JP3692200B2 - 水圧センサ - Google Patents

水圧センサ Download PDF

Info

Publication number
JP3692200B2
JP3692200B2 JP02217197A JP2217197A JP3692200B2 JP 3692200 B2 JP3692200 B2 JP 3692200B2 JP 02217197 A JP02217197 A JP 02217197A JP 2217197 A JP2217197 A JP 2217197A JP 3692200 B2 JP3692200 B2 JP 3692200B2
Authority
JP
Japan
Prior art keywords
optical fiber
water pressure
bellows
pressure sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02217197A
Other languages
English (en)
Other versions
JPH10206255A (ja
Inventor
敬史 藤枝
恒夫 森
幹彦 岡野
裕二 那倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP02217197A priority Critical patent/JP3692200B2/ja
Publication of JPH10206255A publication Critical patent/JPH10206255A/ja
Application granted granted Critical
Publication of JP3692200B2 publication Critical patent/JP3692200B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水圧を測定するセンサ、特に河川の堤防内などの土中における水圧を観測するためのセンサと、水圧を検知する方法に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
河川の堤防決壊は堤防体内への水の浸潤度合いに大きく依存すると考えられ、この浸潤度は堤防体内の水圧(土中水位)を計測することにより監視できると考えられる。従来、この種の水圧を測定する技術として電気式の圧力計が知られている。
【0003】
しかし、従来のこの種のセンサは、複数の設置箇所で得られた測定データを収集するために無線などの伝送装置を設ける必要がある。この場合、伝送装置の電源も必要になる。一方、伝送装置がない場合、各センサの測定データを直接収集しなければならず、時間的,労力的負担が大きい。
【0004】
従って、本発明の主目的は、個々のセンサに伝送装置を設置することなく水圧の監視ができるセンサと水圧の検知方法とを提供することにある。
【0005】
【課題を解決するための手段】
本発明センサは上記の目的を達成するためになされたもので、水圧の変化に伴って伸縮するベローズの動きを光ファイバの張力変化に変換し、光ファイバに生じた歪みの変化から水圧を検知するものである。
【0006】
すなわち、光ファイバと、水圧に伴って伸縮するベローズと、光ファイバの一途中に設けられ、可動端と固定端とを有する張力付与部とを具え、この張力付与部の可動端がベローズの伸縮に連動されていることを特徴とする。
【0007】
張力付与部はの具体的な構成としては,次のものが挙げられる。
(1) 光ファイバの途中を曲げた屈曲部と、この屈曲部を把持する固定端と、固定端から離れた位置において光ファイバを把持する可動端とを具える。さらに定滑車とウェイトとを具え、前記可動端とウェイトとを定滑車に掛けられたワイヤで接続する。
【0008】
(2) 可動端をベローズの伸縮に連動する移動掛合部とし、固定端をベローズの伸縮に連動しない固定掛合部として、光ファイバを両掛合部に架け渡して巻き付ける。各掛合部の具体的構成としては円盤状のリールなどが挙げられる。この場合、移動掛合部と固定掛合部の間隔を調整自在に構成することが好適である。これにより、光ファイバの張力を調整し、初期設定時に光ファイバに過大な張力がかかったり、逆に弛んで圧力検知の不感帯が生じることを防止する。
【0009】
上記のいずれの構成においても、張力付与部を収納するケースを設け、このケースに通気孔を設けることが好ましい。通気孔によりケース内を大気圧と同等に保持することができる。
【0010】
また、張力付与部を収納するケースを設けて、このケースに光ファイバを収納するまでの途中に防湿機構を設けることが望ましい。ケース内に外気が導入され、温度変化により結露が繰り返されるとケース内に水が溜ることがある。そのため、防湿機構を設ければケース内に水が溜って生じる不動作を防止できる。
【0011】
さらに、本発明水圧検知方法は、水圧変化に対応して伸縮するベローズの動きと、光ファイバに張力を付与する張力付与部の動きとを連動し、この張力付与に伴う光ファイバの歪みを監視することで水圧を検知することを特徴とする。
【0012】
水圧の検出は、光ファイバに張力が付与されたことに伴って変化する歪みを検出することで行えばよい。従って、水圧の監視を行うときには、光ファイバの端部に歪み測定装置を接続する。例えば、BOTDRを接続することで、光ファイバの長手方向における歪み分布を測定し、歪みの増加から水圧を検出する。
【0013】
一連の光ファイバの途中で前記のセンサを複数形成して光ファイバの歪み測定を行えば、各センサに伝送装置を設置するまでもなく複数箇所の測定データを容易に集約することができる。
【0014】
なお、ベローズの周囲に保護カバーを設け、土砂などの侵入を防止することが望ましい。例えば、保護カバー壁面の一部を網で構成し、水は保護カバー内に侵入できるが、土砂は侵入できないように構成する。この保護カバーの形成には、網,布の他、水の浸透性を具えるが土砂などの透過を阻止する種々の材料を用いることができる。
【0015】
その場合、保護カバーに空気抜き孔を設けることが一層好適である。これにより、本発明センサを地中に埋設した場合、保護カバー内に残存する空気泡を排出してベローズの伸縮を円滑にすることができる。空気抜き孔も土砂が侵入しないように、孔のサイズを小さくしたり、網を設けることが好ましい。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図1に基づいて説明する。同図は本発明センサの原理を示す説明図で、堤防体内にセンサを設置した状態を示している。
本発明水圧センサのケース30を堤防体31内に埋設し、通気孔32で地上とケース内を連通してケース内の圧力を大気圧と同じにしておく。このケース30は下面に通水孔33を具え、内壁にベローズ34が固定されて、通水孔33からベローズ外周とケース内壁で囲まれる空間に水を導入できる。また、このベローズ34の下端には水圧を受ける受圧板35が一体化され、さらにベローズ内で受圧板35から上方に向かって圧力伝達ロッド36が伸延されている。一方、このケース内には光ファイバ37が取り付けられている。光ファイバ37の下端は保持具38で固定し、上端は連結具39を介して圧力伝達ロッド36の上端に一体化する。従って、堤防体内の水圧(土中水位)が上昇すると、ベローズの受圧板35が押圧されて圧力伝達ロッド36を押し上げ、それに伴って光ファイバ37に張力を付与する。
【0017】
ここで、土中の水位が受圧板の位置よりh(m)だけ上がると、受圧板に加わる力P(kg)は受圧板の有効面積をS(cm2 )とすると、
P=Sh/10 …▲1▼
で表される。
【0018】
一方、光ファイバに加わる張力と歪みの関係は比例関係にあるため、歪みをε(μ)、比例定数をk(kg/μ)とすれば、
P=kε …▲2▼
で求めることができる。
従って、上記光ファイバにBOTDRなどの歪み測定装置を接続しておけば、上記▲1▼,▲2▼式より、計測した歪みから土中水位hを次式で求めることができる。
h=(10k/S)ε
【0019】
【実施例】
図2に基づいて実施例を説明する。同図は本発明センサの内部構造を示す正面図である。
本発明センサは上部保護筒1、下部保護筒2および保護カバー3を具え、両保護筒1,2に光ファイバ4等を含む張力付与部が収納され、保護カバー3内にベローズ5が収納されている。なお、両保護筒1,2がケースに相当する。
【0020】
上部保護筒1と下部保護筒2は仕切板6を介して連結された円筒容器である。上部保護筒1は光ケーブル7が導入される蓋部8を具え、下部保護筒2の下方には取付部9を介してベローズ5が一体化されている。そして、上部保護筒1からベローズ5までの長手方向の空間は密封されている。
【0021】
蓋部8より導入された光ケーブル7からは光ファイバ4が露出される。露出された光ファイバ4は仕切板6を貫通して下部保護筒2内に導入され、折り返して再度仕切板6を貫通して光ケーブル7に戻る。ここで、光ファイバ4は光ケーブル7から露出された直後の箇所を除いてステンレス管10に内蔵されたものとした。光ファイバ4とステンレス管10の間には充填材が注入され、光ファイバ4とステンレス管10とを一体にしている。従って、ステンレス管10に張力がかかれば、光ファイバ4にも張力がかかる。本例ではステンレス管10を用いたが、このような保護管は光ファイバ4の保護の必要に応じて用いればよい。保護管の材質,要否は特に問わない。また、充填材は樹脂,ゴムなどの適宜な材料を選択すればよい。
【0022】
また、仕切板6の下面には支持棒11が固定されている。この支持棒11の下端には固定板12が取り付けられ、支持棒11の途中にはステンレス管10に収納された光ファイバ4を止めるファイバ固定具13(固定端)が取り付けられている。固定板12やファイバ固定具13は支持棒11を介して仕切板6に連結されているため、光ファイバ4は下部保護筒2内でU字型に湾曲され(屈曲部)、その曲げ径が一定に保持される。
【0023】
一方、ベローズ5の内部には中空円筒14が固定され、この中空円筒14の上面から圧力伝達ロッド20が伸びている。圧力伝達ロッド20は固定板12と仕切板6とを貫通し、上部保護筒1内に達している。また、ベローズ5の外周は円筒状の保護カバー3で覆われている。保護カバー3の底面は網15で構成され、上面には空気抜き孔16が複数形成されている。底部を網15で構成することにより、保護カバー3内に水の侵入は許容するが土砂の侵入は阻止してベローズ5の損傷を抑制する。空気抜き孔16は本センサを堤防の地中内などに埋設した際、保護カバー3内に残存する空気を排出するための孔である。残存する気泡を容易に排出できるよう、空気抜き孔16の形成される面は傾斜させておくことが望ましい。
【0024】
さらに、蓋部8の下面には滑車17が固定され、この滑車17に掛けられたワイヤ18の一端はウェイト19に、他端は中空円筒14から伸びる圧力伝達ロッド20に接続されている。このウェイト19はベローズ5の伸縮に対するカウンタウェイトである。そして、上部保護筒1内における伝達ロッド20の上端部には可動板21(可動端)が固定され、この可動板21にステンレス管入りの光ファイバ4が固定されている。すなわち、伝達ロッド20が昇降すると可動板21も連動し、それに伴って光ファイバ4はファイバ固定具13と可動板21との間で引っ張られて張力が付与される(張力付与部)。
【0025】
水圧測定を行う際には、上記のセンサを一連の光ファイバの途中に複数形成し、各センサを所定の測定場所、例えば堤防の地中内に配置する。そして、光ファイバの端部に歪み測定装置(図示せず)を接続する。例えばBOTDR(Brillouin Optical Time Domain Reflectometer) 装置を用いればよい。これは、光ファイバに光パルスを入射し、その後方散乱光におけるブリルアン散乱光の発生波長を測定することで歪みを検知する。そして、光パルスを入射してから後方散乱光が入射端に戻るまでの時間によりある波長のブリルアン散乱光の生じた位置を特定する。従って、光ファイバの長手方向に沿ったブリルアン散乱光のデータを得ることができ、光ファイバの張力変化に伴う歪みの変化を検知することができる。
【0026】
地中に埋設されたセンサは、保護カバー3の網や空気抜き孔より水が侵入し、保護カバー3とベローズ5の間の空間が水で満たされた状態となる。水圧が上昇するとベローズ5は押圧されて上方に縮む。そのとき、伝達ロッド20も上方に押し上げられ、可動板21も同時に押し上げられる。可動板21の移動に伴って、光ファイバ4はファイバ固定具13と可動板21の間で引っ張られて張力が付与される。従って、張力付与に伴って生じる光ファイバ4の歪みを前記歪み測定装置により検知すれば水圧を検知することができる。測定結果は歪み測定装置の設置箇所で一括して監視できるため、各センサに測定データの伝送装置やその電源を設ける必要がない。
【0027】
次に、図2とは異なる構成の実施例を図3,4に基づいて説明する。図3は実施例の内部構造を示す正面図、図4は圧力付与部を側面から見た構成を示す部分断面図である。
本実施例はベローズ40の動きと連動して光ファイバ41に張力を付与する張力付与部として移動リール42(移動掛合部)と固定リール43(固定掛合部)を用いた。
【0028】
ケース44は耐食性を有する金属製の円筒である(図3参照)。その上端には通気孔45を有する蓋部46(耐食金属製)が水密に螺合され、下端には底板47が水密に嵌合されると共に、保護カバー48が外嵌されて、ネジ49により固定されている。通気孔45は本センサが埋設されたときに地上と連通され、ケース内を大気圧とほぼ同等に保持する。また、保護カバー48は土砂などの異物がベローズ内に侵入して損傷することを防止するためのものである。ケースの底板47には単一の通水孔50が形成され、保護カバー48の底部には、通水するが異物の侵入を阻止する複数の小孔51が形成されている。
【0029】
このケース底板47の上面にはベローズ40が水密に固着されている。また、ベローズ40の上面には受圧板52が水密に取り付けられている。前記小孔51と通水孔50を介して侵入した水はベローズ内に導入されてベローズ40を伸縮させ、受圧板52を上下動させる。
【0030】
受圧板52のほぼ中心には、上方に向かって伸延する圧力伝達ロッド53(圧力伝達部)が固定されている。受圧板52と同ロッド53との接合は溶接やネジ止めなどで行えばよい。圧力伝達ロッド53は上端部に雄ネジが形成された金属棒で、受圧板52の上下動を移動リール42に伝達する。
【0031】
この移動リール42はケース内の上部において、スプリング54(弾性材)を介して保持されている(図4参照)。すなわち、ケース内壁に支持板55を固定し、この支持板上にスプリング54を設置する。そしてスプリング54の上部にばね受け56を配置し、ばね受け56に移動リール42を固定した。一方、固定リール43は、移動リール42とベローズ40との間において、ケース内壁に固定された支持板57に固定されている。そして、これら両リール42,43 ,支持板55およびばね受け56の各々は同軸状の貫通孔を有し、これらの貫通孔とスプリング54とを圧力伝達ロッド53で貫通している。従って、移動リール42はスプリング54の弾性力により圧力伝達ロッド53の軸方向に移動できる。なお、各リール42,43 の外周面には光ファイバを巻回するための螺旋溝58を形成した。これにより、光ファイバ同士が重なって巻回されて局部的な曲げ歪みが加わることを抑制できる。
【0032】
ここで、図3に示すように、圧力伝達ロッド53の上端部にナット59(止め部)を螺合して移動リール42が移動できる距離を規制する。ナット59は圧力伝達ロッド53へのねじ込み程度によってその位置を変更できるため、容易に移動リール42の移動距離を変更できる。
【0033】
このような水圧センサの初期設定を行う際、まずナット59をねじ込んでスプリング54を圧縮し(例えば30〜50mm 程度)、移動リール42と固定リール43との距離を狭めておく。その状態で各リール42,43 の螺旋溝58に沿って光ファイバ41を巻回し、かつ光ファイバ41が両リール42,43 に架け渡されるようにする。そしてナット59を緩めると、ナットが移動した距離だけ移動リール42の移動距離が伸び、スプリング54の押圧力によって光ファイバ41に適宜な伸び歪み(例えば0.1〜0.2 %程度)を与えることができる。このとき、光ファイバ41に過大な張力がかかったり、逆に弛んで検知の不感帯を生じないようにナット59の位置を調整する。
【0034】
光ファイバ41はステンレス管などに内蔵したり、金属線と複合した状態で両リール42,43 に巻回してもよいが、このような補強材のない方が温度変化の伸びに伴う測定結果への影響が少ない。また、図示していないが、光ファイバ41の端部は通気孔45を通して地上に導き、BOTDR装置に接続すればよい。その際、通気孔45を通る光ファイバは防水パイプに内蔵することが望ましい。
【0035】
上記の初期設定を行った状態で本センサを堤防などの監視対象に埋設する。河川水位の上昇に伴い堤防の土中水位が上昇すると、小孔51と通水孔50から入った水はベローズ40を上方に伸長させる。これに伴って受圧板52と圧力伝達ロッド53(ナット59)が押し上げられる。それに伴って移動リール42は上方に移動できる範囲が広がり、スプリング54の弾性力によって上方に押圧されるため固定リール43との間隔が広がり、水圧(土中水位)に応じた張力が光ファイバ41に付与される。従って、この伸び歪みをBOTDRにより検知すれば水圧の監視が行える。
【0036】
本発明センサの監視精度の算出例を示すと次のようになる。
一般に光ファイバの破断荷重は約6kg,伸びは約6%である。従って、光ファイバ1条に最大3kgまでの張力を加えるとし、測定水位を10mとすると、水圧は1kg/cm2になり、2条の光ファイバ分の張力6kgを生じるためには、6cm2 の受圧板面積が必要となる。また、BOTDRの精度は0.02%程度であるから、このときの土中水位の検知精度は7cm程度となる(水位10mで3%の歪み)。
【0037】
なお、図3,4の実施例では移動リール42と固定リール43の間隔調整により光ファイバの張力を調整できるようにしたが、移動リール42や圧力伝達ロッド53の重量が軽い場合は、単に移動リール42を圧力伝達ロッド53に固定し、移動リール42が圧力伝達ロッド53と共に上下動するように構成してもよい。その場合、スプリング54やばね受け56はなくてもよい。
【0038】
さらに、上記各センサに設ける防湿機構について説明する。
まず、図2のセンサに防湿機構を設けた例から述べる。図5は図2のセンサに防湿機構を設けて埋設した状態を示す説明図で、図6は図5のクロージャ内の詳細説明図である。
【0039】
堤防内には幹線光ケーブル60が埋設され、その途中に形成されたクロージャ61がマンホール62内に収納されている(図5)。このクロージャ61から分岐光ファイバ63を延長し、分岐光ファイバ63の先端にセンサ64を接続する。
【0040】
クロージャ61の内部構造は、図6に示すように、幹線光ケーブル60内から融着接続部65を介して光ファイバ心線66を引き出し、この心線66を伸縮容器67に一端から導入する。この伸縮容器67はベローズのように伸縮でき、内部には乾燥空気が封入されている。導入された光ファイバ心線66は、伸縮容器67の他端から分岐光ケーブル63として引き出される。伸縮容器67における光ファイバ心線66の導入口と分岐光ケーブル63の引き出し口とは水蜜構造とした。そして、この分岐光ケーブル63をクロージャ61から引き出してセンサ64へと導く。
【0041】
このように、分岐光ケーブル63を乾燥空気が封入された伸縮容器67に終端することで、センサ内に湿気が導入されることを防止できる。そのため、温度変化に伴ってセンサ内で結露が繰り返されて水が溜り、その結果生じる誤動作や不動作を抑制できる。
【0042】
次に、図3,4のセンサに防湿機構を設けた場合を説明する。図7は図3,4のセンサに防湿機構を設けて埋設した状態を示す説明図である。
この場合も図5の例と同様に、マンホール70内における幹線光ケーブル71のクロージャ72から分岐光ケーブル73を引き出し、分岐光ケーブル73をセンサ74へと導入する構成である。本例では、分岐光ケーブル73の途中を別のマンホール75に引き入れ、さらにこのマンホール75内の容器76に導入する。この容器76は底面にケーブル保護管77が接続され、この保護管77がセンサ74の通気口に接続されている。容器76に導入された分岐光ケーブル73は保護管内を通ってセンサ74に導かれる。容器76における分岐光ケーブル76の導入口は水蜜構造とした。
【0043】
ここで、容器76内にシリカゲルなどの吸湿剤を入れておく。センサ74内には保護管77を介して外気が導入されるが、吸湿剤入り容器76を通して外気を取り込むため、湿気を含んだ空気がセンサ74内に導入されることを抑制できる。なお、マンホール75の蓋を開けることで、吸湿剤の取り替え,点検ができる。
【0044】
以上図5〜7に基づいて説明したように、センサのケース内に湿気を含んだ空気が導入されることを抑制することで、結露によりケース内に水が溜ってセンサが誤動作したり、動作しなかったりすることを防止できる。
【0045】
【発明の効果】
以上説明したように、本発明センサおよび本発明方法によれば、一連の光ファイバを用いることで、複数箇所の水圧測定を容易に行うことができる。このとき、各センサに測定データの伝送装置を設ける必要がない。また、本発明センサは光ファイバに局部的な歪みを与えるのではなく、伸び歪みによる検知を行うため、光ファイバの損傷を低減できる。さらに、防湿機構を設けることで、結露によりケース内に水が溜ってセンサが誤動作したり、動作しなかったりすることを防止できる。
【図面の簡単な説明】
【図1】本発明センサの基本原理を示す説明図。
【図2】本発明センサの内部構造を示す正面図。
【図3】図2とは異なる構成の本発明センサの内部構造を示す正面図。
【図4】図3のセンサの張力付与部を示す断面図。
【図5】図2のセンサに防湿機構を設けて埋設した状態を示す説明図。
【図6】図5のクロージャ内の詳細説明図。
【図7】図3,4のセンサに防湿機構を設けて埋設した状態を示す説明図。
【符号の説明】
1 上部保護筒 2 下部保護筒 3,48 保護カバー
4,37,41 光ファイバ 5,34,40 ベローズ 6 仕切板 7 光ケーブル
8,46 蓋部 9 取付部 10 ステンレス管 11 支持棒 12 固定板
13 ファイバ固定具 14 中空円筒 15 網 16 空気抜き孔 17 滑車
18 ワイヤ 19 ウェイト 20,36,53 圧力伝達ロッド 21 可動板
30,44 ケース 31 堤防 32,45 通気孔 33,50 通水孔
35,52 受圧板 38 保持具 39 連結具 42 移動リール 43 固定リール
47 底板 49 ねじ 51 小孔 54 スプリング 55,57 支持板
56 ばね受け 58 螺旋溝 59 ナット 60,71 幹線光ケーブル
61,72 クロージャ 62,70 マンホール 63,73 分岐光ケーブル
64,74 センサ 65 接続部 66 光ファイバ心線 67 伸縮容器
75 マンホール 76 容器 77 ケーブル保護管

Claims (10)

  1. 光ファイバと、
    水圧に伴って伸縮するベローズと、
    光ファイバの途中に設けられ、可動端と固定端とを有する張力付与部とを具え、
    この張力付与部の可動端がベローズの伸縮に連動されていることを特徴とする水圧センサ。
  2. 張力付与部は、
    光ファイバの途中を曲げた屈曲部と、
    この屈曲部を把持する固定端と、
    固定端から離れた位置において光ファイバを把持する可動端と、
    定滑車と、
    ウェイトと、
    定滑車に掛けられ、一端が可動端に接続され、他端がウェイトに接続されたワイヤとを具えることを特徴とする請求項1に記載の水圧センサ。
  3. 張力付与部は、
    ベローズの伸縮に連動しない固定掛合部を固定端とし、
    ベローズの伸縮に連動する移動掛合部を可動端として、
    光ファイバを両掛合部に架け渡して巻き付けることで構成したことを特徴とする請求項1に記載の水圧センサ。
  4. ベローズの伸縮に連動する圧力伝達部と、
    移動掛合部を固定掛合部から離れる方向に押圧する弾性材と、
    圧力伝達部に対して位置調整自在な止め部とを具え、
    移動掛合部は圧力伝達部に沿って移動自在に構成され、移動掛合部が移動する範囲は止め部の位置によって規制され、
    止め部の位置を変えることで移動リールと固定リールとの間隔を変えて光ファイバの張力を調整自在にしたことを特徴とする請求項3に記載の水圧センサ。
  5. 張力付与部を収納するケースを具え、このケースに通気孔を設けたことを特徴とする請求項1に記載の水圧センサ。
  6. 張力付与部を収納するケースを具え、このケースに光ファイバを導入するまでの途中に防湿機構を設けたことを特徴とする請求項1に記載の水圧センサ。
  7. 光ファイバの端部に歪み測定装置を接続したことを特徴とする請求項1に記載の水圧センサ。
  8. ベローズの周囲に土砂侵入防止用の保護カバーを設けたことを特徴とする請求項1に記載の水圧センサ。
  9. 保護カバーに空気抜き孔を設けたことを特徴とする請求項7に記載の水圧センサ。
  10. 水圧変化に対応して伸縮するベローズの動きと、光ファイバに張力を付与する張力付与部の動きとを連動し、この張力付与に伴う光ファイバの歪みを監視することで水圧を検知することを特徴とする水圧検知方法。
JP02217197A 1996-11-20 1997-01-20 水圧センサ Expired - Fee Related JP3692200B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02217197A JP3692200B2 (ja) 1996-11-20 1997-01-20 水圧センサ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32603796 1996-11-20
JP8-326037 1996-11-20
JP02217197A JP3692200B2 (ja) 1996-11-20 1997-01-20 水圧センサ

Publications (2)

Publication Number Publication Date
JPH10206255A JPH10206255A (ja) 1998-08-07
JP3692200B2 true JP3692200B2 (ja) 2005-09-07

Family

ID=26359350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02217197A Expired - Fee Related JP3692200B2 (ja) 1996-11-20 1997-01-20 水圧センサ

Country Status (1)

Country Link
JP (1) JP3692200B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305381B1 (ko) * 1999-06-18 2001-09-24 김진찬 광변형센서
JP4800192B2 (ja) * 2006-12-29 2011-10-26 三菱電機ビルテクノサービス株式会社 生芋の貯蔵装置
JP6060237B1 (ja) * 2015-10-13 2017-01-11 株式会社トランスコア 水圧計
CN113188692B (zh) * 2021-04-29 2022-11-18 中铁南方投资集团有限公司 一种水土压力监测预警装置
WO2022255156A1 (ja) * 2021-06-01 2022-12-08 和之 横田 ひずみゲージ式変換器

Also Published As

Publication number Publication date
JPH10206255A (ja) 1998-08-07

Similar Documents

Publication Publication Date Title
KR20090104563A (ko) 광섬유 변위계 및 이를 이용한 사면 안전 감시 시스템
JP3692200B2 (ja) 水圧センサ
KR100978383B1 (ko) 광섬유 센서를 이용한 쓰레기 매립지용 침출수 누출 및 안전감시 시스템
JP7480390B2 (ja) センサ装置、センサシステム、センサ装置の使用方法
KR20100089729A (ko) 광섬유격자센서를 이용한 이송관로 모니터링 시스템
CN112097977B (zh) 适用于水泥混凝土路面内埋传感器的固定装置及安装方法
KR102561298B1 (ko) 배관 부착형 원격 누수 센서
JP2000329861A (ja) 光ファイバセンサおよび蓋開閉検知センサ
JP2001304822A (ja) 光ファイバセンサおよび監視システム
JP2006133087A (ja) 変形監視装置及び変形監視方法
JP2008185498A (ja) 地中変位計測装置
KR100870485B1 (ko) 광섬유 센서를 이용한 신축성 구조부재
JP2011058996A (ja) マンホール内水位測定装置
KR101058885B1 (ko) 쓰레기 집하장 관리를 위한 계측 시스템
CN109945074B (zh) 地下污水管道健康检测装置以及该检测装置的安装方法
JP3895279B2 (ja) 水盛式沈下/浮上測定の測定点用タンクシステム
JP2000292554A (ja) 降雨検出装置および降雨検出センサ
KR100380179B1 (ko) 매립지 차수막 파손 외부측정 감지기
JPH06221851A (ja) 管路の勾配測定方法および装置
KR102460155B1 (ko) 스마트 밸브실
JP2006317461A (ja) 光歪センサ及びそれを用いた堤防監視システム
CN206531495U (zh) 一种燃气管道沉降检测装置
CN118129705B (zh) 地面沉降监测装置及监测方法
CN210049938U (zh) 水工隧洞实时水锤监测结构
JP2018087814A (ja) 冠水検知センサの取付構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees