JP3692452B2 - Method for producing gallium nitride single crystal thick film - Google Patents

Method for producing gallium nitride single crystal thick film Download PDF

Info

Publication number
JP3692452B2
JP3692452B2 JP23050895A JP23050895A JP3692452B2 JP 3692452 B2 JP3692452 B2 JP 3692452B2 JP 23050895 A JP23050895 A JP 23050895A JP 23050895 A JP23050895 A JP 23050895A JP 3692452 B2 JP3692452 B2 JP 3692452B2
Authority
JP
Japan
Prior art keywords
gallium nitride
substrate
single crystal
nitride single
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23050895A
Other languages
Japanese (ja)
Other versions
JPH0971496A (en
Inventor
均 岡崎
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP23050895A priority Critical patent/JP3692452B2/en
Publication of JPH0971496A publication Critical patent/JPH0971496A/en
Application granted granted Critical
Publication of JP3692452B2 publication Critical patent/JP3692452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ガリウム単結晶厚膜の製造方法に関し、特にハイドライド気相エピタキシャル成長法(以下、ハイドライドVPE法と称する。)により成長させた窒化ガリウムの単結晶層を基板から剥離することにより窒化ガリウム単結晶の厚膜を得る方法に関する。
【0002】
【従来の技術】
近時、青色発光材料として窒化ガリウム(GaN)半導体が注目されている。
【0003】
従来、GaN半導体は、大型の単結晶インゴットとして得られないため、他の材料よりなる基板上に気相エピタキシャル成長させることにより得られる。そのエピタキシャル成長させた窒化ガリウム層を基板から剥離させることにより窒化ガリウム単結晶膜を得るようにした技術も提案されている。
【0004】
例えば、特開昭61−7621号公報には、サファイア基板上に窒化アルミニウム層及び窒化ガリウム層を順次積層した後に、窒化アルミニウム層を選択的に溶解除去することにより窒化ガリウム結晶を基板から剥離させるようにした方法について開示されている。
【0005】
また、特公昭61−2635号公報には、エピタキシャル成長の開始時にZn等の不純物をドープして基板との結合力の弱い窒化ガリウム層を成長させた後に、不純物を含まない窒化ガリウム層を成長させ、成長終了後に窒化ガリウム結晶を基板から剥離させるようにした方法について開示されている。
【0006】
さらに、特開昭51−3779号公報には、基板上にノンドープ窒化ガリウム層及びZnドープの高抵抗窒化ガリウム層を順次積層した後に、ノンドープ窒化ガリウム層を溶解除去することにより高抵抗窒化ガリウム結晶を基板から剥離させるようにした方法について開示されている。
【0007】
さらにまた、サファイア基板上にスパッタリング法によりZnOバッファ層を形成し、その上に窒化ガリウム層をエピタキシャル成長させた後に、ZnO層をエッチングして除去することにより窒化ガリウム結晶を基板から剥離させるようにした方法について、赤崎らは報告している(Eleventh Recordof Alloy Semiconductor Physics and Electronics Symposium,307−312(1992))。
【0008】
【発明が解決しようとする課題】
しかしながら、上記各従来技術には以下のような問題点がある。
【0009】
すなわち、特開昭61−7621号公報に開示された方法では、有機金属気相成長(MOCVD)法により窒化アルミニウム層を形成しなければならない。窒化ガリウム層もMOCVD法で成長させたのでは成長速度が遅い(成長速度:毎時1〜5μm)ために適当な厚さの窒化ガリウム結晶を得るには多大な時間を要してしまい、非生産的である。そこで、成長速度が毎時20〜80μmと速いハイドライドVPE法により窒化ガリウム層を成長させることも考えられるが、その場合には窒化アルミニウム層と窒化ガリウム層とで成長方法が異なってしまうため、製造プロセスが複雑になるという欠点がある。
【0010】
特公昭61−2635号公報に開示された方法では、成長開始時にドープする不純物により、基板から剥離して得られる窒化ガリウム膜が汚染されてしまうという問題点がある。
【0011】
特開昭51−3779号公報に開示された方法では、基板から剥離して得られる窒化ガリウム膜は高抵抗であるため、その膜をLEDの作製用の基板として用いるには不適であるという問題点がある。
【0012】
赤崎らにより報告された上記方法には、ZnOバッファ層の厚さが1000 以下と薄いため、エッチングの際にエッチャントの液がZnOバッファ層に十分に接触せず、窒化ガリウム膜が基板から容易には剥がれないという問題点がある。
【0013】
本発明は、上記問題点を解決するためになされたもので、基板上にエピタキシャル成長させた窒化ガリウム層の剥離性が良く、容易に窒化ガリウム単結晶の厚膜を得ることができる方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明者は鋭意研究を重ねた結果、ガリウムまたはアルミニウムを構成元素として含むペロブスカイト型の結晶構造を有する基板(以下、それぞれGaペロブスカイト基板及びAlペロブスカイト基板と称する。)上に窒化ガリウム単結晶層をエピタキシャル成長させると、その窒化ガリウム層は基板から容易に剥離することを見出し、本発明の完成に至った。
【0015】
即ち、本発明は、Gaペロブスカイト基板またはAlペロブスカイト基板上に窒化ガリウムの単結晶層をエピタキシャル成長させた後に、該成長層を前記基板から剥離して窒化ガリウム単結晶の厚膜を得ることを特徴とするものである。
【0016】
この発明において、ガリウムの塩化物と窒素の水素化物とを前記基板上で反応させるハイドライドVPE法により前記基板上に前記窒化ガリウム単結晶層を成長させることを特徴とし、また前記基板上に前記窒化ガリウム単結晶層を100μm以上の厚さ、好ましくは200μm以上の厚さとなるように成長させることを特徴とする。
【0017】
さらに、前記基板の{101}面または{011}面上に前記窒化ガリウム単結晶層を成長させることを特徴とする。
【0018】
ここで、ハイドライドVPE法を採用する理由は、上述したようにハイドライドVPE法は、その成長速度が毎時20〜80μmであり、MBE(分子線エピタキシー)法の成長速度(毎時1〜2μm)やMOCVD法の成長速度(毎時1〜5μm)に比べて格段に速く、工業生産上許容される成膜時間(数時間〜十数時間程度)内に数百μmの厚さの膜を得るのに有利であるからである。
【0019】
また、基板上に成長させる窒化ガリウム単結晶層の厚さが100μm以上、好ましくは200μm以上である理由は、厚さが100μmに満たないと、強度が不足して剥離させる際に崩れてしまうからである。厚さが200μm以上であれば、発光素子作製のプロセスで割れ難いという利点がある。成長させる窒化ガリウム単結晶層の厚さの上限は、工業生産性及び経済性の点から自ずと決まるものであり、特に限定されないが、それらの観点から例えば500μm以下であるとよい。
【0020】
さらに、{101}面または{011}面の基板は、窒化ガリウム膜との格子整合性が良いので、良質の窒化ガリウム単結晶膜を成長できるからである。なお、{101}面または{011}面とは、それぞれ(101)面または(011)面と等価な面を表し、(1 ̄01)面、(101 ̄)面、(1 ̄01 ̄)面、または(01 ̄1)面、(011 ̄)面、(01 ̄1 ̄)面のことである。なお、右肩に“ ̄”を付した指数はマイナスの指数である。また、{101}面または{011}面よりわずかにオフアングルした基板を用いてもよい。
【0021】
なお、Gaペロブスカイト基板またはAlペロブスカイト基板から窒化ガリウム膜が容易に剥離する原因は明らかでないが、次のように推測される。例えばGaペロブスカイトの一種であるネオジムガレート(NdGaO3 )について具体的に説明すると、図1に示すネオジムガレートの(011)面のGa原子の配列において、点線で示した格子間隔はa軸の長さに等しくその熱膨張係数は6.6×10-6cm/℃であり、また実線で示した格子間隔はa軸、b軸及びc軸のそれぞれの長さla 、lb 及びlc の自乗の和の平方根の2分の1の長さに等しくその熱膨張係数は7.1×10-6cm/℃である。つまり、基板の熱膨張係数に異方性があるため、窒化ガリウム層が剥離し易くなると考えられる。あるいは、窒化ガリウムのエピタキシャル成長開始時にネオジムガレートの表面が窒化されてネオジムガレートの窒化層が形成されるため、窒化ガリウム層が剥離し易くなるとも考えられる。ネオジムガレート以外のGaペロブスカイト基板及びAlペロブスカイト基板並びに(101)面についても同様の原因が考えられる。
【0022】
【発明の実施の形態】
本発明の実施形態の一例を説明する。
【0023】
GaペロブスカイトまたはAlペロブスカイトよりなる基板及びGa原料をハイドライドVPE装置(図示せず。)内に設置し、基板部及びGa原料部をそれぞれ所定の温度に保持するとともに、N2 (窒素ガス)をキャリアガスとして流す。その際、使用する基板の面方位は{101}面または{011}面である。
【0024】
その状態で、Ga原料の上流側からN2 で希釈したHCl(塩化水素)ガスを流してGa原料とHClとの反応生成物であるGaClを基板部に輸送するとともに、Ga原料部をバイパスして基板の直前にNH3 (アンモニア)ガスを流す。そのNH3 ガスとGaClとを反応させて基板上に窒化ガリウム単結晶層を、厚さが100μm以上、好ましくは200μm以上となるまでエピタキシャル成長させる。
【0025】
成長終了後、徐冷してハイドライドVPE装置内から基板を取り出し、窒化ガリウム単結晶層を剥離させて窒化ガリウム単結晶の厚膜を得る。その際、エッチング処理をしなくても、超音波洗浄器のような装置で基板を振動させることにより、基板から窒化ガリウム層を容易に剥がすことができる。
【0026】
【実施例】
以下に、実施例を挙げて本発明の特徴とするところを明らかとする。なお、本発明は以下の実施例により何ら限定されるものではない。
【0027】
厚さ500μm、直径35mm、面方位(011)のネオジムガレートよりなる円形基板を有機溶剤で洗浄した後、Ga原料とともにハイドライドVPE装置内に設置して、窒化ガリウム層のエピタキシャル成長を10時間行った。その際、基板部及びGa原料部の温度はそれぞれ950℃及び850℃であった。また、キャリアガスであるN2 の流量は6リットル/min 、HClガス及びNH3 ガスの流量はそれぞれ50cc/min 、250cc/min であった。冷却後、ハイドライドVPE装置内から基板を取り出し、超音波洗浄により基板とエピタキシャル成長層とを剥離させて、厚さ200μmの窒化ガリウム単結晶厚膜を得た。
【0028】
得られた窒化ガリウム単結晶厚膜をX線ディフラクトメータで分析したところ、GaN(0002)、GaN(0004)の回折のみが観察された。また、ホール測定で電気的特性を評価したところ、キャリア濃度はn型で5×1018cm-3、移動度は100cm2 /V・sであった。
【0029】
なお、上記実施例においては、基板材料はネオジムガレートであるとしたが、それ以外のGaペロブスカイトでもよいし、Alペロブスカイトでもよい。また、基板の面方位は(011)であるとしたが、それに等価である(01 ̄1)、(011 ̄)、(01 ̄1 ̄)の各面方位、或は(101)およびそれに等価である(1 ̄01)、(101 ̄)、(1 ̄01 ̄)の各面方位であってもよいし、さらにはそれら各面方位からわずかにオフアングルしていてもよい。
【0030】
また、高品質窒化ガリウム単結晶厚膜を作製するために、窒化ガリウムのバッファ層を500℃程度の低温で形成した後、上記の厚膜を成長するようにしてもよい。
【0031】
さらには、上記の厚膜を成長する直前に基板にアンモニアガスやGaClガスやHClガスなどを流す等の表面処理を行ってもよい。
【0032】
【発明の効果】
本発明に係る窒化ガリウム単結晶厚膜の製造方法によれば、GaペロブスカイトまたはAlペロブスカイトの基板上に窒化ガリウムの単結晶層をエピタキシャル成長させた後に、その成長層を基板から剥離して窒化ガリウム単結晶の厚膜を得るようにしたため、容易に窒化ガリウムの単結晶厚膜が得られる。その際、Gaペロブスカイト基板またはAlペロブスカイト基板の表面とそれら基板上に積層された窒化ガリウム層との界面における構成原子間の相互の結合力は弱く、窒化ガリウム層が剥離し易いため、従来のように基板と窒化ガリウム層との間に剥離のための層を介装させたり剥離のためにエッチング処理などを行ったりせずに済む。従って、厚膜製造のプロセスが簡素なものとなるとともに、不純物等で汚染されていない窒化ガリウム単結晶厚膜が得られる。また、エピタキシャル成長の際に不純物をドープしないと導電型がn型の窒化ガリウム層が成長するので、得られる窒化ガリウム単結晶厚膜は導電性を有し、LEDやLD用の基板として好適である。なお、成長の際にSi等をドープして導電性を向上させることもできる。
【0033】
また、ハイドライドVPE法により基板上に窒化ガリウム単結晶層を成長させることにより、数時間〜十数時間程度で100μm以上の厚さの窒化ガリウム層を成長させることができる。
【図面の簡単な説明】
【図1】ネオジムガレートの(011)面のGa原子の配列を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a gallium nitride single crystal thick film, and in particular, by detaching a single crystal layer of gallium nitride grown by a hydride vapor phase epitaxial growth method (hereinafter referred to as a hydride VPE method) from a substrate. The present invention relates to a method for obtaining a single crystal thick film.
[0002]
[Prior art]
Recently, a gallium nitride (GaN) semiconductor has attracted attention as a blue light emitting material.
[0003]
Conventionally, since a GaN semiconductor cannot be obtained as a large single crystal ingot, it can be obtained by vapor phase epitaxial growth on a substrate made of another material. A technique has also been proposed in which a gallium nitride single crystal film is obtained by peeling off the epitaxially grown gallium nitride layer from a substrate.
[0004]
For example, in Japanese Patent Laid-Open No. 61-7621, an aluminum nitride layer and a gallium nitride layer are sequentially stacked on a sapphire substrate, and then the gallium nitride crystal is peeled off from the substrate by selectively dissolving and removing the aluminum nitride layer. Such a method is disclosed.
[0005]
In Japanese Patent Publication No. 61-2635, a gallium nitride layer having a weak bonding force to a substrate is grown by doping an impurity such as Zn at the start of epitaxial growth, and then a gallium nitride layer containing no impurity is grown. Discloses a method in which a gallium nitride crystal is peeled off from a substrate after the growth is completed.
[0006]
Further, Japanese Patent Application Laid-Open No. 51-3379 discloses a high-resistance gallium nitride crystal by sequentially laminating a non-doped gallium nitride layer and a Zn-doped high-resistance gallium nitride layer on a substrate and then dissolving and removing the non-doped gallium nitride layer. A method is disclosed in which the substrate is peeled off from the substrate.
[0007]
Further, a ZnO buffer layer is formed on the sapphire substrate by sputtering, and after the gallium nitride layer is epitaxially grown on the sapphire substrate, the ZnO layer is etched away to remove the gallium nitride crystal from the substrate. Akazaki et al. Have reported on the method (Elevenh Recordof Alloy Semiconductor Physics and Electronics Symposium, 307-312 (1992)).
[0008]
[Problems to be solved by the invention]
However, each of the above conventional techniques has the following problems.
[0009]
That is, in the method disclosed in Japanese Patent Laid-Open No. 61-7621, an aluminum nitride layer must be formed by metal organic chemical vapor deposition (MOCVD). If the gallium nitride layer is also grown by the MOCVD method, the growth rate is slow (growth rate: 1 to 5 μm / hour), so it takes a lot of time to obtain a gallium nitride crystal with an appropriate thickness, and it is not produced. Is. Therefore, it is conceivable to grow the gallium nitride layer by a hydride VPE method having a high growth rate of 20 to 80 μm per hour. In this case, however, the growth method differs between the aluminum nitride layer and the gallium nitride layer. Has the disadvantage of becoming complicated.
[0010]
The method disclosed in Japanese Patent Publication No. 61-2635 has a problem that the gallium nitride film peeled off from the substrate is contaminated by impurities doped at the start of growth.
[0011]
In the method disclosed in Japanese Patent Application Laid-Open No. 51-3379, the gallium nitride film obtained by peeling off from the substrate has a high resistance, so that the film is not suitable for use as a substrate for manufacturing an LED. There is a point.
[0012]
In the above method reported by Akasaki et al., Since the thickness of the ZnO buffer layer is as thin as 1000 or less, the etchant liquid does not sufficiently contact the ZnO buffer layer during etching, and the gallium nitride film is easily removed from the substrate. There is a problem that does not peel off.
[0013]
The present invention has been made to solve the above problems, and provides a method for easily obtaining a gallium nitride single crystal thick film with good detachability of a gallium nitride layer epitaxially grown on a substrate. For the purpose.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted extensive research and as a result, substrates having a perovskite crystal structure containing gallium or aluminum as a constituent element (hereinafter referred to as a Ga perovskite substrate and an Al perovskite substrate, respectively). It was found that when a gallium nitride single crystal layer was epitaxially grown on the gallium nitride layer, the gallium nitride layer was easily separated from the substrate, and the present invention was completed.
[0015]
That is, the present invention is characterized in that after a gallium nitride single crystal layer is epitaxially grown on a Ga perovskite substrate or an Al perovskite substrate, the grown layer is peeled off from the substrate to obtain a gallium nitride single crystal thick film. To do.
[0016]
The present invention is characterized in that the gallium nitride single crystal layer is grown on the substrate by a hydride VPE method in which gallium chloride and nitrogen hydride are reacted on the substrate, and the nitride is formed on the substrate. The gallium single crystal layer is grown to have a thickness of 100 μm or more, preferably 200 μm or more.
[0017]
Furthermore, the gallium nitride single crystal layer is grown on the {101} plane or {011} plane of the substrate.
[0018]
Here, the reason for adopting the hydride VPE method is that, as described above, the hydride VPE method has a growth rate of 20 to 80 μm / hour, and a growth rate (1-2 μm / hour) of the MBE (molecular beam epitaxy) method or MOCVD. It is much faster than the growth rate of the method (1-5 μm / hour), and it is advantageous to obtain a film with a thickness of several hundred μm within a film formation time (several hours to several tens of hours) allowed for industrial production. Because.
[0019]
The reason why the thickness of the gallium nitride single crystal layer grown on the substrate is 100 μm or more, preferably 200 μm or more is that if the thickness is less than 100 μm, the strength is insufficient and it will collapse when peeled off. It is. If thickness is 200 micrometers or more, there exists an advantage that it is hard to be broken by the process of light emitting element preparation. The upper limit of the thickness of the gallium nitride single crystal layer to be grown is naturally determined from the viewpoints of industrial productivity and economic efficiency, and is not particularly limited, but is preferably 500 μm or less from those viewpoints.
[0020]
Further, since the {101} or {011} plane substrate has good lattice matching with the gallium nitride film, a high-quality gallium nitride single crystal film can be grown. The {101} plane or the {011} plane represents a plane equivalent to the (101) plane or the (011) plane, respectively, (1 ̄01) plane, (101 ̄) plane, (1 ̄01 ̄) It is a plane, or (01-1) plane, (011-1) plane, (01-1) plane. The index with “ ̄” on the right shoulder is a negative index. Further, a substrate slightly off-angled from the {101} plane or the {011} plane may be used.
[0021]
The reason why the gallium nitride film easily peels from the Ga perovskite substrate or the Al perovskite substrate is not clear, but is estimated as follows. For example, neodymium gallate (NdGaO 3 ), which is a kind of Ga perovskite, will be specifically described. In the arrangement of Ga atoms on the (011) plane of neodymium gallate shown in FIG. 1, the lattice spacing indicated by dotted lines is the length of the a-axis. The coefficient of thermal expansion is equal to 6.6 × 10 −6 cm / ° C., and the lattice spacing indicated by the solid lines is the sum of the squares of the lengths la, lb and lc of the a-axis, b-axis and c-axis, respectively. Its coefficient of thermal expansion is 7.1 × 10 −6 cm / ° C. equal to half the length of the square root of. That is, since the thermal expansion coefficient of the substrate is anisotropic, the gallium nitride layer is considered to be easily peeled off. Alternatively, it is considered that the surface of neodymium gallate is nitrided at the start of epitaxial growth of gallium nitride to form a nitride layer of neodymium gallate, so that the gallium nitride layer is easily peeled off. The same cause can be considered for Ga perovskite substrates and Al perovskite substrates other than neodymium gallate and the (101) plane.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described.
[0023]
A substrate made of Ga perovskite or Al perovskite and a Ga raw material are placed in a hydride VPE apparatus (not shown), and the substrate portion and the Ga raw material portion are kept at a predetermined temperature, and N 2 (nitrogen gas) is used as a carrier. Flow as gas. At that time, the plane orientation of the substrate to be used is a {101} plane or a {011} plane.
[0024]
In this state, HCl (hydrogen chloride) gas diluted with N 2 is flowed from the upstream side of the Ga raw material to transport GaCl, which is a reaction product of the Ga raw material and HCl, to the substrate portion, and the Ga raw material portion is bypassed. Then, NH 3 (ammonia) gas is allowed to flow immediately before the substrate. The NH 3 gas and GaCl are reacted to epitaxially grow a gallium nitride single crystal layer on the substrate until the thickness becomes 100 μm or more, preferably 200 μm or more.
[0025]
After completion of the growth, the substrate is taken out slowly from the hydride VPE apparatus and the gallium nitride single crystal layer is peeled off to obtain a thick gallium nitride single crystal film. At that time, the gallium nitride layer can be easily peeled off from the substrate by vibrating the substrate with an apparatus such as an ultrasonic cleaner without performing an etching process.
[0026]
【Example】
Hereinafter, the features of the present invention will be clarified by giving examples. In addition, this invention is not limited at all by the following examples.
[0027]
A circular substrate made of neodymium gallate having a thickness of 500 μm, a diameter of 35 mm, and a plane orientation (011) was washed with an organic solvent, and then placed in a hydride VPE apparatus together with a Ga raw material, and epitaxial growth of a gallium nitride layer was performed for 10 hours. At that time, the temperatures of the substrate portion and the Ga material portion were 950 ° C. and 850 ° C., respectively. The flow rate of carrier gas N 2 was 6 liter / min, and the flow rates of HCl gas and NH 3 gas were 50 cc / min and 250 cc / min, respectively. After cooling, the substrate was taken out from the hydride VPE apparatus, and the substrate and the epitaxially grown layer were separated by ultrasonic cleaning to obtain a gallium nitride single crystal thick film having a thickness of 200 μm.
[0028]
When the obtained gallium nitride single crystal thick film was analyzed with an X-ray diffractometer, only diffraction of GaN (0002) and GaN (0004) was observed. When the electrical characteristics were evaluated by Hall measurement, the carrier concentration was 5 × 10 18 cm −3 for n-type, and the mobility was 100 cm 2 / V · s.
[0029]
In the above embodiment, the substrate material is neodymium gallate, but other Ga perovskites or Al perovskites may be used. The plane orientation of the substrate is (011), which is equivalent to each plane orientation of (01 ̄1), (011 ̄), (01 ̄1 ̄), or (101) and equivalent thereof. (1 ̄01), (101 ̄), and (1 ̄01 ̄) may be the orientations of the surfaces, or may be slightly off-angled from these orientations.
[0030]
In order to produce a high-quality gallium nitride single crystal thick film, the above-described thick film may be grown after a gallium nitride buffer layer is formed at a low temperature of about 500 ° C.
[0031]
Furthermore, a surface treatment such as flowing ammonia gas, GaCl gas, HCl gas, or the like may be performed on the substrate immediately before growing the thick film.
[0032]
【The invention's effect】
According to the method for manufacturing a gallium nitride single crystal thick film according to the present invention, after a single crystal layer of gallium nitride is epitaxially grown on a Ga perovskite or Al perovskite substrate, the growth layer is peeled off from the substrate and the gallium nitride single crystal is grown. Since a thick film of crystal is obtained, a single crystal thick film of gallium nitride can be easily obtained. At that time, since the mutual bonding force between the constituent atoms at the interface between the surface of the Ga perovskite substrate or Al perovskite substrate and the gallium nitride layer laminated on the substrate is weak and the gallium nitride layer is easy to peel off, Therefore, it is not necessary to interpose a layer for peeling between the substrate and the gallium nitride layer or to perform an etching process for peeling. Therefore, the process for producing a thick film is simplified, and a gallium nitride single crystal thick film that is not contaminated with impurities or the like can be obtained. In addition, if an impurity is not doped during epitaxial growth, an n-type gallium nitride layer grows, so that the obtained gallium nitride single crystal thick film has conductivity and is suitable as a substrate for LEDs and LDs. . Note that the conductivity can be improved by doping Si or the like during the growth.
[0033]
Further, by growing a gallium nitride single crystal layer on a substrate by a hydride VPE method, a gallium nitride layer having a thickness of 100 μm or more can be grown in a few hours to a few dozen hours.
[Brief description of the drawings]
FIG. 1 is a diagram showing the arrangement of Ga atoms on the (011) plane of neodymium gallate.

Claims (4)

ガリウムまたはアルミニウムを構成元素として含むペロブスカイト型の結晶構造を有する基板の{101}面または{011}面上に窒化ガリウムの単結晶層をエピタキシャル成長させた後に、該成長層を前記基板から剥離して窒化ガリウム単結晶の厚膜を得ることを特徴とする窒化ガリウム単結晶厚膜の製造方法。After epitaxially growing a single crystal layer of gallium nitride on a {101} plane or {011} plane of a substrate having a perovskite crystal structure containing gallium or aluminum as a constituent element, the growth layer is peeled off from the substrate. A method for producing a gallium nitride single crystal thick film, comprising obtaining a gallium nitride single crystal thick film. ガリウムの塩化物と窒素の水素化物とを前記基板上で反応させるハイドライド気相エピタキシャル成長法により前記基板上に前記窒化ガリウム単結晶層を成長させることを特徴とする請求項1記載の窒化ガリウム単結晶厚膜の製造方法。 2. The gallium nitride single crystal according to claim 1, wherein the gallium nitride single crystal layer is grown on the substrate by a hydride vapor phase epitaxial growth method in which gallium chloride and nitrogen hydride are reacted on the substrate. Thick film manufacturing method. 前記基板上に前記窒化ガリウム単結晶層を100μm以上の厚さ、好ましくは200μm以上の厚さとなるように成長させることを特徴とする請求項1または2記載の窒化ガリウム単結晶厚膜の製造方法。 3. The method for producing a gallium nitride single crystal thick film according to claim 1, wherein the gallium nitride single crystal layer is grown on the substrate so as to have a thickness of 100 μm or more, preferably 200 μm or more. . 前記窒化ガリウム単結晶層が成長された基板に振動を与えることで窒化ガリウム成長層を基板から剥離することを特徴とする請求項1から3の何れかに記載の窒化ガリウム単結晶厚膜の製造方法。4. The gallium nitride single crystal thick film manufacturing method according to claim 1, wherein the gallium nitride growth layer is peeled off from the substrate by applying vibration to the substrate on which the gallium nitride single crystal layer is grown. Method.
JP23050895A 1995-09-07 1995-09-07 Method for producing gallium nitride single crystal thick film Expired - Fee Related JP3692452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23050895A JP3692452B2 (en) 1995-09-07 1995-09-07 Method for producing gallium nitride single crystal thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23050895A JP3692452B2 (en) 1995-09-07 1995-09-07 Method for producing gallium nitride single crystal thick film

Publications (2)

Publication Number Publication Date
JPH0971496A JPH0971496A (en) 1997-03-18
JP3692452B2 true JP3692452B2 (en) 2005-09-07

Family

ID=16908863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23050895A Expired - Fee Related JP3692452B2 (en) 1995-09-07 1995-09-07 Method for producing gallium nitride single crystal thick film

Country Status (1)

Country Link
JP (1) JP3692452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035632A1 (en) 2006-09-20 2008-03-27 Nippon Mining & Metals Co., Ltd. PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS
WO2008126532A1 (en) 2007-03-14 2008-10-23 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and method for producing nitride compound semiconductor single crystal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728460B2 (en) * 1999-03-17 2011-07-20 Jx日鉱日石金属株式会社 Method for producing gallium nitride compound semiconductor single crystal
JP4673514B2 (en) * 2001-08-06 2011-04-20 Jx日鉱日石金属株式会社 GaN compound semiconductor crystal manufacturing method
JP4932121B2 (en) 2002-03-26 2012-05-16 日本電気株式会社 Method for manufacturing group III-V nitride semiconductor substrate
KR100695117B1 (en) * 2005-10-25 2007-03-14 삼성코닝 주식회사 Fabrication method of gan
JP2011093803A (en) * 2011-02-02 2011-05-12 Jx Nippon Mining & Metals Corp Method for manufacturing gallium nitride-based compound semiconductor single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035632A1 (en) 2006-09-20 2008-03-27 Nippon Mining & Metals Co., Ltd. PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS
US8137460B2 (en) 2006-09-20 2012-03-20 Nippon Mining & Metals Co., Ltd. Manufacturing method of GaN thin film template substrate, GaN thin film template substrate and GaN thick film single crystal
WO2008126532A1 (en) 2007-03-14 2008-10-23 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and method for producing nitride compound semiconductor single crystal

Also Published As

Publication number Publication date
JPH0971496A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
KR100838433B1 (en) Process for producing gallium nitride crystal substrate, and gallium nitride crystal substrate
JP5546583B2 (en) Nitride semiconductor device having group III nitride layer structure and method for manufacturing the same
JP3968968B2 (en) Manufacturing method of single crystal GaN substrate
JP5141985B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD, LIGHT EMITTING DEVICE, GaN SUBSTRATE MANUFACTURING METHOD, AND GaN SUBSTRATE
JP3946427B2 (en) Epitaxial growth substrate manufacturing method and semiconductor device manufacturing method using this epitaxial growth substrate
JP4486506B2 (en) Growth of nonpolar gallium nitride with low dislocation density by hydride vapor deposition method
JP3826825B2 (en) Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
WO2019033975A1 (en) Method for manufacturing gan substrate material
JP2002343728A (en) Gallium nitride crystalline substrate and method for manufacturing the same
JP4656438B2 (en) Single crystal GaN substrate manufacturing method and single crystal GaN substrate
JP2022552024A (en) Gallium nitride single crystal based on ScAlMgO4 substrate and manufacturing method thereof
JP3692452B2 (en) Method for producing gallium nitride single crystal thick film
JP2002299253A (en) Production method for semiconductor wafer and semiconductor device
JP2004288934A (en) Sapphire substrate and its manufacturing method, epitaxial substrate and semiconductor device, and its manufacturing method
JP2002053399A (en) Nitride semiconductor substrate and method for producing the same
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JPH1179897A (en) Crystal growth for gallium nitride thick film
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP4562000B2 (en) Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP2011093803A (en) Method for manufacturing gallium nitride-based compound semiconductor single crystal
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP4562001B2 (en) Gallium nitride single crystal substrate and manufacturing method thereof
JP3749454B2 (en) GaN single crystal manufacturing method
US9419081B2 (en) Reusable substrate bases, semiconductor devices using such reusable substrate bases, and methods for making the reusable substrate bases
JP4206609B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees