JP3691352B2 - LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE - Google Patents

LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE Download PDF

Info

Publication number
JP3691352B2
JP3691352B2 JP2000168580A JP2000168580A JP3691352B2 JP 3691352 B2 JP3691352 B2 JP 3691352B2 JP 2000168580 A JP2000168580 A JP 2000168580A JP 2000168580 A JP2000168580 A JP 2000168580A JP 3691352 B2 JP3691352 B2 JP 3691352B2
Authority
JP
Japan
Prior art keywords
pulverized coal
carbide
waste
water
liquid carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000168580A
Other languages
Japanese (ja)
Other versions
JP2001348582A (en
Inventor
和彦 肥塚
弘樹 榊原
章 西澤
実 辻
一志 東郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2000168580A priority Critical patent/JP3691352B2/en
Publication of JP2001348582A publication Critical patent/JP2001348582A/en
Application granted granted Critical
Publication of JP3691352B2 publication Critical patent/JP3691352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、産業廃棄物、都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物を用いた液状炭素燃料及びその製造方法並びにその製造装置に関するものである。
【0002】
【従来の技術】
従来、この種の液状燃料の製造方法として、まず、特開平10−130663号公報に記載のものを挙げることができ、この製造方法は、廃棄物を含む各種有機物を炭化し、その炭化物を粉化処理した後、水と混合させて液状炭素燃料を得ている。
【0003】
また、他の製造方法として、特開平11−349966号公報に記載のものを挙げることもでき、この製造方法は、産業廃棄物、都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物を、湿式粉砕して100〜300メッシュ(140〜50μ)の粉体を生成し、この粉体を篩選別し、適量の水分調整を行って粉体流動体(ゴミスラリー)として、そのゴミスラリー100重量部に対し、10〜80重量部の油分を混合し、さらに0.1〜3重量部の界面活性剤を添加してゴミ液化燃料(液状炭素燃料)を得ている。
【0004】
一方、固形炭素燃料の製造方法として、特開平11−209768号公報に記載のものを挙げることができ、このものは、可燃性廃棄物を低酸素雰囲気で過熱して炭化物を生成し、その炭化物を水中で攪拌・粉砕し、かつ炭化物中に残留している水溶性物質及び水溶性重金属を除去し、さらに、その粉砕・洗浄された炭化物を脱水機により脱水し、この脱水された炭化物を過熱乾燥後、冷却して、食塩や水溶性重金属が除かれたクリーンな炭化物(固形炭素燃料)を得ている。
【0005】
【発明が解決しようとする課題】
一般に、液状燃料は、RDF等の固体燃料に比べれば、燃料としての取り扱いが容易である。しかし、上述の前者の液状炭素燃料を得る製造方法は、炭化物を超音波攪拌などによる乾式粉砕により微粉化しているため、多くの粉塵が発生して作業環境が悪いうえに、微粉化にも限度がある。液状炭素燃料はその粉砕炭化物が細かい方が好ましい。
【0006】
また、後者の液状燃料を得る製造方法は、最終燃料が可燃性廃棄物を微粉砕しただけのもので、一般に可燃性廃棄物は、酸素原子を多く含んでおり、絶対発熱量が低いので、6500kcal/kg以上のカロリーを有する液状燃料とするためには、油分の割合を多くしなければならない。また、可燃性廃棄物には、厨房からの食塩や、微量の重金属が混入しているため、得られた液状燃料は、発熱量が低いと言う懸念だけでなく、液状燃料が使用されたときに、食塩等の塩素が重油中の炭化水素と反応してダイオキシンを発生したり、重金属が高温で気化し排ガスとともに拡散する等、混入物による環境への悪影響が懸念される。
【0007】
一方、上述の固形炭素燃料を得る製造方法は、湿式粉砕時に炭化物内の食塩、重金属などの水溶性物質を溶け出させているため、それらが除去された炭化物から成る固形燃料を得ることができ、その燃料は食塩や微量の重金属に起因する環境への悪影響のない安全なものといえる。しかし、固形ゆえに、液状のものに比べて、燃料としての取扱い性が劣る。また、脱水炭化物を固形化する際、その脱水炭化物の過熱乾燥及び冷却を行えば、余分な熱エネルギーを消費し、それだけ製造時間が余分にかかることになる。
【0008】
この発明は、上述の実情の下、高カロリーでクリーンな液状燃料を安価にして得ることができるようにすることを課題とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、まず、炭化物は、酸素原子が可燃性廃棄物より少なくなり、発熱性が高いので、高カロリーの液状燃料とする際の油分の割合を低減できる点に鑑み、その炭化物をスラリー状とした液状燃料を得ることとしたのである。
【0010】
つぎに、その炭化物が環境への悪影響の少ない安全なものとするため、微粉砕時にその悪影響の要因となる食塩等を水に溶かし出して除去するようにしたのである。炭化物が微粉化すれば、その中に入っていた食塩等も容易に溶け出て、有害物質を含まない微粉炭を得ることができる。
【0011】
さらに、水内で粉砕すれば、すなわち湿式粉砕すれば、その粉砕機内は微粉炭のスラリーとなり、それを脱水することにより、所要の水分を有する液状燃料を得ることができる。その燃料にカロリー向上のため、重油又は廃油などの油を混合して、液状炭素燃料を得る。
【0012】
【発明の実施の形態】
この発明の製造方法の実施形態としては、都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物を炭化し、その炭化物を水中で粉砕して、微粉炭にするとともに炭化物に含まれている水溶性物質を除去し、その水中粉砕で生成された炭化物スラリーを脱水して湿潤微粉炭とし、その湿潤微粉炭に油を混合する構成を採用し得る。このとき、油とともに、分散安定剤を0.1〜5重量%程度添加することが好ましい。
【0013】
この構成において、上記湿潤微粉炭と油との混合時にも前記湿潤微粉炭を粉砕するようにすれば、燃料内の微粉炭がより細かくなって、炭化物の分散性がよくなる。
【0014】
また、上記微粉炭の平均粒径は100μ以下とし、上記油の混合割合は、上記湿潤微粉炭100重量部に対して70〜150重量部とするとよい。液状燃料としては、その微粉炭は平均粒径が100μ以下が好ましく、より好ましくは50μ以下とする。その50μ以下への粉砕には油分との混合時に行うことができる。また、油分の混合量は、経済的及び燃料としてのカロリー面から上記範囲が好ましい。
【0015】
上記各実施形態の製造方法をなす製造装置の実施形態としては、都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物を炭化する炭化炉と、その炭化物を水中で粉砕して微粉炭にするとともに炭化物に含まれている水溶性物質を除去する湿式粉砕機と、その粉砕により得られた炭化物スラリーを湿潤微粉炭と排水に分離する脱水機と、その脱水された湿潤微粉炭に油を混合する混合機とから成る構成を採用し得る。
【0016】
この構成において、上述の所要の粒径の微粉炭を得るには、その粉砕機、混合機の型式、粉砕(混合)時間などを適宜に選定する。
【0017】
【実施例】
一実施例を図1に示し、この図において、1はキルン形式の炭化炉、2は炭化炉1に熱風fを送る燃焼炉、3は炭化炉1から排出された炭化物a1 を水中で細かく粉砕する湿式粉砕機、4は湿式粉砕機3で生成された微粉炭スラリーa3 を湿潤微粉炭a4 と水とに分離する脱水機、5は湿潤微粉炭a4 と油bおよび分散安定剤cを均一に混合して液状炭素燃料a5 を生成するための攪拌機(混合機)、6は液状炭素燃料の貯留槽である。なお、分散安定剤は市販されているCCOM(炭化物と油の混合燃料)用のものが全て使用でき、代表的なものとして界面活性剤やエチルアルコールがある。
【0018】
上記炭化炉1には可燃性廃棄物aが供給機7により供給され、その供給機7は、窒素ガスdの供給ライン8に接続されて、炭化炉1内に窒素ガスdが供給され、炉1内をほぼ無酸素あるいは低酸素雰囲気にしている。また、炭化炉1には、外部を覆う外筒9が設けられており、この外筒9に高温ガス(熱風)fが供給され、炉1内を間接加熱している。このため、炉1内は、高温でほぼ無酸素状態のため、可燃性廃棄物aは熱分解され、CO、炭化水素ガスなどの気体の熱分解ガスeと固体の炭化物a1 となる。
【0019】
このとき、可燃性廃棄物aには、塩化ビニル樹脂等の有機塩化物や食塩などの無機塩化物が含まれており、その有機塩化物は塩素ガスや塩化水素ガス等に分解され、無機塩化物は炭化物a1 に残留する。また、針金や電気コード(銅線)等が、除去できずに、可燃性廃棄物aに混入する場合があり、針金や銅線等の異物も、炭化物a1 に残留する。なお、これらの異物は、前処理の破砕工程で破砕作用を受けた際に、可燃性廃棄物aと絡み合った状態になっていることが多い。
【0020】
炭化炉1内に供給された可燃性廃棄物aは、上述の熱分解作用を受けて炭化しながら、炉1の回転作用を受けてスクリューコンベアからなる排出装置10側へ移動し、その炭化物a1 は排出装置10から下方の冷却水槽11に落下し、熱分解ガスeや窒素ガスd等の気体は排出装置10の途中に設けられたノズルから燃焼炉2へと送られる。燃焼炉2では、ガス中の可燃ガスが燃やされて高温のガスとなる。この高温ガスは、その大半が外筒9への循環ガスfとして使用され、一部は排ガス処理装置(図示せず)を介して大気中に放出される。
【0021】
排出装置10と冷却水槽11はシュート12で接続されており、このシュート12に、冷却水槽11内のスラリーを循環する循環ポンプ13との接続口と、冷却水槽11用の補給水Wの接続口が設けられている。そして、前記炭化物a1 は、シュート12内でスラリーや補給水Wにより冷却されるとともに、水Wとなじまされた後、冷却水槽11内に落下する。冷却水槽11底部の炭化物a1 と水との混合物、すなわち、炭化物スラリーa2 は、スクリューコンベア11aにより、湿式粉砕機3に移送される。
【0022】
この湿式粉砕機3は、図2に示すように、液体サイクロン13と、サイクロン13内のスラリーa2 を循環する循環ライン14と、循環ライン14の途中に設けられた粉砕ポンプ15を備えている。液体サイクロン13の中心には投入管16が設けられており、その上部から投入された炭化物スラリーa2 は、投入管16の下部から破砕ポンプ15へと吸い込まれ、その破砕ポンプ15の破砕作用を受けた後、液体サイクロン13の上部に戻される。このようにして、炭化物a1 は、液体サイクロン13内を旋回しながら下降し、再度、破砕ポンプ15へと吸い込まれ、この循環作用により、粉砕ポンプ15の粉砕作用を繰り返し受けて、平均粒径が100μ以下の微粉炭となる。また、上述の針金等の異物は、炭化物a1 とともに粉砕され、両者の絡み合いがなくなり、分離された異物は、比重が大きいので、液体サイクロン13の下部に沈降する。なお、異物としては、前述の針金や銅線以外に、アルミ片や金属ボタン等があり、これらの沈降した異物iは運転終了後に排出する。
【0023】
このとき、この湿式粉砕機3により、炭化物a1 の平均粒径を100μ以下に微粉砕しておけば、最終製品である液状炭素燃料中に微粉炭をほぼ均等に分散させることができる。また、炭化物a1 が微粉炭にまで粉砕されたことにより、食塩などの無機塩類は、確実に水と接触するのでほぼ完全に水中に溶け出す。同様に可溶性重金属も水中に溶け出すことになる。このように、この湿式粉砕機3により、無機塩類や可溶性重金属を水に溶解させて除去するだけでなく、分散に適した粒径にしておけば、後工程で微粉砕工程が不要となり、最終製品の生産コストを低減することができる。図中、18は衝突板、19はスクリーンである。
【0024】
湿式粉砕機3において、炭化物a1 が微粉炭にまで粉砕された微粉砕スラリーa3 は、湿式粉砕機3をオーバーフローして、一旦、貯留槽17に貯えられた後、ポンプ17aにより、脱水機4に送られる。この脱水機4は遠心力式脱水機等が用いられ、これにより、微粉炭スラリーa3 は、水分が20〜30重量%の湿潤微粉炭a4 と排水とに分離される。この排水には、無機塩類や可溶性重金属が含まれているので、排水処理後、系外へ排出される。一方、湿潤微粉炭a4 は次の攪拌機(混合機)5に移送されて、油bや分散安定剤cとともに攪拌混合され、液状炭素燃料a5 として貯留槽6に貯えられる。
【0025】
図3には別の湿式粉砕機30を示し、この湿式粉砕機30は、媒体攪拌ミルとも呼ばれており、被粉砕物を媒体gと一緒に攪拌して、細かな粉砕物を生産するのに適したものである。図の例では、筒状容器31内に中空の回転軸32が設けられており、回転軸32の外側に取り付けられた攪拌パドル33により、炭化物スラリーa2 を攪拌粉砕する。なお、炭化物スラリーa2 は、回転軸32の頂部から投入されて中空軸32内から筒状容器31の底部に導入され、十分な攪拌粉砕作用を受けた後、オーバーフローにより排出される。図中、34は邪魔板、35は返し羽根、36は中空軸32駆動用プーリ、37はアーム38を介して容器31に支持された軸受である。
【0026】
また、この媒体攪拌ミル30は湿潤微粉炭a4 と油b等との混合に用いる攪拌機5としても使用できる。そのようにすれば、単なる混合だけでなく、微粉炭a4 が、さらに粉砕され、その粉砕面が油b等と接触するので油bなどとのなじみがよくなるとともに、平均粒径が50μ以下に微粉化されることにより分散性がよくなる。望ましくは、媒体攪拌ミル30により、平均粒径を10〜30μ、さらに望ましくは15〜20μ程度に粉砕すれば分散性が改善される。
【0027】
以上のようにして生産された液状炭素燃料a5 は、水分が20〜30%の湿潤微粉炭a4 を用いたので、8〜18%の水分を含んでおり、一般に、液状炭素燃料a5 は3〜18%の水分を含んでいることにより、チキソトロピー性が改善され、微粉炭a4 の沈降を抑制できる。このため、この発明では、水を加えることや、湿潤微粉炭a4 を乾燥させることなく、目的とする水分量の液状炭素燃料a5 を作ることができる。また、この液状炭素燃料a5 は、用いる油bの発熱量、湿潤微粉炭a4 と油bの混合割合にもよるが、6500kcal/kg以上のカロリーを確保することができる。
【0028】
【発明の効果】
この発明は、以上のようにしたので、クリーンな炭化物で液状炭素燃料を安価にして得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例の概略図
【図2】同実施例の湿式粉砕機を示し、(a)は概略切断正面図、(b)は同平面図
【図3】同実施例の他の湿式粉砕機の概略切断正面図
【符号の説明】
1 炭化炉
2 燃焼炉
3 湿式粉砕機
4 脱水機
5 攪拌機(混合機)
6 貯留槽
7 供給機
8 窒素ガス供給ライン
9 外筒
10 排出装置
11 冷却水槽
12 循環ポンプ
13 液体サイクロン
14 循環ライン
15 粉砕ポンプ
16 投入管
30 湿式粉砕機(媒体攪拌ミル)
33 攪拌パドル
a 可燃性廃棄物
1 炭化物
2 炭化物スラリー
3 微粉炭スラリー
4 湿潤微粉炭
5 液状炭素燃料
b 油
c 分散安定剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid carbon fuel using a combustible waste obtained by separating general waste such as industrial waste and municipal waste, a manufacturing method thereof, and a manufacturing apparatus thereof.
[0002]
[Prior art]
Conventionally, as a method for producing this type of liquid fuel, first, the one described in JP-A-10-130663 can be mentioned, and this production method carbonizes various organic substances including waste, and powders the carbides. After the chemical treatment, it is mixed with water to obtain a liquid carbon fuel.
[0003]
In addition, as another manufacturing method, the one described in JP-A-11-349966 can also be mentioned, and this manufacturing method is combustible waste obtained by separating industrial waste, municipal waste and other general waste. The product is wet pulverized to produce a powder of 100 to 300 mesh (140 to 50 μ), this powder is sieved, and an appropriate amount of water is adjusted to form a powder fluid (dust slurry), and the dust 10 to 80 parts by weight of oil is mixed with 100 parts by weight of the slurry, and further 0.1 to 3 parts by weight of a surfactant is added to obtain a waste liquefied fuel (liquid carbon fuel).
[0004]
On the other hand, as a method for producing a solid carbon fuel, the one described in JP-A No. 11-209768 can be exemplified, and this product is produced by superheating a combustible waste in a low oxygen atmosphere to produce a carbide. The water-soluble substance and water-soluble heavy metal remaining in the carbide are removed, and the ground and washed carbide is dehydrated by a dehydrator, and the dehydrated carbide is superheated. After drying, it is cooled to obtain clean carbide (solid carbon fuel) from which salt and water-soluble heavy metals have been removed.
[0005]
[Problems to be solved by the invention]
In general, liquid fuel is easier to handle as fuel than solid fuel such as RDF. However, the former production method for obtaining the liquid carbon fuel described above is that the carbide is pulverized by dry pulverization such as ultrasonic agitation, so that a lot of dust is generated and the working environment is bad and the pulverization is limited. There is. The liquid carbon fuel preferably has finer pulverized carbides.
[0006]
In addition, the production method for obtaining the latter liquid fuel is a method in which the final fuel is just pulverized combustible waste. Generally, combustible waste contains a lot of oxygen atoms, and its absolute calorific value is low. In order to obtain a liquid fuel having a calorie of 6500 kcal / kg or more, the ratio of oil must be increased. In addition, combustible waste contains salt from kitchens and trace amounts of heavy metals, so the liquid fuel obtained has not only a low calorific value, but also when liquid fuel is used. In addition, there are concerns about adverse environmental effects due to contaminants, such as chlorine such as salt reacting with hydrocarbons in heavy oil to generate dioxins, and heavy metals vaporize at high temperatures and diffuse with exhaust gas.
[0007]
On the other hand, in the production method for obtaining the above-described solid carbon fuel, water-soluble substances such as salt and heavy metal in the carbide are dissolved at the time of wet pulverization, so that it is possible to obtain a solid fuel composed of the carbide from which they are removed. The fuel can be said to be safe with no adverse environmental effects caused by salt or trace amounts of heavy metals. However, since it is solid, it is inferior in handleability as a fuel as compared with a liquid one. Further, when the dehydrated carbide is solidified, if the dehydrated carbide is overheated and cooled, excess heat energy is consumed, and the production time is increased accordingly.
[0008]
An object of the present invention is to make it possible to obtain a high-calorie and clean liquid fuel at low cost under the above circumstances.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention first reduces the proportion of oil in the case of a high-calorie liquid fuel because the carbide has less oxygen atoms than flammable waste and has high heat generation. In view of this point, a liquid fuel in which the carbide is made into a slurry is obtained.
[0010]
Next, in order to make the carbides safe with little adverse effects on the environment, salt and the like that cause the adverse effects during fine pulverization are dissolved in water and removed. If the carbide is pulverized, salt and the like contained therein can be easily dissolved, and pulverized coal containing no harmful substances can be obtained.
[0011]
Further, if pulverized in water, that is, wet pulverized, the pulverizer becomes a pulverized coal slurry, and by dehydrating it, a liquid fuel having the required moisture can be obtained. In order to improve calories, the fuel is mixed with oil such as heavy oil or waste oil to obtain a liquid carbon fuel.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the manufacturing method of the present invention, combustible waste obtained by separating municipal waste and other general waste is carbonized, and the carbide is pulverized in water to form pulverized coal and contained in the carbide. The structure which removes the water-soluble substance which is removed, dehydrates the carbide slurry produced | generated by the grinding | pulverization in water to make wet pulverized coal, and mixes oil with the wet pulverized coal can be employ | adopted. At this time, it is preferable to add about 0.1 to 5% by weight of a dispersion stabilizer together with the oil.
[0013]
In this configuration, if the wet pulverized coal is pulverized even when the wet pulverized coal and oil are mixed, the pulverized coal in the fuel becomes finer and the dispersibility of the carbide is improved.
[0014]
The average particle size of the pulverized coal may be 100 μm or less, and the mixing ratio of the oil may be 70 to 150 parts by weight with respect to 100 parts by weight of the wet pulverized coal. As the liquid fuel, the pulverized coal preferably has an average particle size of 100 μm or less, more preferably 50 μm or less. The pulverization to 50 μm or less can be performed at the time of mixing with oil. Moreover, the mixing amount of the oil is preferably within the above range from the viewpoint of economy and calorie as fuel.
[0015]
As an embodiment of the manufacturing apparatus constituting the manufacturing method of each of the above embodiments, a carbonization furnace for carbonizing combustible waste obtained by separating municipal waste and other general waste, and a fine powder obtained by pulverizing the carbide in water A wet pulverizer that removes water-soluble substances contained in the carbides as well as charcoal, a dehydrator that separates the carbide slurry obtained by the pulverization into wet pulverized coal and wastewater, and the dehydrated wet pulverized coal The structure which consists of a mixer which mixes oil can be employ | adopted.
[0016]
In this configuration, in order to obtain pulverized coal having the required particle size described above, the pulverizer, the type of the mixer, the pulverization (mixing) time, and the like are appropriately selected.
[0017]
【Example】
One embodiment is shown in FIG. 1, in which 1 is a kiln type carbonization furnace, 2 is a combustion furnace that sends hot air f to the carbonization furnace 1, and 3 is a finely divided carbide a1 discharged from the carbonization furnace 1 in water. A wet pulverizer 4 for pulverizing, 4 is a dehydrator for separating the pulverized coal slurry a 3 produced by the wet pulverizer 3 into wet pulverized coal a 4 and water, and 5 is a wet pulverized coal a 4 , oil b and dispersion stabilizer. An agitator (mixer) for uniformly mixing c to produce liquid carbon fuel a 5 , 6 is a liquid carbon fuel storage tank. As the dispersion stabilizer, all commercially available CCOM (carbonized and oil mixed fuel) can be used, and representative examples include surfactants and ethyl alcohol.
[0018]
Combustible waste a is supplied to the carbonization furnace 1 by a supply machine 7, and the supply machine 7 is connected to a supply line 8 for nitrogen gas d so that the nitrogen gas d is supplied into the carbonization furnace 1. The inside of 1 is almost oxygen-free or low-oxygen atmosphere. Further, the carbonization furnace 1 is provided with an outer cylinder 9 that covers the outside, and a high-temperature gas (hot air) f is supplied to the outer cylinder 9 to indirectly heat the inside of the furnace 1. For this reason, since the inside of the furnace 1 is almost oxygen-free at a high temperature, the combustible waste a is pyrolyzed into gaseous pyrolysis gas e such as CO and hydrocarbon gas and solid carbide a 1 .
[0019]
At this time, the combustible waste a contains organic chloride such as vinyl chloride resin and inorganic chloride such as salt, and the organic chloride is decomposed into chlorine gas, hydrogen chloride gas, etc. The product remains in the carbide a 1 . Moreover, a wire, an electric cord (copper wire) or the like cannot be removed and may be mixed into the combustible waste a, and foreign matters such as a wire and a copper wire also remain in the carbide a 1 . In many cases, these foreign substances are entangled with the combustible waste a when subjected to the crushing action in the crushing process of the pretreatment.
[0020]
The combustible waste a supplied into the carbonization furnace 1 is subjected to the above-described thermal decomposition action and carbonized, and then receives the rotational action of the furnace 1 and moves to the discharge device 10 side composed of a screw conveyor. 1 falls from the discharge device 10 to the cooling water tank 11 below, and a gas such as pyrolysis gas e and nitrogen gas d is sent to the combustion furnace 2 from a nozzle provided in the middle of the discharge device 10. In the combustion furnace 2, the combustible gas in the gas is burned and becomes a high-temperature gas. Most of the high-temperature gas is used as a circulating gas f to the outer cylinder 9, and a part thereof is released into the atmosphere through an exhaust gas treatment device (not shown).
[0021]
The discharge device 10 and the cooling water tank 11 are connected by a chute 12. A connection port for the circulation pump 13 for circulating the slurry in the cooling water tank 11 and a connection port for the replenishing water W for the cooling water tank 11 are connected to the chute 12. Is provided. The carbide a 1 is cooled in the chute 12 by slurry and makeup water W, and after being mixed with the water W, falls into the cooling water tank 11. A mixture of the carbide a 1 and water at the bottom of the cooling water tank 11, that is, the carbide slurry a 2 is transferred to the wet pulverizer 3 by the screw conveyor 11 a.
[0022]
As shown in FIG. 2, the wet pulverizer 3 includes a liquid cyclone 13, a circulation line 14 that circulates the slurry a 2 in the cyclone 13, and a pulverization pump 15 provided in the middle of the circulation line 14. . A charging pipe 16 is provided at the center of the hydrocyclone 13, and the carbide slurry a 2 charged from the upper part is sucked into the crushing pump 15 from the lower part of the charging pipe 16, and the crushing action of the crushing pump 15 is performed. After receiving, it is returned to the top of the hydrocyclone 13. In this way, the carbide a 1 descends while swirling in the hydrocyclone 13 and is sucked into the crushing pump 15 again. By this circulation action, the crushing action of the crushing pump 15 is repeatedly received, and the average particle diameter is reduced. Becomes pulverized coal of 100 μm or less. Further, the foreign matter such as the above-mentioned wire is pulverized together with the carbide a 1 , and the entanglement between the two disappears, and the separated foreign matter has a large specific gravity, and thus settles in the lower part of the liquid cyclone 13. In addition to the above-described wires and copper wires, there are aluminum pieces, metal buttons, and the like as foreign matters, and these settled foreign matters i are discharged after the operation is completed.
[0023]
At this time, if the average particle size of the carbide a 1 is finely pulverized to 100 μm or less by the wet pulverizer 3, the pulverized coal can be dispersed almost uniformly in the liquid carbon fuel as the final product. In addition, since the carbide a 1 is pulverized to pulverized coal, inorganic salts such as salt are surely brought into contact with water and are almost completely dissolved in water. Similarly, soluble heavy metals also dissolve in water. In this way, the wet pulverizer 3 not only removes inorganic salts and soluble heavy metals by dissolving them in water, but if the particle size is suitable for dispersion, a fine pulverization step is not necessary in the subsequent step. Product production costs can be reduced. In the figure, 18 is a collision plate and 19 is a screen.
[0024]
In wet pulverizer 3, carbide a 1 is milled slurry a 3 that is ground to pulverized coal, overflows a wet pulverizer 3, once, after being stored in the storage tank 17 by the pump 17a, dehydrator Sent to 4. The dehydrator 4 is a centrifugal dehydrator or the like, whereby the pulverized coal slurry a 3 is separated into wet pulverized coal a 4 having a water content of 20 to 30% by weight and drainage. Since this waste water contains inorganic salts and soluble heavy metals, it is discharged out of the system after waste water treatment. On the other hand, the wet pulverized coal a 4 is transferred to the next stirrer (mixer) 5 where it is stirred and mixed together with the oil b and the dispersion stabilizer c and stored in the storage tank 6 as the liquid carbon fuel a 5 .
[0025]
FIG. 3 shows another wet pulverizer 30. This wet pulverizer 30 is also called a medium agitation mill, and a product to be pulverized is stirred together with the medium g to produce a fine pulverized product. It is suitable for. In the example shown in the figure, a hollow rotating shaft 32 is provided in a cylindrical container 31, and the carbide slurry a 2 is stirred and pulverized by a stirring paddle 33 attached to the outside of the rotating shaft 32. The carbide slurry a 2 is introduced from the top of the rotating shaft 32 and introduced into the bottom of the cylindrical container 31 from the inside of the hollow shaft 32, and after being subjected to sufficient stirring and pulverizing action, is discharged by overflow. In the figure, 34 is a baffle plate, 35 is a return blade, 36 is a pulley for driving the hollow shaft 32, and 37 is a bearing supported by the container 31 via an arm 38.
[0026]
The medium stirring mill 30 can also be used as the stirrer 5 used for mixing the wet pulverized coal a 4 and the oil b. In such a case, not only mere mixing, but also the pulverized coal a 4 is further pulverized, and the pulverized surface comes into contact with the oil b and the like, so that the familiarity with the oil b and the like is improved, and the average particle size is 50 μm or less. Dispersibility is improved by micronization. Desirably, if the average particle size is pulverized to about 10 to 30 μm, more preferably about 15 to 20 μm by the medium stirring mill 30, the dispersibility is improved.
[0027]
Since the liquid carbon fuel a 5 produced as described above uses wet pulverized coal a 4 having a moisture content of 20 to 30%, it contains 8 to 18% moisture. Generally, the liquid carbon fuel a 5 By containing 3 to 18% of water, thixotropy is improved and sedimentation of pulverized coal a 4 can be suppressed. Therefore, in this invention, the addition of water and, without drying the wet pulverized coal a 4, it is possible to make liquid carbon fuel a 5 moisture content of interest. The liquid carbon fuel a 5 can secure a calorie of 6500 kcal / kg or more, depending on the calorific value of the oil b used and the mixing ratio of the wet pulverized coal a 4 and the oil b.
[0028]
【The invention's effect】
Since the present invention has been described above, liquid carbon fuel can be obtained at low cost with clean carbides.
[Brief description of the drawings]
FIG. 1 is a schematic view of an embodiment of the present invention. FIG. 2 shows a wet pulverizer according to the embodiment, (a) is a schematic cut front view, and (b) is a plan view. Outline cut front view of other wet pulverizers [Explanation of symbols]
1 Carbonization furnace 2 Combustion furnace 3 Wet grinding machine 4 Dehydrator 5 Stirrer (mixer)
6 Storage tank 7 Supply machine 8 Nitrogen gas supply line 9 Outer cylinder 10 Discharge device 11 Cooling water tank 12 Circulation pump 13 Liquid cyclone 14 Circulation line 15 Grinding pump 16 Input pipe 30 Wet grinding machine (medium agitation mill)
33 Stirring paddle a Combustible waste a 1 Carbide a 2 Carbide slurry a 3 Pulverized coal slurry a 4 Wet pulverized coal a 5 Liquid carbon fuel b Oil c Dispersion stabilizer

Claims (6)

都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物aを炭化し、その炭化物a1 を水中で粉砕して、微粉炭とするとともに炭化物a1 に含まれている水溶性物質を除去し、その水中粉砕で生成された炭化物スラリーa3 を脱水して湿潤微粉炭a4 とし、その湿潤微粉炭a4 に油bを混合する可燃性廃棄物を用いた液状炭素燃料の製造方法。Combustible waste a obtained by separating municipal waste and other general waste is carbonized, and the carbide a 1 is pulverized in water to form pulverized coal and water-soluble substances contained in the carbide a 1 A method for producing a liquid carbon fuel using a combustible waste that is removed and dehydrated into a wet pulverized coal a 4 by dehydrating the carbide slurry a 3 produced by the pulverization in water and mixing the oil b with the wet pulverized coal a 4 . 請求項1において、上記湿潤微粉炭a4 と油bとの混合時にも前記湿潤微粉炭a4 を粉砕するようにしたことを特徴とする可燃性廃棄物を用いた液状炭素燃料の製造方法。In claim 1, the manufacturing method of the liquid carbon fuel using combustible waste, characterized in that even during mixing with the wet pulverized coal a 4 and oil b was set to grinding said wet pulverized coal a 4. 請求項1又は2において、上記微粉炭a4 の平均粒径が100μ以下となるように粉砕するとともに、上記油bの混合割合を、上記湿潤微粉炭a4 100重量部に対して70〜150重量部とすることを特徴とする可燃性廃棄物を用いた液状炭素燃料の製造方法。According to claim 1 or 2, with average particle size of the pulverized coal a 4 are milled so that less 100 microns, the mixing ratio of the oil b, with respect to the wet pulverized coal a 4 100 parts by weight of 70 to 150 The manufacturing method of the liquid carbon fuel using the combustible waste characterized by setting it as a weight part. 請求項3において、上記湿潤微粉炭a4 と油bとの混合時、前記湿潤微粉炭a4 を粉砕してその平均粒径が50μ以下となるようにしたことを特徴とする可燃性廃棄物を用いた液状炭素燃料の製造方法。The combustible waste according to claim 3, wherein, when the wet pulverized coal a 4 and the oil b are mixed, the wet pulverized coal a 4 is pulverized to have an average particle size of 50 µ or less. Of liquid carbon fuel using 請求項3又は4に記載の製造方法で得られた可燃性廃棄物を用いた液状炭素燃料。Liquid carbon fuel using the combustible waste obtained by the manufacturing method of Claim 3 or 4. 請求項1乃至4のいずれかの製造方法を行う装置であって、都市ごみ等の一般廃棄物を分別して得られた可燃性廃棄物aを炭化する炭化炉1と、その炭化物a1 を水中で粉砕して微粉炭にするとともに炭化物a1 に含まれている水溶性物質を除去する湿式粉砕機3と、その粉砕により得られた炭化物スラリーa3 を湿潤微粉炭a4 と排水に分離する脱水機4と、その脱水された湿潤微粉炭a4 に油bを混合する混合機5とから成る可燃性廃棄物を用いた液状炭素燃料の製造装置。An apparatus for performing a method of making any of claims 1 to 4, the carbonization furnace 1, the carbide a 1 water to carbonize the combustible waste a obtained by fractionating general wastes such as municipal waste To pulverize the pulverized coal and remove the water-soluble substances contained in the carbide a 1 , and the pulverized carbide slurry a 3 is separated into wet pulverized coal a 4 and waste water. An apparatus for producing liquid carbon fuel using combustible waste, comprising a dehydrator 4 and a mixer 5 for mixing the dehydrated wet pulverized coal a 4 with oil b.
JP2000168580A 2000-06-06 2000-06-06 LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE Expired - Fee Related JP3691352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168580A JP3691352B2 (en) 2000-06-06 2000-06-06 LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168580A JP3691352B2 (en) 2000-06-06 2000-06-06 LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE

Publications (2)

Publication Number Publication Date
JP2001348582A JP2001348582A (en) 2001-12-18
JP3691352B2 true JP3691352B2 (en) 2005-09-07

Family

ID=18671566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168580A Expired - Fee Related JP3691352B2 (en) 2000-06-06 2000-06-06 LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE

Country Status (1)

Country Link
JP (1) JP3691352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571562B (en) * 2013-11-10 2018-05-11 钱刚 Straw elemental carbon prepares the production method of automotive fuel
KR102482675B1 (en) * 2020-11-06 2023-01-02 한국에너지기술연구원 Waste plastic pyrolysis system with auxiliary heat sources

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223896A (en) * 1984-04-21 1985-11-08 Yoshinari Shimada Fuel mixture of coal powder and heavy fuel oil
JPH10130663A (en) * 1996-10-25 1998-05-19 Yamada Emi Production of liquid carbon fuel and apparatus therefor
JP3501925B2 (en) * 1997-08-28 2004-03-02 株式会社栗本鐵工所 Method for producing carbide from waste solid fuel
JP3506893B2 (en) * 1997-12-26 2004-03-15 株式会社栗本鐵工所 Method for producing carbide from waste solid fuel
JP3530001B2 (en) * 1998-01-20 2004-05-24 株式会社栗本鐵工所 Method and apparatus for producing char from combustible waste
JP3436502B2 (en) * 1999-03-04 2003-08-11 株式会社栗本鐵工所 Wet crusher

Also Published As

Publication number Publication date
JP2001348582A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
US8049049B2 (en) Method of upgrading biomass, upgraded biomass, biomass water slurry and method of producing same, upgraded biomass gas, and method of gasifying biomass
AU2011269715B2 (en) Method of and system for grinding pyrolysis of particulate carbonaceous feedstock
JP2005139342A (en) Method and apparatus for producing solid fuel by using low grade coal as raw material
WO2010109798A1 (en) Gasification system and gasification process
JP2011111511A (en) Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system
JP3916179B2 (en) High temperature gasification method and apparatus for waste
CN109337704A (en) It reduces the method for oily sludge pyrolysis residue oil content and implements its system
JP3691352B2 (en) LIQUID CARBON FUEL USING FLAMMABLE WASTE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
KR100961981B1 (en) Manufacturing method of ash-free coal by thermal extraction of solvent and apparatus thereof
JP2008163280A (en) Method and apparatus for treating chlorine-containing organic waste
JP5582685B2 (en) Solid fuel and method for producing solid fuel
JP2008169459A (en) Method and device for recovering metal raw material from metal cut waste
JP3530001B2 (en) Method and apparatus for producing char from combustible waste
JP6172532B2 (en) Low molecular weight treatment of organic substances and waste treatment method
JP3986335B2 (en) High quality fuel production apparatus and production method from organic waste
JP4329865B1 (en) Method for producing inorganic particles
CN209383708U (en) Implement the system for reducing the method for oily sludge pyrolysis residue oil content
JPH09316467A (en) Improvement of slurry produced by reaction
JPS6144995A (en) Method for gasification, combustion and dry distillation of coal liquefaction residue and oil-containing sludge
JP3609953B2 (en) Equipment for producing carbonized objects from combustible waste
JP4397424B1 (en) Gasification method
JP2003327978A (en) Method for treating waste plastic, apparatus therefor, power generation equipment and liquid fuel
JPS5956490A (en) Coal gasification
JP2917022B2 (en) Fluidization method
JP4397423B1 (en) Gasification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees