JP3690680B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP3690680B2
JP3690680B2 JP2002522346A JP2002522346A JP3690680B2 JP 3690680 B2 JP3690680 B2 JP 3690680B2 JP 2002522346 A JP2002522346 A JP 2002522346A JP 2002522346 A JP2002522346 A JP 2002522346A JP 3690680 B2 JP3690680 B2 JP 3690680B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
melt
furnace structure
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002522346A
Other languages
Japanese (ja)
Inventor
将 園川
徹 石塚
隆弘 柳町
幸司 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Application granted granted Critical
Publication of JP3690680B2 publication Critical patent/JP3690680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal

Description

技術分野
本発明は、半導体単結晶の製造方法に関し、より詳しくはルツボに収容された融液に種結晶を浸漬し引上げることによって種結晶の下方に単結晶を成長するチョクラルスキー法(Czochralski Method、CZ法)を用いたシリコン単結晶の製造方法に関する。
背景技術
CZ法を用いてシリコン単結晶を育成する方法は、原料となる多結晶シリコンを石英製のルツボに入れ製造装置炉内で1400℃以上の高温に加熱し融液とした後に、融液表面に種結晶を着液させ、この種結晶を回転させながら静かに引上げることによってその下方に単結晶を育成するものである。
しかし、種結晶には高温の融液に着液した際に融液との温度差で生じる熱衝撃により高密度にスリップ転位が導入されるため、種結晶の下方に単結晶を育成するにはこのスリップ転位を除去する操作が必要となる。
そこで、種結晶を融液に着液し温度が安定したら、種結晶を引上げつつ先端に育成される結晶の径を5mm程度以下まで細くして、結晶からスリップ転位が除去されるまではその状態で結晶育成を行ない、それ以降の育成される結晶に種結晶着液時に生じたスリップ転位がおよばないようにしている。この工程を絞り工程と言い、この時形成された単結晶部分を絞り部と称する。
通常、種結晶を融液に着液させた際に導入されたスリップ転位は、結晶径を5mm以下とした状態で5〜20cm程度引上げれば消滅し、それ以降はスリップ転位を排除した単結晶を育成することができる。スリップ転位が消滅した後は、育成される結晶径を徐々に大きくして行き所望の結晶径となるまで径を広げる拡大工程を経て、所望の工程となったところで径拡大を止め、以降、略一定の直径で単結晶の育成を行う直胴工程に移り、所望の結晶直径を持った単結晶棒を育成していく。拡径工程で形成された単結晶部位を拡径部と言い、拡径工程の後、略一定の直径で引上げられた部分を直胴部あるいは定径部と呼んでいる。この定径部が半導体ウエーハに加工され、半導体素子を形成するための基板材料となる。
また最近では、特開平4−104988号公報に示されるような、絞り部を形成することなく単結晶を引上げる方法も用いられている。絞り工程を行わずに単結晶を育成するには、種結晶の先端の尖ったあるいは尖った先端を切り取った形の円錐または角錐状の種結晶を用いることによって行われる。
このような種結晶を用いれば、種結晶先端を原料融液に着液した際に生じる熱衝撃によりスリップ転位がもたらされること無く、あるいは例え種結晶にスリップ転位がもたらされたとしても軽微であり、種結晶先端が所望の径まで融液に浸漬される間に消滅してしまい、所望の径まで種結晶を浸漬した後は転位が無くなっているので絞り部を形成する必要がなく、直ちに結晶直径の拡大を図る拡径部を形成する工程に移行することができる。
この絞り部を形成することなく単結晶を引上げる方法では、絞りを行わない、即ち種結晶の先端に形成される結晶を一端細くする必要がなく、種結晶の先端部を所望の太さまで浸漬したら、その後、直ちに結晶直径を所望の径まで広げる拡径工程へ移行できる点に特徴がある。
最近のシリコン単結晶の製造においては、生産性の向上を目指し大直径長尺の単結晶育成が行われており、引上げられる結晶の重量は200kg以上にも達している。このような高重量結晶をCZ法により育成するためには、絞り部の強度が重要な問題となる。種結晶からもたらされるスリップ転位を消滅させるために直径が5mm以下となる絞り部を形成し、その下方に200kgを超える高重量結晶を育成することは絞り部の強度から考えても限界近くに達しており、更なる大直径長尺単結晶ウエーハを効率良く生産する為に、新たな単結晶の育成方法が必要とされていた。この課題を解決する手段の一つとして、絞り部を作らないで単結晶を育成する技術が検討、実用化されている。
しかし、絞りを行い単結晶を製造する方法でも、絞り部を形成することなく単結晶を製造する方法でも、問題となるのはスリップ転位を確実に除去あるいはスリップ転位を導入することなく所望の単結晶を育成できるかどうか、即ち、その成功率である。
絞り部を形成し単結晶を育成する方法では、絞り部の直径を5mm以下程度まで一旦細くしてスリップ転位を抜く必要があることから、絞り部径が最小となる絞り込み部の径が太いと、スリップ転位を除去できずにスリップ転位が直胴部にまで導入され、製品となる単結晶が育成することができなくなってしまう。その一方で、絞込み部の径を必要以上に細くすると融液の温度変動により適切に形状を保つことができず、絞り部形成の途中で結晶が融液から離れてしまい単結晶を育成することが不可能となる。
単結晶の育成工程で絞り部形成に失敗した場合は、再度、種結晶先端を融液に浸漬し絞り工程を最初からやり直せば良いが、単結晶の生産性や作業性を考えると一回でスリップ転位を除去し絞り工程を終えることが望ましい。特に、絞り工程をやり直すと、一回の失敗で1時間以上余計に工程時間をロスする等により、高温下での原料融液を満たした石英製ルツボの劣化を促進し耐久性を弱め、育成途中で結晶が有転位化する等の結晶成長を疎外する要因を誘導することにもなる。また、絞り工程をやり直すことは、一旦形成された種結晶先端の絞り部を溶かし、原料融液温度を調整した後に再び種結晶先端を融液に浸漬する等の工程が新たに加わるため作業者にとっても負担になる。
このような理由から、絞り部を形成し単結晶育成を行なう方法においては、スリップ転位を確実に除去し、所望の直径を持った絞り部を失敗することなく一回で形成できる、あるいは失敗する回数が可能な限り少ないことが望まれる。
一方、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用いて種結晶の先端部を所望の径となるまで浸漬した後、絞り部を形成することなく径を拡大して単結晶を育成する方法においても、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を所望の直径となるまで溶かし込む間に、スリップ転位が種結晶に導入されないことが望まれる。特に、先端部の尖ったあるいは尖った先端を切り取った形の特殊な形状の種結晶を用いる方法では、種結晶を原料融液中に浸漬すると同時に融液に接した部分から溶解してしまうので、種結晶の浸漬に失敗し、種結晶の着液時あるいは溶かし込みの途中でスリップ転位が種結晶にもたらされた場合には、再び同じ種結晶を用いて単結晶育成をやり直すことは不可能となる。このような特殊な形状を持った種結晶を用いる単結晶育成においては、一回の溶かし込み操作で転位が導入されることなく所望の直径まで種結晶を浸漬することが必須となる。
仮に、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を所望の太さとなるまで融液に浸漬した後に種結晶にスリップ転位がもたらされていた場合には、種結晶を単結晶育成炉から取り出して新しい種結晶と交換し、再び融液に種結晶を溶かし込み直す必要がある。しかし、種結晶を新しい物に交換する操作は、不活性ガスで満たされた高温の単結晶育成炉から種結晶を取り出し新しい種結晶に交換して再び炉内に戻す操作が必要となるため作業は複雑で、種結晶を融液に浸漬できる状態に炉内環境を整えるのにも時間を必要とする作業となる為に、絞り部を形成しないで単結晶を育成する方法においては、種結晶の溶かし込みに失敗すると、作業負担を増大し極端に生産性を落とす結果となることから、一回で種結晶の沈み込みを成功させることが単結晶育成の生産性や歩留りをあげる上で重要な課題となっている。
一方、最近のCZ法によるシリコン単結晶の育成においては、結晶内に存在する欠陥を所望の値にコントロールした高品質結晶を得る、あるいは育成された結晶の冷却速度を速め高速で単結晶を育成し生産性の向上を図る等の為に、ルツボに収容した原料融液の上方に育成された単結晶を囲繞するようにガス整流筒や遮熱スクリーン等の上部炉内構造物を配置して、結晶の熱履歴を所望の値に保ちながら単結晶を育成する方法が広く用いられている。
特に、シリコン単結晶育成の熱履歴に起因して発生する、いわゆるグローンイン欠陥が低減されたあるいは完全に排除されたシリコン単結晶の育成においては、熱履歴改善のために上部炉内構造物とシリコン融液面との間隔を比較的広めにする必要がある。通常、上部炉内構造物とシリコン融液面との距離は10mmから30mm程度であるが、低欠陥あるいは無欠陥結晶を育成する時にはこの距離が50mmから150mm程度に広げられる。しかしながら、このようにしてシリコン単結晶を育成する場合には、前記した絞り部の形成の成功率や種結晶溶かし込みの成功率が低下する問題があった。
発明の開示
本発明はこのような問題に鑑みて成されたものであり、CZ法を用いてシリコン単結晶を育成するにあたり、種結晶を原料融液に浸漬した後に種結晶を静かに引上げながら絞り部を形成し単結晶を育成する方法では、絞り部形成時に絞り径を所望の値に安定させ必要な直径をもつ絞りを形成するあるいは絞り部が融液から離れる絞り切れを無くし、スリップ転位を結晶から確実に消滅させて絞り部の下方に無転位の単結晶棒を育成することができる絞り部形成の成功率を高め、また先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用いて種結晶の先端部を所望の径となるまで浸漬した後、絞り部を形成することなく単結晶を育成する方法においては、種結晶を原料融液に溶かし込みを行う際に種結晶にスリップ転位がもたらされることなく種結晶を所望の径まで浸漬できる種結晶溶かし込みの成功率を向上させ、さらに単結晶定径部の育成時に上部炉内構造物とシリコン融液面との間隔を所望の広さとすることによって定径部が低欠陥あるいは無欠陥の単結晶を容易に得ることができるようにしたシリコン単結晶の製造方法を提供することを目的とする。
上記の課題を解決する為に、本発明のシリコン単結晶の製造方法の第1の態様は、単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、製造装置炉内のルツボに収容されたシリコン融液に種結晶を浸漬した後に種結晶を引上げながら絞り部を形成し、その後径を拡大して単結晶を育成するチョクラルスキー法によるシリコン単結晶の製造方法において、少なくとも種結晶を融液に着液させてから絞り部の形成が終了するまでの間は、上部炉内構造物の下端とシリコン融液面間の距離が5mm以上100mm以下となる位置に上部炉内構造物あるいは原料融液を収容したルツボを配置し、絞り部の形成が終了した以降に上部炉内構造物とシリコン融液面間の距離を徐々に広げ、単結晶定径部を形成するのに適した位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成することを特徴とする。なお、以下の記述において上記上部炉内構造物とシリコン融液面間の距離は隙間又は間隔として説明することがある。
CZ法を用いてシリコン単結晶を育成するにあたり、種結晶を原料融液に浸漬し静かに融液から単結晶を引上げ絞り部を形成する際に、単結晶育成炉内の融液真上に配設されたガス整流筒や遮熱スクリーン等の円筒あるいは円錐状の上部炉内構造物を融液面に近づけて絞り部を形成し、絞り部形成が終了した後に単結晶育成に適した位置に配置すれば、絞り部育成時においては絞り部の径が安定し絞り部形成途中で絞り部が融液から離れる絞り切れが生じる可能性も少なく、また、安定した絞り部径が得られることで、絞り部からスリップ転位を消滅させるのに必要な絞り部径まで絞り部を細くする絞り込み部形成が容易となり、スリップ転位の除去をより確実なものとすることができる。そして、単結晶定径部の育成時には上部炉内構造物とシリコン融液面間の距離を所望の広さとすることができるので、定径部が低欠陥あるいは無欠陥の単結晶を得ることができる。
そして、これら上部炉内構造物をシリコン単結晶の原料である多結晶シリコン融解時等には作業の妨げとならないよう、単結晶育成に関係しない作業では特許第2640683号に示すような装置構造とすることで上部炉内構造物を上下動可能とし育成炉上方に収容する装置も知られている。これらの機構や装置を用いることによってより容易に本発明を実行することが可能である。
また、融液面真上に配置された整流筒や遮熱スクリーン等の上部炉内構造物を移動するような装置を用いることなく本発明を達成することも可能である。
現在、単結晶育成に用いられている製造装置には、多結晶シリコンを効率的に溶解することや、単結晶定径部の育成にあたり融液面を一定にして精度よく定径部を形成し、原料融液から得られる単結晶の収率向上を図る、あるいは単結晶を半導体ウエーハに加工する際の研削ロスを減らすこと等を目的に、原料融液を満たしたルツボを上下動可能な機構が付加されている。この機構を利用することにより、上部炉内構造物とルツボに満たされた原料融液面との間を調整して必要とする位置関係にすれば、複雑な装置構成とすることなく本発明を利用することができる。
このような装置や方法を用いることにより、融液上方に配置された炉内構造物あるいはルツボを上下動可能とし、種結晶を融液に浸漬した後に絞り部を形成する時には、上部炉内構造物と原料融液面の間の距離が5〜100mm、好ましくは5〜50mm、より好ましくは10〜25mmの範囲となる位置に上部炉内構造物あるいはルツボを配置して絞り部の形成を行うのがよい。
原料融液面と上部炉内構造物の隙間を5mm以上100mm以下の範囲に設定して絞り部の形成を行えば、80%以上の高い確率でスリップ転位を除去し絞り部の下方に無転位の単結晶を育成することができる。また、隙間を25mm以下に設定して絞り部を形成すれば、略確実に無転位化を成功させることが可能となる。なお、絞り部形成工程中に絞り部の育成状態を観察したり、炉内構造物上方から下流する不活性ガス等を考えれば、炉内構造物と融液面は最低でも10mm程度の隙間を保っておくのが好ましいものである。
そして、本発明のシリコン単結晶の製造方法の第2の態様は、単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、製造装置炉内のルツボに収容されたシリコン融液に先端部の尖ったあるいは尖った先端を切り取った形状を有する種結晶を用いて種結晶の先端部を所望の径となるまで浸漬した後に、絞り部を形成することなく径を拡大して単結晶を育成するチョクラルスキー法によるシリコン単結晶の製造方法において、少なくとも種結晶を融液に着液させてから該種結晶先端の融液と接している部分の径が所望の径となるまで浸漬を行っている間は、上部炉内構造物の下端とシリコン融液面間の距離を5mm以上100mm以下となるように上部炉内構造物あるいは原料融液を収容したルツボを配置し、種結晶の浸漬が完了した以降に上部炉内構造物とシリコン融液面間の距離を徐々に広げ、単結晶定径部を形成するのに適した位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成することを特徴とする。
CZ法を用いたシリコン単結晶の育成において、先端部の尖ったあるいは尖った先端を切り取った形状を有する種結晶を用いて種結晶の先端部を所望の径となるまで浸漬した後に絞り部を形成することなくシリコン単結晶を育成する方法であっても、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を所望の径となるまで原料融液に浸漬するまでの間は、整流筒や遮熱スクリーン等の上部炉内構造物と原料融液面の間の距離が5〜100mm、好ましくは5〜50mm、より好ましくは10〜25mmの範囲となる位置に上部炉内構造物あるいはルツボを配置して種結晶の溶かし込み操作を行うのが好ましい。
先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用いて絞りを作ることなく単結晶を育成する方法の場合は、種結晶原料融液面と上部炉内構造物の隙間を5mm以上100mm以下の範囲に設定して尖ったあるいは尖った先端を切り取った形状の種結晶先端を原料融液へ溶かし込めば、50%程度以上の高い確率で種結晶にスリップ転位が導入されることなく溶かし込みを行うことが可能である。更には、隙間を25mm以下に設定して種結晶の溶かし込みを行えば、より略確実に転位を導入することなく溶かし込みを成功させることができる。なお、絞り部を形成して単結晶を育成する方法と同じ理由から、炉内構造物と融液面は最低でも10mm程度の隙間を保っておくのが好適である。
そして、絞り部を形成した後に結晶径を拡径して所望の直径を有する単結晶を育成する方法でも、また、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用いて絞り部を形成することなく所望の直径を有する単結晶を育成する方法であっても、種結晶を原料融液に浸漬する時、あるいはそれ以前の多結晶シリコン原料の溶融終了直後から原料融液面の間の距離が5〜100mm、好ましくは5〜50mm、より好ましくは10〜25mmとなる間隔に配置しておいた上部炉内構造物あるいは融液を満たしたルツボを単結晶定径部の育成条件に適した位置に移動するタイミングは、結晶径を拡大する工程である拡径部の形成を行っている間に上部炉内構造物あるいはルツボを所望の位置に移動させるのが最適である。
このように単結晶育成工程の中で、拡径部を形成している間を利用して上部炉内構造物あるいはルツボを単結晶の定径部を育成するのに適した位置まで移動させておけば、単結晶の拡径部形成から定径部形成に移行した直後には、上部炉内構造物あるいは融液を満たしたルツボは定径部の育成に適した位置にあることになり、半導体ウエーハとなる定径部の育成開始直後から所望の品質を有する単結晶定径部を形成することが可能となる。これにより、育成した定径部全長にわたって安定した品質の単結晶が得られるため歩留りも向上する。
なお、炉内構造物あるいはルツボを定径部形成に適した位置に移動するにあたっては、絞り部形成後または先端部の尖ったあるいは尖った先端を切り取った形状の種結晶の溶かし込み終了後から徐々に上部炉内構造物またはルツボを移動させ、拡径部の形成が終了する前あたりで炉内構造物またはルツボが定径部を形成するのに適した位置に配置されるように静かに移動させるのがよい。
単結晶拡径部の形成途中で炉内構造物あるいはルツボを急いで移動させると、育成炉内の環境が急激に変わることで原料融液の温度や対流が不安定となり、結晶の異常成長や熱衝撃によりスリップ転位の発生を招くことになる。また、ルツボを移動させる場合は、結晶の成長速度に合わせてルツボを移動させないと結晶が融液から切り離され結晶育成が中断することになる。
以下、本発明の技術的思想について更に詳しく説明する。
単結晶育成炉内の融液真上に配置されたガス整流筒や遮熱スクリーン等の円筒あるいは円錐状をした上部炉内構造物は、原料融液から引上げられた単結晶が冷却される時の熱履歴を所望の値に調整することを目的として配置されている。この上部炉内構造物の形状や材質を色々と変えることにより、結晶を保温して結晶中の欠陥を抑制したり、あるいは融液からの輻射熱を遮断して結晶冷却速度を高め結晶を高速で引上げる等の効果を得ているものである。
しかし、その一方で原料融液の真上に配置された上部炉内構造物は、原料融液の熱対流を制御する役割も担っている。
ルツボ内の原料融液は、ルツボの周囲に配設されたヒータからの加熱により絶えず熱対流を生じている。そして、ヒータの加熱により原料融液に与えられた熱はこの熱対流によって融液表層まで運ばれ、その一部を融液表面からの輻射によって外部へと放散する。この時、原料融液面の真上に融液からの熱輻射を抑える構造物が配置されていると、融液表面からの熱輻射が小さくなり融液内の温度バラツキ抑制され熱対流を安定させることができる。
融液の熱輻射を抑える効果は、同じ断熱効果を持つ炉内構造物であれば融液表面との距離が小さい程その効果は大きく効率的に熱輻射を抑え融液対流を安定させられるものである。そして、融液表面から離れるに従ってその効果はしだいに小さなものとなる。
CZ法により単結晶を育成する場合には、結晶成長界面近傍での融液温度を安定させることが重要なポイントとなる。結晶育成時に結晶成長界面近傍の温度が安定していないと、育成途中で結晶に変化が生じたりあるいは融液温度の急激な変化によりスリップ転位が結晶にもたらされる等の問題が起こる。特に、種結晶を融液に着液させた後に絞り部を形成する時や、あるいは先端部の尖ったあるいは尖った先端を切り取った形状の種結晶の溶かし込みを行っている作業の時には、この融液の温度変動の影響を受けやすい。これは単結晶の定径部育成時に比べ結晶径が細く原料融液の表面が大きく露出しているためであり、これによって融液表面から逃げる熱量も多くなり、結果、融液温度にバラツキが出て結晶と融液が接している付近の融液温度が安定しなくなる為と考えられている。
不安定な融液温度状態で、種結晶を融液に浸漬し絞り部の形成を行った場合には、結晶の形状が安定せず結晶からスリップ転位を消滅させるのに必要な太さまで結晶径を細くすることが難しくなるばかりか、スリップ転位が消滅し難くなり絞り工程の時間が必要以上に長くなったり、あるいは融液から結晶が離れてしまい結晶の育成が中断してしまう等の不具合が生じる。また、先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用いて絞り部を形成することなく単結晶を育成する方法においては、温度が安定しないことにより種結晶の溶かし込み部周辺で再結晶化が起こりこれが原因となって種結晶にスリップ転位が導入され無転位で結晶を引上げることができなくなる等の問題が出る。
特に、200mmを超える大直径高重量結晶の生産にあたっては、直径が50cm以上の大口径石英ルツボを用いて単結晶を引上げるのが一般的であり、ルツボ周囲に配置されたヒータと種結晶を原料融液に着液させた時の着液部の距離は広がる一方で、ルツボに収容された融液温度の変動は益々大きくなる傾向にあった。その為、このような大口径ルツボを用いた単結晶の生産では、絞り部を形成して単結晶を育成する場合、または種結晶先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を融液に溶かし込む際の融液温度の安定が必要であり、本発明の方法を用いることによって絞り部形成時あるいは種結晶先端部の溶かし込み時に結晶周辺の温度安定を図ることが容易に可能となったものである。
一方、シリコン単結晶育成の熱履歴に起因して発生する、いわゆるグローンイン欠陥が低減されたあるいは完全に排除されたシリコン単結晶の育成においては、熱履歴改善のために上部炉内構造物とシリコン融液面との間隔を比較的広めにする必要がある。通常、上部炉内構造物とシリコン融液面との距離は10mmから30mm程度であるが、低欠陥あるいは無欠陥結晶を育成する時にはこの距離が50mmから150mm程度に広げられる。しかしながら、このようにしてシリコン単結晶を育成する場合には、前記した絞り部の形成の成功率や種結晶溶かし込みの成功率が低下する問題があった。本発明方法によれば、絞り部の形成の成功率や種結晶溶かし込みの成功率を向上させることができる他、単結晶定径部の育成時に上部炉内構造物とシリコン融液面間の距離を所望の広さとすることができるので、定径部が低欠陥あるいは無欠陥の単結晶を容易に得ることができる。定径部が低欠陥あるいは無欠陥の単結晶を育成する場合に、育成する単結晶の直径が大きくなるほどこの上部炉内構造物とシリコン融液面間の距離を広げる必要があり、この点においても本発明の有効性がある。
【図面の簡単な説明】
図1は、本発明方法を実施するための単結晶装置の一例を示す断面概略図である。
図2は、本発明方法を実施するための単結晶装置の他の例を示す断面概略図である。
図3は、実験例1における融液面と上部炉内構造物の距離と無転位化成功率との関係を示すグラフである。
図4は、実験例2における融液面と上部炉内構造物の距離と無転位化成功率との関係を示すグラフである。
発明を実施するための最良の形態
以下に本発明の実施の形態を添付図面を参照しながらCZ法によるシリコン単結晶の育成例をあげて説明するが、本発明はこれらにのみ限定されるものではない。例えば、本発明の単結晶の育成方法は、原料融液に磁場を印加しながら単結晶を育成するMCZ法を用いた単結晶製造でも当然利用することは可能である。
図1は、本発明方法を実施するための単結晶製造装置の一例を示す断面概略図である。図1において単結晶製造装置12は、育成炉本体14と上部育成炉21を有しており、育成炉本体14内部の中央にはルツボ支持軸15を軸として、内側を石英製で外側を黒鉛製で構成されたルツボCがルツボ支持軸15の下端に取り付けられたルツボ駆動機構16により回転動可能かつ上下動可能に配置されている。ルツボCにはシリコン単結晶を育成するための原料となる原料融液(シリコン融液)Mが収容されており、この原料融液Mの上方には育成された結晶を囲繞するように、円筒状ないしはその下端部が狭められた円錐状の上部炉内構造物17が設けられている。図1の例では、上部炉内構造物17として円筒状の不活性ガス整流筒を装備した単結晶製造装置を示したものである。
また、ルツボCの外側にはルツボCを取り囲むように黒鉛製の加熱ヒータ18が配置され、このヒータ18を発熱させることでルツボC内に仕込まれた多結晶シリコン原料を溶解し、得られたシリコン融液Mから単結晶Sを引上げるものである。更に、加熱ヒータ18と育成炉本体14の間には断熱材20が設けられ、育成炉壁の保護と炉内を保温する役目を果たしている。
上部育成炉21の上部には育成した単結晶Sを引上げる為のワイヤー23を巻き取るあるいは巻き出すためのワイヤー巻き取り機構25があり、結晶育成時にはルツボCと反対方向にワイヤー23を回転させながら静かに巻き取ることによって、種結晶28の下方に結晶の成長を図る。ワイヤー23の先端には種結晶28を保持する為の種ホルダー26が取り付けられ、種結晶28はこの種ホルダー26によってワイヤー23と係合されている。
そして、単結晶Sを育成するにあたっては育成炉本体14内をAr(アルゴン)等の不活性ガスで満たし炉内の圧力を所望の値に調整して育成作業を行うため、育成炉外には不活性ガスの流量と炉内圧力を調整するガス量制御装置30とコンダクタンスバルブ32が装備されており、これによって育成炉内の不活性ガス圧力と流量を育成条件に合わせ適宜調整可能としている。
この単結晶製造装置を用いてシリコン単結晶Sを育成するには、まず多結晶シリコン原料を育成炉本体14内のルツボCに充填し炉内を不活性ガスで満たした後に、炉内に流す不活性ガスの量と圧力を調整しながらヒータ18を加熱して多結晶シリコン原料を融解する。多結晶シリコン原料が完全に融解したら、原料融液Mを満たしたルツボCを上下動させ種結晶28を融液に着液させるのに適した位置、即ち上部炉内構造物17と原料融液面M1の距離(隙間又は間隔)dが絞り部S1を形成して単結晶Sを育成する方法では絞り部S1の形成に適した間隔に、種結晶先端部の尖ったあるいは尖った先端を切り取った形状の種結晶28を用いて絞り部S1を形成せず単結晶Sを育成する方法では、種結晶28を溶かし込むのに適切となるような位置にルツボを移動させ、上部炉内構造物17による保温効果が十分得られるようにする。その為には、上部炉内構造物17と融液面M1の距離dを5〜100mm、好ましくは5〜50mm、より好ましくは10〜25mmとなるようにルツボ位置の位置決めを行えばよい。なお、図1において、S1は絞り部又は尖った種結晶の先端部、S2は単結晶の拡径部、S3は単結晶の定径部である。
また、図1の例では、ルツボ駆動機構16によりルツボC高さを調整し上部炉内構造物17と融液面M1位置との間隔dが所望の値となるよう調整したが、その他の手段によって上記間隔dを調整することも可能であり、図2を用いて説明する。図2は本発明方法を実施するための単結晶製造装置の他の例を示す断面概略図である。図2において、図1と同一または類似部材は同一の符号を用いて示されている。
図2において、34は上部炉内構造物17を上下動させるための上部炉内構造物昇降機構で、該上部炉内構造物17に接続された構造物昇降ワイヤー36及び構造物昇降ワイヤー36を巻き取るためのワイヤー巻き取りドラム38を有している。この上部炉内構造物昇降機構34を操作することによって上部炉内構造物17を自在に上下動することができ、したがって、上部炉内構造物17と融液面M1位置との距離dを自在に調整して所望の最適値に設定することができる。
どのような方法によって上部炉内構造物17と融液面M1位置の距離dを所望の値に保つかは、単結晶育成に使用する装置の構造や育成条件に合わせて種々選択されるべきものである。
距離dが所望の値に設定されたら、原料融液Mの温度を種結晶28を着液させるのに適した温度まで降温し、融液温度が十分に低下安定したらワイヤー23を巻き出して種結晶28を融液表面M1近くまで降下させて種結晶28を加温する。この操作は、種結晶28を加温することにより種結晶28を融液Mに着液した際に融液Mとの温度差によりもたらされる種結晶28への熱衝撃を小さくし、熱衝撃によって種結晶28に生じるスリップ転位を抑制するために行う作業である。
種結晶28の温度が融液温度近くまで上昇したら、再度種結晶28を下降させ種結晶28先端部を融液Mに静かに着液させる。
その後、絞り部S1を形成して単結晶Sを育成する方法では、次の▲1▼〜▲6▼の操作が行われる。
▲1▼種結晶28を回転させながらワイヤー23を静かに巻き取ることによって種結晶28の下方に単結晶Sを育成させる。
▲2▼この時、種結晶28を融液Mに着液した際に融液Mとの温度差によりもたらされたスリップ転位を結晶から除去するために、種結晶28の径を5mm以下程度まで充分に細くして長さが5〜20cm程度の絞り部S1を形成する。
▲3▼絞り部S1を形成することにより結晶からスリップ転位が除去されたら、結晶の引上げ速度および/または融液温度を所望の値に操作して単結晶拡径部S2の形成に移る。
▲4▼拡径部S2を形成する工程では、育成する単結晶Sの直径を徐々に拡大するとともに、融液Mと上部炉内構造物17の位置関係を単結晶定径部S3の形成に適した位置とするため、単結晶Sの成長に合わせて静かにルツボCを所定位置まで降下させて行く。
なお、図2に示した上部炉内構造物17を上下動させるための昇降機構34を備えた装置であれば、ルツボCを下降させるのに替えて上部炉内構造物17を昇降機構34により上方に移動させればよい。
▲5▼拡径部S2の径が必要とする定径部S3の径と同じになったら単結晶の拡径を終了し、再び融液温度および/または引上げ速度を所望の値に調整して、単結晶定径部S3の育成工程に移行する。
この時、拡径部S2の形成が終了する少し前にルツボCあるいは上部炉内構造物昇降機構34がある装置では上部炉内構造物17の移動を完了させ、単結晶Sの育成が定径部S3形成工程に移行する前に、単結晶Sの定径部S3形成に適した位置にルツボCあるいは上部炉内構造物17が配置されるようにそれぞれの移動を行うのが望ましい。
▲6▼定径部S3が所定の長さに達したら、結晶の直径を徐々に縮径して結晶を原料融液Mから切り離す。その後、単結晶Sが上部育成炉21で常温近くまで放冷したら製造装置から結晶を取り出して育成を終了する。
一方、種結晶28先端部の尖ったあるいは尖った先端を切り取った形状の種結晶28を用いて絞り部を形成せず単結晶Sを育成する方法では、次の(1)〜(5)の操作が行われる。
(1)種結晶28先端が融液Mに着液した後も、種結晶28先端の融液Mと接している部分の径が所望の値になるまで種結晶28の原料融液Mへの溶かし込みを継続する。
(2)種結晶28の先端が所望位置まで沈み込んだら種結晶28の降下を止め溶かし込みを終了し、引上げ速度および/または融液温度を調整してワイヤー23を巻き取り拡径部S2の形成工程に移る。
(3)拡径部S2の形成工程では、育成する単結晶Sの直径を徐々に拡大すると同時に融液Mと上部炉内構造物17の位置関係を単結晶定径部S2の形成に適した位置とするため、単結晶Sの拡径に合わせて静かにルツボCを所定位置まで降下させる。
なお、図2に示した上部炉内構造物17を上下動させるための昇降機構34を備えた装置では、ルツボCを下降させるのに替えて上部炉内構造物17を昇降機構34により上方に移動させればよい。
(4)拡径部S2の径が所望の直径になったら単結晶径の拡径を終了し、再び融液温度および/または引上げ速度を調整して単結晶定径部S3の育成工程に移行する。
この時、拡径部S2の形成が終了する少し前にルツボCあるいは上部炉内構造物昇降機構34がある装置では上部炉内構造物17の移動を終了し、単結晶Sの育成が定径部S3の形成工程に移行する前に単結晶Sの定径部S3の形成に適した位置にルツボCあるいは上部炉内構造物17が配置されるよう、それぞれの移動を行うのが望ましい。
(5)定径部S3が所定の長さに達したら、結晶の直径を徐々に縮径して結晶を原料融液Mから切り離す。その後、上部育成炉21で単結晶Sを常温近くまで放冷したら製造装置から結晶を取り出して育成を終了する。
上述したように、絞り部S1を形成して単結晶Sを育成する方法あるいは絞り部を形成せず単結晶Sを育成する方法のいずれを採用した場合でも、単結晶育成時には上部炉内構造物17とシリコン融液面M1との距離又は間隔dを所望の値とすることができる。したがって、この上部炉内構造物17とシリコン融液面M1との距離又は間隔dを50mmから150mm程度に広げて単結晶定径部S3の育成を行うことによって定径部Sが低欠陥あるいは無欠陥の単結晶を容易に得ることができる。
実施例
以下、実験例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定して解釈されるものではない。
(実験例1:絞り部を形成して単結晶を引上げる場合)
図1と同様の装置を用いて、本発明の方法を実施した。まず、単結晶製造装置に口径が70cmの石英製ルツボを入れ、その中に多結晶シリコン原料200kgを充填し単結晶育成炉内を不活性ガスであるArガスで満たした後に、装置内のヒータを加熱して多結晶シリコン原料を融解しシリコン融液とした。
多結晶シリコン原料が完全に溶融したのを確認しルツボを上昇させ、融液表面と上部炉内構造物(本実施例ではガス整流筒)との距離(隙間)が所望の値となるように調整し原料融液を種結晶の浸漬に適した温度まで下げ、融液温度が安定したところで種結晶を融液表面直近まで降下させて種結晶の加温を行った。種結晶の温度が融液温度と略同じくなったとことで種結晶を融液に浸漬し、その後、最小径が5mm、絞り部長さが150mmの絞り部の形成を行い、絞り部形成の後は直径を30mmまで拡径して一定の定径部を有するシリコン単結晶を得た。また、ルツボは拡径工程中に静かに移動し、単結晶の定径部育成時には融液と上部炉内構造物の間が適切な位置となるように再配置して定径部形成を行った。
この結果を図3に示す。絞り部形成時の融液と上部炉内構造物の距離を横軸に取り、縦軸には結晶を定径部5cmまで引上げた時に無転位であったものの比率を無転位化成功率として百分率で示したものである。なお、試験は融液と上部炉内構造物の距離(隙間)を5mm〜150mmの間で12水準を取り結晶製造を繰り返した結果を集計したものである。
この実験結果から、原料融液と上部炉内構造物の距離(隙間)が10mm以下では略90%以上の無転位化成功率であったが、その距離(隙間)が100mmを超えると急激に成功率が低下して行くことがわかった。また、原料融液と上部炉内構造物の距離(隙間)が25mm以下では殆ど失敗することなく単結晶を得ることができており、炉内構造物を融液に近づけて絞り分を形成した時の効果は上記距離(隙間)が小さいほど高いく、原料融液面に上部炉内構造物を25mm以下まで近づけて単結晶育成を行うのが好ましいことを確認した。
(実験例2:特殊な種結晶を用いて絞り部を形成しないで単結晶育成を行う場合)
実験例1と同様の条件により単結晶の製造を行った。まず、図1に示すような単結晶製造装置に口径が70cmの石英製ルツボを入れ、その中に多結晶シリコン原料200kgを充填し単結晶育成炉内を不活性ガスであるArガスで満たした後に、装置内のヒータを加熱して多結晶シリコン原料を融解しシリコン融液とした。
多結晶シリコン原料が完全に溶融したのを確認しルツボを上昇させ、融液表面と上部炉内構造物(本実施例ではガス整流筒)との距離(隙間)が所望の値となるように調整し原料融液を種結晶の溶かし込みを行うのに適した温度まで下げ、融液温度が安定したところで先端の角度が20°の先の尖った略円錐状の種結晶を融液表面直近まで降下させて種結晶の加温を行った。種結晶先端部の温度が融液温度と略同じになったとことで種結晶を静かに融液に接融し、その後、最小径が5mm、となるまで種結晶先端を溶かし込んだ。種結晶先端の溶かし込みが終了した後は結晶径を拡大しながら種結晶を引上げ、結晶直径が300mmとなったところで定径部形成工程に移行し所望のシリコン単結晶を得た。また、ルツボの移動は拡径工程中に静かに行い、単結晶の定径部育成時には融液と上部炉内構造物の距離(隙間)が適切な位置となるように再配置し定径部を形成した。
この結果を図4に示す。種結晶の溶かし込みを行った時の融液と上部炉内構造物の距離を横軸に取り、縦軸には結晶を定径部5cmまで引上げた時に結晶に転位が発生していなかったものの比率を無転位化成功率として百分率で示したものである。なお、実験は融液と上部炉内構造物の距離(隙間)を5mm〜150mmの間で12水準を取り結晶製造を繰り返した結果をまとめたものである。
この実験により、原料融液と上部炉内構造物の距離(隙間)が100mm以下では種結晶を無転位で溶かし込むことは難しく、無転位化成功率が50%以下となり単結晶の量産には適さなくなることがわかった。しかし、その一方で原料融液と上部炉内構造物の距離(隙間)が50mm以下であれば80%以上という高い確率で無転位で種結晶の溶かし込みを行うことが可能であり、25mm以下まで近づければ殆ど失敗することなく種結晶先端を溶かし込むのが成功できることを確かめることができた。
なお、本発明は上記した実施の形態に限定されるものではない。上記の実施の形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の効果を奏するものはいかなるものであっても、本発明の技術的範囲に包含されることは勿論である。
例えば、本発明のシリコン単結晶の製造方法を原料融液に磁場を印加しないで単結晶を育成するCZ法を例に挙げて説明したが、原料融液に磁場を印加しながら単結晶棒を成長させるMCZ法を用いた単結晶製造においても同様の効果が得られることは言うまでもない。
産業上の利用可能性
以上述べたごとく、CZ法を用いたシリコン単結晶の育成において本発明の製造方法を用いれば、種結晶を原料融液に浸漬し絞り部を形成した後にシリコン単結晶を育成する方法では、種結晶が原料融液に接融したさいにもたらされるスリップ転位を絞り部形成工程で高い確率で消滅させることが可能となる。また、絞り部形成工程での原料融液の温度変動が小さくなることで、単結晶絞り部の形状が安定し容易に所望径を有する絞り部を形成することができる。
また、先端の尖ったあるいは尖った部分を切り取った形状の種結晶を用いて絞り部を形成することなく単結晶を育成する方法においては、種結晶先端を原料融液に溶かし込む際に、融液温度を所望の温度に安定させて溶かし込みを行うことができるので、種結晶を有転位化させることなく所望の径まで溶かし込むことが可能となる。
これによって高重量大直径の結晶でも安定した引上げを行うことができるようになるとともに、絞り部の形成あるいは種結晶の溶かし込みの成功率が向上することにより結晶の生産性をより高いものとすることができる。また、絞り部の形成あるいは種結晶の溶かし込みの際の失敗も大幅に減らせるので、作業者への負担も軽減することが可能である。特に、本発明方法は口径が50cmを超えるような大型のルツボを使用する際に、その効果を十分発揮するものである。
さらに、本発明方法によれば、単結晶定径部の育成時に上部炉内構造物とシリコン融液間の距離を所望の広さとすることができるので、定径部が低欠陥あるいは無欠陥の単結晶を容易に得ることができるという著大な効果が達成される。
Technical field
The present invention relates to a method for producing a semiconductor single crystal, and more particularly, a Czochralski method (Czochralski Method) for growing a single crystal below a seed crystal by immersing and pulling the seed crystal in a melt contained in a crucible. The present invention relates to a method for producing a silicon single crystal using the (CZ method).
Background art
The method of growing a silicon single crystal using the CZ method is to put polycrystalline silicon as a raw material in a quartz crucible and heat it to a high temperature of 1400 ° C. or higher in a manufacturing apparatus furnace to form a melt. A seed crystal is deposited, and the seed crystal is gently pulled up while rotating to grow a single crystal below the seed crystal.
However, when a seed crystal is immersed in a high-temperature melt, slip dislocations are introduced with high density due to the thermal shock caused by the temperature difference from the melt. An operation for removing the slip dislocation is required.
Therefore, when the seed crystal is poured into the melt and the temperature is stabilized, the diameter of the crystal grown at the tip is reduced to about 5 mm or less while pulling up the seed crystal, and this state is maintained until slip dislocation is removed from the crystal. Crystal growth is carried out in order to prevent slip dislocations generated during seed crystal landing on the subsequent grown crystals. This step is called a drawing step, and the single crystal portion formed at this time is called a drawing portion.
Normally, the slip dislocation introduced when the seed crystal is deposited in the melt disappears if it is pulled up by about 5 to 20 cm in a state where the crystal diameter is 5 mm or less, and the single crystal after which slip dislocation is eliminated. Can be nurtured. After the slip dislocation disappears, the diameter of the crystal to be grown is gradually increased and the diameter is expanded until the desired crystal diameter is reached. The process proceeds to a straight body process in which a single crystal is grown with a constant diameter, and a single crystal rod having a desired crystal diameter is grown. A single crystal portion formed in the diameter expansion process is called a diameter expansion part, and a part pulled up with a substantially constant diameter after the diameter expansion process is called a straight body part or a constant diameter part. This constant diameter portion is processed into a semiconductor wafer to become a substrate material for forming a semiconductor element.
Recently, a method of pulling up a single crystal without forming a constricted portion as shown in JP-A-4-104988 is also used. In order to grow a single crystal without performing the squeezing step, it is performed by using a cone or pyramid-shaped seed crystal in which the tip of the seed crystal has a sharp tip or a sharp tip is cut off.
If such a seed crystal is used, slip dislocation is not caused by thermal shock generated when the seed crystal tip is deposited on the raw material melt, or even if slip dislocation is caused in the seed crystal. Yes, it disappears while the tip of the seed crystal is immersed in the melt to the desired diameter, and after the seed crystal is immersed to the desired diameter, there is no dislocation, so there is no need to form a squeezing part, The process can be shifted to a step of forming an enlarged diameter portion for increasing the crystal diameter.
In the method of pulling up the single crystal without forming the squeezed part, no squeezing is performed, that is, there is no need to narrow the crystal formed at the tip of the seed crystal, and the tip of the seed crystal is immersed to a desired thickness. Then, after that, there is a feature in that it is possible to immediately shift to a diameter expansion process for expanding the crystal diameter to a desired diameter.
In the recent production of silicon single crystals, large-diameter long single crystals are grown with the aim of improving productivity, and the weight of the pulled crystals reaches 200 kg or more. In order to grow such a heavy crystal by the CZ method, the strength of the drawn portion becomes an important problem. In order to eliminate the slip dislocation caused by the seed crystal, forming a constricted portion with a diameter of 5 mm or less and growing a heavy crystal exceeding 200 kg below it reaches the limit even considering the strength of the constricted portion. In order to efficiently produce further large-diameter long single crystal wafers, a new single crystal growth method has been required. As one means for solving this problem, a technique for growing a single crystal without making a narrowed portion has been studied and put into practical use.
However, both the method of producing a single crystal by drawing and the method of producing a single crystal without forming a drawn portion, the problem is that the desired single piece can be obtained without reliably removing slip dislocations or introducing slip dislocations. Whether the crystal can be grown, that is, the success rate.
In the method of growing the single crystal by forming the constricted portion, it is necessary to reduce the diameter of the constricted portion to about 5 mm or less to remove slip dislocations. In addition, slip dislocations cannot be removed and slip dislocations are introduced even into the straight body portion, and a single crystal as a product cannot be grown. On the other hand, if the diameter of the narrowed portion is made thinner than necessary, the shape cannot be maintained properly due to temperature fluctuations of the melt, and the crystal separates from the melt during the narrowed portion formation to grow a single crystal. Is impossible.
If the formation of the squeezed part fails in the single crystal growth process, it is sufficient to immerse the tip of the seed crystal in the melt again and start the squeezing process from the beginning.However, considering the productivity and workability of the single crystal, It is desirable to remove slip dislocations and finish the drawing process. In particular, when the drawing process is repeated, the quartz crucible filled with the raw material melt at a high temperature is accelerated and weakened by increasing the process time by, for example, losing the process time for an hour or more after a single failure. This also induces a factor that excludes crystal growth such as dislocation of the crystal on the way. In addition, redoing the squeezing process adds a new process such as melting the squeezed portion of the seed crystal tip once formed, adjusting the raw material melt temperature, and then immersing the seed crystal tip again in the melt. It will be a burden for you.
For this reason, in the method of forming a throttle part and growing a single crystal, slip dislocations can be reliably removed, and a throttle part having a desired diameter can be formed at one time without failure. It is desirable that the number of times is as small as possible.
On the other hand, after immersing the tip of the seed crystal to a desired diameter using a seed crystal with a sharp tip or with a sharp tip cut off, the diameter is enlarged without forming a narrowed portion. Also in the method of growing a crystal, it is desired that slip dislocations are not introduced into the seed crystal while the seed crystal having a sharp tip or a sharp tip is melted to a desired diameter. In particular, in a method using a seed crystal having a special shape with a sharp tip or a sharp tip, the seed crystal is immersed in the raw material melt and simultaneously melts from the portion in contact with the melt. If the seed crystal has failed to be immersed, and slip dislocations have been introduced into the seed crystal when the seed crystal is deposited or dissolved, it is not possible to repeat single crystal growth using the same seed crystal. It becomes possible. In growing a single crystal using a seed crystal having such a special shape, it is essential to immerse the seed crystal to a desired diameter without introducing dislocations by a single melting operation.
If a seed crystal with a sharp tip or a sharp tip is immersed in the melt until it reaches the desired thickness, slip dislocations are introduced into the seed crystal. It is necessary to take it out of the crystal growth furnace, exchange it with a new seed crystal, and dissolve the seed crystal in the melt again. However, the operation to replace the seed crystal with a new one requires the operation of taking out the seed crystal from the high-temperature single crystal growth furnace filled with inert gas, replacing it with a new seed crystal, and returning it to the furnace again. Is complicated and requires time to prepare the furnace environment so that the seed crystal can be immersed in the melt. Failure to dissolve the steel increases the work load and results in extremely low productivity, so it is important to increase the productivity and yield of single crystal growth by successfully submerging the seed crystal once. It is a difficult issue.
On the other hand, in the recent growth of a silicon single crystal by the CZ method, a high-quality crystal in which defects existing in the crystal are controlled to a desired value is obtained, or a single crystal is grown at a high speed by increasing the cooling rate of the grown crystal. In order to improve productivity, the upper furnace structure such as the gas rectifying cylinder and the heat shielding screen is arranged so as to surround the single crystal grown above the raw material melt contained in the crucible. A method for growing a single crystal while keeping the thermal history of the crystal at a desired value is widely used.
In particular, in the growth of a silicon single crystal in which so-called grow-in defects, which are caused by the thermal history of silicon single crystal growth, are reduced or completely eliminated, the upper furnace structure and silicon are improved to improve the thermal history. It is necessary to make the distance from the melt surface relatively wide. Usually, the distance between the upper furnace structure and the silicon melt surface is about 10 mm to 30 mm, but this distance is increased to about 50 mm to 150 mm when growing a low defect or defect-free crystal. However, when the silicon single crystal is grown in this way, there has been a problem that the success rate of the above-mentioned narrowed portion formation and the success rate of the seed crystal penetration are lowered.
Disclosure of the invention
The present invention has been made in view of such problems. In growing a silicon single crystal using the CZ method, the throttle portion is formed by gently pulling the seed crystal after immersing the seed crystal in the raw material melt. In the method of forming and growing a single crystal, the diameter of the diaphragm is stabilized at a desired value when the diaphragm is formed, the diaphragm having the necessary diameter is formed, or the diaphragm is removed from the melt and the slip dislocation is removed from the crystal. Use a seed crystal with a sharpened tip or a sharpened tip, which can be surely extinguished and grow a dislocation-free single crystal rod below the drawn portion. In the method of growing a single crystal without squeezing the tip after immersing the tip of the seed crystal to the desired diameter, the seed crystal slips into the seed crystal when it is dissolved in the raw material melt. Dislocation brought The seed crystal can be immersed to a desired diameter without increasing the success rate of seed crystal melting, and the gap between the upper furnace structure and the silicon melt surface can be increased to a desired width when growing a single crystal constant diameter part. Accordingly, an object of the present invention is to provide a method for producing a silicon single crystal in which the constant diameter portion can easily obtain a single crystal having a low or no defect.
In order to solve the above-mentioned problems, a first aspect of the method for producing a silicon single crystal according to the present invention includes a cylindrical or conical upper furnace arranged so as to surround a single crystal grown in a single crystal production apparatus furnace. Using a single-crystal manufacturing apparatus having a structure, after the seed crystal is immersed in a silicon melt accommodated in a crucible in the manufacturing apparatus furnace, a drawn portion is formed while pulling up the seed crystal, and then the diameter is increased and the single crystal is expanded. In the method for producing a silicon single crystal by the Czochralski method for growing crystals, at least from the time when the seed crystal is deposited in the melt until the formation of the throttle portion is completed, the lower end of the upper furnace structure and silicon An upper furnace structure or a crucible containing the raw material melt is disposed at a position where the distance between the melt surfaces is 5 mm or more and 100 mm or less, and the upper furnace structure and the silicon melt are formed after the formation of the throttle portion is completed. Distance between faces Gradually increased, at a position suitable for forming a single crystal constant diameter portion moves the upper reactor internal structure or the crucible, characterized in that to grow a single crystal. In the following description, the distance between the upper furnace structure and the silicon melt surface may be described as a gap or an interval.
When a silicon single crystal is grown using the CZ method, the seed crystal is immersed in the raw material melt, and the single crystal is gently pulled from the melt to form a drawn portion. Positions suitable for single crystal growth after forming the constricted portion by bringing the cylindrical or conical upper furnace structure such as the gas flow straightening tube or the heat shielding screen placed close to the melt surface and forming the constricted portion In this case, the diameter of the throttle part is stable during the growth of the throttle part, and there is little possibility that the throttle part will be disconnected from the melt during the formation of the throttle part, and a stable throttle part diameter can be obtained. Thus, it becomes easy to form a narrowed portion that narrows the narrowed portion to the diameter of the narrowed portion necessary for eliminating the slip dislocation from the narrowed portion, and the slip dislocation can be removed more reliably. Since the distance between the upper in-furnace structure and the silicon melt surface can be set to a desired width when growing the single crystal constant diameter portion, it is possible to obtain a single crystal having a low or no defect in the constant diameter portion. it can.
In order to prevent these upper furnace structures from interfering with operations such as melting of polycrystalline silicon, which is a raw material for silicon single crystals, in an operation not related to single crystal growth, an apparatus structure as shown in Japanese Patent No. 2640683 is used. Thus, there is also known an apparatus that allows the upper furnace structure to move up and down and accommodates it above the growth furnace. By using these mechanisms and devices, the present invention can be more easily implemented.
It is also possible to achieve the present invention without using an apparatus for moving the upper in-furnace structure such as a rectifying cylinder or a heat shielding screen arranged just above the melt surface.
Currently, the manufacturing equipment used for single crystal growth dissolves polycrystalline silicon efficiently and forms a constant diameter portion with a constant melt surface for the growth of a single crystal constant diameter portion. , A mechanism that can move the crucible filled with the raw material melt up and down for the purpose of improving the yield of the single crystal obtained from the raw material melt or reducing the grinding loss when processing the single crystal into a semiconductor wafer Is added. By utilizing this mechanism, the positional relationship between the upper furnace structure and the raw material melt surface filled with the crucible is adjusted to the required positional relationship. Can be used.
By using such an apparatus or method, the in-furnace structure or the crucible arranged above the melt can be moved up and down, and when the throttle part is formed after the seed crystal is immersed in the melt, the upper in-furnace structure An upper furnace structure or a crucible is arranged at a position where the distance between the object and the raw material melt surface is in the range of 5 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 25 mm, and the throttle part is formed. It is good.
If the gap between the raw material melt surface and the upper furnace structure is set in the range of 5 mm to 100 mm and the throttle part is formed, slip dislocation is removed with a high probability of 80% or more, and no dislocation occurs below the throttle part. The single crystal can be grown. Further, if the narrowed portion is formed with the gap set to 25 mm or less, dislocation-free operation can be achieved almost certainly. In addition, if the growth state of the throttle part is observed during the throttle part forming process, or if an inert gas or the like downstream from the upper part of the furnace structure is considered, the gap between the furnace structure and the melt surface is at least about 10 mm. It is preferable to keep it.
And the 2nd aspect of the manufacturing method of the silicon single crystal of this invention is a single crystal manufacturing which has the cylindrical or conical upper furnace structure arrange | positioned so that the single crystal grown in the single crystal manufacturing apparatus furnace may be surrounded. The tip of the seed crystal has a desired diameter by using a seed crystal having a shape in which the tip of the tip is pointed or cut off in the silicon melt contained in the crucible in the manufacturing apparatus furnace. In the method for producing a silicon single crystal by the Czochralski method for expanding the diameter without forming a squeezed portion and growing the single crystal, after immersing at least the seed crystal in the melt, the seed crystal While immersion is performed until the diameter of the portion in contact with the melt at the tip reaches a desired diameter, the distance between the lower end of the upper furnace structure and the silicon melt surface is set to 5 mm or more and 100 mm or less. Upper furnace structure Alternatively, a crucible containing the raw material melt is placed, and after the seed crystal immersion is completed, the distance between the upper furnace structure and the silicon melt surface is gradually increased to form a single crystal constant diameter portion. A single crystal is grown by moving the upper furnace structure or the crucible to a suitable position.
In the growth of a silicon single crystal using the CZ method, the squeezed portion is formed after the tip of the seed crystal is immersed to a desired diameter using a seed crystal having a sharp tip or a shape with a sharp tip cut off. Even if it is a method of growing a silicon single crystal without forming it, until the seed crystal having a shape with a sharp tip or a sharp tip is immersed in the raw material melt until the desired diameter is reached, Upper in-furnace structure at a position where the distance between the upper in-furnace structure such as a rectifying cylinder and a heat shielding screen and the raw material melt surface is in the range of 5 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 25 mm. Alternatively, it is preferable to perform a melting operation of the seed crystal by arranging a crucible.
In the case of a method for growing a single crystal without making a squeezing using a seed crystal with a sharp tip or a sharp tip, the gap between the seed crystal material melt surface and the upper furnace structure is 5 mm. Slip dislocations are introduced into the seed crystal with a high probability of about 50% or more if the tip of the seed crystal having a sharp or sharp tip is set in the range of 100 mm or less and dissolved in the raw material melt. It is possible to perform melting without any problems. Furthermore, if the seed crystal is melted with the gap set to 25 mm or less, the melt can be succeeded more reliably without introducing dislocations. For the same reason as the method for growing the single crystal by forming the narrowed portion, it is preferable to keep a gap of about 10 mm at least between the in-furnace structure and the melt surface.
The method of growing a single crystal having a desired diameter by enlarging the crystal diameter after forming the constricted portion can also be achieved by using a seed crystal having a sharp tip or a sharp tip. Even when a single crystal having a desired diameter is grown without forming a portion, the surface of the raw material melt is immersed when the seed crystal is immersed in the raw material melt or immediately after the previous polycrystalline silicon raw material is melted. Growing a crucible filled with an upper furnace structure or a melt placed at a distance of 5 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 25 mm, to grow a single crystal constant diameter portion The timing for moving to a position suitable for the conditions is optimal to move the upper in-furnace structure or the crucible to a desired position while forming the enlarged diameter portion, which is a process for increasing the crystal diameter.
In this way, in the single crystal growth process, the upper furnace structure or the crucible is moved to a position suitable for growing the constant diameter portion of the single crystal using the enlarged diameter portion. If this is the case, immediately after the transition from the enlarged diameter portion formation of the single crystal to the constant diameter portion formation, the crucible filled with the upper furnace structure or the melt is in a position suitable for growing the constant diameter portion, A single crystal constant diameter portion having a desired quality can be formed immediately after the start of the growth of the constant diameter portion to be a semiconductor wafer. Thereby, since the single crystal of the stable quality is obtained over the grown constant diameter part full length, a yield is also improved.
When moving the in-furnace structure or the crucible to a position suitable for forming the constant-diameter portion, after the formation of the throttle portion or after the end of the melting of the seed crystal with the sharp tip or the sharp tip cut off, Gradually move the upper in-furnace structure or crucible and gently so that the in-furnace structure or crucible is placed in a position suitable for forming the constant diameter part before the formation of the enlarged diameter part is completed. It is good to move.
If the in-furnace structure or crucible is moved suddenly during the formation of the single crystal enlarged diameter part, the temperature and convection of the raw material melt become unstable due to a sudden change in the environment in the growth furnace, and abnormal growth of the crystal and The occurrence of slip dislocation is caused by thermal shock. When the crucible is moved, the crystal is separated from the melt and the crystal growth is interrupted unless the crucible is moved in accordance with the growth rate of the crystal.
Hereinafter, the technical idea of the present invention will be described in more detail.
When the single crystal pulled up from the raw material melt is cooled, the cylindrical or conical upper furnace structure such as a gas flow rectifier or a heat shielding screen placed just above the melt in the single crystal growth furnace is cooled. It arrange | positions for the purpose of adjusting the heat history of this to a desired value. By changing the shape and material of the upper furnace structure in various ways, the crystal can be kept warm to suppress defects in the crystal, or the radiant heat from the melt can be cut off to increase the crystal cooling rate and make the crystal faster. The effect of raising is obtained.
However, on the other hand, the upper in-furnace structure disposed immediately above the raw material melt also plays a role of controlling the thermal convection of the raw material melt.
The raw material melt in the crucible constantly generates thermal convection due to heating from a heater disposed around the crucible. Then, the heat given to the raw material melt by the heating of the heater is carried to the melt surface layer by this thermal convection, and a part thereof is dissipated to the outside by radiation from the melt surface. At this time, if a structure that suppresses heat radiation from the melt is placed directly above the raw material melt surface, the heat radiation from the melt surface will be reduced, and temperature fluctuations in the melt will be suppressed, and heat convection will be stabilized. Can be made.
The effect of suppressing the heat radiation of the melt is that if it is a furnace structure with the same heat insulation effect, the smaller the distance from the melt surface, the greater the effect, and the more effective the heat radiation can be suppressed and the melt convection can be stabilized. It is. And the effect becomes small gradually as it leaves | separates from the melt surface.
When growing a single crystal by the CZ method, it is important to stabilize the melt temperature in the vicinity of the crystal growth interface. If the temperature in the vicinity of the crystal growth interface is not stable during crystal growth, problems such as changes in the crystal during the growth or slip dislocations in the crystal due to a rapid change in the melt temperature occur. This is especially true when forming a constricted portion after the seed crystal has been deposited in the melt, or when working with a seed crystal having a shape with a sharp tip or a sharp tip cut off. Susceptible to temperature fluctuations in the melt. This is because the surface diameter of the raw material melt is smaller and the surface of the raw material melt is exposed than when the constant diameter portion of the single crystal is grown. As a result, the amount of heat that escapes from the melt surface increases, resulting in variations in the melt temperature. It is thought that the melt temperature in the vicinity where the crystal and the melt are in contact with each other becomes unstable.
When the seed crystal is immersed in the melt at an unstable melt temperature and the squeezed part is formed, the crystal shape is not stable, and the crystal diameter reaches the thickness necessary to eliminate slip dislocations from the crystal. In addition, it is difficult to reduce the thickness of the film, and slip dislocations are difficult to disappear and the time required for the drawing process becomes longer than necessary, or the crystal is separated from the melt and the growth of the crystal is interrupted. Arise. Also, in the method of growing a single crystal without forming a narrowed portion using a seed crystal with a sharp tip or with a sharp tip cut off, the periphery of the seed crystal melted portion due to the unstable temperature This causes recrystallization and causes slip dislocations in the seed crystal, which makes it impossible to pull up the crystals without dislocations.
In particular, in the production of large-diameter high-weight crystals exceeding 200 mm, it is common to pull up a single crystal using a large-diameter quartz crucible having a diameter of 50 cm or more. A heater and a seed crystal arranged around the crucible are used. While the distance of the liquid landing part when the liquid melt is deposited on the raw material melt, the fluctuation of the temperature of the melt contained in the crucible tended to increase more and more. Therefore, in the production of a single crystal using such a large-diameter crucible, when the single crystal is grown by forming a constricted portion, or a seed crystal having a shape in which the tip of the seed crystal is sharp or the sharp tip is cut off It is necessary to stabilize the temperature of the melt at the time of melting the melt into the melt, and by using the method of the present invention, it is easy to stabilize the temperature around the crystal when forming the narrowed portion or at the tip of the seed crystal. It has become possible.
On the other hand, in the growth of a silicon single crystal in which the so-called grow-in defects generated due to the thermal history of the silicon single crystal growth are reduced or completely eliminated, the upper furnace structure and silicon are improved to improve the thermal history. It is necessary to make the distance from the melt surface relatively wide. Usually, the distance between the upper furnace structure and the silicon melt surface is about 10 mm to 30 mm, but this distance is increased to about 50 mm to 150 mm when growing a low defect or defect-free crystal. However, when the silicon single crystal is grown in this way, there has been a problem that the success rate of the above-mentioned narrowed portion formation and the success rate of the seed crystal penetration are lowered. According to the method of the present invention, it is possible to improve the success rate of formation of the narrowed portion and the success rate of seed crystal melting, and also between the upper furnace structure and the silicon melt surface during the growth of the single crystal constant diameter portion. Since the distance can be set to a desired width, it is possible to easily obtain a single crystal with a constant diameter portion having a low defect or no defect. When growing a single crystal with a constant diameter portion having a low or no defect, it is necessary to increase the distance between the upper furnace structure and the silicon melt surface as the diameter of the grown single crystal increases. Is also effective in the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a single crystal apparatus for carrying out the method of the present invention.
FIG. 2 is a schematic cross-sectional view showing another example of a single crystal apparatus for carrying out the method of the present invention.
FIG. 3 is a graph showing the relationship between the distance between the melt surface and the upper in-furnace structure and the dislocation-free success rate in Experimental Example 1.
FIG. 4 is a graph showing the relationship between the distance between the melt surface and the upper in-furnace structure and the dislocation-free success rate in Experimental Example 2.
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings, taking examples of growing silicon single crystals by the CZ method, but the present invention is not limited to these. For example, the method for growing a single crystal of the present invention can naturally be used in single crystal production using the MCZ method in which a single crystal is grown while applying a magnetic field to a raw material melt.
FIG. 1 is a schematic cross-sectional view showing an example of a single crystal manufacturing apparatus for carrying out the method of the present invention. In FIG. 1, a single crystal manufacturing apparatus 12 has a growth furnace main body 14 and an upper growth furnace 21, and the center of the growth furnace main body 14 has a crucible support shaft 15 as an axis, the inside is made of quartz, and the outside is graphite. The crucible C made of the product is arranged so as to be rotatable and vertically movable by a crucible drive mechanism 16 attached to the lower end of the crucible support shaft 15. The crucible C contains a raw material melt (silicon melt) M, which is a raw material for growing a silicon single crystal, and a cylinder so as to surround the grown crystal above the raw material melt M. A conical upper in-furnace structure 17 whose lower end is narrowed is provided. In the example of FIG. 1, a single crystal manufacturing apparatus equipped with a cylindrical inert gas rectifying cylinder as the upper furnace structure 17 is shown.
Further, a graphite heater 18 is disposed outside the crucible C so as to surround the crucible C. By heating the heater 18, the polycrystalline silicon raw material charged in the crucible C is melted and obtained. The single crystal S is pulled up from the silicon melt M. Furthermore, a heat insulating material 20 is provided between the heater 18 and the growth furnace main body 14, and serves to protect the growth furnace wall and keep the inside of the furnace warm.
At the top of the upper growth furnace 21, there is a wire winding mechanism 25 for winding or unwinding the wire 23 for pulling up the grown single crystal S. When the crystal is grown, the wire 23 is rotated in the direction opposite to the crucible C. However, the crystal grows under the seed crystal 28 by gently winding it. A seed holder 26 for holding a seed crystal 28 is attached to the tip of the wire 23, and the seed crystal 28 is engaged with the wire 23 by the seed holder 26.
In growing the single crystal S, the inside of the growth furnace main body 14 is filled with an inert gas such as Ar (argon) and the pressure inside the furnace is adjusted to a desired value to carry out the growth work. A gas amount control device 30 for adjusting the flow rate of the inert gas and the pressure in the furnace and a conductance valve 32 are provided, so that the inert gas pressure and flow rate in the growth furnace can be appropriately adjusted according to the growth conditions.
In order to grow the silicon single crystal S using this single crystal manufacturing apparatus, first, the polycrystalline silicon raw material is filled in the crucible C in the growth furnace main body 14 and the furnace is filled with an inert gas, and then flows into the furnace. While adjusting the amount and pressure of the inert gas, the heater 18 is heated to melt the polycrystalline silicon raw material. When the polycrystalline silicon raw material is completely melted, the crucible C filled with the raw material melt M is moved up and down to position the seed crystal 28 on the melt, that is, the upper furnace structure 17 and the raw material melt. In the method in which the distance (gap or interval) d of the surface M1 forms the narrowed portion S1 and the single crystal S is grown, the tip of the seed crystal or the sharp tip is cut off at an interval suitable for forming the narrowed portion S1. In the method of growing the single crystal S without forming the narrowed portion S1 using the seed crystal 28 having a different shape, the crucible is moved to a position suitable for melting the seed crystal 28, and the upper furnace structure The heat retention effect by 17 is sufficiently obtained. For this purpose, the crucible position may be positioned so that the distance d between the upper furnace structure 17 and the melt surface M1 is 5 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 25 mm. In FIG. 1, S1 is a narrowed portion or the tip of a pointed seed crystal, S2 is a single crystal diameter-enlarged portion, and S3 is a single crystal constant diameter portion.
In the example of FIG. 1, the height of the crucible C is adjusted by the crucible drive mechanism 16 so that the distance d between the upper in-furnace structure 17 and the position of the melt surface M1 becomes a desired value. It is also possible to adjust the above-mentioned distance d, and will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing another example of an apparatus for producing a single crystal for carrying out the method of the present invention. 2, the same or similar members as those in FIG. 1 are denoted by the same reference numerals.
In FIG. 2, reference numeral 34 denotes an upper furnace structure raising / lowering mechanism for moving the upper furnace structure 17 up and down. The structure raising / lowering wire 36 and the structure raising / lowering wire 36 connected to the upper furnace structure 17 are connected to each other. A wire winding drum 38 for winding is provided. By operating the upper furnace structure lifting mechanism 34, the upper furnace structure 17 can be moved up and down freely. Therefore, the distance d between the upper furnace structure 17 and the position of the melt surface M1 can be freely set. And can be set to a desired optimum value.
The method for maintaining the distance d between the upper furnace structure 17 and the melt surface M1 position at a desired value by various methods should be selected in accordance with the structure and growth conditions of the apparatus used for single crystal growth. It is.
When the distance d is set to a desired value, the temperature of the raw material melt M is lowered to a temperature suitable for depositing the seed crystal 28, and when the melt temperature is sufficiently lowered and stabilized, the wire 23 is unwound to seed. The seed crystal 28 is heated by lowering the crystal 28 to near the melt surface M1. This operation reduces the thermal shock to the seed crystal 28 caused by the temperature difference with the melt M when the seed crystal 28 is deposited on the melt M by heating the seed crystal 28, and This is an operation performed to suppress slip dislocation generated in the seed crystal 28.
When the temperature of the seed crystal 28 rises to near the melt temperature, the seed crystal 28 is lowered again, and the tip of the seed crystal 28 is gently landed on the melt M.
Thereafter, in the method of growing the single crystal S by forming the narrowed portion S1, the following operations (1) to (6) are performed.
(1) The single crystal S is grown below the seed crystal 28 by gently winding the wire 23 while rotating the seed crystal 28.
(2) At this time, in order to remove the slip dislocation caused by the temperature difference with the melt M when the seed crystal 28 is deposited on the melt M, the diameter of the seed crystal 28 is about 5 mm or less. The diaphragm part S1 having a length of about 5 to 20 cm is formed.
{Circle around (3)} When slip dislocations are removed from the crystal by forming the narrowed portion S1, the crystal pulling rate and / or the melt temperature are manipulated to desired values, and the process proceeds to the formation of the single crystal enlarged diameter portion S2.
(4) In the step of forming the enlarged diameter portion S2, the diameter of the single crystal S to be grown is gradually enlarged, and the positional relationship between the melt M and the upper furnace structure 17 is changed to the formation of the single crystal constant diameter portion S3. In order to obtain a suitable position, the crucible C is gently lowered to a predetermined position as the single crystal S grows.
In addition, in the case of the apparatus provided with the lifting mechanism 34 for moving the upper furnace structure 17 up and down as shown in FIG. 2, instead of lowering the crucible C, the upper furnace structure 17 is moved by the lifting mechanism 34. What is necessary is just to move upwards.
(5) When the diameter of the expanded diameter portion S2 becomes the same as the required diameter of the constant diameter portion S3, the diameter expansion of the single crystal is finished, and the melt temperature and / or the pulling speed are adjusted again to desired values. Then, the process proceeds to the growing step of the single crystal constant diameter portion S3.
At this time, in the apparatus having the crucible C or the upper in-furnace structure lifting mechanism 34 just before the formation of the enlarged diameter portion S2, the movement of the upper in-furnace structure 17 is completed, and the growth of the single crystal S has a constant diameter. Before shifting to the step of forming the part S3, it is desirable to perform the respective movements so that the crucible C or the upper furnace structure 17 is disposed at a position suitable for forming the constant diameter part S3 of the single crystal S.
(6) When the constant diameter portion S3 reaches a predetermined length, the diameter of the crystal is gradually reduced to separate the crystal from the raw material melt M. Thereafter, when the single crystal S is allowed to cool to near room temperature in the upper growth furnace 21, the crystal is taken out from the manufacturing apparatus and the growth is finished.
On the other hand, in the method of growing the single crystal S without forming the narrowed portion by using the seed crystal 28 having the shape of the tip of the seed crystal 28 or the tip of which is cut off, the following (1) to (5) The operation is performed.
(1) Even after the tip of the seed crystal 28 has landed on the melt M, until the diameter of the portion in contact with the melt M at the tip of the seed crystal 28 reaches a desired value, Continue melting.
(2) When the tip of the seed crystal 28 sinks to a desired position, the lowering of the seed crystal 28 is stopped and the melting is finished, and the wire 23 is wound up by adjusting the pulling speed and / or the melt temperature to Move on to the forming process.
(3) In the step of forming the enlarged diameter portion S2, the diameter of the single crystal S to be grown is gradually enlarged, and at the same time the positional relationship between the melt M and the upper furnace structure 17 is suitable for the formation of the single crystal constant diameter portion S2. In order to set the position, the crucible C is gently lowered to a predetermined position in accordance with the diameter expansion of the single crystal S.
In the apparatus provided with the lifting mechanism 34 for vertically moving the upper furnace structure 17 shown in FIG. 2, instead of lowering the crucible C, the upper furnace structure 17 is moved upward by the lifting mechanism 34. Move it.
(4) When the diameter of the expanded portion S2 reaches the desired diameter, the expansion of the single crystal diameter is terminated, and the melt temperature and / or the pulling rate are adjusted again and the process proceeds to the growing process of the single crystal constant diameter portion S3. To do.
At this time, in the apparatus having the crucible C or the upper in-furnace structure lifting mechanism 34 just before the formation of the enlarged diameter portion S2, the movement of the upper in-furnace structure 17 is finished, and the growth of the single crystal S is constant. It is desirable to perform each movement so that the crucible C or the upper in-furnace structure 17 is disposed at a position suitable for forming the constant diameter portion S3 of the single crystal S before the process of forming the portion S3.
(5) When the constant diameter portion S3 reaches a predetermined length, the diameter of the crystal is gradually reduced to separate the crystal from the raw material melt M. Thereafter, when the single crystal S is allowed to cool to near room temperature in the upper growth furnace 21, the crystal is taken out from the manufacturing apparatus and the growth is finished.
As described above, whether the method of growing the single crystal S by forming the narrowed portion S1 or the method of growing the single crystal S without forming the narrowed portion adopts either the upper furnace structure during the single crystal growth. The distance or distance d between 17 and the silicon melt surface M1 can be set to a desired value. Therefore, the single crystal constant diameter portion S3 is grown by extending the distance or distance d between the upper furnace structure 17 and the silicon melt surface M1 from about 50 mm to about 150 mm, so that the constant diameter portion S has low defects or no defects. A defective single crystal can be easily obtained.
Example
EXAMPLES Hereinafter, although an experiment example is given and this invention is demonstrated more concretely, this invention is limited to these and is not interpreted.
(Experimental example 1: When a single crystal is pulled by forming a constricted portion)
The method of the present invention was carried out using the same apparatus as in FIG. First, a quartz crucible having a diameter of 70 cm is placed in a single crystal production apparatus, 200 kg of polycrystalline silicon raw material is filled therein, and the inside of the single crystal growth furnace is filled with Ar gas, which is an inert gas, and then a heater in the apparatus. Was heated to melt the polycrystalline silicon raw material to obtain a silicon melt.
After confirming that the polycrystalline silicon raw material has completely melted, raise the crucible so that the distance (gap) between the melt surface and the upper furnace structure (in this embodiment, the gas flow straightening cylinder) becomes a desired value. The raw material melt was adjusted to a temperature suitable for soaking the seed crystal, and when the melt temperature was stabilized, the seed crystal was lowered to the vicinity of the melt surface to warm the seed crystal. When the temperature of the seed crystal is substantially the same as the melt temperature, the seed crystal is immersed in the melt, and then a narrowed portion having a minimum diameter of 5 mm and a narrowed portion length of 150 mm is formed. A silicon single crystal having a constant diameter portion was obtained by expanding the diameter to 30 mm. Also, the crucible moves quietly during the diameter expansion process, and when the single crystal constant diameter part is grown, the constant diameter part is formed by rearranging so that the position between the melt and the upper furnace structure is in an appropriate position. It was.
The result is shown in FIG. Taking the distance between the melt and the upper furnace structure when forming the constriction on the horizontal axis, the vertical axis shows the percentage of dislocations that were not dislocated when the crystal was pulled up to a constant diameter portion of 5 cm as a percentage of success in achieving no dislocation. It is shown. The test is a total of the results of repeated crystal production taking 12 levels of the distance (gap) between the melt and the upper furnace structure between 5 mm and 150 mm.
From this experimental result, the dislocation-free success rate was about 90% or more when the distance (gap) between the raw material melt and the upper furnace structure was 10 mm or less. However, when the distance (gap) exceeded 100 mm, it succeeded rapidly. It turns out that the rate goes down. Further, when the distance (gap) between the raw material melt and the upper furnace structure was 25 mm or less, a single crystal could be obtained with almost no failure, and the throttle structure was formed by bringing the furnace structure closer to the melt. The effect at the time was higher as the distance (gap) was smaller, and it was confirmed that single crystal growth was preferably performed by bringing the upper furnace structure close to 25 mm or less on the raw material melt surface.
(Experimental example 2: When a single crystal is grown using a special seed crystal without forming an aperture)
A single crystal was produced under the same conditions as in Experimental Example 1. First, a quartz crucible having a diameter of 70 cm is placed in a single crystal manufacturing apparatus as shown in FIG. 1, and 200 kg of polycrystalline silicon raw material is filled therein, and the inside of the single crystal growth furnace is filled with Ar gas which is an inert gas. Later, the heater in the apparatus was heated to melt the polycrystalline silicon raw material to obtain a silicon melt.
After confirming that the polycrystalline silicon raw material has completely melted, raise the crucible so that the distance (gap) between the melt surface and the upper furnace structure (in this embodiment, the gas flow straightening cylinder) becomes a desired value. The raw material melt is adjusted to a temperature suitable for melting the seed crystal, and when the melt temperature is stabilized, a sharply conical seed crystal with a tip angle of 20 ° is brought close to the melt surface. The seed crystal was warmed to a lower temperature. The seed crystal was gently melted into contact with the melt because the temperature at the tip of the seed crystal became substantially the same as the melt temperature, and then the seed crystal tip was melted until the minimum diameter became 5 mm. After the melting of the seed crystal tip was completed, the seed crystal was pulled up while expanding the crystal diameter, and when the crystal diameter reached 300 mm, the process shifted to the constant diameter portion forming step to obtain a desired silicon single crystal. The crucible is moved quietly during the diameter expansion process, and when the constant diameter part of the single crystal is grown, the crucible is rearranged so that the distance (gap) between the melt and the upper furnace structure is in an appropriate position. Formed.
The result is shown in FIG. The distance between the melt when the seed crystal was melted and the upper furnace structure was taken on the horizontal axis, and when the crystal was pulled up to a constant diameter part of 5 cm on the vertical axis, no dislocation occurred in the crystal. The ratio is expressed as a percentage of the success rate of dislocation-free conversion. The experiment is a summary of the results of repeated crystal production with the distance (gap) between the melt and the upper furnace structure taking 12 levels between 5 mm and 150 mm.
According to this experiment, when the distance (gap) between the raw material melt and the upper furnace structure is 100 mm or less, it is difficult to dissolve the seed crystal without dislocation, and the success rate of dislocation conversion is 50% or less, which is suitable for mass production of single crystals. I found out. However, if the distance (gap) between the raw material melt and the upper furnace structure is 50 mm or less, the seed crystal can be dissolved without dislocation with a high probability of 80% or more, and 25 mm or less. We were able to confirm that the seed crystal tip could be successfully melted with almost no failure.
The present invention is not limited to the embodiment described above. The above-described embodiment is merely an example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any of the same effects can be obtained. Of course, it is included in the technical scope of the present invention.
For example, the method for producing a silicon single crystal according to the present invention has been described by taking the CZ method for growing a single crystal without applying a magnetic field to the raw material melt as an example. Needless to say, the same effect can be obtained also in single crystal production using the MCZ method to be grown.
Industrial applicability
As described above, if the production method of the present invention is used in the growth of a silicon single crystal using the CZ method, the seed crystal is immersed in the raw material melt to form the squeezed portion and then the silicon single crystal is grown. Slip dislocations brought about when the crystals are melted into the raw material melt can be eliminated with a high probability in the throttle forming step. In addition, since the temperature fluctuation of the raw material melt in the narrowed portion forming step becomes small, the shape of the single crystal narrowed portion can be stabilized and a narrowed portion having a desired diameter can be easily formed.
Also, in a method of growing a single crystal without forming a narrowed portion using a seed crystal having a shape with a sharp tip or a pointed portion cut off, the melt is applied when the seed crystal tip is dissolved in the raw material melt. Since the solution temperature can be stabilized at a desired temperature and dissolved, the seed crystal can be dissolved to a desired diameter without dislocation.
This makes it possible to perform stable pulling even with high-weight and large-diameter crystals, and to improve the crystal productivity by improving the success rate of formation of the narrowed portion or seed crystal penetration. be able to. In addition, since the failure at the time of forming the narrowed portion or melting the seed crystal can be greatly reduced, the burden on the operator can be reduced. In particular, the method of the present invention exhibits its effect sufficiently when a large crucible having a diameter exceeding 50 cm is used.
Furthermore, according to the method of the present invention, the distance between the upper furnace structure and the silicon melt can be set to a desired width at the time of growing the single crystal constant diameter portion, so that the constant diameter portion has a low defect or no defect. A remarkable effect that a single crystal can be easily obtained is achieved.

Claims (6)

単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、製造装置炉内のルツボに収容されたシリコン融液に種結晶を浸漬した後に種結晶を引上げながら絞り部を形成し、その後径を拡大して単結晶を育成するチョクラルスキー法によるシリコン単結晶の製造方法において、少なくとも該種結晶を融液に着液させてから絞り部の形成が終了するまでの間は、上部炉内構造物の下端とシリコン融液面間の距離が5mm以上100mm以下となる位置に上部炉内構造物あるいは原料融液を収容したルツボを配置し、絞り部の形成が終了した以降に上部炉内構造物とシリコン融液面間の距離を徐々に広げ、単結晶定径部を形成するのに適した位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成することを特徴とするシリコン単結晶の製造方法。Silicon melt contained in a crucible in a manufacturing apparatus furnace using a single crystal manufacturing apparatus having a cylindrical or conical upper furnace structure arranged so as to surround a single crystal grown in a single crystal manufacturing apparatus furnace In the method for producing a silicon single crystal by the Czochralski method in which the seed crystal is dipped in and then the squeezed portion is formed while the seed crystal is pulled up, and then the diameter is enlarged to grow the single crystal, at least the seed crystal is used as a melt. From when the liquid is deposited to when the formation of the throttle portion is completed, the upper furnace structure or raw material melt is at a position where the distance between the lower end of the upper furnace structure and the silicon melt surface is 5 mm or more and 100 mm or less. After the formation of the constricted portion is completed, the distance between the upper furnace structure and the silicon melt surface is gradually increased, and the upper portion is placed at a position suitable for forming a single crystal constant diameter portion. In-furnace structures or Method for manufacturing a silicon single crystal, characterized in that a single crystal is grown by moving the crucible. 請求項1に記載したシリコン単結晶の製造方法において、前記上部炉内構造物とシリコン融液面との隙間を広げる操作は、絞り部の形成が終了した後の単結晶直径を拡大する拡径部を形成している間に行われることを特徴とするシリコン単結晶の製造方法。2. The method for producing a silicon single crystal according to claim 1, wherein the operation of widening the gap between the upper furnace structure and the silicon melt surface expands the diameter of the single crystal after the formation of the narrowed portion. A method for producing a silicon single crystal, which is performed while forming a portion. 単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、製造装置炉内のルツボに収容されたシリコン融液に先端部の尖ったあるいは尖った先端を切り取った形状を有する種結晶を用いて種結晶の先端部を所望の径となるまで浸漬した後に、絞り部を形成することなく径を拡大して単結晶を育成するチョクラルスキー法によるシリコン単結晶の製造方法において、少なくとも該種結晶を融液に着液させてから該種結晶先端の融液と接している部分の径が所望の径となるまで浸漬を行っている間は、上部炉内構造物の下端とシリコン融液面間の距離を5mm以上100mm以下となるように上部炉内構造物あるいは原料融液を収容したルツボを配置し、種結晶の浸漬が完了した以降に上部炉内構造物とシリコン融液面間の距離を徐々に広げ、単結晶定径部を形成するのに適した位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成することを特徴とするシリコン単結晶の製造方法。Silicon melt contained in a crucible in a manufacturing apparatus furnace using a single crystal manufacturing apparatus having a cylindrical or conical upper furnace structure arranged so as to surround a single crystal grown in a single crystal manufacturing apparatus furnace After immersing the tip of the seed crystal to a desired diameter using a seed crystal having a sharp tip or a shape with the sharp tip cut off, the diameter is enlarged without forming a narrowed portion. In a method for producing a silicon single crystal by the Czochralski method for growing crystals, at least the diameter of the portion in contact with the melt at the tip of the seed crystal becomes a desired diameter after the seed crystal is deposited in the melt. The crucible containing the upper furnace structure or the raw material melt is disposed so that the distance between the lower end of the upper furnace structure and the silicon melt surface is 5 mm to 100 mm, Immersion of seed crystals After completion, gradually increase the distance between the upper furnace structure and the silicon melt surface, and move the upper furnace structure or crucible to a position suitable for forming the single crystal constant diameter part. A method for producing a silicon single crystal, characterized by growing. 請求項3に記載したシリコン単結晶の製造方法において、前記上部炉内構造物とシリコン融液面との隙間を広げる操作は、前記種結晶を所望の径まで浸漬した後以降の単結晶直径を拡大する拡径部を形成している間に行われることを特徴とするシリコン単結晶の製造方法。4. The method for producing a silicon single crystal according to claim 3, wherein the operation of widening the gap between the upper furnace structure and the silicon melt surface has a single crystal diameter after the seed crystal is immersed to a desired diameter. A method for producing a silicon single crystal, which is performed while forming an enlarged diameter expanding portion. 請求項1〜請求項4のいずれか1項に記載したシリコン単結晶の製造方法であって、前記上部炉内構造物とシリコン融液面との隙間を広げる操作は、シリコン融液を収容したルツボを降下させることによって行うことを特徴とするシリコン単結晶の製造方法。5. The method for producing a silicon single crystal according to claim 1, wherein the operation of widening a gap between the upper furnace structure and the silicon melt surface accommodates the silicon melt. A method for producing a silicon single crystal, which is performed by lowering a crucible. 請求項1〜請求項4のいずれか1項に記載したシリコン単結晶の製造方法であって、前記上部炉内構造物とシリコン融液面との隙間を広げる操作は、シリコン融液直上に配置された上部炉内構造物を上昇させることによって行うことを特徴とするシリコン単結晶の製造方法。5. The method for producing a silicon single crystal according to claim 1, wherein the operation of widening a gap between the upper furnace structure and the silicon melt surface is arranged immediately above the silicon melt. A method for producing a silicon single crystal, which is performed by raising the formed upper furnace structure.
JP2002522346A 2000-08-18 2001-08-14 Method for producing silicon single crystal Expired - Fee Related JP3690680B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000248859 2000-08-18
PCT/JP2001/007019 WO2002016678A1 (en) 2000-08-18 2001-08-14 Method for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JP3690680B2 true JP3690680B2 (en) 2005-08-31

Family

ID=18738688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002522346A Expired - Fee Related JP3690680B2 (en) 2000-08-18 2001-08-14 Method for producing silicon single crystal

Country Status (3)

Country Link
JP (1) JP3690680B2 (en)
TW (1) TW526299B (en)
WO (1) WO2002016678A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842861B2 (en) * 2007-03-12 2011-12-21 コバレントマテリアル株式会社 Method for producing silicon single crystal
JP5018670B2 (en) * 2008-07-02 2012-09-05 株式会社Sumco Single crystal growth method
JP5223513B2 (en) * 2008-07-11 2013-06-26 株式会社Sumco Single crystal manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016898A (en) * 1998-07-02 2000-01-18 Mitsubishi Materials Silicon Corp Method and apparatus for pulling single crystal

Also Published As

Publication number Publication date
WO2002016678A1 (en) 2002-02-28
TW526299B (en) 2003-04-01

Similar Documents

Publication Publication Date Title
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JP4919343B2 (en) Single crystal pulling device
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
JP3760769B2 (en) Method for producing silicon single crystal
JP3690680B2 (en) Method for producing silicon single crystal
US6755910B2 (en) Method for pulling single crystal
JP4151474B2 (en) Method for producing single crystal and single crystal
WO2013088646A1 (en) Method for producing silicon single crystal
JP5415052B2 (en) Ultra-low defect semiconductor single crystal manufacturing method and manufacturing apparatus thereof
JP4013324B2 (en) Single crystal growth method
JP4224906B2 (en) Pulling method of silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JPH11180793A (en) Method for controlling single crystal pulling-up rate
JP4272449B2 (en) Single crystal pulling method
JP4640796B2 (en) Method for producing silicon single crystal
JP3849639B2 (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JP2018523626A (en) Single crystal ingot growth apparatus and growth method thereof
JP4407192B2 (en) Single crystal manufacturing method
KR100581045B1 (en) Method for porducing silicon single crystal
JP3721977B2 (en) Single crystal pulling method
JP3724535B2 (en) High quality silicon single crystal
JP3915276B2 (en) Silicon single crystal manufacturing method and manufacturing apparatus thereof
JP4082213B2 (en) Single crystal growth method, single crystal manufacturing apparatus, and silicon single crystal manufactured by this method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Ref document number: 3690680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees