JP3692438B2 - Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same - Google Patents

Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same Download PDF

Info

Publication number
JP3692438B2
JP3692438B2 JP20777997A JP20777997A JP3692438B2 JP 3692438 B2 JP3692438 B2 JP 3692438B2 JP 20777997 A JP20777997 A JP 20777997A JP 20777997 A JP20777997 A JP 20777997A JP 3692438 B2 JP3692438 B2 JP 3692438B2
Authority
JP
Japan
Prior art keywords
crucible
graphite
fine powder
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20777997A
Other languages
Japanese (ja)
Other versions
JPH1149568A (en
Inventor
民雄 岡田
勝 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Original Assignee
Nippon Crucible Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd filed Critical Nippon Crucible Co Ltd
Priority to JP20777997A priority Critical patent/JP3692438B2/en
Publication of JPH1149568A publication Critical patent/JPH1149568A/en
Application granted granted Critical
Publication of JP3692438B2 publication Critical patent/JP3692438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム、銅、亜鉛、これらの合金等の非鉄溶融金属の溶解、保持等の目的に使用される坩堝に関するものである。
【0002】
【従来の技術】
黒鉛坩堝の材質については、JISにおいて黒鉛30%以上と定められており、30%以上の黒鉛原料と炭化珪素原料を主成分とし、これに金属珪素粉末、酸化防止材原料及び有機質結合材剤を混練、成形し、還元焼成してなる黒鉛坩堝が広く使用されている。
【0003】
これらの原料の内で、金属珪素粉末は、焼成中又は使用中に炭素と結合して炭化珪素を生成し、坩堝の強度を増加させる働きをするものであり、金属珪素粉末に代えて、珪素合金粉末を用いることもある。又、酸化防止材原料は、皮膜又は表層が欠落摩損した場合に、直ちにあらたな酸化皮膜が形成されるように添加されており、ほう酸塩、珪酸塩、リン酸塩、フッ化物等の低融性ガラス成分や酸化物原料が用いられ、融点の異なる原料を使用して低温から高温まで流下せずに使用できるように、その配合が調整されている。有機結合剤としては、通常、ピッチタール、フェノールレジン等が使用されている。また、ムライト、コランダム、ジルコン、ジルコニア等のその他の耐火性酸化物、窒化珪素等を耐熱衝撃性、耐食性向上等の使用目的に応じて混合使用することもしばしば行われている。
【0004】
一般に、黒鉛坩堝は、さまざまな部分に熱衝撃を受けながら使用されており、オイル、ガスバーナーなどで加熱する場合には、坩堝の上下面及び内外面に温度差を生じ、大型サイズの坩堝ほど大きな熱衝撃を受けて、破損に至る場合がある。例えば、黒鉛坩堝をバーナーで加熱する際には、坩堝の外側は1400℃以上の高温に加熱され、内側は、冷材もしくは溶湯温度(アルミニウムで700〜750℃、銅合金で1100〜1250℃)で保持されるので、坩堝内外の温度差により大きな熱衝撃を受ける。
【0005】
黒鉛坩堝は、黒鉛を多く配合することによって、耐熱衝撃性、高熱伝導性、溶融金属に濡れない非反応性などが付与されており、特に、耐熱衝撃性の向上には、黒鉛量を増加させることが有効である。この様な理由から、従来は、主要原料である黒鉛と炭化珪素の配合量については、ほぼ、黒鉛45〜65%、炭化珪素5〜45%の範囲とされている。
【0006】
しかしながら、黒鉛坩堝を長期間使用すると、坩堝中の黒鉛及びピッチタールがコークス化した結合炭素の酸化が進行し、熱衝撃性が低下して破損することがある。特に、上記した様な黒鉛配合量が多い坩堝は、酸化による影響が大きく、黒鉛、結合炭素などの酸化を防止する目的で、酸化防止材として低融性ガラス成分を配合しているが、低融性ガラスは耐食性低下の原因となり、又、熱膨張率が大きく、熱伝導性が低いために、坩堝の耐熱衝撃性を低下させるという問題点もある。
【0007】
また、黒鉛は、表面が滑りやすいために結合剤との結合力が弱く、黒鉛含有量が多いと坩堝の機械的強度が低くなり、従来の黒鉛坩堝において、黒鉛を30%以上含有し、熱伝導率を20〜25kcal/mhr℃としたものは、1200℃での熱間曲げ強さは、60〜100kg/cm2程度であり、この様な強度では強度向上による耐熱衝撃性の改善もできない。
【0008】
以上の様に、従来の黒鉛坩堝には種々の問題点があり、品質の改善、機械的強度の保持のためには、肉厚を厚く維持する必要があり、このため加熱の際のエネルギー消費量が多く、省エネルギー化が望まれている。
【0009】
更に、黒鉛坩堝には、容量、形状などの異なるものが多種あり、特に大型サイズの坩堝では、成型密度のばらつきが生じ易いなどの製造上困難な問題もある。
【0010】
【発明が解決しようとする課題】
本発明の主な目的は、耐久性が良好であって、エネルギー消費量の少ない黒鉛坩堝を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、上述した如き従来技術の問題点に鑑みて鋭意研究を重ねた結果、坩堝の成形方法として、冷間静水圧成形法(CIP成形法)などの高圧成形方法を採用する場合には、成形上のばらつきが少なく緻密な成形体を得ることができることから、従来と比べて鱗状黒鉛の配合量が少ない場合にも、耐熱衝撃性、熱伝導性などの良好な坩堝を得ることが可能となり、この様な黒鉛含有量が少ない材料を用いることによって、従来必須成分とみなされてきた低融性ガラス成分を配合することなく耐酸化性に優れた坩堝を製造でき、これにより、低融性ガラスの使用に伴う耐熱衝撃性や耐食性の低下の問題を解消できることを見出した。更に、黒鉛含有量が少なく相対的に炭化珪素分が多いことによって機械的強度が高くなり、肉厚が薄く、エネルギー消費量の少ない坩堝が得られることを見出し、ここに本発明を完成するに至った。
【0012】
即ち、本発明は、下記の非鉄溶融金属用黒鉛炭化珪素質坩堝の製造方法及び非鉄溶融金属用黒鉛炭化珪素質坩堝を提供するものである。
【0013】
1.鱗状黒鉛原料100重量部、炭化珪素原料350〜600重量部、並びに炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種と金属珪素微粉原料とからなる微粉原料を合計量として50〜100重量部含有する耐火材配合物に、ピッチタールを加えて加熱混練し、該混練物を高圧下に成形した後、還元焼成することを特徴とする非鉄溶融金属用黒鉛炭化珪素質坩堝の製造方法。
【0014】
2.微粉原料が、微粉原料の合計量を基準として炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種10〜30重量%と金属珪素微粉原料70〜90重量%とからなるものである上記1項に記載の黒鉛炭化珪素質坩堝の製造方法。
【0015】
3.混練物の成形方法が、冷間静水圧成形法によって600kg/cm2以上の圧力で成形する方法である上記1項又は2項に記載の黒鉛炭化珪素質坩堝の製造方法。
【0016】
4.鱗状黒鉛を約10〜20重量%含有し、1200℃における曲げ強さが140kg/cm2以上、熱伝導率が20kcal/mhr℃以上である非鉄溶融金属用黒鉛炭化珪素質坩堝。
【0017】
5.上記1〜3項のいずれかの方法で製造されたものである上記4項に記載の非鉄溶融金属用黒鉛炭化珪素質坩堝。
【0018】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0019】
本発明の黒鉛炭化珪素質坩堝の製造方法では、耐火材配合物としては、骨材成分として、鱗状黒鉛原料と炭化珪素原料を用い、マトリックスを構成する成分として、炭化ホウ素微粉原料及びホウ化物微粉原料の少なくとも一種と、金属珪素微粉原料とからなる微粉原料を用いる。
【0020】
これらの成分の内で、鱗状黒鉛原料と炭化珪素原料は、坩堝内部で骨材として分布するものであり、通常の黒鉛炭化珪素質坩堝で用いられているものと同様の原料を用いることができる。鱗状黒鉛原料及び炭化珪素原料の粒度については、特に限定的ではないが、通常、鱗状黒鉛は20〜100メッシュ程度(840〜149μm程度)、炭化珪素原料は60メッシュ(250μm)程度以下のものを用いることが好ましい。これらの成分の配合量は、鱗状黒鉛原料100重量部に対して、炭化珪素原料350〜600重量部程度とし、好ましくは450〜550重量部程度とする。炭化珪素の配合量が350重量部を下回ると、相対的に鱗状黒鉛の量が増えて坩堝の強度が不足するために、薄肉坩堝の製造が困難になり、又、酸化が急激に進行し易くなって、耐久性が不足するので好ましくない。一方、600重量部を上回ると、耐熱衝撃性が低下し、また熱伝導率が低く溶解時間が長くなって金属溶湯の浸透が生じやすくなるので好ましくない。尚、鱗状黒鉛については、常法に従って、耐熱衝撃性の向上等の使用目的に応じて、一部を膨張黒鉛に代えてもよい。
【0021】
炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種と金属珪素微粉原料とからなる微粉原料は、骨材をとりまくマトリックスとして分布するものである。これらの微粉原料の粒度は、特に限定的ではないが、通常、325メッシュ(44μm)程度以下とすればよい。
【0022】
これらの微粉原料は、酸化雰囲気に触れることによって、炭化ホウ素はB23、ホウ化チタンはB23とTiO2となり、又、金属珪素微粉は、焼成中又は使用中に炭素と結合してβ型SiCとなり、未反応物は使用中に酸化されてSiO2となり、炭化珪素も酸化されてSiO2となる。坩堝中の結合炭素は370℃、鱗状黒鉛は520℃で酸化が始まるが、炭化ホウ素は450℃、ホウ化チタンは493℃、炭化珪素は800℃で酸化が始まるため、生成した酸化物などの皮膜によって、炭素及び鱗状黒鉛の酸化防止が図られる。特に、炭化珪素は800℃で酸化してSiO2となるが、β型SiCは、超微粉であるために一層低温で酸化されてSiO2の低融性成分となって坩堝の表面を濡らして釉をつくり、酸素の坩堝内部への進入を一層良く防止することができる。
【0023】
また、炭化ホウ素、ホウ化チタン及びβ型SiCは、坩堝内部にあっては、極めて高融点であり、熱伝導率も高く、化学的にも安定で、低融性ガラス成分や酸化物成分の様に坩堝の性質を劣化させることがない。また、β型SiCは、坩堝の強度を増加させる働きもする。
【0024】
本発明では、鱗状黒鉛の配合量が従来の黒鉛坩堝の半分程度以下と少量であることから、低温度域における黒鉛の酸化の影響が小さく、従来、酸化防止材として必須の原料とされていた低融性ガラス成分を全く使用しない場合にも、上記した微粉原料の使用によって、低温から高温まで酸化防止ができ、低融性ガラスの使用に起因する耐食性や耐熱衝撃性の低下等を防止できる。
【0025】
炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種と金属珪素微粉原料とからなる微粉原料の使用量は、これらの成分の合計量として、鱗状黒鉛100重量部に対して50〜100重量部程度とし、好ましくは、80〜90重量部程度とする。これらの成分の合計量が50重量部を下回ると、耐酸化性が不足し、一方、100重量部を上回ると、相対的に鱗状黒鉛と炭化珪素が減少して耐熱衝撃性が低下するので好ましくない。
【0026】
微粉原料における各成分の使用割合については特に限定はされず、坩堝の用途の応じて適宜決定すれば良く、強度を重視する場合には金属珪素を増量し、低温酸化防止性を重視する場合には炭化ホウ素を増量し、高温酸化防止を重視する場合には、ホウ化チタンを増量すればよい。但し、坩堝に十分な強度を付与するために金属珪素は必須の成分であり、微粉原料は、微粉原料の合計量を基準として炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種10〜30重量%程度と金属珪素微粉70〜90重量%程度とからなることが好ましい。
【0027】
本発明では、更に、必要に応じて、耐酸化性の向上などの使用目的に応じて、少量であれば低融性ガラスを混合使用できる。この場合には、低融性ガラスの使用量は、微粉原料の20重量%程度以下とする。
【0028】
本発明で用いる耐火材配合物は、上記した配合の原料からなるものであり、鱗状黒鉛は、得られる坩堝中に10〜20重量%含まれるように配合する。
【0029】
本発明の坩堝製造方法では、常法に従って、上記した耐火材配合物に、バインダー成分としてピッチタールを加えて加熱混練して混練物を得る。加熱温度は、通常120〜150℃程度とすればよい。ピッチタールの配合量は特に限定的ではないが、一般に、焼成後の残留分として坩堝中に3〜6重量%程度含まれる範囲の量とすればよい。
【0030】
次いで、該混練物を高圧下に成形する。本発明では高圧成形方法を採用することによって、緻密な成形体を得ることが可能となり、従来と比べて鱗状黒鉛の配合量が少ない場合にも、耐熱衝撃性及び熱伝導性が良好な坩堝が得られる。高圧成形方法としては、特に限定的ではないが、600kg/cm2程度以上の圧力下に成形する方法が適当であり、例えば、冷間静水圧成形法(CIP成形法)、静圧プレス成形法、フリクションプレス成形法などの方法を採用できる。これらの方法の内で、CIP成形法は、高圧容器内においた金型の上にゴム型を被せ、金型とゴム型で形成される空間に混練物を入れた後、その高圧容器内に水を入れ、加圧装置により容器内の水を高圧で加圧する方法であり、圧力は600kg/cm2程度以上の高圧とすることが好ましい。この様な方法によれば、製造上からくる破損原因のひとつである歪みを除去して、成形体は均一で高密度のものとなる。
【0031】
その後、常法に従って、成形体を1100〜1400℃程度の温度で還元焼成することによって、目的とする坩堝が得られる。
【0032】
その後、必要に応じて、常法に従って坩堝表面に使用目的に応じた適当な酸化防止用コーティング材を塗布して、加熱融着させることによって、使用目的に応じた坩堝が得られる。
【0033】
本発明の坩堝は、上記した製造方法によって得ることができる黒鉛炭化珪素質坩堝であり、坩堝中に鱗状黒鉛を約10〜20重量%、好ましくは13〜17重量%含有し、1200℃における曲げ強さは140kg/cm2以上、好ましくは150〜160kg/cm2であり、熱伝導率は20kcal/mhr℃以上、好ましくは25kcal/mhr℃以上である。
【0034】
この様な坩堝は、従来の黒鉛炭化珪素質坩堝と比べると黒鉛含有量が非常に少なく炭化珪素が多い組成であり、これを高圧成形することによって、高強度を有する緻密な成形体となり、従来よりも少ない黒鉛量で十分な熱伝導率を有するものとなる。また、黒鉛含有量が少ないために、黒鉛の酸化による悪影響が少なく、従来、酸化防止剤として用いられている低融性ガラスを配合することなく十分な耐酸化性を付与でき、低融性ガラスの使用に伴う弊害である耐食性や耐熱衝撃性の低下を防止できる。
【0035】
本発明の坩堝において、鱗状黒鉛の含有量を上記範囲に限定した理由は、鱗状黒鉛の含有量が10重量%を下回ると耐熱衝撃性が低下し、熱伝導率が低く溶解時間が長くなって金属溶湯の浸透が生じやすくなり、一方、20重量%を上回ると、坩堝の強度が不足するので、薄肉坩堝の製造が困難となり、酸化が急激に進行し易くなって、耐久性が向上しないからである。
【0036】
又、坩堝の強度を140kg/cm2以上とした理由は、この範囲とすることによって、坩堝の肉薄化が可能となるが、機械的強度がこれを下回ると、強度不足によって肉薄坩堝の製造が困難となり、従来と同様の肉厚とした場合には、黒鉛含有量が少ないことにより、熱伝導性が不足するためである。又、坩堝の熱伝導率を20kcal/mhr℃以上としたのは、これを下回ると熱伝導性が不足し、耐熱衝撃性も低下するからである。
【0037】
【発明の効果】
本発明によって得られる黒鉛炭化珪素質坩堝は、酸化防止材として低融性ガラス成分を用いていないために、低融性ガラスの使用の伴う耐食性や耐熱衝撃性の低下などの弊害が無く、従来の坩堝と比べて飛躍的に性能が向上し、耐久性に優れたものである。
【0038】
又、坩堝の強度が高いので薄肉の坩堝とすることができ、このため加熱に要するエネルギー量を低減することができる。
【0039】
本発明によって得られる坩堝は、上記したような優れた特性を有するものであり、アルミニウム、銅、亜鉛、これらの合金等の非鉄溶融金属の溶解、保持等の目的等に有効に用いることができる。
【0040】
【実施例】
以下、実施例を挙げて、本発明を更に詳細に説明する。
【0041】
実施例1
下記表1に示す配合割合の原料を用い、以下の方法でφ150mm×200mmHの焼成体を製造した。尚、表1の各成分の配合量については、括弧内の数値は重量%である。
【0042】
試料の作成方法
混練:130±5℃で30分混練
成形:800kg/cm2の圧力でCIP成形
焼成:コークスブリーズ中に埋設させ、トンネル型焼成炉で平均14℃/時間の速度で1250℃まで昇温し、同温度で12時間保持
【0043】
【表1】

Figure 0003692438
【0044】
以上の方法で得られた焼成体について、下記の方法で特性試験を行った。各特性試験で用いた試料については、各試験項目に示した試料形状となる様に上記焼成体を湿式で切断し、110℃で3時間乾燥して供試体とした。尚、各焼成体では、ピッチタールの残留量はほぼ40重量%である。焼成後の各試料における各成分の組成比を表2に示す。また、特性試験の結果を下記表3に示す。
【0045】
【表2】
Figure 0003692438
【0046】
試験方法
熱間曲げ:1200℃にて測定(3点曲げ)。試料形状:20×15×120mm、スパン100mm
熱伝導率:CIP加圧方向で測定。試料形状:50×50×50mm
電気比抵抗:CIP加圧方向と垂直方向で測定しその平均値を算出。試料形状:25×15×120mm
耐熱衝撃性試験:1200℃に加熱してある炉に入れて急加熱し10分間保持後、炉外に取り出して常温の水中に投入して急冷し、この急加熱と急冷を5回繰り返し行なって、試験表面の亀裂の有無により、耐熱衝撃性を評価。試料形状:50×50×50mm
耐酸化性試験:900℃に加熱された空気雰囲気の炉の中で100時間保持したのち取り出し、酸化前の重量と酸化後の重量との差を求め、酸化前サンプル重量に対する%を時間当りで算出。また、本サンプルの中心より切断し脱炭層の有無を肉眼観察して耐酸化性を評価。試料形状:40×40×40mm
耐浸透性試験:70×70×65mmの試料にφ30mm×35mmHの穴を開け、その中に、マグネシウム含有アルミニウム合金(JIS5320、AC7B)を入れ、非酸化雰囲気で800℃まで昇温して500時間保持して浸食試験を行い、サンプルを中心より切断して拡大鏡でアルミニウム合金の浸透深さを計測して、アルミニウム溶湯に対する耐浸透性を評価
耐浸食性試験:(51−80)25×120mmの台形柱を6個用いて容器状に組み、高周波炉にセットし、BC−6銅合金を投入し、1300〜1400℃で10時間保持した後、サンプルを取り出し中央より縦に切断し金属浸食を受けた部位の最大浸食量(深さ)を測定
耐熱衝撃性試験〜耐浸食性試験の各試験結果については、○:良好、△:やや良好、×:不良、の各基準で評価した結果も併記する。
【0047】
【表3】
Figure 0003692438
【0048】
以上の結果から明らかなように、本発明の坩堝は、鱗状黒鉛の使用量が少なく、低融性ガラスは全く使用しないか或いは少量だけ使用したものであり、強度及び熱伝導率が高く、耐熱衝撃性が良好で耐酸化性及び耐食性に優れたものである。これに対して、鱗状黒鉛の使用量が多く、酸化防止材として低融性ガラスを多量に含む従来品は、強度が低く耐酸化性に劣り、又、銅溶湯に対する耐食性も不十分であった。
【0049】
実施例2
表1の本発明品No.3の配合物を使用し、実施例1と同様の製造方法で外径590mm高さ700mm容量114リットルの坩堝を2本製造し、従来品と同様に内外面にアルミ溶解用の酸化防止用コーティング材を塗布し焼付けた。
【0050】
これらの坩堝の内で、1本は口部、胴部、及び底部の肉厚を従来品と同等(口部で35mm)とし、他の1本は肉厚を口部以下25%(口部で28mm)薄肉とした。更に、表1の比較品2の配合物を使用して、同様の方法によって、口部肉厚が35mmの坩堝を製造し、比較テストに供した。
【0051】
これらの坩堝を、常法に従ってガスバーナー坩堝炉にセットし、アルミ合金(ADC12)冷材200kgを投入し、ガスの燃焼量等は同じ条件下で溶湯が700℃に達するまでの時間を比較した。
【0052】
比較品No.2の配合物を用いた坩堝では、700℃に達するまでに265分を要したのに対して、本発明品No.3の配合物を用いた坩堝の内で、口部肉厚35mmのものは230分で700℃に達し、加熱時間に約13%の改善が認められ、口部肉厚28mmのものは185分で700℃に達し、加熱時間に約30%の改善が認められた。これから、本発明の坩堝により、初期溶解で13〜30%の省力化、省エネルギー化が達成できたことが判る。また、溶解後の保持エネルギーについても同様の改善を得ることができた。
【0053】
更に、本発明品No.3の配合物を用いた坩堝の内で、口部肉厚が35mmの坩堝について、ADC12アルミニウム保持炉中でアルミニウム合金(ADC12)溶湯を入れて、680〜710℃で60日間使用した後、切断し、同様の条件で使用した比較品No.2の坩堝と比較した。比較品No.2の坩堝は坩堝外表面から1mm程度の脱炭層がみられたのに対して、本発明品ではまったく脱炭層はなかった。
【0054】
実施例3
表1の本発明品No.3の配合物を使用し、実施例1と同様の製造方法で外径640mm、高さ1240mm、容量276リットルの誘導炉用坩堝を製造し、従来品と同様に内外面に銅合金溶解用の酸化防止用コーティング材を塗布し焼付けた。この坩堝の肉厚は、口部45mm、胴部50mmとし、従来品と同程度とした。更に、表1の比較品3の配合物を使用して、同様の方法によって、同一形状の坩堝を製造し、比較テストに供した。
【0055】
BC−6銅合金170kg溶解炉中で1250〜1300℃で120チャージ使用し、その後、坩堝を切断して、比較品No.3の坩堝と残存厚さを比較したところ、比較品No.3の坩堝は残存厚さが15mm程度であるのに対して、本発明品は、30mm程度残存しており、耐食性に優れていることが認められた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crucible used for the purpose of melting and holding non-ferrous molten metals such as aluminum, copper, zinc, and alloys thereof.
[0002]
[Prior art]
The material of the graphite crucible is stipulated as 30% or more of graphite in JIS, and contains graphite raw material and silicon carbide raw material of 30% or more as main components, and metal silicon powder, antioxidant raw material and organic binder agent. A graphite crucible obtained by kneading, forming, and reducing firing is widely used.
[0003]
Among these raw materials, the metal silicon powder functions to increase the strength of the crucible by combining with carbon during firing or use to increase the strength of the crucible. An alloy powder may be used. Antioxidant raw materials are added so that a new oxide film is immediately formed when the film or surface layer is missing and worn, and low melting point of borate, silicate, phosphate, fluoride, etc. Glass materials and oxide raw materials are used, and the blending is adjusted so that raw materials having different melting points can be used without flowing down from a low temperature to a high temperature. As the organic binder, pitch tar, phenol resin and the like are usually used. In addition, other refractory oxides such as mullite, corundum, zircon and zirconia, silicon nitride and the like are often used in combination depending on the purpose of use such as improvement of thermal shock resistance and corrosion resistance.
[0004]
In general, graphite crucibles are used while being subjected to thermal shock at various parts, and when heated with oil, gas burner, etc., a temperature difference occurs between the upper and lower surfaces and the inner and outer surfaces of the crucible. It may be damaged due to a large thermal shock. For example, when heating a graphite crucible with a burner, the outside of the crucible is heated to a high temperature of 1400 ° C. or higher, and the inside is a cold or molten metal temperature (700 to 750 ° C. for aluminum, 1100 to 1250 ° C. for copper alloy) Therefore, it receives a large thermal shock due to the temperature difference between the inside and outside of the crucible.
[0005]
The graphite crucible is provided with thermal shock resistance, high thermal conductivity, non-reactivity that does not wet the molten metal, etc. by adding a large amount of graphite. Especially, the amount of graphite is increased to improve the thermal shock resistance. It is effective. For these reasons, conventionally, the blending amount of graphite and silicon carbide, which are the main raw materials, is approximately in the range of 45 to 65% graphite and 5 to 45% silicon carbide.
[0006]
However, when the graphite crucible is used for a long period of time, the oxidation of the bonded carbon in which the graphite and pitch tar in the crucible are coked proceeds, and the thermal shock resistance may be lowered and damaged. In particular, a crucible with a large amount of graphite as described above is greatly affected by oxidation, and a low-melting glass component is blended as an antioxidant for the purpose of preventing oxidation of graphite, bonded carbon, etc. The fusible glass causes a decrease in corrosion resistance, and also has a problem that the thermal shock resistance of the crucible is lowered due to a large coefficient of thermal expansion and low thermal conductivity.
[0007]
In addition, since graphite has a slippery surface, the bonding strength with the binder is weak, and when the graphite content is high, the mechanical strength of the crucible is lowered. In a conventional graphite crucible, 30% or more of graphite is contained, When the conductivity is 20 to 25 kcal / mhr ° C., the hot bending strength at 1200 ° C. is about 60 to 100 kg / cm 2 , and with such strength, the thermal shock resistance cannot be improved by improving the strength. .
[0008]
As described above, the conventional graphite crucible has various problems. In order to improve the quality and maintain the mechanical strength, it is necessary to maintain a thick wall. The amount is large and energy saving is desired.
[0009]
Furthermore, there are various graphite crucibles having different capacities and shapes, and particularly large-sized crucibles have problems in manufacturing such as variations in molding density.
[0010]
[Problems to be solved by the invention]
The main object of the present invention is to provide a graphite crucible with good durability and low energy consumption.
[0011]
[Means for Solving the Problems]
As a result of intensive research in view of the problems of the prior art as described above, the present inventor has adopted a high pressure molding method such as a cold isostatic pressing method (CIP molding method) as a crucible molding method. Can obtain a compact molded body with little variation in molding, so that it is possible to obtain a crucible with good thermal shock resistance and thermal conductivity even when the amount of scale-like graphite is small compared to the conventional one. By using such a material having a low graphite content, a crucible excellent in oxidation resistance can be produced without blending a low-melting glass component that has been regarded as an essential component in the past, and thereby, It has been found that the problems of deterioration of thermal shock resistance and corrosion resistance associated with the use of fusible glass can be solved. Furthermore, it has been found that a crucible with a low graphite content and a relatively high silicon carbide content increases the mechanical strength, reduces the wall thickness, and consumes less energy, thereby completing the present invention. It came.
[0012]
That is, the present invention provides the following method for producing a graphite silicon carbide crucible for nonferrous molten metal and a graphite silicon carbide crucible for nonferrous molten metal.
[0013]
1. Contains 100 to 100 parts by weight of scaly graphite raw material, 350 to 600 parts by weight of silicon carbide raw material, and 50 to 100 parts by weight as a total amount of fine powder raw material consisting of at least one of boron carbide fine powder raw material and titanium boride fine powder raw material and metal silicon fine powder raw material A method for producing a graphite silicon carbide crucible for non-ferrous molten metal, comprising adding pitch tar to a refractory material composition to be heated and kneading, molding the kneaded product under high pressure, and then reducing firing.
[0014]
2. In the above item 1, wherein the fine powder raw material is composed of at least one kind of boron carbide fine powder raw material and titanium boride fine powder raw material 10 to 30% by weight and metal silicon fine powder raw material 70 to 90% by weight based on the total amount of the fine powder raw material A method for producing the described graphite silicon carbide crucible.
[0015]
3. 3. The method for producing a graphite silicon carbide crucible according to 1 or 2 above, wherein the kneaded material is molded by a cold isostatic pressing method at a pressure of 600 kg / cm 2 or more.
[0016]
4). A graphite silicon carbide crucible for nonferrous molten metal containing about 10 to 20% by weight of scaly graphite, having a bending strength at 1200 ° C. of 140 kg / cm 2 or more and a thermal conductivity of 20 kcal / mhr ° C. or more.
[0017]
5. The graphite silicon carbide crucible for nonferrous molten metal according to the above item 4, which is produced by the method according to any one of the above items 1 to 3.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0019]
In the method for producing a graphite silicon carbide crucible of the present invention, as the refractory composition, a scaly graphite raw material and a silicon carbide raw material are used as an aggregate component, and boron carbide fine powder raw material and boride fine powder are used as components constituting the matrix. A fine powder material comprising at least one kind of raw material and a metal silicon fine powder material is used.
[0020]
Among these components, the scaly graphite raw material and the silicon carbide raw material are distributed as aggregates inside the crucible, and the same raw materials as those used in ordinary graphite silicon carbide crucibles can be used. . The particle size of the scaly graphite raw material and the silicon carbide raw material is not particularly limited. Usually, the scaly graphite is about 20 to 100 mesh (about 840 to 149 μm), and the silicon carbide raw material is about 60 mesh (250 μm) or less. It is preferable to use it. The amount of these components is about 350 to 600 parts by weight, preferably about 450 to 550 parts by weight, based on 100 parts by weight of the scaly graphite raw material. When the amount of silicon carbide is less than 350 parts by weight, the amount of scaly graphite is relatively increased and the strength of the crucible is insufficient, making it difficult to produce a thin crucible, and oxidation tends to proceed rapidly. This is not preferable because the durability is insufficient. On the other hand, if it exceeds 600 parts by weight, the thermal shock resistance is lowered, the thermal conductivity is low, the melting time is prolonged, and the penetration of the molten metal is liable to occur. In addition, about scaly graphite, you may substitute a part for expansion | swelling graphite according to usage purposes, such as an improvement of a thermal shock resistance, according to a conventional method.
[0021]
The fine powder raw material comprising at least one of boron carbide fine powder raw material and titanium boride fine powder raw material and metal silicon fine powder raw material is distributed as a matrix surrounding the aggregate. The particle size of these fine powder raw materials is not particularly limited, but is usually about 325 mesh (44 μm) or less.
[0022]
When these fine powder raw materials are exposed to an oxidizing atmosphere, boron carbide becomes B 2 O 3 , titanium boride becomes B 2 O 3 and TiO 2 , and metal silicon fine powder binds to carbon during firing or use. Thus, β-type SiC is formed, and the unreacted material is oxidized during use to become SiO 2 , and silicon carbide is also oxidized to become SiO 2 . Bonded carbon in the crucible begins to oxidize at 370 ° C and scaly graphite at 520 ° C, but boron carbide begins to oxidize at 450 ° C, titanium boride at 493 ° C, and silicon carbide at 800 ° C. The film prevents oxidation of carbon and scaly graphite. In particular, silicon carbide is oxidized at 800 ° C. to become SiO 2 , but β-type SiC is an ultrafine powder, so it is oxidized at a lower temperature and becomes a low-melting component of SiO 2 to wet the surface of the crucible. It is possible to make a soot and prevent oxygen from entering the crucible.
[0023]
Further, boron carbide, titanium boride and β-type SiC have a very high melting point inside the crucible, high thermal conductivity, chemically stable, low melting glass component and oxide component. In this way, the properties of the crucible are not deteriorated. Β-type SiC also functions to increase the strength of the crucible.
[0024]
In the present invention, since the amount of scaly graphite is a small amount of about half or less of conventional graphite crucibles, the influence of graphite oxidation in the low temperature range is small, and it has been conventionally regarded as an essential raw material as an antioxidant. Even when no low-melting glass component is used, the use of the above-mentioned fine powder raw material can prevent oxidation from low temperature to high temperature, and can prevent deterioration of corrosion resistance and thermal shock resistance, etc. caused by the use of low-melting glass. .
[0025]
The amount of the fine powder raw material comprising at least one of boron carbide fine powder raw material and titanium boride fine powder raw material and the metal silicon fine powder raw material is about 50 to 100 parts by weight with respect to 100 parts by weight of scaly graphite as the total amount of these components. And preferably about 80 to 90 parts by weight. When the total amount of these components is less than 50 parts by weight, the oxidation resistance is insufficient. On the other hand, when the amount exceeds 100 parts by weight, scaly graphite and silicon carbide are relatively reduced, and the thermal shock resistance is preferably reduced. Absent.
[0026]
The use ratio of each component in the fine powder raw material is not particularly limited, and may be appropriately determined according to the use of the crucible. When emphasizing strength, the amount of metal silicon is increased, and when low-temperature oxidation resistance is emphasized. Increases the amount of boron carbide, and in the case where high temperature oxidation prevention is important, the amount of titanium boride may be increased. However, metal silicon is an essential component for imparting sufficient strength to the crucible, and the fine powder raw material is 10 to 30 weights of at least one of boron carbide fine powder raw material and titanium boride fine powder raw material based on the total amount of fine powder raw material. % And about 70 to 90% by weight of metal silicon fine powder.
[0027]
In the present invention, if necessary, a low-melting glass can be mixed and used according to the purpose of use such as improvement of oxidation resistance. In this case, the amount of low-melting glass used is about 20% by weight or less of the fine powder raw material.
[0028]
The refractory material composition used in the present invention is made of the raw materials having the above-described composition, and the scaly graphite is blended so that it is contained in an amount of 10 to 20% by weight in the obtained crucible.
[0029]
In the crucible production method of the present invention, a kneaded product is obtained by adding pitch tar as a binder component to the above-described refractory material composition and heating and kneading it according to a conventional method. The heating temperature is usually about 120 to 150 ° C. The blending amount of pitch tar is not particularly limited, but generally it may be an amount in the range of about 3 to 6% by weight in the crucible as a residue after firing.
[0030]
Next, the kneaded product is molded under high pressure. In the present invention, by adopting a high pressure molding method, it becomes possible to obtain a dense molded body. Even when the amount of scale-like graphite is small compared to the conventional, a crucible having good thermal shock resistance and thermal conductivity is obtained. can get. The high-pressure molding method is not particularly limited, but a method of molding under a pressure of about 600 kg / cm 2 or more is suitable. For example, cold isostatic pressing (CIP molding), hydrostatic press molding A method such as a friction press molding method can be employed. Among these methods, the CIP molding method is a method in which a rubber mold is put on a mold placed in a high-pressure vessel, a kneaded product is put in a space formed by the mold and the rubber mold, and then the high-pressure vessel is filled. This is a method of adding water and pressurizing the water in the container at a high pressure with a pressurizing device, and the pressure is preferably set to a high pressure of about 600 kg / cm 2 or more. According to such a method, distortion, which is one of the causes of damage from the manufacturing, is removed, and the molded body becomes uniform and has a high density.
[0031]
Then, according to a conventional method, the target crucible is obtained by reducing and firing the molded body at a temperature of about 1100 to 1400 ° C.
[0032]
Thereafter, if necessary, an appropriate antioxidant coating material according to the purpose of use is applied to the surface of the crucible according to a conventional method and heat-sealed to obtain a crucible according to the purpose of use.
[0033]
The crucible of the present invention is a graphite silicon carbide crucible that can be obtained by the above-described production method. The crucible contains about 10 to 20% by weight, preferably 13 to 17% by weight of scaly graphite, and is bent at 1200 ° C. strength 140 kg / cm 2 or more, preferably 150~160kg / cm 2, a thermal conductivity of 20 kcal / mhr ° C. or higher, preferably 25 kcal / mhr ° C. or higher.
[0034]
Such a crucible has a composition with a very low graphite content and a large amount of silicon carbide compared to a conventional graphite silicon carbide crucible. By high-pressure molding this, a dense molded body having high strength is obtained. A smaller amount of graphite has sufficient thermal conductivity. In addition, since the graphite content is low, there is little adverse effect due to oxidation of graphite, and sufficient oxidation resistance can be imparted without blending the low-melting glass conventionally used as an antioxidant. The deterioration of corrosion resistance and thermal shock resistance, which is a harmful effect associated with the use of A, can be prevented.
[0035]
In the crucible of the present invention, the reason why the content of scaly graphite is limited to the above range is that when the content of scaly graphite is less than 10% by weight, the thermal shock resistance is lowered, the thermal conductivity is low, and the melting time is long. On the other hand, penetration of the molten metal tends to occur. On the other hand, if it exceeds 20% by weight, the strength of the crucible is insufficient, making it difficult to produce a thin-walled crucible, and oxidation is likely to proceed rapidly, and durability is not improved. It is.
[0036]
The crucible strength is 140 kg / cm 2 or more because the crucible can be thinned by setting the strength within this range. However, if the mechanical strength is lower than this, the crucible strength can be reduced due to insufficient strength. This is because when the thickness is the same as the conventional one, the thermal conductivity is insufficient due to the low graphite content. The reason why the thermal conductivity of the crucible is set to 20 kcal / mhr ° C. or more is that if the temperature is lower than that, the thermal conductivity is insufficient and the thermal shock resistance is also lowered.
[0037]
【The invention's effect】
Since the graphite silicon carbide crucible obtained by the present invention does not use a low-melting glass component as an antioxidant, there is no adverse effect such as a decrease in corrosion resistance and thermal shock resistance associated with the use of a low-melting glass. Compared with the crucible, the performance is dramatically improved and the durability is excellent.
[0038]
Moreover, since the strength of the crucible is high, a thin crucible can be obtained, and therefore the amount of energy required for heating can be reduced.
[0039]
The crucible obtained by the present invention has excellent characteristics as described above, and can be used effectively for purposes such as melting and holding non-ferrous molten metals such as aluminum, copper, zinc, and alloys thereof. .
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0041]
Example 1
Using the raw materials having the blending ratio shown in Table 1 below, a fired body of φ150 mm × 200 mmH was manufactured by the following method. In addition, about the compounding quantity of each component of Table 1, the numerical value in a parenthesis is weight%.
[0042]
Sample preparation method Kneading: 130 ± 5 ° C. for 30 minutes Kneading molding: CIP molding firing at a pressure of 800 kg / cm 2 : embedded in coke breeze, up to 1250 ° C. at an average rate of 14 ° C./hour in a tunnel-type firing furnace Increase the temperature and hold at the same temperature for 12 hours. [0043]
[Table 1]
Figure 0003692438
[0044]
About the sintered body obtained by the above method, the characteristic test was done with the following method. For the samples used in each characteristic test, the fired body was cut in a wet manner so as to have the sample shape shown in each test item, and dried at 110 ° C. for 3 hours to obtain a specimen. In each fired body, the residual amount of pitch tar is approximately 40% by weight. Table 2 shows the composition ratio of each component in each sample after firing. The results of the characteristic test are shown in Table 3 below.
[0045]
[Table 2]
Figure 0003692438
[0046]
Test method Hot bending: Measured at 1200 ° C. (3-point bending). Sample shape: 20 x 15 x 120 mm, span 100 mm
Thermal conductivity: measured in the CIP pressurization direction. Sample shape: 50 x 50 x 50 mm
Electrical specific resistance: Measured in the direction perpendicular to the CIP pressurization direction and calculated the average value Sample shape: 25 x 15 x 120 mm
Thermal shock resistance test: put in a furnace heated to 1200 ° C, rapidly heat and hold for 10 minutes, take it out of the furnace, put it in normal temperature water and quench it, and repeat this rapid heating and quenching 5 times. The thermal shock resistance is evaluated based on the presence or absence of cracks on the test surface. Sample shape: 50 x 50 x 50 mm
Oxidation resistance test: held for 100 hours in an air atmosphere furnace heated to 900 ° C., taken out, determined the difference between the weight before oxidation and the weight after oxidation, and expressed the percentage of the sample weight before oxidation per hour Calculation. In addition, the oxidation resistance was evaluated by cutting the sample from the center and observing the presence or absence of a decarburized layer with the naked eye. Sample shape: 40 x 40 x 40 mm
Penetration resistance test: A φ30 mm × 35 mmH hole was made in a 70 × 70 × 65 mm sample, and a magnesium-containing aluminum alloy (JIS5320, AC7B) was put therein, and the temperature was raised to 800 ° C. in a non-oxidizing atmosphere for 500 hours. Holding the erosion test, cutting the sample from the center, measuring the penetration depth of the aluminum alloy with a magnifying glass, and evaluating the penetration resistance against molten aluminum Erosion resistance test: (51-80) 25 × 120 mm After assembling it into a container using six trapezoidal pillars, setting it in a high-frequency furnace, charging it with BC-6 copper alloy, holding it at 1300-1400 ° C for 10 hours, taking out the sample, cutting it vertically from the center, and eroding the metal The maximum erosion amount (depth) of the part subjected to the test was measured. For each test result of the thermal shock resistance test to the erosion resistance test, ○: good, △: slightly good, ×: bad Also it is also shown in the results of the evaluation.
[0047]
[Table 3]
Figure 0003692438
[0048]
As is clear from the above results, the crucible of the present invention uses a small amount of scaly graphite, uses only a small amount of low-melting glass, or uses only a small amount, and has high strength and thermal conductivity, and heat resistance. It has good impact resistance and excellent oxidation resistance and corrosion resistance. On the other hand, conventional products containing a large amount of scaly graphite and containing a large amount of low-melting glass as an antioxidant have low strength and inferior oxidation resistance, and also have insufficient corrosion resistance against molten copper. .
[0049]
Example 2
Using the composition of the present invention product No. 3 in Table 1, two crucibles having an outer diameter of 590 mm and a height of 700 mm and a capacity of 114 liters were produced by the same production method as in Example 1, and on the inner and outer surfaces as in the conventional products. An anti-oxidation coating material for dissolving aluminum was applied and baked.
[0050]
Among these crucibles, one has the mouth, body, and bottom with the same thickness as the conventional product (35 mm at the mouth), and the other has a thickness of 25% or less (mouth 28 mm). Furthermore, a crucible having a mouth thickness of 35 mm was manufactured by the same method using the blend of Comparative Product 2 in Table 1 and subjected to a comparative test.
[0051]
These crucibles were set in a gas burner crucible furnace according to a conventional method, 200 kg of aluminum alloy (ADC12) cold material was charged, and the amount of gas combustion was compared under the same conditions until the molten metal reached 700 ° C. .
[0052]
Comparative product No. In the crucible using the composition of No. 2, it took 265 minutes to reach 700 ° C., whereas in the crucible using the composition of the present invention No. 3, the mouth wall thickness was 35 mm. The temperature reached 700 ° C. in 230 minutes, and an improvement of about 13% was observed in the heating time, and those having a mouth thickness of 28 mm reached 700 ° C. in 185 minutes, and an improvement of about 30% was observed in the heating time. From this, it can be seen that the crucible of the present invention has achieved 13-30% labor saving and energy saving by initial melting. Moreover, the same improvement was able to be obtained also about the retention energy after melt | dissolution.
[0053]
Further, among the crucibles using the composition of the present invention product No. 3, the molten aluminum alloy (ADC12) was put in an ADC12 aluminum holding furnace in a crucible having a mouth thickness of 35 mm at 680 to 710 ° C. After using for 60 days, it cut | disconnected and compared with the crucible of the comparative product No. 2 used on the same conditions. The crucible of comparative product No. 2 had a decarburized layer of about 1 mm from the outer surface of the crucible, whereas the product of the present invention had no decarburized layer at all.
[0054]
Example 3
Using the composition of the present invention product No. 3 in Table 1, an induction furnace crucible having an outer diameter of 640 mm, a height of 1240 mm, and a capacity of 276 liters was produced by the same production method as in Example 1, and as in the conventional product. An anti-oxidation coating material for dissolving copper alloy was applied to the inner and outer surfaces and baked. The thickness of the crucible was 45 mm at the mouth and 50 mm at the body, which was about the same as the conventional product. Furthermore, the crucible of the same shape was manufactured by the same method using the composition of the comparative product 3 of Table 1, and it used for the comparison test.
[0055]
After using 120 charges at 1250 to 1300 ° C. in a 170 kg melting furnace of BC-6 copper alloy, the crucible was cut and the remaining thickness was compared with the crucible of comparative product No. 3. The remaining thickness of the crucible was about 15 mm, while the product of the present invention remained about 30 mm, and it was recognized that the crucible was excellent in corrosion resistance.

Claims (3)

鱗状黒鉛原料100重量部、
炭化珪素原料350〜600重量部、並びに
炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種と金属珪素微粉原料とからなり、これらの微粉原料の合計量を基準として炭化ホウ素微粉原料及びホウ化チタン微粉原料の少なくとも一種10〜30重量%と金属珪素微粉原料70〜90重量%を含む微粉原料を合計量として80〜90重量部
含有する耐火材配合物に、ピッチタールを加えて加熱混練し、該混練物を高圧下に成形した後、還元焼成することを特徴とする非鉄溶融金属用黒鉛炭化珪素質坩堝の製造方法。
100 parts by weight of scaly graphite raw material,
350 to 600 parts by weight of silicon carbide raw material, and at least one of boron carbide fine powder raw material and titanium boride fine powder raw material and metal silicon fine powder raw material, and boron carbide fine powder raw material and titanium boride based on the total amount of these fine powder raw materials To a refractory material composition containing 80 to 90 parts by weight of a fine powder material containing 10 to 30% by weight of at least one kind of fine powder material and 70 to 90% by weight of a metal silicon fine powder material , pitch tar is added and kneaded by heating. A method for producing a graphite silicon carbide crucible for a nonferrous molten metal, wherein the kneaded product is molded under high pressure and then fired by reduction.
混練物の成形方法が、冷間静水圧成形法によって600kg/cm2以上の圧力で成形する方法である請求項1に記載の黒鉛炭化珪素質坩堝の製造方法。The method for producing a graphite silicon carbide crucible according to claim 1, wherein the kneaded material is formed by a cold isostatic pressing method at a pressure of 600 kg / cm 2 or more. 請求項1又は2の方法で製造された、鱗状黒鉛を約10〜20重量%含有し、1200℃における曲げ強さが140kg/cm以上、熱伝導率が20kcal/mhr℃以上である非鉄溶融金属用黒鉛炭化珪素質坩堝。 A non-ferrous melt produced by the method of claim 1 or 2 and containing about 10 to 20% by weight of scaly graphite, having a bending strength at 1200 ° C. of 140 kg / cm 2 or more and a thermal conductivity of 20 kcal / mhr ° C. or more. Graphite silicon carbide crucible for metal.
JP20777997A 1997-08-01 1997-08-01 Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same Expired - Fee Related JP3692438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20777997A JP3692438B2 (en) 1997-08-01 1997-08-01 Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20777997A JP3692438B2 (en) 1997-08-01 1997-08-01 Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1149568A JPH1149568A (en) 1999-02-23
JP3692438B2 true JP3692438B2 (en) 2005-09-07

Family

ID=16545384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20777997A Expired - Fee Related JP3692438B2 (en) 1997-08-01 1997-08-01 Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same

Country Status (1)

Country Link
JP (1) JP3692438B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515476C2 (en) * 1999-12-20 2001-08-13 Sandvik Ab Process for handling liquid non-ferrous metals with refractory
KR100891862B1 (en) * 2002-09-03 2009-04-08 주식회사 포스코 Batch composition of carbon paste for blast furnace hearth
EP1664726A4 (en) * 2003-09-22 2012-05-09 Tekran Instr Corp Conditioning system and method for use in the measurement of mercury in gaseous emissions
CN102838353B (en) * 2012-10-11 2013-10-09 连云港市东茂矿业有限公司 High-temperature resistant silicon carbide reducing tank and preparation method thereof
CN107311678B (en) * 2017-07-28 2020-04-07 宋振亚 Long-life aluminum melt degassing rotor and manufacturing method thereof
CN108911749A (en) * 2018-08-31 2018-11-30 青岛中冶坩埚有限公司 A kind of preparation method of graphite-silicon carbide crucible
CN112225570B (en) * 2019-07-14 2023-02-17 江苏摩铸特种陶瓷有限公司 Three-layer silicon carbide graphite crucible and preparation method thereof
CN115057688B (en) * 2022-07-01 2023-06-27 江西嘉逸陶瓷有限公司 Method for preparing heat-resistant ceramic pot by using synthetic black jade

Also Published As

Publication number Publication date
JPH1149568A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
EP0482984B1 (en) Refractory material bonded by a sialon matrix and process for its production
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP3692438B2 (en) Non-ferrous molten metal graphite silicon carbide crucible and method for producing the same
JP6353284B2 (en) Magnesia carbon brick
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP2545307B2 (en) Blast furnace refractory manufacturing method
JP4187183B2 (en) Magnesia-carbon brick
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP6583968B2 (en) Refractory brick
JP4234804B2 (en) Plate brick for sliding nozzle device
JP7228733B1 (en) Magnesia carbon brick and its manufacturing method
JP3944871B2 (en) Carbon-containing ceramic sintered body
JP4471254B2 (en) Magnesia-carbon brick
JPS63285168A (en) Carbon containing refractories
JPS6152099B2 (en)
JP2024059450A (en) Manufacturing method of magnesia carbon bricks for vacuum degassing furnace
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPH0510299B2 (en)
JP4475724B2 (en) Method for manufacturing amorphous refractory having a close-packed structure excellent in strength and spall resistance
JPH08295555A (en) High durability magnesia-carbon brick
JPH10338569A (en) Stopper head for tundish
JPH0699190B2 (en) Carbon-containing ceramic composite for non-ferrous molten metal
JP2948020B2 (en) Carbon containing refractories

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees