形状を矩形としているのは、仮に凹部19の短径dより小さい直径のろう材21が供給された場合にも排気孔20が完全に塞がれてしまうことが無いようにするためである。したがって、排気孔20の平面視形状についても円形以外であればよく、矩形に限らず三角形や星形等任意の形状を採用することができる。複数の丸孔を接近して設けてもよい。また、排気孔20を凹部19の底面19aではなく側面19bに設けてもよい。
【0027】
図3は、上記実施形態において図2(b)に示した断面図の変形例を示している。(a)は第1変形例、(b)は第2変形例、(c)は第3変形例をそれぞれ示している。ろう材21が凹部19の底面19aから浮いた状態で凹部19に保持される構造として、図3(a)に示すように、ろう材21が凹部19の中に入り込みながら、その傾斜側面19bの途中で保持されるようにしてもよい。こうすれば、凹部19に一旦保持されたろう材21が排気時の振動等によって凹部19から外れる可能性が小さくなり好ましい。但し、ろう材21の加工精度(直径のばらつき)及び凹部19の短径の加工精度(ばらつき)に関して厳しい精度が要求される。
【0028】
また、図3(b)に示すように、凹部19の側面に段部19cを設けて、凹部19の中に入り込んだろう材21が段部19cに載るようにして底面19aから浮いた状態で保持される構造としてもよい。あるいは、図3(c)に示すように、凹部19の底面19aに突起部19dを設け、凹部19の中に入り込んだろう材21が突起部19dの先端に当接して底面19aから浮いた状態で保持される構造としてもよい。排気孔20は図3(c)に示すように凹部19の側面19bに設けてもよいし、底面19aに設けてもよい。
【0029】
図4は、第2の実施形態に係る真空二重容器の一例を示しており、(a)は底面図、(b)は底面を上にした外ビン12の底部の側面視断面図である。この実施形態では、第1の実施形態における凹部19を省略し、テーパー部16の中央部(最底部)16aに排気孔20を直接設けている。この場合、テーパー部16の上方から落下供給された略球形のろう材21はテーパー部16の中央部16aへ転落するが保持はされない。したがって、排気時の振動等によって容易にテーパー部16の中央部16aから外周方向へ移動するが、振動が止めばテーパー部16のテーパー面に沿って中央部16aに戻る。そして、ろう付け時にはろう材21はテーパー部16の中央部16aに設けられた排気孔20の近傍に位置し、ろう材21の溶融によって排気孔20が封口される。
【0030】
図4に示す例では、2個の排気孔20がテーパー部16の中央部16aに設けられており、溶融前のろう材21が排気孔20を完全に塞ぐことなく排気が円滑に行われるようにしている。テーパー部16の中心に1個の小孔を設け、その近傍に1又は複数の小孔(排気孔)を設けるようにしてもよい。あるいは、第1の実施形態で述べたように、丸孔以外の平面視異形の排気孔を1個だけ設けるようにしてもよい。
【0031】
図5は、第3の実施形態に係る真空二重容器のテーパー部16の中央部に設けられた凹部19及び排気孔20を示す拡大図である。(a)は底面図であり、(b)は(a)におけるb−b断面を示している。この実施形態では、凹部19は平面視円形であり、その直径dはろう材21の直径Dの2倍以上である。そして、凹部19の底面19aは中央部が突出するように形成され、その頂部に排気孔20が形成されている。この場合、テーパー部16の上方から供給され凹部19の中に転落したろう材21は、凹部19の底面19aの頂部に設けられた排気孔20を塞がない位置に落ち着く。つまり、図5(a)及び(b)に示すように、略球形のろう材21は凹部19の側面19bに常に当接している。
【0032】
図6は、第1の実施形態に係るテーパー部16の変形例を示す底面図である。(a)は第1変形例を示し、(b)は第2変形例を示している。図6(a)の第1変形例では、テーパー部16に、中央部から外周部に向かって放射状に延びる4本の凸条部22が形成されている。また、図6(b)の第2変形例では、テーパー部16に、中央部から外周部に向かって放射状に延びる1本の溝23が形成されている。いずれも、排気時の振動等により凹部19から飛び出してテーパー部16の外周部へ移動したろう材21が速やかに中央部の凹部19に戻るようにするためである。
【0033】
つまり、排気時の振動等によってテーパー部16の中央部から外周部へ移動したろう材21がテーパー部16の傾斜面上を中央部に戻る際に、振動方向によっては渦巻を描くようにして戻る場合がある。この場合は、ろう材21がテーパー部の中央部に戻るまでに時間がかかり、好ましくない。しかし、上記のようにテーパー部16の中央部から外周部に向かって放射状に延びる1又は複数の溝23又は凸条部22が形成されていれば、ろう材21は渦巻を描くことなく、溝23又は凸条部22に沿って速やかに中央部(凹部19)に戻る。なお、このような溝23又は凸条部22を第2又は第3の実施形態と組み合わせても同様の効果が得られる。
【0034】
上記の各実施形態及び変形例において、テーパー部16のテーパー角は、排気の際の振動により真空二重容器10が傾くときの最大傾斜角より大であることが好ましい。こうすることにより、ろう材21が凹部19から飛び出してもテーパー部16の外周部へ移動せずにすぐに凹部19へ戻る可能性が高くなる。
【0035】
以上、本発明の実施形態及び変形例を説明したが、図示した形状は一例にすぎない。本発明は上記の実施形態及び変形例に限らず、種々の形態で実施することができる。例えば、上記の実施形態及び変形例ではテーパー部16の中央部が最下部(最底部)となっているが、図7に示すように最下部16a’を中央部からずらしてもよい。この場合、排気孔20は中央部ではなく最下部16a’に設けられる。
【0036】
また、略球形のろう材は無鉛ガラス製に限定する必要は無く、鉛入りガラス製でもよいし、ニッケル等の金属性であってもよい。
【0037】
【発明の効果】
以上に説明したように、本発明によれば、内ビンと外ビンとの間に密閉空間を有する真空二重容器において、略球系のろう材を用いると共に外ビンの底面の形状を工夫したことにより、真空二重容器の排気及び封口工程におけるろう材のセット作業の機械化(自動化)が可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る真空二重容器の一例を示し、(a)は底面図、(b)は底面を上にした側面視の断面図である。
【図2】図1のテーパー部の中央部に設けられた凹部及び排気孔を拡大して示し、(a)は底面図であり、(b)は(a)におけるb−b断面図である。
【図3】図2(b)に示した断面図の変形例を示す図であり、(a)は第1変形例、(b)は第2変形例、(c)は第3変形例をそれぞれ示す。
【図4】第2の実施形態に係る真空二重容器の一例を示しており、(a)は底面図、(b)は底面を上にした外ビン底部の側面視断面図である。
【図5】第3の実施形態に係る真空二重容器のテーパー部の中央部に設けられた凹部及び排気孔を拡大して示し、(a)は底面図であり、(b)は(a)におけるb−b断面図である。
【図6】第1の実施形態に係るテーパー部の変形例を示す底面図であり、(a)は第1変形例、(b)は第2変形例をそれぞれ示している。
【図7】図4の変形例に係る真空二重容器の一例を示しており、(a)は底面図、(b)は底面を上にした外ビン底部の側面視断面図である。
【図8】従来の真空二重容器の例を示す側面視の断面図である。
【符号の説明】
10 真空二重容器
11 内ビン
12 外ビン
14 密閉空間
15 外ビンの底面
16 テーパー部
17 壁部
18 予備凹部
19 凹部
19a 凹部の底面
20 排気孔
21 ろう材
22 凸条部
23 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum double container having a sealed space between a metal inner bottle and an outer bottle and a sealing method thereof.
[0002]
[Prior art]
Generally, a heat insulating container called a thermos bottle or a jar is composed of an inner bottle and an outer bottle manufactured by press-molding a sheet metal such as stainless steel. For example, as shown in FIG. 8, the opening edge portions 53 of the inner bottle 51 and the outer bottle 52 are welded to each other, and a sealed space 54 is formed between the inner bottle 51 and the outer bottle 52. Normally, a vacuum layer is formed between the inner bottle 51 and the outer bottle 52 by removing the air in the sealed space 54 from the exhaust hole 56 formed in the bottom surface 55 of the outer bottle 52, and a vacuum double container (heat insulation) Container) 50 is formed. Recently, even an electric pot has been commercialized that employs this type of vacuum double container as a tank and can retain heat without energization of an electric heater.
[0003]
In the evacuation and sealing process of the vacuum double container 50, the vacuum double container 50 before evacuation is placed on a predetermined table with the bottom surface 55 of the outer bottle 52 facing down. And while the stand on which the plurality of vacuum double containers 50 are placed passes through the preparation chamber (low vacuum chamber), the vacuum chamber, the brazing chamber, and the cooling chamber in order, the exhaust of each vacuum double container 50 and Sealing is performed.
[0004]
Conventionally, lead-containing glass has been used as a brazing material for sealing the exhaust hole 56 after the air in the sealed space 54 has been removed from the exhaust hole 56. Lead-containing glass is suitable as a brazing material because it melts at a lower temperature than lead-free glass. Since the brazing material of lead-containing glass is manufactured by extrusion molding and cutting, it has a substantially cylindrical shape. Such a brazing material is previously placed in a recess 57 including an exhaust hole 56 formed in the bottom surface 55 of the vacuum double container 50 before exhaustion. After the vacuum double container 50 is evacuated in the vacuum chamber, the brazing material is melted in the brazing chamber and the exhaust hole 56 is sealed.
[0005]
In addition, the operation | work which puts a brazing material in the recessed part 57 of each vacuum double container 50 was performed by the manual operation using tweezers. Further, a thin piece covering the recess 57 so that the brazing material placed in the recess 57 does not jump out of the recess 57 when the vacuum double container 50 is shaken due to vibration during movement of the mounting table or during exhaustion, for example. May be welded to the bottom surface 55. In this case, an operation was performed to lift the side not welded to the bottom surface 55 of the thin plate piece and set the brazing material in the recess 57.
[0006]
[Problems to be solved by the invention]
The operation of placing the brazing material in the recess 57 in advance in the conventional vacuum double container evacuation and sealing process as described above is a manual operation, which requires man-hours and has been a barrier to cost reduction. In particular, when a thin plate piece covering the concave portion 57 is provided, the work of setting the brazing material in the concave portion 57 so as to lift one end side of the thin plate piece takes time, so improvement in workability is required. It was.
[0007]
Moreover, the lead-containing glass brazing material that has been used conventionally has disadvantages such as that lead may cause harm to the human body and that it is not easy to recycle the vacuum double container. For this reason, use of a lead-free glass brazing material has been studied. As described above, the conventional lead-containing glass brazing material has a substantially cylindrical shape, whereas the lead-free glass brazing material is easily manufactured to have a substantially spherical shape by free fall. This substantially spherical brazing material has the property of easily rolling in an arbitrary direction as compared with the conventional substantially cylindrical brazing material.
[0008]
Therefore, the present invention makes it possible to mechanize the setting work of the brazing material in the exhaust and sealing process of the vacuum double container by devising the shape of the bottom surface of the outer bottle of the vacuum double container and using a substantially spherical brazing material. The purpose is to.
[0009]
[Means for Solving the Problems]
The vacuum double container according to the present invention is a vacuum double container having a sealed space between a metal inner bottle and an outer bottle, and a concave tapered portion is formed on the bottom surface of the outer bottle, One or more exhaust holes communicating with the sealed space are provided in the vicinity of the lowermost part, and the taper angle of the taper portion is larger than the maximum tilt angle when the vacuum double container tilts due to vibration during exhaust of the sealed space. The exhaust hole is sealed using a substantially spherical brazing material.
[0010]
According to such a configuration, in the exhausting and sealing process of the vacuum double container, the substantially spherical brazing material is formed from above the tapered part of the vacuum double container in a state where the bottom surface of the outer bottle is faced up. If dropped, the brazing material rolls around the tapered portion and is set in the vicinity of the exhaust hole formed in the lowermost portion of the tapered portion or in the vicinity of the lowermost portion. Even if the brazing material moves in the outer circumferential direction from the lowermost part of the taper part or near the lowermost part due to vibration during exhaust, etc., if the vibration stops, the brazing material rolls again along the inclined surface of the tapered part or Return to near the bottom. Therefore, it becomes possible to automate (mechanicalize) the setting of the brazing material without using manual work as in the prior art. In particular, since the taper angle of the taper part is larger than the maximum inclination angle when the vacuum double container is inclined due to vibration during exhaust of the sealed space, the brazing member set at or near the lowermost part of the taper part vibrates. This reduces the possibility of moving to the outer periphery of the tapered portion.
[0016]
According to the sealing method of a vacuum double container according to the present invention, in a vacuum double container having a sealed space between a metal inner bottle and an outer bottle, a concave tapered portion is formed on the bottom surface of the outer bottle and the taper portion One or more exhaust holes communicating with the sealed space are provided in the lowermost part or in the vicinity of the lowermost part, and the taper angle of the taper part is larger than the maximum inclination angle when the vacuum double container is inclined by vibration during exhaust of the sealed space. The vacuum double container is placed face down so that the bottom surface of the outer bottle is facing upward, and the spherical brazing material is dropped from above the tapered portion, and the brazing material is removed from the tapered portion. After naturally falling to the lowermost part or the vicinity of the lowermost part, after exhausting the sealed space in the vacuum chamber, the exhaust hole is sealed by melting the brazing material located at the lowermost part of the tapered part or near the lowermost part. To do. According to such a sealing method, it becomes possible to automate (mechanicalize) the setting of the brazing material without using manual work as in the prior art. In particular, since the taper angle of the taper part is larger than the maximum inclination angle when the vacuum double container is inclined due to vibration during exhaust of the sealed space, the brazing member set at or near the lowermost part of the taper part vibrates. This reduces the possibility of moving to the outer periphery of the tapered portion.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
1A and 1B show an example of a vacuum double container according to a first embodiment of the present invention. FIG. 1A is a bottom view, and FIG. 1B is a sectional view in side view with the bottom face up. The vacuum double container 10 includes an inner bottle 11 and an outer bottle 12 manufactured by press-molding a metal plate such as stainless steel. The opening edge portions 13 of the inner bottle 11 and the outer bottle 12 are welded to each other, and a sealed space 14 is formed between the inner bottle 11 and the outer bottle 12.
[0020]
On the bottom surface 15 of the outer bottle 12, a concave tapered portion 16 having a depressed central portion is formed. In the illustrated example, the radius of the tapered portion 16 is approximately ½ of the radius of the bottom surface 15, but it may be at least about 3. An annular wall portion 17 is formed on the outer periphery of the tapered portion 16, and an annular preliminary recessed portion 18 is formed on the outer side thereof. However, instead of providing one annular preliminary recess 18 as shown, a plurality of preliminary recesses may be arranged in an annular shape. The preliminary recess 18 has a function of holding the brazing material that has spilled from the tapered portion 16 over the annular wall portion 17. A concave portion 19 that is recessed in a step shape is formed in the central portion of the tapered portion 16, and a small hole (exhaust hole) 20 that communicates between the sealed space 14 and the outside is formed on the bottom surface thereof.
[0021]
FIG. 2 is an enlarged view showing the concave portion 19 and the exhaust hole 20 provided in the central portion of the tapered portion 16. (A) is a bottom view, (b) has shown the bb cross section in (a). As shown in FIG. 2A, the recess 19 has an elliptical shape (irregular shape) in plan view, and is recessed from the tapered portion 16 in a step shape as shown in FIG. 2B. Moreover, the exhaust hole 20 formed in the bottom face of the recessed part 19 is a rectangle as shown to Fig.2 (a).
[0022]
A circle 21 indicated by a two-dot chain line in FIG. 2B is a substantially spherical brazing material used for sealing the exhaust hole 20, and shows a state before melting in the brazing chamber in the sealing step of the vacuum double container 10. Show. The brazing material 21 is made of lead-free glass.
[0023]
In the sealing process of the vacuum double container 10, the vacuum double container 10 before evacuation is placed on a predetermined table with the bottom surface 15 of the outer bottle 12 facing down. The brazing material 21 is supplied while the stage on which the plurality of vacuum double containers 10 are placed at predetermined positions passes through the preparation chamber (low vacuum chamber), the vacuum chamber, the brazing chamber, and the cooling chamber in order. The evacuation and sealing of the vacuum double container 10 (melting of the brazing material 21) is automatically performed. The degree of vacuum in the sealed space 14 is increased by burning the gas contained in the metal of the inner bottle 11 and the outer bottle 12 using the getter 22 after exhausting and sealing the sealed space 14.
[0024]
The supply of the brazing material 21 is automatically performed for each vacuum double container 10 by a dedicated machine. That is, when the spherical brazing filler metal 21 is dropped from above the tapered portion 16 of each vacuum double container 10, the brazing filler metal 21 naturally falls on the tapered surface of the tapered portion 16, and enters the concave portion 19 provided in the central portion thereof. Retained.
[0025]
As shown in FIG. 2B, the short diameter d of the recess 19 is smaller than the diameter D of the brazing material 21, and the brazing material 21 before melting is held in a state of floating from the bottom surface 19 a of the recess 19. Further, since the concave portion 19 has an irregular shape (elliptical shape) in plan view, the substantially spherical brazing material 21 does not completely block the opening of the concave portion. Therefore, communication between the sealed space 14 and the outside through the exhaust hole 20 is ensured, and the sealed space 14 is smoothly exhausted.
[0026]
As is clear from the above description, the shape of the concave portion 19 in plan view may be an irregular shape that is not circular, and is not necessarily limited to an elliptical shape. For example, it may be rectangular or oval. The rectangular shape of the exhaust hole 20 in plan view is that the exhaust hole 20 may be completely blocked even if the brazing filler metal 21 having a diameter smaller than the short diameter d of the recess 19 is supplied. This is so that there is no such thing. Therefore, the shape of the exhaust hole 20 in plan view may be other than a circle, and is not limited to a rectangle, and any shape such as a triangle or a star shape can be adopted. A plurality of round holes may be provided close to each other. Further, the exhaust hole 20 may be provided on the side surface 19 b instead of the bottom surface 19 a of the recess 19.
[0027]
FIG. 3 shows a modification of the cross-sectional view shown in FIG. (A) is a first modification, (b) is a second modification, and (c) is a third modification. As a structure in which the brazing material 21 is held in the concave portion 19 in a state where it floats from the bottom surface 19a of the concave portion 19, the brazing material 21 enters the concave portion 19 while the brazing material 21 enters the concave portion 19 as shown in FIG. You may make it hold | maintain on the way. This is preferable because it is less likely that the brazing material 21 once held in the recess 19 is detached from the recess 19 due to vibration during exhaust. However, strict accuracy is required with respect to the processing accuracy (variation in diameter) of the brazing material 21 and the processing accuracy (variation) of the short diameter of the recess 19.
[0028]
Further, as shown in FIG. 3 (b), a step portion 19c is provided on the side surface of the concave portion 19, and the brazing material 21 that has entered the concave portion 19 floats from the bottom surface 19a so as to rest on the step portion 19c. It is good also as a structure hold | maintained. Alternatively, as shown in FIG. 3C, a projection 19d is provided on the bottom surface 19a of the recess 19, and the brazing material 21 that has entered the recess 19 comes into contact with the tip of the projection 19d and floats from the bottom 19a. It is good also as a structure hold | maintained by. The exhaust hole 20 may be provided in the side surface 19b of the recessed part 19 as shown in FIG.3 (c), and may be provided in the bottom face 19a.
[0029]
FIG. 4 shows an example of a vacuum double container according to the second embodiment, where (a) is a bottom view, and (b) is a cross-sectional side view of the bottom of the outer bottle 12 with the bottom face up. . In this embodiment, the concave portion 19 in the first embodiment is omitted, and the exhaust hole 20 is directly provided in the central portion (bottom portion) 16a of the tapered portion 16. In this case, the substantially spherical brazing material 21 supplied by dropping from above the tapered portion 16 falls to the central portion 16a of the tapered portion 16 but is not held. Therefore, it easily moves from the central portion 16a of the tapered portion 16 to the outer peripheral direction due to vibrations or the like during exhaust, but returns to the central portion 16a along the tapered surface of the tapered portion 16 when the vibration stops. At the time of brazing, the brazing material 21 is positioned in the vicinity of the exhaust hole 20 provided in the central portion 16 a of the tapered portion 16, and the exhaust hole 20 is sealed by melting the brazing material 21.
[0030]
In the example shown in FIG. 4, two exhaust holes 20 are provided in the central portion 16 a of the tapered portion 16 so that the brazing material 21 before melting does not completely block the exhaust holes 20 so that the exhaust is smoothly performed. I have to. One small hole may be provided at the center of the tapered portion 16 and one or a plurality of small holes (exhaust holes) may be provided in the vicinity thereof. Alternatively, as described in the first embodiment, only one exhaust hole having an irregular shape in plan view other than the round hole may be provided.
[0031]
FIG. 5 is an enlarged view showing the recess 19 and the exhaust hole 20 provided in the central portion of the tapered portion 16 of the vacuum double container according to the third embodiment. (A) is a bottom view, (b) has shown the bb cross section in (a). In this embodiment, the recess 19 has a circular shape in plan view, and the diameter d thereof is twice or more the diameter D of the brazing material 21. And the bottom face 19a of the recessed part 19 is formed so that a center part may protrude, and the exhaust hole 20 is formed in the top part. In this case, the brazing filler metal 21 supplied from above the tapered portion 16 and falling into the recess 19 settles at a position where the exhaust hole 20 provided at the top of the bottom surface 19 a of the recess 19 is not blocked. That is, as shown in FIGS. 5A and 5B, the substantially spherical brazing material 21 is always in contact with the side surface 19 b of the recess 19.
[0032]
FIG. 6 is a bottom view showing a modification of the tapered portion 16 according to the first embodiment. (A) shows a first modification, and (b) shows a second modification. In the first modified example of FIG. 6A, four protruding strips 22 that extend radially from the central portion toward the outer peripheral portion are formed in the tapered portion 16. Further, in the second modified example of FIG. 6B, one groove 23 extending radially from the central portion toward the outer peripheral portion is formed in the tapered portion 16. In either case, the brazing material 21 that has jumped out of the recess 19 due to vibration during exhaust and moved to the outer peripheral portion of the tapered portion 16 quickly returns to the recess 19 at the center.
[0033]
That is, when the brazing filler metal 21 that has moved from the central portion of the tapered portion 16 to the outer peripheral portion due to vibration during exhaust or the like returns to the central portion on the inclined surface of the tapered portion 16, the brazing material 21 returns in a spiral depending on the vibration direction. There is a case. In this case, it takes time for the brazing material 21 to return to the central portion of the tapered portion, which is not preferable. However, if one or a plurality of grooves 23 or ridges 22 extending radially from the central portion of the tapered portion 16 to the outer peripheral portion are formed as described above, the brazing material 21 does not draw a spiral, and the groove It returns to the center part (concave part 19) rapidly along 23 or the protruding item | line part 22. FIG. In addition, the same effect is acquired even if such a groove | channel 23 or the protruding item | line part 22 is combined with 2nd or 3rd embodiment.
[0034]
In each of the above embodiments and modifications, the taper angle of the taper portion 16 is preferably larger than the maximum inclination angle when the vacuum double container 10 is inclined due to vibration during exhaust. By doing this, even if the brazing material 21 jumps out of the recess 19, there is a high possibility that it will return to the recess 19 immediately without moving to the outer periphery of the tapered portion 16.
[0035]
As mentioned above, although embodiment and the modification of this invention were demonstrated, the shape shown in figure is only an example. The present invention is not limited to the above-described embodiments and modifications, and can be implemented in various forms. For example, in the above-described embodiment and modification, the central portion of the tapered portion 16 is the lowest portion (bottom portion), but the lowermost portion 16a ′ may be shifted from the central portion as shown in FIG. In this case, the exhaust hole 20 is provided in the lowermost part 16a ′ instead of the central part.
[0036]
The substantially spherical brazing material need not be limited to lead-free glass, and may be made of lead-containing glass or metallic such as nickel.
[0037]
【The invention's effect】
As described above, according to the present invention, in a vacuum double container having a sealed space between an inner bottle and an outer bottle, a substantially spherical brazing material is used and the shape of the bottom surface of the outer bottle is devised. This makes it possible to mechanize (automate) the setting work of the brazing material in the process of exhausting and sealing the vacuum double container.
[Brief description of the drawings]
1A and 1B show an example of a vacuum double container according to a first embodiment of the present invention, in which FIG. 1A is a bottom view and FIG. 1B is a sectional view in side view with the bottom face up.
2 is an enlarged view of a concave portion and an exhaust hole provided in the central portion of the tapered portion in FIG. 1, (a) is a bottom view, and (b) is a cross-sectional view taken along line bb in (a). .
3A and 3B are diagrams showing a modification of the cross-sectional view shown in FIG. 2B, where FIG. 3A is a first modification, FIG. 2B is a second modification, and FIG. 3C is a third modification. Each is shown.
FIGS. 4A and 4B show an example of a vacuum double container according to a second embodiment, wherein FIG. 4A is a bottom view, and FIG. 4B is a cross-sectional side view of an outer bottle bottom with the bottom face up.
FIGS. 5A and 5B are enlarged views showing a concave portion and an exhaust hole provided in the central portion of the tapered portion of the vacuum double container according to the third embodiment, wherein FIG. 5A is a bottom view, and FIG. It is a bb sectional view in).
6A and 6B are bottom views showing a modified example of the tapered portion according to the first embodiment, wherein FIG. 6A shows a first modified example, and FIG. 6B shows a second modified example.
7 shows an example of a vacuum double container according to a modification of FIG. 4, wherein (a) is a bottom view and (b) is a side sectional view of the bottom of the outer bottle with the bottom face up.
FIG. 8 is a side sectional view showing an example of a conventional vacuum double container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Vacuum double container 11 Inner bottle 12 Outer bottle 14 Sealed space 15 Bottom surface 16 of outer bottle Tapered part 17 Wall part 18 Preliminary recessed part 19 Recessed part 19a Recessed bottom face 20 Exhaust hole 21 Brazing material 22 Protruding part 23 Groove

Claims (2)

金属製の内ビンと外ビンとの間に密閉空間を有する真空二重容器において、
前記外ビンの底面に凹状のテーパー部が形成され、前記テーパー部の最下部又は最下部近傍に前記密閉空間と連通する1又は複数の排気孔が設けられ、
前記テーパー部のテーパー角は、前記密閉空間の排気の際の振動により前記真空二重容器が傾くときの最大傾斜角より大であり、
略球形状のろう材を用いて前記排気孔が封口されていることを特徴とする真空二重容器。
In a vacuum double container having a sealed space between a metal inner bottle and an outer bottle,
A concave tapered portion is formed on the bottom surface of the outer bottle, and one or a plurality of exhaust holes communicating with the sealed space are provided at the lowermost portion or near the lowermost portion of the tapered portion,
The taper angle of the tapered portion is larger than the maximum inclination angle when the vacuum double container is inclined by vibration during exhaust of the sealed space,
A vacuum double container, wherein the exhaust hole is sealed using a substantially spherical brazing material.
金属製の内ビンと外ビンとの間に密閉空間を有する真空二重容器の封口方法であって、A method of sealing a vacuum double container having a sealed space between a metal inner bottle and an outer bottle,
前記外ビンの底面に凹状のテーパー部を形成すると共に前記テーパー部の最下部又は最下部近傍に前記密閉空間と連通する1又は複数の排気孔を設け、前記テーパー部のテーパー角は、前記密閉空間の排気の際の振動により前記真空二重容器が傾くときの最大傾斜角より大であり、  A concave tapered portion is formed on the bottom surface of the outer bottle, and one or a plurality of exhaust holes communicating with the sealed space are provided at a lowermost portion or near the lowermost portion of the tapered portion, and a taper angle of the tapered portion is set to Greater than the maximum tilt angle when the vacuum double container tilts due to vibration during exhaust of space;
前記外ビンの底面が上になるように前記真空二重容器を伏せた状態で所定の台に載置し、  Place the vacuum double container face down so that the bottom surface of the outer bottle is on top,
前記テーパー部の上方から球状のろう材を落下し、該ろう材を前記テーパー部の最下部又は最下部近傍へ自然転落させ、  The spherical brazing material is dropped from above the tapered portion, and the brazing material is naturally fallen to the lowermost portion or the vicinity of the lowermost portion of the tapered portion,
真空室で前記密閉空間の排気を行った後、前記テーパー部の最下部又は最下部近傍に位置する前記ろう材を溶かすことにより前記排気孔を封口することを特徴とする真空二重容器の封口方法。  Sealing the vacuum double container characterized by sealing the exhaust hole by melting the brazing material located at the lowermost part of the tapered part or near the lowermost part after exhausting the sealed space in a vacuum chamber Method.
JP2001160979A 2001-05-29 2001-05-29 Vacuum double container and sealing method Expired - Fee Related JP3692966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160979A JP3692966B2 (en) 2001-05-29 2001-05-29 Vacuum double container and sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160979A JP3692966B2 (en) 2001-05-29 2001-05-29 Vacuum double container and sealing method

Publications (2)

Publication Number Publication Date
JP2002345655A JP2002345655A (en) 2002-12-03
JP3692966B2 true JP3692966B2 (en) 2005-09-07

Family

ID=19004322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160979A Expired - Fee Related JP3692966B2 (en) 2001-05-29 2001-05-29 Vacuum double container and sealing method

Country Status (1)

Country Link
JP (1) JP3692966B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105266654A (en) * 2015-09-10 2016-01-27 膳魔师(中国)家庭制品有限公司 Vacuum heat preservation container bottom sealing structure and sealing method thereof
CN108888053A (en) * 2018-07-18 2018-11-27 台州市泰澄电子科技有限公司 A kind of pure titanium metal vacuum cup and its manufacturing process

Also Published As

Publication number Publication date
JP2002345655A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US7488400B2 (en) Apparatus for etching wafer by single-wafer process
JP3692966B2 (en) Vacuum double container and sealing method
JP2737095B2 (en) Vacuum sealing structure of metal vacuum double container
KR19980070412A (en) Fritable evaporable getter device for obtaining barium in high yield
JP3127910B2 (en) Metal vacuum insulated container
JP2734981B2 (en) Vacuum sealed structure of metal vacuum container
JP4158202B2 (en) Glass for sealing, method for producing the same, and method for sealing metal vacuum double container
JP3997432B2 (en) Sealing glass and method for producing the same
JPH06140523A (en) Package for containing semiconductor device
JP5594512B2 (en) Lower nozzle brick and sealing method using the same
JPH09260523A (en) Manufacture of ic package
JPH0120759Y2 (en)
JP2006204578A (en) Metallic double container and metallic vacuum double container
JP2738299B2 (en) Vacuum sealed structure of metal vacuum container
JPH0538696Y2 (en)
JPH0238208B2 (en)
US2884743A (en) Sealing peg
JPH0685639U (en) Metal vacuum double container
US3140683A (en) Alloying fixture
JP2006204577A (en) Metallic double container and metallic vacuum double container
JP2000060744A (en) Vacuum insulated container made of metal and manufacture thereof
CN114273743A (en) Method for welding to-be-welded part through side wall solder hanging structure
EP2985568A1 (en) Partially insulated cathode
JP2000082736A (en) Wafer clamp for heater assembly
JP2003147509A (en) Crucible for vapor deposition, and method for using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees