JP3690292B2 - Surface coated cemented carbide cutting tool with excellent surface lubricity against chips - Google Patents

Surface coated cemented carbide cutting tool with excellent surface lubricity against chips Download PDF

Info

Publication number
JP3690292B2
JP3690292B2 JP2001053847A JP2001053847A JP3690292B2 JP 3690292 B2 JP3690292 B2 JP 3690292B2 JP 2001053847 A JP2001053847 A JP 2001053847A JP 2001053847 A JP2001053847 A JP 2001053847A JP 3690292 B2 JP3690292 B2 JP 3690292B2
Authority
JP
Japan
Prior art keywords
cutting
carbide
cemented carbide
powder
coated carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001053847A
Other languages
Japanese (ja)
Other versions
JP2002256413A (en
Inventor
保之 山田
夏樹 一宮
浩一 前田
Original Assignee
三菱マテリアル神戸ツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル神戸ツールズ株式会社 filed Critical 三菱マテリアル神戸ツールズ株式会社
Priority to JP2001053847A priority Critical patent/JP3690292B2/en
Publication of JP2002256413A publication Critical patent/JP2002256413A/en
Application granted granted Critical
Publication of JP3690292B2 publication Critical patent/JP3690292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、切粉に対する表面潤滑性にすぐれ、したがって特にステンレス鋼や軟鋼などのきわめて粘性が高く、かつ切粉が切刃部表面に溶着し易い難削材の高速切削加工に用いた場合にも、切刃部に欠けやチッピング(微小欠け)などの発生なく、すぐれた切削性能を長期に亘って発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、一般に、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置を用い、ヒータで装置内を、例えば雰囲気を5×10-2Paの真空として、500℃の温度に加熱した状態で、アノード電極と、所定組成を有するTi−Al−Ta合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば雰囲気圧力を3Paとし、一方炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体という)には、例えばー200Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、例えば特開平5−272745号公報に記載されるように、TiとAlとTaの複合窒化物[以下、(Ti,Al,Ta)Nで示す]からなる硬質被覆層を、1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られている。
【0004】
【発明が解決しようとする課題】
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には1種類の工具できるだけ多くの材種の被削材を切削加工できる汎用性が求められると共に、切削加工も高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、これをきわめて粘性の高いステンレス鋼や軟鋼などの被削材の高速切削に用いた場合には、これら被削材の切粉は、硬質被覆層を構成する(Ti,Al,Ta)N層に対する親和性が高いために、切刃部表面に溶着し易く、この溶着現象は切削加工が高速化すればするほど顕著に現れるようになり、この溶着現象が原因で切刃部に欠けやチッピングが発生し、この結果比較的短時間で使用寿命に至るのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特にステンレス鋼や軟鋼などの高速切削加工に用いた場合にも、切刃部表面に切粉の溶着し難い被覆超硬工具を開発すべく、特に上記の硬質被覆層が(Ti,Al,Ta)N層で構成された従来被覆超硬工具に着目し、研究を行った結果、上記の従来被覆超硬工具の硬質被覆を構成する(Ti,Al,Ta)N層の組成を、組成式:[Ti1-(X+Y)AlXTaY]N(ただし、いずれも原子比で、Xは0.25〜0.7、Yは0.01〜0.3を示す)を満足する組成に特定した上で、これにV成分を、TiとAlとTaの合量に占める割合(原子比)で、0.15〜0.3の割合で固溶含有させてなるTiとAlとTaとVの複合窒化物[以下、(Ti,Al,Ta,V)Nで示す]で硬質被覆層を構成すると、この結果の被覆超硬工具においては、一般に切削時の摩擦熱で切刃部が加熱され、特にきわめて粘性の高いステンレス鋼や軟鋼などの難削材の高速切削では、一段の高熱発生を伴ない、切刃部の温度が約700℃以上に達するが、前記(Ti,Al,Ta,V)N層では、これを構成するV成分が前記高温加熱で選択酸化(優先酸化)されて、酸化バナジウム(以下、V25で示す)が生成されるようになり、このV25は融点が668℃と低く、このため溶融して切刃部の表面を潤滑化するようになることから、切刃部表面への切粉の溶着現象がなくなり、切刃部に欠けやチッピングの発生がなくなって、長期に亘ってすぐれた切削性能を発揮するようになる、という研究結果を得たのである。
【0006】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
組成式:[Ti1-(X+Y+Z)AlXTaYZ]N(ただし、いずれも原子比で、Xは0.25〜0.7、Yは0.01〜0.3、Zは0.15〜0.3を示す)を満足する(Ti,Al,Ta,V)Nからなる硬質被覆層を、1〜15μmの平均層厚で物理蒸着してなる、切粉に対する表面潤滑性にすぐれた被覆超硬工具に特徴を有するものである。
【0007】
なお、この発明の被覆超硬工具において、硬質被覆層の(Ti,Al,Ta,V)N層におけるAlは、きわめて軟質のTiNに対して高温硬さおよび耐熱性を向上させるために固溶するものであり、したがって組成式:[Ti1-(X+Y+Z)AlXTaYZ]NのX値が原子比で0.25未満では所望の高温硬さおよび耐熱性向上効果が得られず、一方そのX値が同0.7を越えると、TiNによってもたらされるすぐれた靭性が急激に低下するようになり、チッピング発生の原因ともなるという理由で、X値を原子比で0.25〜0.7、望ましくは0.4〜0.6と定めた。
また、同じくTaには、硬質被覆層の高温強度を向上させ、もって上記Alとの共存において耐摩耗性向上に寄与する作用があるが、上記組成式のY値が原子比で0.01未満では所望の高温強度向上効果が得られず、一方そのY値が同0.3を越えると、硬質被覆層が軟質化し、摩耗進行が急激に促進されるようになることから、Y値を原子比で0.01〜0.3、望ましくは0.02〜0.25と定めた。
さらに、同じくVには、上記の通り切削時の発熱で硬質被覆層の構成成分であるTi、Al、およびTaに優先して酸化し、V25を形成して、溶融し、これが切刃部の表面に存在して、潤滑材として作用し、親和性の高いステンレス鋼や軟鋼などの切粉の切刃部表面への溶着を防止する作用があるが、上記組成式のZ値が原子比で0.15未満では前記作用に所望向上効果が得られず、一方そのZ値が同0.3を越えると、硬質被覆層の酸化が急激に進行し、摩耗が促進されるようになることから、Z値を原子比で0.15〜0.3と定めた。
また、硬質被覆層の平均層厚を1〜15μmとしたのは、その層厚が1μm未満では所望のすぐれた耐摩耗性を確保することができず、一方その層厚が15μmを越えると、切刃部に欠けやチッピングが発生し易くなるという理由によるものである。
【0008】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408の形状をもったWC基超硬合金製のチップ超硬基体A1〜A7を形成した。
【0009】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408の形状をもったTiCN系サーメット製のチップ超硬基体B1〜B4を形成した。
【0010】
ついで、これらチップ超硬基体A1〜A7およびB1〜B4を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に例示される通常のアークイオンプレーティング装置に装入し、一方カソード電極(蒸発源)として種々の成分組成をもったTi−Al−Ta−V合金またはTi−Al−Ta合金を装着し、装置内を排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で超硬基体に−800vのバイアス電圧を印加して超硬基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して6Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−200vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A1〜A7およびB1〜B4のそれぞれの表面に、表3、4に示される目標組成および目標層厚の硬質被覆層を蒸着することにより、図2(a)に概略斜視図で、同(b)に概略縦断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜11、および従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜11をそれぞれ製造した。
【0011】
なお、この結果得られた本発明被覆超硬チップ1〜11および従来被覆超硬チップ1〜11の硬質被覆層について、その構成層のそれぞれの厚さ断面中央部の組成をオージェ分光分析装置を用いて測定すると共に、その厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも表3、4に示される目標組成および目標層厚と実質的に同じ値を示した。
【0012】
つぎに、上記本発明被覆超硬チップ1〜11および従来被覆超硬チップ1〜11について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS304の丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:20分、
の条件でのステンレス鋼の乾式高速連続旋削加工試験、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:120m/min.、
切り込み:1.0mm、
送り:0.2mm/rev.、
切削時間:15分、
の条件でのステンレス鋼の乾式高速断続旋削加工試験、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:2.0mm、
送り:0.25mm/rev.、
切削時間:20分、
の条件での軟鋼の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃部の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
【0013】
【表1】

Figure 0003690292
【0014】
【表2】
Figure 0003690292
【0015】
【表3】
Figure 0003690292
【0016】
【表4】
Figure 0003690292
【0017】
【表5】
Figure 0003690292
【0018】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、同1.8μmのCo粉末、および同1.2μmの炭素(C)粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×刃長がそれぞれ6mm×13mm、10mm×22mm、および20mm×38mmの寸法をもったエンドミル超硬基体a〜hをそれぞれ製造した。
【0019】
ついで、これらのエンドミル超硬基体a〜hを、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、その表面に上記実施例1と同一の条件で、表7、8に示される目標組成および目標層厚をもった硬質被覆層を蒸着することにより、図3(a)に概略正面図で、同(b)に切刃部の概略横断面図で示される形状を有する従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜11をそれぞれ製造した。
【0020】
また、この結果得られた本発明被覆超硬エンドミル1〜11および従来被覆超硬エンドミル1〜11の硬質被覆層について、その構成層のそれぞれの厚さ断面中央部の組成をオージェ分光分析装置を用いて測定すると共に、その厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも表7、8に示される目標組成および目標層厚と実質的に同じ値を示した。
【0021】
つぎに、上記本発明被覆超硬エンドミル1〜11および従来被覆超硬エンドミル1〜 のうち、本発明被覆超硬エンドミル1〜および従来被覆超硬エンドミル1〜については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:40m/min.、
溝深さ(切り込み):2mm、
テーブル送り:130mm/分、
の条件でのステンレス鋼の湿式高速溝切削加工試験(水溶性切削油使用)、本発明被覆超硬エンドミル5〜8および従来被覆超硬エンドミル5〜8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15C板材、
切削速度:100m/min.、
溝深さ(切り込み):4mm、
テーブル送り:300mm/分、
の条件での軟鋼の乾式高速溝切削加工試験、本発明被覆超硬エンドミル9〜11および従来被覆超硬エンドミル9〜11については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:30m/min.、
溝深さ(切り込み):7mm、
テーブル送り:60mm/分、
の条件でのステンレス鋼の湿式高速溝切削加工試験(水溶性切削油使用)、
をそれぞれ行い、いずれの溝切削加工試験でも外周刃の逃げ面摩耗量が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7、8にそれぞれ示した。
【0022】
【表6】
Figure 0003690292
【0023】
【表7】
Figure 0003690292
【0024】
【表8】
Figure 0003690292
【0025】
(実施例3)
上記の実施例2で製造した直径が8mm(エンドミル超硬基体a〜c形成用)、13mm(エンドミル超硬基体d〜f形成用)、および26mm(エンドミル超硬基体g、h形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×溝長がそれぞれ4mm×21mm(ドリル超硬基体a‘〜c’)、8mm×35mm(ドリル超硬基体d‘〜f’)、および16mm×55mm(ドリル超硬基体g‘、h’)の寸法をもったドリル超硬基体a‘〜h’をそれぞれ製造した。
【0026】
ついで、これらのドリル超硬基体a‘〜h’を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、それぞれの表面に、上記実施例1と同一の条件で、表9、10に示される目標組成および目標層厚をもった硬質被覆層を蒸着することにより、図4(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜11、および従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜11をそれぞれ製造した。
【0027】
同じく、この結果得られた本発明被覆超硬ドリル1〜11および従来被覆超硬ドリル1〜11の硬質被覆層について、その構成層のそれぞれの厚さ断面中央部の組成をオージェ分光分析装置を用いて測定すると共に、その厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも表9、10に示される目標組成および目標層厚と実質的に同じ値を示した。
【0028】
つぎに、上記本発明被覆超硬ドリル1〜11および従来被覆超硬ドリル1〜11のうち、本発明被覆超硬ドリル1〜および従来被覆超硬ドリル1〜については、板材、
被削材:平面寸法:100mm×250mm、厚さ:20mmのJIS・SUS304板材、
切削速度:50m/min.、
送り:0.10mm/rev、
の条件でのステンレス鋼の湿式高速穴あけ(穴深さ:10mmのメクラ穴)切削加工試験、本発明被覆超硬ドリル5〜8および従来被覆超硬ドリル5〜8については、
被削材:平面寸法:100mm×250mm、厚さ:20mmのJIS・SUS304の板材、
切削速度:60m/min.、
送り:0.15mm/rev、
の条件でのステンレス鋼の湿式高速穴あけ(貫通穴)切削加工試験、本発明被覆超硬ドリル9〜11および従来被覆超硬ドリル9〜11については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:60m/min.、
送り:0.25mm/rev、
の条件での軟鋼の湿式高速穴あけ(貫通穴)切削加工試験、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
【0029】
【表9】
Figure 0003690292
【0030】
【表10】
Figure 0003690292
【0031】
【発明の効果】
表3〜10に示される結果から、本発明被覆超硬工具は、いずれもステンレス鋼や軟鋼の切削加工を高い発熱を伴う高速で行っても、硬質被覆層を構成するTi,Al,Ta,V)N層のうちのV成分が選択酸化(優先酸化)して、V25を生成し、このV25が潤滑材として作用し、すぐれた表面潤滑性が維持されることから、切刃部表面への切粉の溶着が著しく抑制され、この結果切刃部におけるチッピングの発生がなくなり、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Al,Ta)N層からなる従来被覆超硬工具においては、切粉が硬質被覆層に溶着し易く、これが原因で硬質被覆層が局部的に剥がし取られることから、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に粘性が高く、切粉が切刃表面に溶着し易いステンレス鋼や軟鋼などの高速切削加工でも切粉に対してすぐれた表面潤滑性を発揮し、汎用性のある切削性能を示すものであるから、切削加工装置のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 アークイオンプレーティング装置の概略説明図である。
【図2】 (a)は被覆超硬チップの概略斜視図、(b)は被覆超硬チップの概略縦断面図である。
【図3】 (a)は被覆超硬エンドミルの概略正面図、(b)は同切刃部の概略横断面図である。
【図4】 (a)は被覆超硬ドリルの概略正面図、(b)は同溝形成部の概略横断面図である。[0001]
BACKGROUND OF THE INVENTION
This invention has excellent surface lubricity against chips, and therefore, when used for high-speed cutting of difficult-to-cut materials that are particularly highly viscous, such as stainless steel and mild steel, and the chips are likely to adhere to the surface of the cutting edge. The present invention also relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent cutting performance over a long period of time without occurrence of chipping or chipping (microchips) in the cutting edge. .
[0002]
[Prior art]
In general, for cutting tools, a throw-away tip that is used by attaching to the tip of a cutting tool for turning and planing of various steels and cast irons, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
[0003]
In general, for example, an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. 1 is used, and the inside of the apparatus is heated by a heater, for example, an atmosphere of 5 × 10 −2 Pa. An arc between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—Ta alloy having a predetermined composition is set in a state of being heated to a temperature of, for example, a voltage of 35 V and a current of 90 A. Nitrogen gas is introduced into the apparatus as a reaction gas at the same time, for example, the atmospheric pressure is set to 3 Pa, while tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN). ) For a substrate made of a base cermet (hereinafter collectively referred to as a cemented carbide substrate), for example, under the condition that a bias voltage of −200 V is applied, On the surface, for example, as described in JP-A-5-272745, a hard coating layer made of a composite nitride of Ti, Al, and Ta [hereinafter referred to as (Ti, Al, Ta) N] A coated carbide tool formed by physical vapor deposition with an average layer thickness of 15 μm is known.
[0004]
[Problems to be solved by the invention]
In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing, and as a result, cutting tools have as many materials as possible for one type of tool. The versatility of cutting materials is required and cutting speed tends to increase, but the above-mentioned conventional coated carbide tools are used for cutting under normal conditions such as steel and cast iron. However, when this is used for high-speed cutting of work materials such as extremely viscous stainless steel and mild steel, the chips of these work materials constitute a hard coating layer ( Due to the high affinity for the Ti, Al, Ta) N layer, it is easy to weld to the surface of the cutting edge, and this welding phenomenon becomes more prominent as the cutting speed increases, and this welding phenomenon is the cause. With a chip or chip in the cutting edge Grayed occurs, the reach this result relatively short time service life at present.
[0005]
[Means for Solving the Problems]
In view of the above, the present inventors have developed a coated carbide tool in which chips are difficult to adhere to the surface of the cutting edge, particularly when used for high-speed cutting such as stainless steel and mild steel. Therefore, in particular, the hard coating layer is composed of a (Ti, Al, Ta) N layer. As a result of research, the hard coating of the conventional coated carbide tool is configured. (Ti, Al, Ta) the composition of the N layer, the composition formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that both atomic ratio, X is 0.25 to 0.7, Y represents 0.01 to 0.3), and the ratio of V component to the total amount of Ti, Al, and Ta (atomic ratio) is 0.15 to 0 .3, a composite nitride of Ti, Al, Ta, and V [hereinafter referred to as (Ti, Al, Ta, V) N] hardened by solid solution inclusion When the cover layer is configured, the resulting coated carbide tool generally heats the cutting edge with frictional heat during cutting, and is particularly difficult in high-speed cutting of difficult-to-cut materials such as extremely viscous stainless steel and mild steel. In the (Ti, Al, Ta, V) N layer, the V component constituting this is selectively oxidized by the high temperature heating (priority). Oxidation) to produce vanadium oxide (hereinafter referred to as V 2 O 5 ). This V 2 O 5 has a melting point as low as 668 ° C. and therefore melts to lubricate the surface of the cutting edge. Since the phenomenon of welding of chips on the surface of the cutting edge portion is eliminated, the occurrence of chipping and chipping in the cutting edge portion is eliminated, and excellent cutting performance will be demonstrated over a long period of time. The research result was obtained.
[0006]
This invention was made based on the above research results, and on the surface of the carbide substrate,
Formula: [Ti 1- (X + Y + Z) Al X Ta Y V Z] N ( provided that both atomic ratio, X is 0.25 to 0.7, Y 0.01 to 0.3 , Z represents 0.15 to 0.3), and a hard coating layer made of (Ti, Al, Ta, V) N is physically vapor-deposited with an average layer thickness of 1 to 15 μm. It is characterized by coated carbide tools with excellent surface lubricity.
[0007]
In the coated carbide tool of the present invention, Al in the (Ti, Al, Ta, V) N layer of the hard coating layer is a solid solution in order to improve high temperature hardness and heat resistance with respect to extremely soft TiN. Therefore, if the X value of the composition formula: [Ti 1-(X + Y + Z) Al X Ta Y V Z ] N is less than 0.25 in atomic ratio, the desired high temperature hardness and heat resistance improvement effect On the other hand, if the X value exceeds 0.7, the excellent toughness brought about by TiN starts to drop sharply, which also causes chipping. It was set to 0.25 to 0.7, desirably 0.4 to 0.6.
Similarly, Ta has the effect of improving the high temperature strength of the hard coating layer and contributing to the improvement of wear resistance in the coexistence with Al, but the Y value of the above composition formula is less than 0.01 by atomic ratio. However, if the Y value exceeds 0.3, the hard coating layer becomes soft and the progress of wear is accelerated rapidly. The ratio was determined to be 0.01 to 0.3, preferably 0.02 to 0.25.
Furthermore, V is oxidized in preference to Ti, Al, and Ta, which are constituents of the hard coating layer, by heat generated during cutting as described above, forming V 2 O 5 , melting, It exists on the surface of the blade part, acts as a lubricant, and has the effect of preventing the welding of chips with high affinity, such as stainless steel and mild steel, to the surface of the cutting edge part. If the atomic ratio is less than 0.15 , a desired improvement effect cannot be obtained in the above action. On the other hand, if the Z value exceeds 0.3, the oxidation of the hard coating layer proceeds rapidly, and wear is promoted. Therefore, the Z value was determined to be 0.15 to 0.3 by atomic ratio.
Moreover, the average layer thickness of the hard coating layer is set to 1 to 15 μm. If the layer thickness is less than 1 μm, the desired excellent wear resistance cannot be ensured. On the other hand, if the layer thickness exceeds 15 μm, This is because chipping and chipping are likely to occur in the cutting edge portion.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
(Example 1)
WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, and after sintering, WC-based cemented carbide with honing of R: 0.05 on the cutting edge and ISO standard / CNMG120408 shape Chip carbide substrates A1 to A7 made were formed.
[0009]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. Chip carbide substrates B1 to B4 made of TiCN cermet having the following shape were formed.
[0010]
Then, these chip superhard substrates A1 to A7 and B1 to B4 are ultrasonically cleaned in acetone and dried, and each is inserted into a normal arc ion plating apparatus illustrated in FIG. A Ti-Al-Ta-V alloy or Ti-Al-Ta alloy with various component compositions is attached as an electrode (evaporation source), and the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa with a heater. After heating the inside of the apparatus to 500 ° C., Ar gas is introduced into the apparatus to form an Ar atmosphere of 10 Pa, and in this state, a bias voltage of −800 V is applied to the carbide substrate to clean the surface of the carbide substrate with Ar gas bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 6 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −200 V, and the cathode To generate arc discharge between the electrode and the anode electrode, with the each of the surfaces of the carbide substrates A1 to A7 and B1 to B4, the target composition and target layer thicknesses hard layer of shown in Tables 3 and 4 The surface coated cemented carbide throwaway tip of the present invention as a coated carbide tool of the present invention having the shape shown in the schematic perspective view of FIG. 2 (a) and the schematic longitudinal sectional view of FIG. 2 (b). 1 to 11 (hereinafter referred to as the present invention coated carbide tip), and the conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 11 as conventional coated carbide tools, respectively. Manufactured.
[0011]
Note that the hard coating layer of the resulting present invention coated carbide inserts 1 to 11 and conventional coated carbide inserts 1 to 11, the Auger spectrometer the composition of each of the thickness center of the section of the structure layer As a result of measurement using a scanning electron microscope, the thickness was measured by using a scanning electron microscope. As a result, all showed substantially the same values as the target composition and target layer thickness shown in Tables 3 and 4.
[0012]
Next, for the above-described coated carbide chips 1 to 11 of the present invention and the conventional coated carbide chips 1 to 11 , this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUS304 round bar,
Cutting speed: 200 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 20 minutes,
Stainless steel dry-type high-speed continuous turning test,
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 120 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 15 minutes,
Stainless steel dry high-speed intermittent turning test,
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 2.0 mm
Feed: 0.25 mm / rev. ,
Cutting time: 20 minutes,
A dry high-speed intermittent turning test of mild steel was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any of the turning tests. The measurement results are shown in Table 5.
[0013]
[Table 1]
Figure 0003690292
[0014]
[Table 2]
Figure 0003690292
[0015]
[Table 3]
Figure 0003690292
[0016]
[Table 4]
Figure 0003690292
[0017]
[Table 5]
Figure 0003690292
[0018]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, 1.8 μm Co powder, and 1.2 μm carbon ( C) Prepare powders, mix these raw material powders with the composition shown in Table 6, add wax, mix in ball mill in acetone for 24 hours, dry under reduced pressure, and then apply various kinds of powders with a predetermined shape at a pressure of 100 MPa. These green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding for 1 hour, sintered under furnace cooling conditions, the diameter is Forming three types of cemented carbide substrate-forming round bar sintered bodies of 8 mm, 13 mm, and 26 mm, and further grinding the above-mentioned three types of round bar sintered bodies with the combinations shown in Table 6, End mill cemented carbide substrates a to h each having a cutting edge diameter × blade length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 38 mm were manufactured.
[0019]
Next, these end mill carbide substrates a to h were ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus similarly exemplified in FIG. By depositing a hard coating layer having the target composition and target layer thickness shown in Tables 7 and 8 under the same conditions as in Example 1, FIG. 3A is a schematic front view and FIG. Conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 11 as conventional coated cemented carbide tools having the shape shown in the schematic cross-sectional view of the blade portion were manufactured, respectively.
[0020]
In addition, with respect to the hard coating layers of the coated carbide end mills 1 to 11 of the present invention and the conventional coated carbide end mills 1 to 11 obtained as a result of this, the composition of the central portion of each thickness cross section of the constituent layers is determined using an Auger spectrometer As a result of measurement using a scanning electron microscope, the thickness was measured by using a scanning electron microscope, and both showed substantially the same values as the target composition and target layer thickness shown in Tables 7 and 8.
[0021]
Next, the present invention coated cemented carbide end mills 1 to 11 and of the conventional coated cemented carbide end mills 1-1 1, the present invention coated cemented carbide end mills 1-4 and the conventional coated cemented carbide end mills 1-4 is
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 40 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 130 mm / min,
For stainless steel wet high-speed grooving cutting test (using water-soluble cutting oil), the present invention coated carbide end mill 5-8 and conventional coated carbide end mill 5-8 ,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 100 m / min. ,
Groove depth (cut): 4 mm
Table feed: 300mm / min,
About the dry high-speed grooving test of mild steel under the conditions of the present invention, the coated carbide end mills 9 to 11 and the conventional coated carbide end mills 9 to 11 of the present invention,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 30 m / min. ,
Groove depth (cut): 7 mm,
Table feed: 60 mm / min,
Wet high-speed grooving cutting test of stainless steel under the conditions of (using water-soluble cutting oil),
In each groove cutting test, the cutting groove length was measured until the flank wear amount of the outer peripheral blade reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.
[0022]
[Table 6]
Figure 0003690292
[0023]
[Table 7]
Figure 0003690292
[0024]
[Table 8]
Figure 0003690292
[0025]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming end mill carbide substrates a to c), 13 mm (for forming end mill carbide substrates d to f), and 26 mm (for forming end mill carbide substrates g and h). Three kinds of round bar sintered bodies were used, and from these three kinds of round bar sintered bodies, the diameter of the groove forming portion × the groove length was 4 mm × 21 mm (drilled carbide substrates a ′ to c ′) by grinding. ), 8 mm × 35 mm (drilled carbide substrates d ′ to f ′), and 16 mm × 55 mm (drilled carbide substrates g ′, h ′), respectively. .
[0026]
Subsequently, these drill carbide substrates a ′ to h ′ were ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus similarly illustrated in FIG. In addition, by depositing a hard coating layer having the target composition and target layer thickness shown in Tables 9 and 10 under the same conditions as in Example 1, the schematic front view in FIG. b) Drills made of the surface-coated cemented carbide according to the present invention (hereinafter referred to as the present coated carbide drill) 1 to 11 as the coated carbide tools of the present invention having the shape shown in the schematic cross-sectional view of the groove forming portion in FIG. In addition, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 11 as conventional coated carbide tools were manufactured, respectively.
[0027]
Also, the hard coating layer of the resulting present invention coated cemented carbide drills 1 to 11 and conventional coated carbide drills 1-11, Auger spectrometer the composition of each of the thickness center of the section of the structure layer As a result of measurement using a scanning electron microscope, the thickness was measured by using a scanning electron microscope. As a result, all showed substantially the same values as the target composition and target layer thickness shown in Tables 9 and 10.
[0028]
Next, among the present invention coated carbide drills 1 to 11 and the conventional coated carbide drills 1 to 11 , the present invention coated carbide drills 1 to 4 and the conventional coated carbide drills 1 to 4 , the plate material,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 20 mm JIS / SUS304 plate,
Cutting speed: 50 m / min. ,
Feed: 0.10 mm / rev,
For high-speed wet drilling of stainless steel (hole depth: 10 mm drill hole) cutting test, the present invention coated carbide drill 5-8 and the conventional coated carbide drill 5-8 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 20 mm JIS / SUS304 plate material,
Cutting speed: 60 m / min. ,
Feed: 0.15mm / rev,
About the wet high speed drilling (through hole) cutting test of stainless steel under the conditions of the present invention, the coated carbide drills 9 to 11 of the present invention and the conventional coated carbide drills 9 to 11
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 60 m / min. ,
Feed: 0.25mm / rev,
Wet high speed drilling (through hole) cutting test of mild steel under the conditions of
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 9 and 10, respectively.
[0029]
[Table 9]
Figure 0003690292
[0030]
[Table 10]
Figure 0003690292
[0031]
【The invention's effect】
From the results shown in Tables 3 to 10, the coated carbide tool of the present invention is composed of Ti, Al, Ta, and the like that constitute the hard coating layer, even if cutting of stainless steel or mild steel is performed at high speed with high heat generation. V) V component of the N layer is selectively oxidized (preferential oxidation) to produce a V 2 O 5, since the V 2 O 5 acts as a lubricant, are excellent surface lubricity maintained As a result, chip welding on the surface of the cutting edge is remarkably suppressed, and as a result, no chipping occurs in the cutting edge, and excellent wear resistance is exhibited, whereas a hard coating layer (Ti, Al, In the conventional coated carbide tool composed of Ta) N layer, the chip is easily welded to the hard coating layer, and this causes the hard coating layer to be locally peeled off, so that chipping occurs at the cutting edge portion, It is clear that the service life is reached in a relatively short time.
As described above, the coated cemented carbide tool of the present invention is not only cut under normal conditions such as various types of steel and cast iron, but also has a particularly high viscosity, and the stainless steel is easy to weld chips to the cutting blade surface. It exhibits excellent surface lubricity against chips even in high-speed cutting such as steel and mild steel, and exhibits versatile cutting performance. In addition, it can cope with the cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an arc ion plating apparatus.
FIG. 2A is a schematic perspective view of a coated carbide chip, and FIG. 2B is a schematic longitudinal sectional view of the coated carbide chip.
3A is a schematic front view of a coated carbide end mill, and FIG. 3B is a schematic cross-sectional view of the cutting edge portion.
4A is a schematic front view of a coated carbide drill, and FIG. 4B is a schematic cross-sectional view of the groove forming portion.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、
組成式:[Ti1-(X+Y+Z)AlXTaYZ]N(ただし、いずれも原子比で、Xは0.25〜0.7、Yは0.01〜0.3、Zは0.15〜0.3を示す)を満足するTiとAlとTaとVの複合窒化物からなる硬質被覆層を、1〜15μmの平均層厚で物理蒸着してなる、切粉に対する表面潤滑性にすぐれた表面被覆超硬合金製切削工具。
On the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate,
Formula: [Ti 1- (X + Y + Z) Al X Ta Y V Z] N ( provided that both atomic ratio, X is 0.25 to 0.7, Y 0.01 to 0.3 , Z represents 0.15 to 0.3), a chip formed by physically vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, Ta and V with an average layer thickness of 1 to 15 μm Surface coated cemented carbide cutting tool with excellent surface lubricity.
JP2001053847A 2001-02-28 2001-02-28 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips Expired - Fee Related JP3690292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053847A JP3690292B2 (en) 2001-02-28 2001-02-28 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053847A JP3690292B2 (en) 2001-02-28 2001-02-28 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Publications (2)

Publication Number Publication Date
JP2002256413A JP2002256413A (en) 2002-09-11
JP3690292B2 true JP3690292B2 (en) 2005-08-31

Family

ID=18914268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053847A Expired - Fee Related JP3690292B2 (en) 2001-02-28 2001-02-28 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Country Status (1)

Country Link
JP (1) JP3690292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468589A (en) * 2018-12-17 2019-03-15 艾瑞森表面技术(苏州)股份有限公司 A kind of composite coating and preparation method thereof suitable for carbide chip

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT8346U1 (en) * 2005-04-29 2006-06-15 Ceratitzit Austria Ges M B H COATED TOOL
JP5261413B2 (en) * 2010-02-05 2013-08-14 株式会社神戸製鋼所 Hard coating and method for forming the same
CN103924190B (en) * 2014-04-02 2016-06-08 江苏科技大学 TaVCN hard nanometer structural membrane and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248898B2 (en) * 1999-03-19 2002-01-21 日立ツール株式会社 Hard coating tool
JP3248897B2 (en) * 1999-03-19 2002-01-21 日立ツール株式会社 Hard coating tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468589A (en) * 2018-12-17 2019-03-15 艾瑞森表面技术(苏州)股份有限公司 A kind of composite coating and preparation method thereof suitable for carbide chip

Also Published As

Publication number Publication date
JP2002256413A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2009125832A (en) Surface-coated cutting tool
JP2009119551A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work
JP5196122B2 (en) Surface coated cutting tool
JP3690292B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP3978722B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP3693018B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3981973B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance in heavy cutting of difficult-to-cut materials
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP2003025112A (en) Surface coated cemented carbide cutting tool excellent in surface lubricity for cutting chip
JP3573115B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity to chips
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP3982347B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3972294B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees