JP3689094B2 - Purification method for heavy metal contaminated soil - Google Patents

Purification method for heavy metal contaminated soil Download PDF

Info

Publication number
JP3689094B2
JP3689094B2 JP2003114562A JP2003114562A JP3689094B2 JP 3689094 B2 JP3689094 B2 JP 3689094B2 JP 2003114562 A JP2003114562 A JP 2003114562A JP 2003114562 A JP2003114562 A JP 2003114562A JP 3689094 B2 JP3689094 B2 JP 3689094B2
Authority
JP
Japan
Prior art keywords
heavy metal
soil
chelating agent
mud
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003114562A
Other languages
Japanese (ja)
Other versions
JP2004314007A (en
Inventor
毅嗣 内多
文博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP2003114562A priority Critical patent/JP3689094B2/en
Publication of JP2004314007A publication Critical patent/JP2004314007A/en
Application granted granted Critical
Publication of JP3689094B2 publication Critical patent/JP3689094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は工場や射撃場の重金属、例えば鉛、カドミウム、水銀等で汚染された土壌の浄化方法に関する。
【0002】
【従来の技術】
上記重金属で汚染された現地土壌の浄化方法として、特許文献1乃至4等が提供されており、これらは重金属汚染土壌から重金属を除去する処理材としてキレート剤を用い、該キレート剤を泥水化した重金属汚染土壌と接触せしめて泥水中の重金属をキレート剤に結合せしめ、次に固液分離装置により重金属と結合したキレート剤水溶液を取り除く方法を教示している。
【0003】
【特許文献1】
特開2002−282836号公報
【0004】
【特許文献2】
特開平6−218355号
【0005】
【特許文献3】
特開平4−263874号公報
【0006】
【特許文献4】
特開平11−156338号公報
【0007】
【発明が解決しようとする課題】
本発明は上記特許文献と同様、泥水中の重金属をキレート剤に結合せしめる方法を採りつつ、重金属結合キレート剤の水溶液を泥水中から効率よく脱水除去(固液分離)することができる重金属汚染土壌の浄化方法を提供する。
【0008】
又本発明は固液分離により得られた土壌、殊に基準値を超える重金属含有土壌の洗浄液を循環使用すると共に、重金属結合キレート剤水溶液から重金属を除去した後のキレート剤水溶液を循環使用し、外部への有害処理液の排出を抑制し、環境保全に資するようにした重金属汚染土壌の浄化方法を提供する。
【0014】
【課題を解決するための手段】
発明は、以下のA乃至Fの工程を包含する重金属汚染土壌の浄化方法を提供する。
A:重金属汚染土壌を泥水化してキレート剤と接触せしめ泥水中の重金属をキレート剤に結合せしめる工程、
B:上記キレート剤と接触せしめた泥水を脱水し、土壌と重金属結合キレート剤水溶液とに分離する工程、
C:上記土壌を重金属含有量が基準値内の土壌と同基準値外の土壌とに分別する工程、
D:上記基準値外土壌を洗浄して重金属と結合した又は結合してない残存キレート剤を取り除き、該残存キレート剤を含有せる洗浄水をA工程に環流する工程、
E:上記脱水により得られた重金属結合キレート剤水溶液を重金属とキレート剤水溶液とに分離する工程、
F:上記重金属を分離したキレート剤水溶液を上記A工程に環流する工程、
を含む重金属汚染土壌の浄化方法である。
【0015】
上記洗浄工程から排出されるキレート剤を含有する洗浄水と、上記脱水工程から排出される重金属結合キレート剤から重金属を取り除いたキレート剤水溶液とを、系内において循環し再使用する方法により、有害処理液の外部への排出を抑制して環境保全に資すると共に、キレート剤の効率的使用を可能にする。
【0016】
上記脱水手段としては、フィルタープレス又は遠心分離装置が適切である。
【0017】
【発明の実施の形態】
以下本発明の実施の形態を図1乃至図4に基づき説明する。
【0018】
図1,図2に示すように、重金属で汚染された工場又は射撃場(以下現地と言う)の重金属汚染土壌1をショベルカー等の重機を用い採取し、該採取した重金属汚染土壌1を第1泥水槽2に投入すると共に水3を加え、撹拌して泥水化する。即ち土壌スラリーを形成する。例えば、土壌:水=1:3の割合で混練し土壌スラリーを得る。
【0019】
上記ショベルカー等の重機で採取した重金属汚染土壌1を第1泥水槽2に投入する前に、粗大異物や草等を取り除く工程を設け、該工程を経た後、第1泥水槽2に重金属汚染土壌1を投入する。
【0020】
次に第1泥水槽2内の泥水4を第1泥水槽2内に設置した水中ポンプ5により分級機6に供給し、該分級機6により汚染土壌1中の鉛玉や鉄片や小石等の重量異物7を取り除き、ピット9内に回収する。
【0021】
図3は分級機6の具体例を示しており、この分級機6はメッシュ度の異なる複数の振動ふるい8を有し、該振動ふるい8に泥水4を流し、各ふるい8にて上記重量異物7を取り除き、ふるい8を通過した泥水4を貯槽10内に貯留する。
【0022】
上記貯槽10内の泥水4を水中ポンプ11により第2泥水槽12内に導入する。
【0023】
該第2泥水槽12内の泥水4内にキレート剤水溶液13を加え、更に珪藻土、焼成バーミキュライト、焼成ゼオライト、焼成ベントナイトの1又は2以上から成る多空隙構造の鉱物質粒子14を投入する。
【0024】
又は図1に破線で示すように、第2泥水槽12から取り出した泥水4に上記鉱物質粒子14を加えることができる。即ち第2泥水槽12から第3泥水槽19内に泥水4を取り出し、該第3泥水槽19内の泥水4に上記鉱物質粒子14を配合し撹拌する。
【0025】
上記キレート剤としては、EDTA系(エチレンジアミン四酢酸)中のEDTA2Na−2HOを使用し、該キレート剤の粉末を水に溶かし、上記第2泥水槽12内の泥水4内に加える。
【0026】
第2泥水槽12内の泥水4に対するキレート剤の配合比は重金属汚染度に応じ、0.1〜9%(重量比)の範囲で選択する。
【0027】
又上記第2泥水槽12内の泥水4に対する鉱物質粒子14の配合比は3〜10%(重量比)の範囲で選択する。
【0028】
上記第2泥水層12内のキレート剤水溶液13と鉱物質粒子14を混合した泥水4を撹拌しつつ、キレート剤と重金属の結合を促す。
【0029】
次に上記第2泥水槽12内の泥水4を脱水装置15、即ち固液分離装置に導入し、該泥水4を脱水して土壌1aと重金属結合キレート剤水溶液13aとに分離する。
【0030】
上記脱水手段としては、例えばフィルタープレス18又は遠心分離装置を用いる。図4A,B,Cに示すように、上記フィルタープレス18は複数の並設した濾室20を有し、該濾室20内に上記泥水4を高圧注入し、濾壁21を通して重金属結合キレート剤水溶液13aを脱水し、濾室20内にケーキ状の土壌1aを生成する。濾室20を開くことによって上記ケーキ状土壌1aを取り出す。
【0031】
よって泥水4を土壌1aと重金属結合キレート剤水溶液13aとに分離する。この土壌の含水率は50〜80%程度である。
【0032】
上記珪藻土は藻類のプランクトンが長年に亘り海底や湖底に堆積して化石化した土であり、表面には無数の微細な孔を持っている。即ち高空隙構造を有する。
【0033】
又天然バーミキュライトは雲母、緑泥岩石、滑石に近い天然鉱石であり、その成分は略(Mg,Fe)[(Si,Al)10](OH) 4HOの単斜晶系である。
【0034】
この天然バーミキュライトは400℃以上の高温で熱すると急激に膨張し、即ち沸騰して膨大し、上記高空隙率と陽イオン交換性能を有するに至る。
【0035】
例えば0.5〜3ミリメートルの粒径を有する焼成バーミキュライトを上記泥水4中に加える。
【0036】
又ゼオライト(天然沸石)はアルカリ及びアルカリ土類の含水アルミニウムケイ酸塩を成分とし、この天然沸石を高温で熱すると沸騰して膨大し、高空隙の多孔質構造となり、且つ陽イオン交換性能を有するに至る。
【0037】
このゼオライト(沸石)には斜方晶ゼオライト(クリノプチロライト)と、立方晶ゼオライト(モルデライト)とがあり、殊に斜方晶ゼオライトは上記陽イオン交換性能が高い。
【0038】
例えば0.5〜3ミリメートルの粒径を有する焼成ゼオライトを上記泥水4中に加える。
【0039】
又ベントナイトは粘土の一種であり、モンモリロナイト(鉱物成分)を主成分としており、非常に水との親和力が強く、吸水膨張する。ここでは、このベントナイト(天然鉱物)を200℃〜300℃で熱処理したものを用いる。
【0040】
上記ベントナイトは焼成バーミキュライト及び焼成ゼオライトと同様、この熱処理により膨張し、高空隙率の多孔質構造となり、同様に陽イオン交換性能を有する。
【0041】
上記珪藻土、焼成バーミキュライト、焼成ゼオライト、焼成ベントナイトは何れも高空隙構造であり、土壌に透水性を付与する。例えば、透水性の悪い重金属汚染土壌に透水性を与え、キレート剤による重金属との接触効果を高める。
【0042】
加えて脱水工程における脱水効率を向上し、更には現地復土後の土壌に透水性と酸素取り込み効果を与え、植物育成等に適した健全なる土壌を提供する。
【0043】
図1に示すように、上記フィルタープレス18に代表される脱水装置15によって分離された土壌1aはバッチ方式により各バッチ毎に重金属含有量(含有量と溶出量)を測定し、含有量が基準値内の土壌1bと基準値外の土壌1cとに分別する。
【0044】
上記基準値内土壌1bには土壌改良材22を加え、混練して現地へ復土する。他方基準値外土壌1cは第1バイパス路R1を介して前記した第2泥水槽12に環流し、即ちキレート剤を泥水4に接触せしめる工程に環流し、再びキレート剤による処理を行う。
【0045】
上記土壌改良材22はフライアッシュ、即ち石炭の焼却灰に代表される多空隙構造の重金属吸収材を主成分とする。例えば、フライアッシュを50〜60%、高炉セメントを25〜40%、無水石膏を6〜15%、無機系凝集剤4〜8%を含有する土壌改良材を用いる。
【0046】
上記フライアッシュはその多空隙構造により、基準値内土壌1b内に残存する重金属を吸収し、その表面を凝集剤にて包囲し、重金属の溶出を抑止する。
【0047】
無水石膏はそのエトリングガイド作用により、土壌の初期固化を促し、高炉セメントは土壌の固化を継続的に維持する。
【0048】
上記フライアッシュは前記した珪藻土、焼成バーミキュライト、焼成ゼオライト、焼成ベントナイトに置き換えることができる。又上記無水石膏を含有しない土壌改良材22を用いることができる。
【0049】
これら土壌改良材22は前記した鉱物質粒子14と協働して、上記基準値内土壌1bを生物の成育に良好な環境を提供する。
【0050】
他方図1,図2に示すように、フィルタープレス18に代表される脱水装置15により分離された重金属結合キレート剤水溶液13aは、電気分解装置に代表される重金属分離装置23に導入し、重金属結合キレート剤水溶液13aを重金属17と、キレート剤水溶液13bとに分離する。上記重金属分離装置23は電気浸透法、電気泳動法、生物・化学的処理法による装置を含む。
【0051】
上記分離されたキレート剤水溶液13bは第2バイパス路R2を介して第2泥水槽12に環流し、即ち前記したキレート剤を泥水4に接触せしめる工程に環流し、再使用する。
【0052】
又図2においては、上記脱水装置15から得られた土壌1aをバッチ方式により各バッチ毎に重金属含有量(含有量と溶出量)を測定し、含有量が基準値内の土壌1bと基準値外の土壌1cとに分別し、更に該基準値外土壌1cを洗浄する工程に供し、他方上記測定による基準値内土壌1bを現地に復土する場合を示している。
【0053】
即ち上記基準値外土壌1cを洗浄装置24に通し、基準値外土壌1c中の重金属と結合した又は結合してない残存キレート剤を取り除き、該残存キレート剤を含有せる洗浄水25を第2泥水槽12に第3バイパス路R3を介して環流する。即ち泥水4にキレート剤を接触せしめる工程に環流し、再使用する。
【0054】
他方洗浄装置24から得られた洗浄済み土壌1dの重金属含有量を測定し、重金属含有量が基準値内の土壌1bを現地に復土し、基準値外土壌1cを前記第1バイパス路R1を介して第2泥水槽12に環流する。即ち泥水4にキレート剤を接触せしめる工程に環流し、基準値外土壌1cをキレート剤と再接触せしめる。
【0055】
上記洗浄工程を経た土壌は脱水装置に通してキレート剤水溶液を除去し、該キレート剤水溶液を第2泥水槽に環流し、脱水装置から得られた基準値内土壌を上記現地へ復土し、基準値外土壌を第2泥水槽に環流する。
【0056】
上記洗浄装置24は土壌分を沈殿し、キレート剤を含有する液分を上澄み液として取り出す凝集沈殿装置を含み、沈殿した土壌分の重金属含有量を測定し、基準値内土壌1bと基準値外土壌1cとに分別し、前者は前記現地へ復土し、後者は前記の通り環流する。
【0057】
【発明の効果】
本発明は現地重金属汚染土壌の採取からキレート剤使用による重金属を取り除き、重金属を取り除いた土壌を復土する一連の処理を適切に遂行し得る具体的方法を提供する。
【0058】
前記鉱物質粒子は固液分離における脱水性能を向上し、重金属結合キレート剤の水溶液の分離を著しく促進する。加えて現地復土後の土壌に通水性と保水性を付与し、土壌に酸素を取り込み、植物等の生育環境を改善する。
【0059】
又上記処理工程において脱水工程を経た後の土壌を基準値内土壌と基準値外土壌とに区分し、基準値外土壌をフィードバックして再びキレート剤に接触せしめる方法により、重金属汚染土壌の浄化目的が適正に達成できる。
【0060】
又上記洗浄工程から排出されるキレート剤を含有する洗浄水と、上記重金属結合キレート剤から重金属を取り除いたキレート剤水溶液とを、系内において循環し再使用する方法により、有害処理液の外部への排出を抑制して環境保全に資すると共に、キレート剤の効率的使用を可能にする。
【図面の簡単な説明】
【図1】重金属汚染土壌の浄化方法のフロー図。
【図2】重金属汚染土壌の浄化方法の他例を示すフロー図。
【図3】分級機の概略構造を示す図。
【図4】A,B,Cはフィルタープレスの概略構造を動作順に示す図。
【符号の説明】
1…重金属汚染土壌、1a…固液分離した土壌、1b…基準値内土壌、1c…基準値外土壌、2…第1泥水槽、3…水、4…泥水、5…水中ポンプ、6…分級機、7…重量異物、8…ふるい、9…ピット、10…貯槽、11…水中ポンプ、12…第2泥水槽、13…キレート剤水溶液、13a…重金属結合キレート剤水溶液、13b…キレート剤水溶液、14…鉱物質粒子、15…脱水装置、16a,16b…測定器、17…重金属、18…フィルタープレス、19…第3泥水層、20…濾室、21…濾壁、22…土壌改良材、23…重金属分離装置、24…洗浄装置、25…洗浄水、R1,R2,R3…バイパス路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying soil contaminated with heavy metals such as lead, cadmium and mercury in factories and shooting ranges.
[0002]
[Prior art]
Patent Documents 1 to 4 and the like have been provided as methods for purifying local soil contaminated with heavy metals, and these use a chelating agent as a treatment material for removing heavy metals from heavy metal-contaminated soil, and muddy the chelating agent. It teaches how to contact heavy metal contaminated soil to bind the heavy metal in the mud to the chelating agent and then remove the aqueous chelating agent solution bound to the heavy metal with a solid-liquid separator.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-282836
[Patent Document 2]
JP-A-6-218355
[Patent Document 3]
JP-A-4-263874
[Patent Document 4]
JP-A-11-156338
[Problems to be solved by the invention]
As in the above patent document, the present invention employs a method of binding heavy metal in mud water to a chelating agent, and can dehydrate and remove (solid-liquid separation) an aqueous solution of heavy metal binding chelating agent from mud water efficiently. Provide a purification method.
[0008]
In addition, the present invention circulates and uses the washing solution of soil obtained by solid-liquid separation, particularly heavy metal-containing soil exceeding the reference value, and circulates and uses the aqueous chelating agent solution after removing heavy metals from the aqueous heavy metal binding chelating agent solution, Provide a method for purifying heavy metal-contaminated soil that contributes to environmental conservation by controlling the discharge of harmful treatment liquids to the outside.
[0014]
[Means for Solving the Problems]
The present invention provides a method for purifying heavy metal-contaminated soil including the following steps A to F.
A: The process of making heavy metal contaminated soil mud and bringing it into contact with a chelating agent to bind the heavy metal in the mud to the chelating agent,
B: a step of dewatering the mud that has been brought into contact with the chelating agent and separating it into soil and an aqueous heavy metal binding chelating agent solution;
C: a step of separating the soil into a soil whose heavy metal content is within the reference value and a soil that is outside the reference value;
D: washing the soil outside the reference value to remove residual chelating agent bound or not bound to heavy metal, and circulating washing water containing the remaining chelating agent to step A;
E: a step of separating the heavy metal-bonded chelating agent aqueous solution obtained by the dehydration into a heavy metal and a chelating agent aqueous solution;
F: a step of circulating the chelating agent aqueous solution from which the heavy metal has been separated into the step A,
It is a purification method of heavy metal contaminated soil containing.
[0015]
The cleaning water containing the chelating agent discharged from the cleaning step and the aqueous chelating agent solution obtained by removing heavy metals from the heavy metal binding chelating agent discharged from the dehydration step are circulated and reused in the system. Contributes to environmental conservation by suppressing discharge of the processing solution to the outside, and enables efficient use of chelating agents.
[0016]
As the dehydrating means, a filter press or a centrifugal separator is suitable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0018]
As shown in FIGS. 1 and 2, a heavy metal contaminated soil 1 of a factory or shooting range (hereinafter referred to as a local site) contaminated with heavy metals is collected using a heavy machine such as a shovel car, and the collected heavy metal contaminated soil 1 1 It puts in the muddy water tank 2 and adds water 3 and stirs it to make muddy water. That is, a soil slurry is formed. For example, a soil slurry is obtained by kneading at a ratio of soil: water = 1: 3.
[0019]
Before putting heavy metal contaminated soil 1 collected by heavy machinery such as the above-mentioned excavator into the first mud tank 2, a process of removing coarse foreign matters and grass is provided, and after passing through the process, the first mud tank 2 is contaminated with heavy metal. Soil 1 is added.
[0020]
Next, the muddy water 4 in the first muddy tank 2 is supplied to the classifier 6 by the submersible pump 5 installed in the first muddy tank 2, and the classifier 6 is used to remove lead balls, iron pieces, pebbles, etc. in the contaminated soil 1. The heavy foreign matter 7 is removed and collected in the pit 9.
[0021]
FIG. 3 shows a specific example of the classifier 6, and the classifier 6 has a plurality of vibrating screens 8 having different mesh degrees, and the muddy water 4 is allowed to flow through the vibrating screens 8. 7 is removed, and the muddy water 4 that has passed through the sieve 8 is stored in the storage tank 10.
[0022]
The muddy water 4 in the storage tank 10 is introduced into the second muddy water tank 12 by the submersible pump 11.
[0023]
A chelating agent aqueous solution 13 is added to the mud water 4 in the second mud water tank 12, and mineral particles 14 having a multi-pore structure composed of one or more of diatomaceous earth, calcined vermiculite, calcined zeolite, and calcined bentonite are added.
[0024]
Alternatively, as shown by a broken line in FIG. 1, the mineral particles 14 can be added to the mud water 4 taken out from the second mud tank 12. That is, the muddy water 4 is taken out from the second muddy water tank 12 into the third muddy water tank 19, and the mineral substance particles 14 are added to the muddy water 4 in the third muddy water tank 19 and stirred.
[0025]
As the chelating agent, EDTA 2 Na-2H 2 O in EDTA (ethylenediaminetetraacetic acid) is used, and the chelating agent powder is dissolved in water and added to the mud water 4 in the second mud tank 12.
[0026]
The mixing ratio of the chelating agent to the mud water 4 in the second mud tank 12 is selected in the range of 0.1 to 9% (weight ratio) depending on the degree of heavy metal contamination.
[0027]
The blending ratio of the mineral substance particles 14 to the mud water 4 in the second mud tank 12 is selected in the range of 3 to 10% (weight ratio).
[0028]
While stirring the mud water 4 in which the chelating agent aqueous solution 13 and the mineral substance particles 14 in the second mud water layer 12 are mixed, the binding between the chelating agent and the heavy metal is promoted.
[0029]
Next, the muddy water 4 in the second muddy water tank 12 is introduced into a dehydrator 15, that is, a solid-liquid separator, and the muddy water 4 is dehydrated and separated into the soil 1 a and the heavy metal binding chelating agent aqueous solution 13 a.
[0030]
As the dehydrating means, for example, a filter press 18 or a centrifugal separator is used. As shown in FIGS. 4A, B, and C, the filter press 18 has a plurality of filter chambers 20 arranged in parallel, and the muddy water 4 is injected into the filter chamber 20 at a high pressure, and the heavy metal-bonded chelating agent is passed through the filter wall 21. The aqueous solution 13 a is dehydrated to produce cake-like soil 1 a in the filter chamber 20. The cake-like soil 1a is taken out by opening the filter chamber 20.
[0031]
Therefore, the muddy water 4 is separated into the soil 1a and the heavy metal binding chelating agent aqueous solution 13a. The moisture content of this soil is about 50 to 80%.
[0032]
The diatomaceous earth is a fossilized soil of algae plankton deposited on the seabed and lake bottom for many years, and has numerous fine pores on the surface. That is, it has a high void structure.
[0033]
Natural vermiculite is a natural ore similar to mica, chlorite, and talc, and its component is a monoclinic system of approximately (Mg, Fe) 3 [(Si, Al) 4 O 10 ] (OH) 2 4H 2 O. is there.
[0034]
This natural vermiculite expands rapidly when heated at a high temperature of 400 ° C. or higher, that is, it boils and becomes enormous, and has the high porosity and cation exchange performance.
[0035]
For example, calcined vermiculite having a particle size of 0.5 to 3 millimeters is added to the muddy water 4.
[0036]
Zeolite (natural zeolite) contains alkali and alkaline earth hydrated aluminum silicate as a component. When this natural zeolite is heated at a high temperature, it boils and becomes enormous, has a porous structure with high porosity, and has cation exchange performance. To have.
[0037]
The zeolite (zeolite) includes orthorhombic zeolite (clinoptilolite) and cubic zeolite (mordelite). In particular, orthorhombic zeolite has high cation exchange performance.
[0038]
For example, calcined zeolite having a particle size of 0.5 to 3 millimeters is added to the mud water 4.
[0039]
Bentonite is a kind of clay, mainly composed of montmorillonite (mineral component), has a very strong affinity with water, and absorbs water. Here, the bentonite (natural mineral) heat-treated at 200 ° C. to 300 ° C. is used.
[0040]
Like the calcined vermiculite and calcined zeolite, the bentonite expands by this heat treatment, has a porous structure with a high porosity, and similarly has cation exchange performance.
[0041]
The diatomaceous earth, calcined vermiculite, calcined zeolite, and calcined bentonite all have a high void structure and impart water permeability to the soil. For example, water permeability is imparted to heavy metal contaminated soil with poor water permeability, and the contact effect with the heavy metal by the chelating agent is enhanced.
[0042]
In addition, the efficiency of dehydration in the dehydration process will be improved, and the soil after the local restoration will be given water permeability and oxygen uptake to provide a healthy soil suitable for plant growth.
[0043]
As shown in FIG. 1, the soil 1a separated by the dehydrator 15 typified by the filter press 18 measures the heavy metal content (content and elution amount) for each batch by the batch method, and the content is the standard. The soil 1b within the value and the soil 1c outside the reference value are separated.
[0044]
The soil improving material 22 is added to the above-mentioned reference value soil 1b, kneaded and then restored to the site. On the other hand, the soil 1c outside the reference value is circulated to the second mud tank 12 through the first bypass R1, that is, circulated to the step of bringing the chelating agent into contact with the mud 4 and again treated with the chelating agent.
[0045]
The soil improvement material 22 is mainly composed of fly ash, that is, a heavy metal absorbent material having a multi-cavity structure typified by coal incineration ash. For example, a soil conditioner containing 50-60% fly ash, 25-40% blast furnace cement, 6-15% anhydrous gypsum, and 4-8% inorganic flocculant is used.
[0046]
The fly ash absorbs heavy metal remaining in the soil 1b within the reference value due to its multi-void structure, surrounds the surface with a flocculant, and suppresses elution of heavy metal.
[0047]
Anhydrite promotes initial solidification of the soil by its ettling guide action, and blast furnace cement continuously maintains the solidification of the soil.
[0048]
The fly ash can be replaced with the above-described diatomaceous earth, calcined vermiculite, calcined zeolite, and calcined bentonite. Moreover, the soil improvement material 22 which does not contain the said anhydrous gypsum can be used.
[0049]
These soil improvement materials 22 cooperate with the above-described mineral substance particles 14 to provide a favorable environment for the growth of living organisms in the above-mentioned reference value soil 1b.
[0050]
On the other hand, as shown in FIG. 1 and FIG. 2, the heavy metal binding chelating agent aqueous solution 13a separated by the dehydrating device 15 represented by the filter press 18 is introduced into the heavy metal separating device 23 represented by the electrolysis device, and the heavy metal binding is performed. The chelating agent aqueous solution 13a is separated into the heavy metal 17 and the chelating agent aqueous solution 13b. The heavy metal separator 23 includes devices using electroosmosis, electrophoresis, and biological / chemical treatment.
[0051]
The separated chelating agent aqueous solution 13b is circulated to the second mud tank 12 through the second bypass R2, that is, circulated in the step of bringing the chelating agent into contact with the mud 4 and reused.
[0052]
In FIG. 2, the heavy metal content (content and elution amount) is measured for each batch of the soil 1a obtained from the dehydrator 15 by the batch method, and the content of the soil 1b within the standard value and the standard value. This shows a case where the soil is separated into the outside soil 1c, and further subjected to the step of washing the outside soil 1c outside the reference value, and the soil 1b within the reference value based on the above measurement is restored to the site.
[0053]
That is, the soil 1c outside the reference value is passed through the cleaning device 24, the residual chelating agent bound to or not bound to the heavy metal in the soil 1c outside the reference value is removed, and the cleaning water 25 containing the residual chelating agent is added to the second mud. It circulates in the water tank 12 through the third bypass R3. That is, it recirculates to the step of bringing the chelating agent into contact with the muddy water 4 and reuses it.
[0054]
On the other hand, the heavy metal content of the washed soil 1d obtained from the cleaning device 24 is measured, the soil 1b whose heavy metal content is within the reference value is restored to the site, and the soil 1c outside the reference value is passed through the first bypass R1. Through the second mud tank 12. That is, it recirculates to the process which makes a mud 4 contact a chelating agent, and makes the non-standard-value soil 1c contact again with a chelating agent.
[0055]
The soil after the washing step is passed through a dehydrating device to remove the chelating agent aqueous solution, the chelating agent aqueous solution is circulated to the second mud tank, and the soil within the reference value obtained from the dehydrating device is restored to the site, Circulate soil outside the standard value into the second mud tank.
[0056]
The washing device 24 includes a coagulation sedimentation device that sediments the soil and takes out the liquid containing the chelating agent as a supernatant, measures the heavy metal content of the sedimented soil, and is outside the standard value soil 1b. The soil is separated into soil 1c, the former is restored to the site, and the latter is circulated as described above.
[0057]
【The invention's effect】
The present invention provides a specific method capable of appropriately performing a series of treatments for removing heavy metals by using a chelating agent from collection of soil contaminated with heavy metals and restoring the soil from which heavy metals have been removed.
[0058]
The mineral particles improve the dewatering performance in the solid-liquid separation and significantly promote the separation of the aqueous solution of the heavy metal binding chelating agent. In addition, it will provide water permeability and water retention to the soil after local rehabilitation, take up oxygen into the soil, and improve the growth environment of plants and the like.
[0059]
In addition, the soil after the dehydration process in the above treatment step is classified into soil within the reference value range and soil outside the reference value, and the purpose of purifying heavy metal contaminated soil by feeding back the soil outside the reference value and bringing it back into contact with the chelating agent Can be achieved properly.
[0060]
In addition, the cleaning water containing the chelating agent discharged from the cleaning step and the chelating agent aqueous solution in which the heavy metal is removed from the heavy metal binding chelating agent are circulated in the system and reused. Contributes to environmental conservation by suppressing the emission of methane, and enables efficient use of chelating agents.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a purification method for heavy metal contaminated soil.
FIG. 2 is a flowchart showing another example of a method for purifying heavy metal-contaminated soil.
FIG. 3 is a diagram showing a schematic structure of a classifier.
FIGS. 4A, 4B, and 4C are diagrams showing a schematic structure of a filter press in an operation order;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heavy metal contaminated soil, 1a ... Solid-liquid separated soil, 1b ... Soil within standard value, 1c ... Non-standard value soil, 2 ... First mud tank, 3 ... Water, 4 ... Mud water, 5 ... Submersible pump, 6 ... Classifier, 7 ... heavy foreign matter, 8 ... sieve, 9 ... pit, 10 ... storage tank, 11 ... submersible pump, 12 ... second mud tank, 13 ... chelating agent aqueous solution, 13a ... heavy metal binding chelating agent aqueous solution, 13b ... chelating agent Aqueous solution, 14 ... mineral particles, 15 ... dehydrator, 16a, 16b ... measuring device, 17 ... heavy metal, 18 ... filter press, 19 ... third mud layer, 20 ... filter chamber, 21 ... filter wall, 22 ... soil improvement 23, heavy metal separator, 24 ... cleaning device, 25 ... cleaning water, R1, R2, R3 ... bypass path

Claims (2)

以下のA乃至Fの工程を包含する重金属汚染土壌の浄化方法。
A:重金属汚染土壌を泥水化してキレート剤と接触せしめ泥水中の重金属をキレート剤に結合せしめる工程、
B:上記キレート剤と接触せしめた泥水を脱水し、土壌と重金属結合キレート剤水溶液とに分離する工程、
C:上記土壌を重金属含有量が基準値内の土壌と同基準値外の土壌とに分別する工程、
D:上記基準値外土壌を洗浄して重金属と結合した又は結合してない残存キレート剤を取り除き、該残存キレート剤を含有せる洗浄水をA工程に環流する工程、
E:上記脱水により得られた重金属結合キレート剤水溶液を重金属とキレート剤水溶液とに分離する工程、
F:上記重金属を分離したキレート剤水溶液を上記A工程に環流する工程。
A method for purifying heavy metal-contaminated soil comprising the following steps A to F.
A: The process of making heavy metal contaminated soil mud and bringing it into contact with a chelating agent to bind the heavy metal in the mud to the chelating agent,
B: a step of dewatering the mud that has been brought into contact with the chelating agent and separating it into soil and an aqueous heavy metal binding chelating agent solution;
C: a step of separating the soil into a soil whose heavy metal content is within the reference value and a soil that is outside the reference value;
D: washing the soil outside the reference value to remove residual chelating agent bound or not bound to heavy metal, and circulating washing water containing the remaining chelating agent to step A;
E: a step of separating the heavy metal-bonded chelating agent aqueous solution obtained by the dehydration into a heavy metal and a chelating agent aqueous solution;
F: A step of circulating the chelating agent aqueous solution from which the heavy metal has been separated into the step A.
上記脱水手段としてフィルタープレス又は遠心分離装置を用いたことを特徴とする請求項1記載の重金属汚染土壌の浄化方法。2. The method for purifying heavy metal-contaminated soil according to claim 1, wherein a filter press or a centrifugal separator is used as the dehydrating means.
JP2003114562A 2003-04-18 2003-04-18 Purification method for heavy metal contaminated soil Expired - Fee Related JP3689094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114562A JP3689094B2 (en) 2003-04-18 2003-04-18 Purification method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114562A JP3689094B2 (en) 2003-04-18 2003-04-18 Purification method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2004314007A JP2004314007A (en) 2004-11-11
JP3689094B2 true JP3689094B2 (en) 2005-08-31

Family

ID=33474109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114562A Expired - Fee Related JP3689094B2 (en) 2003-04-18 2003-04-18 Purification method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP3689094B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001100B2 (en) * 2007-09-10 2012-08-15 鹿島建設株式会社 Construction sludge treatment soil preparation system and construction sludge treatment soil preparation method
CN104438305B (en) * 2013-09-20 2016-10-12 重庆文理学院 A kind of drum-type soil heavy metal elution system
JP6026701B1 (en) * 2016-08-01 2016-11-16 公信 山▲崎▼ Chelating agent recovery apparatus and chelating agent recovery method for soil purification facilities
JP6026700B1 (en) * 2016-08-01 2016-11-16 公信 山▲崎▼ Chelating agent recovery apparatus and chelating agent recovery method for soil purification facilities
JP6026702B1 (en) * 2016-08-02 2016-11-16 公信 山▲崎▼ Chelating agent recovery apparatus and chelating agent recovery method for soil purification facilities
JP6022104B1 (en) * 2016-08-26 2016-11-09 公信 山▲崎▼ Chelating agent recovery method in soil remediation facilities using chelating agents
JP6022102B1 (en) * 2016-08-26 2016-11-09 公信 山▲崎▼ Chelating agent recovery method in soil remediation facilities using chelating agents
JP6022103B1 (en) * 2016-08-26 2016-11-09 公信 山▲崎▼ Chelating agent recovery method in soil remediation facilities using chelating agents
JP6052942B1 (en) * 2016-10-19 2016-12-27 公信 山▲崎▼ Chelating agent recovery method using rainwater in soil remediation facilities
JP6052944B1 (en) * 2016-10-20 2016-12-27 公信 山▲崎▼ Soil purification methods for soil purification facilities using chelating agents
JP6052943B1 (en) * 2016-10-20 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using a chelating agent
JP6052946B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using wash water containing a chelating agent
JP6052947B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method for soil purification facility using wash water containing chelating agent
JP6052945B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using a chelating agent

Also Published As

Publication number Publication date
JP2004314007A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3689094B2 (en) Purification method for heavy metal contaminated soil
CN106457235B (en) For the system and method from ardealite removal of impurity and manufacture gypsum adhesive and product
JP6935924B2 (en) Wastewater and sludge treatment system containing high concentration of suspended solids
JP6274875B2 (en) Method and apparatus for converting waste incineration ash into cement raw material
CN101811133A (en) Ultrasonic remediating method for heavy metal polluted soil/slurry
JP2006272168A (en) Chlorine and heavy metal containing waste treatment method
JP2013088278A (en) Radiation contamination wastewater treatment method, treatment system and mobile processor
CN109133820A (en) Utilize the sludge curing agent and its preparation method and application of clinker preparation
CN209583824U (en) A kind of flying dust multistage dechlorination and water lotion decalcification melded system
JP2014087799A (en) Polluted water purification system
CN1942406A (en) Process for the treatment of sludge
JP2006175410A (en) Method of desalination-washing waste product
CN107903014A (en) A kind of Inorganic whisker porous ceramic filter material and preparation method thereof
JP2011235253A (en) Inorganic neutral flocculant derived from reclaimed gypsum, and system for cleaning polluted water using the same
JP2004276019A (en) Treatment method for contaminated water, contaminated mud, and other contaminated object to be treated
JP6410349B2 (en) Method and apparatus for desalination of mixed ash and raw material for cement
JPH1057991A (en) Treating material of dredged mud and its treatment
JP6250411B2 (en) Method and apparatus for treating sediment containing radioactive material
JPH0929293A (en) Treatment of bottom deposit in lake and marsh or the like
CN110143733A (en) A kind of mud repair material and its preparation and application
JPH05220500A (en) Treatment of bag-type dehydration of sludge
JP3283634B2 (en) Mud water treatment method
JP6433214B2 (en) Method and apparatus for desalination of mixed ash and raw material for cement
JP2004016066A (en) Method for producing cultivation soil
KR101034707B1 (en) Agent for treating sludge, and method of preparing and treating sludge using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees