JP2004276019A - Treatment method for contaminated water, contaminated mud, and other contaminated object to be treated - Google Patents

Treatment method for contaminated water, contaminated mud, and other contaminated object to be treated Download PDF

Info

Publication number
JP2004276019A
JP2004276019A JP2004039551A JP2004039551A JP2004276019A JP 2004276019 A JP2004276019 A JP 2004276019A JP 2004039551 A JP2004039551 A JP 2004039551A JP 2004039551 A JP2004039551 A JP 2004039551A JP 2004276019 A JP2004276019 A JP 2004276019A
Authority
JP
Japan
Prior art keywords
mud
contaminated
water
treating
dxns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004039551A
Other languages
Japanese (ja)
Other versions
JP4557566B2 (en
Inventor
Masayuki Kimura
正之 木村
Yoshio Katayama
芳男 片山
Yoshihito Mori
嘉仁 森
Osamu Yoneda
修 米田
Yukio Tasaka
行雄 田坂
Shigeo Okabayashi
茂生 岡林
Mikio Ota
幹夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohmoto Gumi Co Ltd
Ube Corp
Original Assignee
Ube Industries Ltd
Ohmoto Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Ohmoto Gumi Co Ltd filed Critical Ube Industries Ltd
Priority to JP2004039551A priority Critical patent/JP4557566B2/en
Publication of JP2004276019A publication Critical patent/JP2004276019A/en
Application granted granted Critical
Publication of JP4557566B2 publication Critical patent/JP4557566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for a contaminated object to be treated capable of treating contaminated water and mud, or the like, containing hazardous substances such as DXNS (dioxins) and heavy metals by relatively simple treatment facilities and processes at low costs, and obtaining filtered water under the emission regulations by surely capturing the hazardous substances to suppress the elution by enclosing the water in a dehydrated cake. <P>SOLUTION: The treatment method is for treating the contaminated water containing DXNS, or the like, generated in cleaning work at demolition work, or the like, in a waste incineration facility, the contaminated mud containing DXNS, or the like, of dredged spoil, or the like, of dredged bottom sediment of harbors, and the heavy metals contaminated soil (B mud slurry). Stone dust for capturing DXNS, or the like, and A mud slurry A<SB>S</SB>wherein an adsorbent is added to mud materials such as bentonite are placed in a filtration chamber such as a filter press 8. B mud slurry B<SB>S</SB>comprising the contaminated water is placed in the A mud slurry A<SB>S</SB>. The B mud slurry is dehydrated using the A mud layer as a filter and a desorption layer, and is subjected to solid/liquid separation to obtain the dehydrated cake C and filtrated water W. The DXNS and heavy metals, or the like, are enclosed inside the dehydrated cake (A mud and B mud) by capturing, desorbing, insolubilizing, or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ダイオキシン類(以下、DXN類と記載)などの有害物質を含有する汚染処理対象物の処理方法に関するものであり、例えば廃棄物焼却施設の解体時に洗浄作業で発生するDXN類などを含む汚染水の処理、あるいは、港湾や湖沼等に堆積したDXN類や重金属を含む底質またはDXN類や重金属を含有した土壌に加水してスラリー状とした上で、粗粒分を分級・除去した後の、微粒分およびDXN類や重金属を多く含んだ汚染泥土の処理に、有効に適用される。   The present invention relates to a method for treating an object to be contaminated, which contains harmful substances such as dioxins (hereinafter referred to as DXNs). For example, the present invention relates to a method for treating DXNs generated during a cleaning operation when dismantling a waste incineration facility. Treatment of contaminated water containing water, or addition to DXNs and heavy metals containing sediment deposited in harbors, lakes and marshes or soil containing DXNs and heavy metals to form a slurry, then classify and remove coarse particles After that, it is effectively applied to the treatment of contaminated mud containing a large amount of fine particles and DXNs and heavy metals.

DXN類対策特別措置法の施行に伴い、旧型(新排出基準不適合)の廃棄物焼却施設の解体ニーズが高まっている。廃棄物焼却施設は、焼却炉本体、煙道設備、除塵装置、排煙冷却設備、洗煙設備、排水処理設備、廃熱ボイラ等で構成されている。これらの周辺、特に内部には、DXN類などの有害物質が炉壁付着物、焼却灰、飛灰として存在しており、これらの施設解体に伴って、DXN類が作業場内および周辺に飛散する可能性がある。このため、焼却施設の解体では、解体に先立ち、作業場全体を覆って密閉し、炉壁面付着物、焼却灰、飛灰の除洗を行い、拡散防止対策を行う手法が採られている。   With the enforcement of the Act on Special Measures against DXNs, the need for dismantling old (incompatible with new emission standards) waste incineration facilities is increasing. The waste incineration facility is composed of an incinerator body, flue equipment, dust removal equipment, flue gas cooling equipment, smoke washing equipment, wastewater treatment equipment, waste heat boilers, and the like. Toxins such as DXNs are present as furnace wall deposits, incineration ash, and fly ash around these, especially inside, and DXNs are scattered in and around the workplace with the dismantling of these facilities. there is a possibility. For this reason, in the demolition of incineration facilities, prior to demolition, a method is adopted in which the entire workplace is covered and hermetically sealed, and debris on the furnace wall, incineration ash and fly ash are washed out to prevent diffusion.

一般的な除洗方法としては、高圧噴射水により施設内を洗浄する方法が採られ、焼却炉本体、煙道設備、除塵装置等は、保護具着用の作業員が洗浄ノズルにて除洗を行う。高低差のある煙突内部は、特殊高圧噴射装置をクレーンで吊り下げる方式等で洗浄作業が進められる。   As a general cleaning method, a method of cleaning the inside of the facility with high-pressure jet water is adopted.For incinerator bodies, flue equipment, dust removal equipment, etc., workers wearing protective equipment perform cleaning with a cleaning nozzle. Do. The inside of the chimney with a height difference is cleaned by a method in which a special high-pressure injection device is suspended by a crane or the like.

このような洗浄汚染水の既往の処理技術には、大別して次の2つがある。   The existing treatment technologies for such contaminated water are roughly classified into the following two.

(1) 発生した汚染水を泥水状態でタンク車等に回収後、搬出し、新排出基準適合の処理施設等で泥水をそのまま焼却処分する方法。   (1) A method in which the generated contaminated water is collected in a muddy state in a tank car, etc., then carried out, and the muddy water is incinerated as it is in a treatment facility that complies with the new emission standards.

(2) 焼却施設の解体用地内へ処理設備を設置し、中間処理をする方法。この処理方法としては、凝集沈殿、砂濾過、膜分離や吸着、化学処理等の高度処理が一般に行われている。基本的には、固液分離を行い、上澄み水は洗浄水として再利用し、沈殿物はフィルタープレス等にて脱水処理を行うものである。この場合の濾水には、可溶性のDXN類が存在したり、濾水中のSS(Suspended Solid:浮遊懸濁物質) 分にはDXN類が含有しているため、後処理として膜分離や吸着、化学処理等が行われ、排出基準(10pg−TEQ/L) 以下にして放流される。減容化した脱水ケーキは、新排出基準適合の処理施設等で溶融または焼成処分を行う。   (2) A method of installing a treatment facility in the demolition site of an incinerator and performing an intermediate treatment. As this treatment method, advanced treatments such as coagulation sedimentation, sand filtration, membrane separation, adsorption, and chemical treatment are generally performed. Basically, solid-liquid separation is performed, the supernatant water is reused as washing water, and the precipitate is subjected to a dehydration treatment using a filter press or the like. In this case, the filtrate contains soluble DXNs and the SS (Suspended Solid: suspended solids) contains DXNs. Chemical treatment is performed, and the water is released at the emission standard (10 pg-TEQ / L) or less. The reduced volume of the dewatered cake will be melted or fired at treatment facilities that comply with the new emission standards.

また、DXN類対策特別措置法により、底質のDXN類含有量は環境基準150pg−TEQ/gが設定され、この基準を超える港湾底質は速やかに対策を講じることが求められている。この対策としては、汚染底質の掘削除去、覆砂、原位置固化などがある。このうち掘削除去処理においては、汚染底質を浚渫・減容化した後、そのDXN類含有濃度などに応じて、無害化処理、埋立て、不溶化処理を行った上での埋立て処理などが選択される。この浚渫底質の減容化は一般に粗粒分の除去の後、フィルタープレスによる脱水により行われる。   Under the DXN Measures Special Measures Law, the sediment DXN content is set at an environmental standard of 150 pg-TEQ / g, and it is required that port sediment exceeding this standard be promptly addressed. Measures include excavating and removing contaminated sediment, covering sand, and solidifying in situ. In the excavation and removal process, after the contaminated sediment is dredged and reduced in volume, the detoxification process, landfill, and insolubilization process are performed according to the concentration of DXNs. Selected. In general, the volume of the dredged sediment is reduced by dewatering with a filter press after removing coarse particles.

この場合、DXN類や有害重金属の大部分は泥土の微粒に吸着されていることが多く、濾水中のSS分にDXN類や重金属が濃集しており、また、可溶性のDXN類や重金属が存在する場合があることから、濾水の後処理として、凝集沈殿、砂濾過、膜分離や吸着、化学処理等の高度処理が必要となる。   In this case, the DXNs and most of the harmful heavy metals are often adsorbed to the fine particles of the mud, the DXNs and the heavy metals are concentrated in the SS in the filtrate, and the soluble DXNs and the heavy metals are contained. Since it may be present, advanced treatments such as coagulation sedimentation, sand filtration, membrane separation, adsorption, and chemical treatment are required as post-treatments of the drainage.

また、本発明に関連する先行技術として、本出願人は、高含水スラリーの脱水固化工法を出願している(特許文献1参照)。この発明は、浚渫底泥や建設汚泥等の難脱水性の高含水スラリーを効率良く脱水し、かつ、脱水ケーキの有効利用を可能にする方法であり、高含水スラリーを2つに分取し、一方のスラリーに特定の処理材Aを添加してA泥スラリーを調製し、他方のスラリーには他の特定の処理材Bを添加してB泥スラリーを調製し、フィルタープレス等に先ずA泥スラリーを打設して脱水処理し、次いでB泥スラリーを打設してA泥ケーキによるプリコート層を通して脱水処理する所謂マッドラップ工法である。
特開2000−24694号公報
In addition, as a prior art related to the present invention, the present applicant has filed an application for a dehydration and solidification method of a highly water-containing slurry (see Patent Document 1). The present invention is a method for efficiently dehydrating hard-to-dehydrate high-water-content slurry such as dredged bottom mud and construction sludge, and enabling effective use of a dewatered cake. Then, a specific treatment material A is added to one of the slurries to prepare a slurry A, and another specific treatment material B is added to the other slurry to prepare a slurry B. First, A slurry is applied to a filter press or the like. This is a so-called mud wrap method in which mud slurry is cast and dewatered, and then mud slurry B is cast and dewatered through a precoat layer of mud cake A.
JP 2000-24694A

しかし、従来の(1) の方法は、大量の汚泥水を搬出処分することから、搬出費や処分費が高くつく欠点がある。また、(2) の方法については、減容化するものの、複数の処理技術を組み合わせたものであり、多くの処理設備と工程を必要とすることから、設備や現場メンテナンス等が煩雑となり、やはり処理コストが高くつくといった欠点がある。   However, the conventional method (1) has a drawback that a large amount of sludge water is carried out and disposed, so that the cost of carrying out and disposal is high. In addition, although the method (2) reduces the volume, it uses a combination of multiple processing technologies and requires many processing equipment and processes, which makes equipment and on-site maintenance complicated, and There is a disadvantage that processing cost is high.

また、現状の汚染泥土の脱水、脱水ケーキの不溶化および濾水浄化の一連の処理も、複数の処理技術を組み合わせたものであり、多くの処理設備と工程を必要とすることから、設備や現場メンテナンス等が煩雑となり、処理コストが高くつくといった欠点がある。   In addition, the current series of processes for dewatering contaminated mud, insolubilizing dewatered cake, and purifying drainage is also a combination of multiple processing technologies, and requires many processing facilities and processes. There is a disadvantage that maintenance and the like become complicated and processing costs are high.

本発明は、前述のような課題を解決すべくなされたものであり、DXN類や重金属などの有害物質を含有する汚染水や汚染泥土等の処理を、比較的簡易な処理設備と処理工程により低コストで行うことができると共に、DXN類や重金属などの有害物質を確実に脱水ケーキ中に捕捉、封じ込めると共に、排出基準以下の濾水を得ることができる汚染処理対象物の処理方法を提供することにある。   The present invention has been made to solve the above-described problems, and can treat contaminated water or mud containing harmful substances such as DXNs and heavy metals with relatively simple treatment equipment and treatment steps. Provided is a method for treating a contaminated material which can be carried out at low cost, and can reliably capture and confine harmful substances such as DXNs and heavy metals in a dewatered cake, and can also obtain drainage below discharge standards. It is in.

本発明の請求項1は、有害物質(DXN類や重金属等)を含有する汚染処理対象物(洗浄汚染水等の汚染水、浚渫土等の汚染泥土、あるいは汚染土壌など)の処理方法であり、有害物質を捕捉する泥土材から構成されるA泥スラリーを脱水処理室に打設し、有害物質を含有する汚染処理対象物から構成されるB泥スラリーを前記A泥スラリー内に打設し、次いで、A泥層をプリコート層としてB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)と濾水に固液分離し、脱水ケーキ内に有害物質を確実に捕捉し、濾水を排出基準以下に処理することを特徴とする汚染処理対象物の処理方法である。   Claim 1 of the present invention is a method for treating a pollutant to be treated (contaminated water such as washing contaminated water, contaminated mud such as dredged soil, or contaminated soil) containing harmful substances (DXNs, heavy metals, etc.). A mud slurry composed of a mud material that captures harmful substances is cast into a dehydration treatment chamber, and a B mud slurry composed of a pollutant to be treated containing a harmful substance is cast into the A mud slurry. Then, the slurry of mud B is dewatered using the mud layer A as a precoat layer, solid-liquid separated into dewatered cake (mud A and mud B) and filtrate, and harmful substances are surely captured in the dewatered cake. This is a method for treating an object to be contaminated, characterized in that the treatment is performed below the emission standard.

本発明の特徴は、DXN類は水に溶けにくく、大部分はSS(浮遊懸濁物質)に由来するところに着目したものであり、マッドラップ工法の特徴であるプリコート層(A泥層:従来とは異なり、汚染水や汚染泥土等を用いない)を利用して、DXN類や重金属を含有した汚染水や汚染泥土等(B泥)中のSS分を脱水ケーキ内に捕捉し、また、吸着剤により可溶性のDXN類を吸着させ、濾水を排出基準以下にして放流するものである。減容化した脱水ケーキは、新排出基準適合の処理施設等で分解無害化処理あるいは汚染濃度に応じた埋立処分等の適切な最終処分を行う。   The feature of the present invention is that DXNs are hardly soluble in water, and the fact that most of them are derived from SS (floating suspended solids). The precoat layer (A mud layer: conventional Unlike contaminated water and contaminated mud, the SS component in contaminated water and contaminated mud (B mud) containing DXNs and heavy metals is captured in the dewatered cake. The soluble DXNs are adsorbed by the adsorbent, and the drainage water is discharged at a discharge standard or lower. The dewatered cake whose volume has been reduced is subjected to appropriate final disposal such as detoxification treatment or landfill disposal according to the concentration of contamination at treatment facilities that comply with the new emission standards.

汚染水の処理の場合、有害物質(DXN類や重金属等)を捕捉する泥土材から構成されるA泥スラリーを脱水処理室に打設し、有害物質を含有する汚染水から構成されるB泥スラリーを前記A泥スラリー内に打設し、次いで、A泥層をプリコート層としてB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)と濾水に固液分離し、脱水ケーキ内に有害物質を確実に捕捉し、濾水を排出基準以下に処理する。即ち、例えば焼却施設の解体用地内に処理設備を設置し、汚染水の中間処理を実施する技術であり、廃棄物焼却施設の解体時に洗浄作業あるいはその他の施設で発生するDXN類などを含む汚染水(B泥スラリー)の処理であり、泥土材からなるA泥層をフィルター及び吸着層としてB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)内にDXN類などを捕捉、吸着、不溶化等により封じ込める。   In the case of treatment of contaminated water, A mud slurry composed of mud material that captures harmful substances (DXNs, heavy metals, etc.) is poured into a dehydration treatment chamber, and B mud composed of contaminated water containing harmful substances. The slurry is poured into the A mud slurry, and then the B mud slurry is dewatered using the A mud layer as a pre-coat layer, and solid-liquid separated into dewatered cakes (A mud and B mud) and drainage water. Ensure that harmful substances are trapped and that the drainage is treated below emission standards. That is, for example, this is a technology in which a treatment facility is installed in the demolition site of an incineration facility to carry out intermediate treatment of contaminated water, and contamination including DXNs generated in washing work or other facilities at the time of demolition of a waste incineration facility. It is a treatment of water (B mud slurry), dewaters B mud slurry using mud layer A composed of mud material as a filter and an adsorbing layer, and captures and adsorbs DXNs etc. in dewatered cake (A mud and B mud), It is sealed by insolubilization.

浚渫土などの汚染泥土の処理の場合、有害物質(DXN類や重金属等)を捕捉する泥土材から構成されるA泥スラリーを脱水処理室に打設し、有害物質を含有する汚染泥土から構成されるB泥スラリーを前記A泥スラリー内に打設し、次いで、A泥層をプリコート層としてB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)と濾水に固液分離し、脱水ケーキ内に有害物質を確実に捕捉し、濾水中の有害物質を各種排出基準以下に処理する。即ち、底質や汚染土壌分級洗浄後のDXN類や重金属を含有した微粒子含有スラリーなどの汚染泥土(B泥スラリー)の処理であり、汚染物質を含まない泥土材からなるA泥層をフィルター及び吸着層としてB泥スラリーを脱水し、脱水ケーキ内にDXN類などを捕捉、吸着、不溶化等により封じ込める。   In the case of treatment of contaminated mud such as dredged soil, A mud slurry composed of mud material that captures harmful substances (DXNs, heavy metals, etc.) is poured into a dehydration treatment chamber and is composed of contaminated mud containing harmful substances. The B mud slurry is poured into the A mud slurry, then the B mud slurry is dewatered using the A mud layer as a precoat layer, and solid-liquid separated into a dewatered cake (A mud and B mud) and filtrate. Hazardous substances are reliably captured in the dewatered cake, and harmful substances in the drainage water are processed to various emission standards or less. That is, it is a treatment of contaminated mud (B mud slurry) such as slurry containing fine particles containing DXNs and heavy metals after sediment and contaminated soil classification washing. The B mud slurry is dehydrated as an adsorption layer, and DXNs and the like are trapped in the dewatered cake, and sealed by adsorption, insolubilization, and the like.

本発明の請求項2は、請求項1に記載の処理方法において、A泥スラリーの泥土材が、75μm以上の粒群が10質量%以下で、且つ、平均粒径が20μm以下である非水溶性無機粒子よりなることを特徴とする汚染処理対象物の処理方法である。汚染水の処理の場合には、75μm以上の粒群が10質量%以下で、且つ、平均粒径が10μm以下である非水溶性無機粒子が好ましい。汚染泥土の処理の場合、平均粒径を20μm以下とし、効率的な脱水及びケーキの剥離性を確保するものである。   According to a second aspect of the present invention, in the treatment method according to the first aspect, the mud material of the A mud slurry is a non-aqueous material in which a particle group having a particle size of 75 μm or more is 10% by mass or less and an average particle size is 20 μm or less. This is a method for treating an object to be contaminated, wherein the object is made of conductive inorganic particles. In the case of treating contaminated water, non-water-soluble inorganic particles having a particle size of 75 μm or more in an amount of 10% by mass or less and an average particle size of 10 μm or less are preferred. In the case of treatment of contaminated mud, the average particle size is set to 20 μm or less to ensure efficient dewatering and cake removability.

本発明の請求項3は、請求項2に記載の処理方法において、非水溶性無機粒子が、汚染水の処理の場合、石粉(炭酸カルシウム、珪石粉等)またはベントナイトの1種または2種以上の混合物よりなる泥土材であり、汚染泥土の処理の場合、粘土、石粉、石炭灰の1種または2種以上の混合物よりなる泥土材であることを特徴とする汚染処理対象物の処理方法である。即ち、汚染水の処理の場合、A泥は、DXN類などを捕捉するためのフィルター及び吸着層であるため、DXN類などを捕捉するのに適当な粒径を有する非水溶性無機粒子、例えば石粉やベントナイト等の人工あるいは外部供給の泥土を使用する。汚染泥土の処理の場合も、A泥は、DXN類や重金属類を捕捉するためのフィルター及び吸着層であるため、これらの有害物質等を捕捉するのに適当な非水溶性無機粒子を使用する。   According to a third aspect of the present invention, in the treatment method according to the second aspect, when the water-insoluble inorganic particles are treated with contaminated water, one or more of stone powder (calcium carbonate, silica stone powder, etc.) or bentonite is used. And a method of treating contaminated mud, characterized in that in the case of treating contaminated mud, the mud is composed of a mixture of one or more of clay, stone powder and coal ash. is there. That is, in the case of treatment of contaminated water, since the A mud is a filter and an adsorption layer for capturing DXNs and the like, water-insoluble inorganic particles having a particle size appropriate for capturing the DXNs and the like, for example, Use artificial or externally supplied mud such as stone powder or bentonite. Also in the case of treating polluted mud, since the mud A is a filter and an adsorption layer for trapping DXNs and heavy metals, use non-water-soluble inorganic particles suitable for trapping these harmful substances and the like. .

本発明の請求項4は、請求項1から3までのいずれか一つに記載の処理方法において、A泥スラリーに、汚染水の処理の場合、無機系凝集剤(PAC、硫酸バンド、消石灰、ポリ硫酸鉄等)、有機系凝集剤(ポリアクリルアミド等)、または吸着剤(活性炭やゼオライト等)のうち1種または2種以上が添加され、汚染泥土の処理の場合、無機系凝集剤および/または吸着剤のうち1種または2種以上が添加されていることを特徴とする汚染処理対象物の処理方法である。即ち、汚染水の処理の場合、B泥スラリーに可溶性のDXN類などが存在することを考慮して、A泥処理剤として、例えば、PAC(ポリ塩化アルミニウム)や消石灰等をベースに活性炭やゼオライト等の吸着剤をA泥スラリーに添加するのが好ましい。汚染泥土の処理の場合、A泥スラリー自体がB泥脱水に対する過度な抵抗とならないことや、B泥スラリー中の可溶性のDXN類などが存在することを考慮して、有害物質をより確実に捕捉する手段である。   According to a fourth aspect of the present invention, in the treatment method according to any one of the first to third aspects, in the case of treating contaminated water in the A mud slurry, an inorganic coagulant (PAC, sulfate band, slaked lime, One or more of an organic coagulant (such as polyacrylamide) and an adsorbent (such as activated carbon and zeolite) are added. When treating contaminated mud, an inorganic coagulant and / or Alternatively, one or two or more of the adsorbents are added. That is, in the case of treatment of contaminated water, taking into consideration that soluble DXNs and the like are present in the B mud slurry, activated carbon or zeolite based on PAC (polyaluminum chloride) or slaked lime is used as the A mud treating agent. It is preferable to add an adsorbent such as A to the slurry A mud. In the case of treating contaminated mud, harmful substances are more reliably captured in consideration of the fact that mud slurry A itself does not cause excessive resistance to dewatering of mud B, and the presence of soluble DXNs in mud slurry B. It is a means to do.

本発明の請求項5は、請求項1から4までのいずれか一つに記載の処理方法において、汚染水の処理の場合のB泥スラリーには、粘土または石粉(炭酸カルシウム、珪石粉等)の1種以上が添加されていることを特徴とする汚染処理対象物の処理方法である。即ち、汚染水の処理の場合、B泥スラリーは、濃度の変化があるので、必要に応じて、粘土または石粉等の泥分を加泥する。   According to a fifth aspect of the present invention, in the treatment method according to any one of the first to fourth aspects, clay or stone powder (calcium carbonate, silica stone powder, or the like) is used for the B mud slurry in the case of treating contaminated water. A method for treating a contaminated object, characterized in that at least one of the following is added. That is, in the case of the treatment of the contaminated water, since the concentration of the B mud slurry changes, mud such as clay or stone powder is added as necessary.

本発明の請求項6は、請求項1から5までのいずれか一つに記載の処理方法において、B泥スラリーには、汚染水の処理の場合、無機系凝集剤(PAC、硫酸バンド、消石灰、ポリ硫酸鉄等)、有機系凝集剤(ポリアクリルアミド等)、またはセメントや石灰系等の凝集・固化材のうち1種または2種以上が添加され、汚染泥土の処理の場合、セメント系や石灰系、マグネシア系等の凝集・固化材のうち1種または2種以上が添加されていることを特徴とする汚染処理対象物の処理方法である。即ち、汚染水の処理の場合、B泥スラリーには、脱水ケーキ内に捕捉したDXN類などを不溶化するために、無機系や有機系の凝集剤あるいはセメントや石灰系等の凝集・固化材を添加することもある。汚染泥土の処理の場合、B泥スラリーは、脱水ケーキ内に捕捉したDXN類などを不溶化(凝集・封じ込め)するために、無機系凝集・固化材を添加する。   According to a sixth aspect of the present invention, in the treatment method according to any one of the first to fifth aspects, an inorganic coagulant (PAC, sulfate band, slaked lime, , A polyiron sulphate), an organic coagulant (such as polyacrylamide), or one or more of coagulating and solidifying materials such as cement and lime. This is a method for treating an object to be contaminated, wherein one or more of a lime-based material, a magnesia-based material and the like are added. That is, in the case of treatment of contaminated water, in order to insolubilize DXNs and the like trapped in the dewatered cake, the B mud slurry contains an inorganic or organic coagulant or a coagulating / solidifying material such as cement or lime. May be added. In the case of treating the contaminated mud, the B mud slurry is added with an inorganic coagulating / solidifying material in order to insolubilize (aggregate / contain) DXNs and the like trapped in the dewatered cake.

本発明の請求項7は、請求項1から6までのいずれか一つに記載の処理方法において、脱水処理にフィルタープレスを用いることを特徴とする汚染処理対象物の処理方法である。即ち、脱水処理には、例えば多数の濾室を有するフィルタープレスを用いて加圧脱水するのが好ましい。これに限らず、その他の脱水処理装置でもよい。   A seventh aspect of the present invention is a method for treating an object to be contaminated, wherein a filter press is used for the dehydration treatment in the treatment method according to any one of the first to sixth aspects. That is, in the dehydration treatment, it is preferable to perform pressure dehydration using, for example, a filter press having a large number of filtration chambers. The present invention is not limited to this, and other dehydration processing devices may be used.

本発明の請求項8は、請求項1から7までのいずれか一つに記載の処理方法において、脱水処理におけるA泥濾水の出始めの一部をB泥スラリーに回収することを特徴とする汚染処理対象物の処理方法である。即ち、フィルタープレス等の脱水処理装置への打込配管がA泥・B泥共有の場合には、次工程打込開始時に前工程配管内残留B泥と次工程A泥が混ざり、A泥の濾水中にもDXN類などが混入するため、A泥濾水の出始めの一部をB泥スラリーに回収する。   An eighth aspect of the present invention is characterized in that, in the treatment method according to any one of the first to seventh aspects, a part of the beginning of the mud filtrate discharged in the dehydration treatment is recovered in the B mud slurry. This is a method for treating a contaminated object to be treated. That is, when the driving pipes to the dehydration processing apparatus such as a filter press share both the A mud and the B mud, the residual B mud in the previous process pipe and the next process A mud are mixed at the start of the next step driving, and the A mud is discharged. Since DXNs and the like are mixed in the filtrate, a part of the slurry A, which has started to be discharged, is collected in slurry B.

本発明の請求項9は、請求項1から8までのいずれか一つに記載の処理方法において、汚染水の処理の場合、施設を洗浄して得られた汚染水を固液分離し、上澄み水を洗浄水として再利用し、沈殿物をB泥スラリーとして次工程へ供給することを特徴とする汚染処理対象物の処理方法である。即ち、廃棄物焼却施設の解体時に洗浄作業で発生する汚染水(B泥スラリー)の場合であり、汚染水の最終処理量を抑制するため、回収した汚染水を貯留槽等で固液分離し、上澄み水を洗浄水として再利用する。   According to a ninth aspect of the present invention, in the treatment method according to any one of the first to eighth aspects, in the case of treating contaminated water, the contaminated water obtained by washing the facility is separated into a solid and a liquid, and the supernatant is obtained. This is a method for treating an object to be contaminated, wherein water is reused as washing water, and a sediment is supplied as a B mud slurry to the next step. That is, this is the case of contaminated water (B mud slurry) generated during the cleaning operation when the waste incineration facility is dismantled. In order to suppress the final treatment amount of the contaminated water, the collected contaminated water is separated into solid and liquid in a storage tank or the like. The supernatant water is reused as washing water.

以上のような本発明によれば、フィルタープレス等を用いたマッドラップ工法を利用し、泥土材から構成されるA泥層をプリコート層として汚染水や汚染泥土などのB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)内にDXN類などを捕捉、吸着、不溶化等により封じ込めるようにしたため、DXN類や重金属などの有害物質を含有する汚染水や汚染泥土などの処理を、比較的簡易な処理設備と処理工程により低コストで行うことができると共に、DXN類などの有害物質を確実に捕捉して排出基準以下の濾水を得ることができる。   According to the present invention as described above, using a mud wrapping method using a filter press or the like, dehydrating a B mud slurry such as contaminated water or contaminated mud as an A mud layer composed of mud material as a precoat layer, DXNs are trapped in dewatered cakes (mud A and mud B) and trapped by adsorption, insolubilization, etc., so that treatment of contaminated water or mud containing harmful substances such as DXNs and heavy metals is relatively difficult. It can be carried out at low cost with simple processing equipment and processing steps, and it is possible to reliably capture harmful substances such as DXNs and to obtain drainage below discharge standards.

本発明の請求項10は、請求項1から9までのいずれか一つに記載の処理方法において、A泥スラリーとB泥スラリーの脱水処理に、複数の濾室をプレス方向に配設してなるフィルタープレスを用い、複数の濾室の打込み口から形成されるプレス方向に連続する打込み流路に外部からエア圧力を供給して打込み口残留B泥を一次除去し、次に前記打込み流路の横断面を閉塞可能な形状のスクレーパーを前記打込み流路内を通過させて二次除去を行い、次いで清水を前記打込み流路内に通すことにより三次除去を行うことを特徴とする汚染処理対象物の処理方法である。   According to a tenth aspect of the present invention, in the processing method according to any one of the first to ninth aspects, a plurality of filtration chambers are arranged in a pressing direction for dehydrating the A mud slurry and the B mud slurry. A filter press is used to supply air pressure from the outside to a continuous driving channel formed in the pressing direction formed from the driving ports of the plurality of filter chambers to remove first the residual B mud at the driving port. A pollution treatment characterized by performing a secondary removal by passing a scraper having a shape capable of closing the cross section of the driving passage into the driving flow path, and then performing a tertiary removal by passing fresh water through the driving flow path. It is a method of processing objects.

この請求項10は、洗浄汚染水や汚染泥土等の処理方法(請求項1から9までの発明)において脱水処理装置にフィルタープレスを用いる場合である。このフィルタープレスを用いる場合の概略手順は、フィルタープレスにA泥打込み→B泥打込み・加圧脱水→開枠(脱水ケーキ取出し)→閉枠→→→A泥打込み→B泥打込み・加圧脱水→開枠(脱水ケーキ取出し)→閉枠→→→以下同サイクルの繰り返しとなる。また、A泥層をフィルターおよび吸着層として汚染水等で構成されるB泥スラリーを脱水し、脱水ケーキと濾水に固液分離し、脱水ケーキ(A泥及びB泥)内にDXN類等の有害物質を捕捉、吸着、不溶化(固化)等により封じ込めるものである。   The tenth aspect is a case where a filter press is used in a dehydration treatment apparatus in a method for treating contaminated water for cleaning or contaminated mud (the inventions of the first to ninth aspects). The general procedure for using this filter press is as follows: A mud driving → B mud driving / pressure dewatering → open frame (dehydration cake removal) → closed frame →→→ A mud driving → B mud driving / pressure dewatering → Open frame (take out dehydrated cake) → Close frame → → → The same cycle is repeated. In addition, the B mud slurry composed of contaminated water and the like is used as a filter and an adsorbent layer for the A mud layer to be dewatered, solid-liquid separated into dewatered cake and filtrate, and DXNs and the like in the dewatered cake (A mud and B mud). Harmful substances are trapped, adsorbed, and insolubilized (solidified).

以上のA泥、B泥の役割と手順に示すように、当然、フィルター層である清浄なA泥と有害汚染水等で構成されるB泥が処理過程等において混合すれば、本発明の処理技術の意味は小さくなり、その一方でA泥、B泥とは交互に打ち込む形態となっている。A泥、B泥の混合を防ぐためには、設備的にはA泥、B泥の貯留・混合タンク、打込みポンプおよび配管系統を別物として、完全分離することが理想である。   As shown in the roles and procedures of the above-mentioned mud A and mud B, if the mud B composed of clean A mud and harmful polluted water, which is a filter layer, is mixed in the treatment process and the like, naturally, the treatment of the present invention is performed. The meaning of the technology has become smaller, while the A mud and B mud are alternately driven. In order to prevent mixing of mud A and mud B, it is ideal to completely separate the mud and mud storage / mixing tank, driving pump and piping system separately from each other in terms of equipment.

しかし、このようにしても、打込み配管に続くフィルタープレス内の打込み口は、構造上、自ずと一系統となっており、上記の手順で打込むと、次工程A泥打ち込みの際、前工程B泥に次工程A泥が混合することになる。そこで、フィルタープレスの打込み口内に残留するB泥を、次工程のA泥打込み前に除去・洗浄するようにした。   However, even in this case, the driving port in the filter press following the driving pipe is naturally one system due to its structure. The next step A mud is mixed with the mud. Therefore, B mud remaining in the insertion port of the filter press was removed and washed before the A mud implantation in the next step.

エア圧力による一次除去、プランジャー等による二次除去(必要に応じて複数回)、清水による三次除去を行うことにより、フィルタープレスの打込み口内に残留するB泥を、次工程のA泥打込み前に完全に除去・洗浄することができ、前工程B泥に次工程A泥が混合するのを完全に防止することができる。   By performing primary removal by air pressure, secondary removal by a plunger or the like (several times if necessary), and tertiary removal by clear water, B mud remaining in the insertion port of the filter press is removed before A mud implantation in the next process Thus, it is possible to completely prevent the mixing of the mud of the previous step B with the mud of the next step A.

本発明の請求項11は、請求項1から10までのいずれか一つに記載の処理方法において、A泥スラリーとB泥スラリーの脱水処理を行うフィルタープレスの濾室の打込み口に設けられた濾布の固定部材(鍔状の濾布固定板) の表面に前記濾布に連続する補助濾布が設けられていること特徴とする汚染処理対象物の処理方法である。   According to a eleventh aspect of the present invention, in the treatment method according to any one of the first to tenth aspects, the treatment method is provided at a discharge port of a filter chamber of a filter press for performing a dewatering treatment of the A mud slurry and the B mud slurry. A method for treating an object to be treated for contamination, characterized in that an auxiliary filter cloth which is continuous with the filter cloth is provided on a surface of a fixing member of the filter cloth (a flange-shaped filter cloth fixing plate).

この請求項11も、洗浄汚染水や汚染泥土等の処理方法(請求項1から10までの発明)において脱水処理装置にフィルタープレスを用いる場合である。汎用フィルタープレスの脱水の基本メカニズムは、圧力泥水を打ち込むことにより、泥水中の水分のみ(厳密には濾布目より小さい超微粒土分は通過する)が濾布を通過し、濾布目より大きい土粒子が濾布内側へ残留することにより、固液分離が図れるというものである。他方、過去のフィルタープレス脱水における実施例の多くから、脱水ケーキ全体としては所要の脱水が図れるが、ケーキ中心付近の脱水状態が十分でなく半固化状態となっている現象が確認されている。   The eleventh aspect is also a case where a filter press is used in a dehydration treatment apparatus in a method for treating contaminated water for washing or contaminated mud (the inventions of the first to tenth aspects). The basic mechanism of dewatering of a general-purpose filter press is that, by injecting pressure mud, only the water in the mud (strictly speaking, the ultrafine soil smaller than the filter cloth passes) passes through the filter cloth and the soil larger than the filter cloth The particles remain inside the filter cloth, whereby solid-liquid separation can be achieved. On the other hand, from many of the past examples of filter press dewatering, it has been confirmed that although the dewatering cake as a whole can be dewatered as required, the dewatering state near the center of the cake is not sufficient and is in a semi-solid state.

この要因は、前述の基本メカニズムおよび濾板構造から以下であると推測できる。(1) 濾板中心の打込み口周囲には濾布を固定するための鍔状をした濾布固定板が存在する。(2) 濾布固定板は、例えばベークライト製等で水分を通さない材質、構造のものであり、概ね鍔径より中心に位置する泥水中の水分は抜けにくい状態にある。(3) 故にケーキ中心付近は、他部に比べ著しく脱水状態が劣る。(4) さらにダイオラップ工法の場合、B泥層をA泥層で完全にラッピングし、B泥が直接濾布に接しないようにすることも前提(B泥が直接濾布に接するとB泥中のDXN類等が濾水に混入する可能性がきわめて高くなる)であるが、概ね鍔径より中心側の水分を通さない箇所では、水分が通過しないが故にA泥層の形成は不可能である。反対に水分が透過する濾布面においては、A泥層の形成は確実である。   This factor can be inferred from the basic mechanism and the filter plate structure described above. (1) A flange-shaped filter cloth fixing plate for fixing the filter cloth is present around the insertion hole at the center of the filter plate. (2) The filter cloth fixing plate is made of, for example, bakelite and is made of a material and structure that does not allow moisture to pass therethrough. (3) Therefore, the dehydration state is remarkably inferior in the vicinity of the cake center compared with other parts. (4) Furthermore, in the case of the diorap method, it is also assumed that the B mud layer is completely wrapped with the A mud layer so that the B mud does not directly contact the filter cloth. DXNs and the like are extremely likely to be mixed into the drainage water), but in places where water does not pass through on the center side of the flange diameter, it is impossible to form a mud layer because water does not pass through. is there. Conversely, on the filter cloth surface through which moisture permeates, formation of the mud layer A is reliable.

これらに着目し、鍔径より中心に位置する泥水中の水分の脱水促進が図れ、かつA泥層の形成が確実に行えるようにした。即ち、打込み口の直近部まで透水性を確保するために、鍔状の濾布固定板上に補助濾布を貼付けた。この方法によれば、(1) 脱水ケーキの中心部も含めて一様な脱水ケーキが形成された。(2)打込み口直近までA泥層が形成できた。   Focusing on these, the dehydration of the water in the muddy water located at the center from the flange diameter can be promoted, and the formation of the A mud layer can be surely performed. That is, an auxiliary filter cloth was stuck on a flange-shaped filter cloth fixing plate in order to ensure water permeability up to the nearest part of the insertion port. According to this method, (1) a uniform dehydrated cake including the central portion of the dehydrated cake was formed. (2) A mud layer could be formed right near the injection port.

本発明の請求項12は、請求項1から11までのいずれか一つに記載の処理方法において、B泥スラリーの濾水中の有害物質を光触媒により分解し、固形分を濾別して、濾水を排水基準以下に処理することを特徴とする汚染処理対象物の処理方法である。   According to a twelfth aspect of the present invention, in the treatment method according to any one of the first to eleventh aspects, harmful substances in the filtrate of the B mud slurry are decomposed by a photocatalyst, the solid content is separated by filtration, and the filtrate is filtered. This is a method for treating an object to be contaminated, characterized in that the treatment is performed below a wastewater standard.

本発明の請求項13は、請求項12に記載の処理方法において、有害物質の分解を、シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属酸化物相(第2相)との複合酸化物相からなる繊維であって、繊維の表層に向かって第2相の少なくとも1つの構成成分の存在割合が傾斜的に増大した光触媒機能を有するシリカ基複合繊維の織布からなるフィルターと、紫外線ランプとを備えた浄化装置で行うことを特徴とする汚染処理対象物の処理方法である。   According to a thirteenth aspect of the present invention, in the treatment method according to the twelfth aspect, the decomposition of the harmful substance is performed by an oxide phase mainly composed of a silica component (a first phase) and a metal oxide phase other than silica (a second phase). ), Comprising a woven fabric of a silica-based conjugate fiber having a photocatalytic function in which the content of at least one component of the second phase is inclinedly increased toward the surface layer of the fiber. The present invention is a method for treating an object to be contaminated, which is performed by a purifying apparatus including a filter and an ultraviolet lamp.

これら請求項12、13の発明は、洗浄汚染水や汚染泥土等の処理方法(請求項1から11までの発明)に適用されるものであり、水に溶解し難く固形分に付着したDXN類等の分離と、洗浄水等の水中に溶解したDXN類等を吸着する脱水工程と、この工程後の濾水中の可溶性DXN類等を光触媒繊維で分解する工程からなる。   The inventions of Claims 12 and 13 are applied to a method for treating contaminated washing water or contaminated mud (the inventions of Claims 1 to 11). DXNs that are hardly dissolved in water and adhere to solids And a dehydration step of adsorbing DXNs and the like dissolved in water such as washing water, and a step of decomposing soluble DXNs and the like in the filtrate after this step with photocatalytic fibers.

先ず、脱水工程では、マッドラップ工法の特徴であるプリコート層(A泥層)を利用し、DXN類等を含有した汚染水(B泥)中の固形分を脱水ケーキとして捕捉しプリコート層に可溶性DXN類の大部分を吸着させる(請求項1から11の発明の脱水工程) 。次に、脱水工程で排出された濾水中の可溶性DXN類等を高機能性の光触媒で分解するものである。   First, in the dewatering step, the solid content in the contaminated water (mud B) containing DXNs and the like is captured as a dewatered cake using the pre-coat layer (mud layer A) which is a feature of the mud wrap method, and is soluble in the pre-coat layer. Most of the DXNs are adsorbed (the dehydration step of the invention of claims 1 to 11). Next, soluble DXNs and the like in the filtrate discharged in the dehydration step are decomposed by a highly functional photocatalyst.

高機能性光触媒分解は、シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属酸化物相(第2相、酸化チタン等)との複合酸化物相からなる繊維であって、繊維の表層に向かって第2相の少なくとも1つの構成成分の存在割合が傾斜的に増大しており、かつ光触媒機能を有するシリカ基複合酸化物繊維の織布からなるフィルターと紫外光照射ランプから構成される装置で行う(特開2003-10612参照)。   The high-performance photocatalytic decomposition is a fiber comprising a composite oxide phase of an oxide phase mainly composed of a silica component (first phase) and a metal oxide phase other than silica (second phase, titanium oxide, etc.). A filter made of a woven fabric of silica-based composite oxide fibers having a photocatalytic function, wherein the proportion of at least one component of the second phase is inclinedly increased toward the surface layer of the fibers; (See JP-A-2003-10612).

従来において、脱水処理した濾水には、DXN類が付着した微細な固形分が取込まれてDXN類の低減が不充分となったり、その後のDXN類分解工程で例えば光触媒繊維の濾材(不織布等)の目詰まりや分解率の低下が起こり、結果として処理量の低下を起こしていた。また、脱水による固液分離工程とDXN類の分離・分解工程の各工程の負荷バランスが不均衡となるなどの問題があり、工程管理の煩雑さや処理コストが高くなるといった欠点があった。   Conventionally, fine solids to which DXNs are adhered are taken into the dewatered drainage water, and the reduction of DXNs becomes insufficient. ), And the decomposition rate was reduced, resulting in a reduction in the throughput. Further, there is a problem that the load balance between the solid-liquid separation step by dehydration and the separation / decomposition step of DXNs becomes unbalanced, and there is a drawback that the step management becomes complicated and the processing cost increases.

本発明の高機能性光触媒分解は、従来の表面に酸化チタンコーティングを施したガラスフィルターに比べて酸化チタンの脱落が起こり難く、さらにフィルター表面にチタンが濃集されているため高い分解効率が得られる特徴を有する。さらに、洗浄水等の水中の固形分含有量あるいはDXN類等の不溶性成分または可溶性成分の含有量や量比等が解体物件等によって大幅に変動するため、従来方法では固液分離やDXN類等の分解の処理能力バランスが不均衡になりやすいが、本発明では脱水やその後の濾水処理工程でのDXN類等の分離・分解機能に優れるため負荷調整が容易で効率的な処理が可能となる。   In the high-performance photocatalytic decomposition of the present invention, titanium oxide is less likely to fall off than a conventional glass filter having a titanium oxide coating on the surface, and high decomposition efficiency is obtained because titanium is concentrated on the filter surface. It has the following characteristics. Furthermore, since the solid content in water such as washing water or the content or ratio of insoluble or soluble components such as DXNs fluctuate greatly depending on dismantling properties, etc., the conventional method involves solid-liquid separation and DXNs. Although the processing capacity balance of the decomposition of liquor tends to be unbalanced, the present invention is excellent in the function of separating and decomposing DXNs and the like in the dehydration and subsequent drainage treatment steps, so that load adjustment is easy and efficient. Become.

本発明は、フィルタープレス等を用いたマッドラップ工法を利用し、泥土材から構成されるA泥層をプリコート層として汚染水や汚染泥土等のB泥スラリーを脱水し、脱水ケーキ(A泥及びB泥)内にDXN類や重金属等を捕捉、吸着、不溶化等により封じ込めるようにしたため、次のような効果を奏する。   The present invention utilizes a mud wrap method using a filter press or the like, and dewaters a B mud slurry such as contaminated water or contaminated mud by using a mud layer A composed of mud material as a pre-coat layer to form a dewatered cake (A mud and DXNs, heavy metals, and the like are trapped, adsorbed, insolubilized, and the like in the mud B), and the following effects are obtained.

(1) DXN類や重金属等の有害物質を含有する汚染水や汚染泥水の処理を、比較的簡易な処理設備と処理工程により低コストで行うことができる。従来と比べて、現場メンテナンス面及びコスト面で極めて有利となる。   (1) The treatment of contaminated water or muddy water containing harmful substances such as DXNs and heavy metals can be performed at a low cost with relatively simple treatment equipment and treatment steps. This is extremely advantageous in terms of on-site maintenance and cost as compared with the related art.

(2) DXN類や重金属等の有害物質を確実に捕捉して排出基準以下の濾水を得ることができる。   (2) Harmful substances such as DXNs and heavy metals can be reliably captured, and drainage below discharge standards can be obtained.

また、本発明では、フィルタープレスにおいて打込み口内残留B泥を除去・洗浄し、また濾布固定板に補助濾布を設けることにより、次のような効果を奏する。   Further, according to the present invention, the following effects can be obtained by removing and washing the residual B mud in the driving hole in the filter press and providing the auxiliary filter cloth on the filter cloth fixing plate.

(1) 打込み口内残留B泥を完全に除去することができ、A泥層にB泥が混合することがなく、フィルター層である清浄なA泥層により、DXN類等を脱水ケーキに確実に封じ込め、かつ、排出基準以下の濾水を確実に得ることができる。   (1) It is possible to completely remove the residual B mud in the injection port, without mixing B mud into the A mud layer, and by using a clean A mud layer which is a filter layer, DXNs etc. can be surely formed into a dewatered cake. It is possible to reliably obtain contaminated and drained water below the discharge standard.

(2) 補助濾布により、脱水ケーキの中心部を含めて半固化・半液化状態のない一様な脱水ケーキを形成することができ、かつ、打込み口直近までA泥層を形成することができ、濾室内全体に清浄なA泥層が形成されることによりDXN類等を脱水ケーキに確実に封じ込め、かつ、排出基準以下の濾水を確実に得ることができる。   (2) The auxiliary filter cloth can form a uniform dewatered cake without a semi-solidified / semi-liquefied state including the central part of the dewatered cake, and can form the A mud layer right near the injection port. As a result, a clean A mud layer is formed in the entire filtering chamber, so that DXNs and the like can be reliably contained in the dewatered cake, and drainage below the discharge standard can be reliably obtained.

(3) 汎用フィルタープレスを大改造なしにほぼそのまま用いることができ、低コストの処理設備で本発明の処理技術を実施できる。   (3) The general-purpose filter press can be used almost as it is without major modification, and the processing technology of the present invention can be implemented with low-cost processing equipment.

さらに、本発明では、洗浄汚染水や汚染泥土等の処理方法における脱水工程後の濾水中の可溶性DXN類等を光触媒繊維等からなる浄化装置で分解し、固形分を濾別するように構成することにより、次のような効果を奏する。   Further, in the present invention, the soluble DXNs and the like in the drainage water after the dehydration step in the treatment method for the cleaning contaminated water and the contaminated mud are decomposed by a purifying device made of photocatalytic fibers and the like, and the solid content is filtered off. This produces the following effects.

(1) 脱水工程後の濾水を確実にDXN類等の排出基準以下に低減して放流することができる。   (1) The drainage water after the dehydration step can be reliably discharged to a level below the discharge standard for DXNs and the like.

(2) 高機能性光触媒分解を用いることにより、従来よりも高い分解効率が得られ、濾水中のDXN類等の確実な低減、処理量の増大等を図ることができる。   (2) By using high-functional photocatalytic decomposition, higher decomposition efficiency than before can be obtained, and it is possible to reliably reduce DXNs and the like in the filtrate and increase the throughput.

(3) さらに、濾水処理工程でのDXN類等の分離・分解機能に優れるため負荷調整が容易で効率的な処理が可能となる。   (3) In addition, because of its excellent function of separating and decomposing DXNs and the like in the drainage treatment process, load adjustment is easy and efficient treatment is possible.

以下、本発明を図示する実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

[第1実施形態]
この第1実施形態は、廃棄物焼却施設の解体時に洗浄作業で発生するDXN類や重金属などを含む汚染水の処理に適用した例である。図1は、本発明の基本的な処理方法を実施するための第1実施形態の処理設備の1例を示す設備フローの概略図である。図2は、本発明のフィルタープレスにおける処理工程を工程順に示す断面図である。
[First Embodiment]
The first embodiment is an example in which the present invention is applied to the treatment of contaminated water containing DXNs, heavy metals, and the like generated in a cleaning operation when dismantling a waste incineration facility. FIG. 1 is a schematic diagram of an equipment flow showing an example of a processing equipment of a first embodiment for carrying out a basic processing method of the present invention. FIG. 2 is a sectional view showing the processing steps in the filter press of the present invention in the order of steps.

図1の実施形態において、本発明に係る処理設備は、焼却施設の解体用地内に設置され、洗浄ノズル1による洗浄で発生するDXN類などを含む汚染水W0 を、概略、フィルタープレスによるマッドラップ工法を用いて急速脱水・減容固化処理し、DXN類などを脱水ケーキC内に閉じ込め、この脱水ケーキCを焼却処分等し、濾水Wは排出基準以下にして放流するものであり、主として、上流側から順に、汚染水集水ピット2、礫砂分分離装置3、上澄水槽4、貯留槽5、A泥混合槽6、B泥混合槽7、フィルタープレス8、濾水槽9、中和槽10、放水監視槽11から構成される。処理工程の詳細は以下の通りである(図1参照)。 In the embodiment of FIG. 1, the treatment equipment according to the present invention is installed in a demolition site of an incineration facility, and converts polluted water W 0 containing DXNs and the like generated by washing with the washing nozzle 1 into a mud by a filter press. Rapid dewatering and volume reduction and solidification using the wrapping method, DXNs and the like are confined in the dewatered cake C, the dewatered cake C is incinerated, etc., and the drainage water W is discharged to a discharge standard or less. Mainly in order from the upstream side, the contaminated water collecting pit 2, the gravel / sand separation device 3, the supernatant water tank 4, the storage tank 5, the A mud mixing tank 6, the B mud mixing tank 7, the filter press 8, the filtration tank 9, It comprises a neutralization tank 10 and a water discharge monitoring tank 11. The details of the processing steps are as follows (see FIG. 1).

(1) 洗浄ノズル1の高圧噴射による洗浄後の汚染水W0 を汚染水集水ピット2に集水し、礫砂分分離装置3で礫砂分を除去した後、移送ポンプ20で貯留槽5に送り、攪拌機21で攪拌しつつ上澄水の分離を行う。ここで、汚染水の最終処理量を抑えるべく、貯留槽5の上澄水W1 を上澄水槽4へ送り、この上澄水W1 を高圧噴射機22で洗浄ノズル1に供給して回収・再利用する。 (1) Contaminated water W 0 after cleaning by high-pressure injection of the cleaning nozzle 1 is collected in the contaminated water collecting pit 2, and after removing the gravel sand by the gravel / sand separation device 3, the storage tank is transferred by the transfer pump 20. 5 and the supernatant water is separated while being stirred by the stirrer 21. Here, in order to suppress the final treatment amount of the contaminated water, the supernatant water W 1 of the storage tank 5 is sent to the supernatant water tank 4, and the supernatant water W 1 is supplied to the cleaning nozzle 1 by the high-pressure injector 22 to collect and recycle. Use.

(2) 貯留槽5のDXN類などを含有した沈降汚泥水W2 (焼却灰、残渣(施設内残留の砂、錆、炉内耐火煉瓦剥落微粉材等))を移送ポンプ23でB泥混合槽7に送り、B泥スラリーBS を作製する。必要に応じて、溶解槽14から後述する処理材Bあるいは作泥槽12から後述する泥土材Dを添加する。一方、A泥混合槽6には、作泥槽12から後述する泥土材Dを送り、溶解槽13から後述する処理材Aを添加して、A泥スラリーAS を作製する。 (2) Settling sludge water W 2 (incinerated ash, residue (sand remaining in the facility, rust, refractory brick in the furnace, etc.)) containing DXNs etc. in the storage tank 5 is mixed with the B mud by the transfer pump 23 The slurry is sent to the tank 7 to produce a B mud slurry B S. If necessary, a processing material B described later from the melting tank 14 or a mud material D described later from the mud making tank 12 is added. On the other hand, the A mud mixing tank 6, sends a mud material D to be described later from Sakudoroso 12, with the addition of treatment materials A to be described later from the dissolution tank 13, to produce the A mud slurry A S.

(3) 先ず、A泥スラリーAS を打込ポンプ24でフィルタープレス8内の濾室内に打ち込み、次いで配管を切り替えてB泥スラリーBS を打ち込む。図2に示すように、濾室8a内に打設されたA泥スラリーAS の内部にB泥スラリーBS を打設すると、A泥スラリーAS の脱水が進み、濾室の周囲にA泥によるプリコート層が形成され、このプリコート層及び濾布を通してB泥の脱水が進行し、脱水ケーキC(A泥及びB泥)と濾水Wに固液分離される。脱水完了後に開枠脱型し、脱水ケーキCを取出す。 (3) First, the mud slurry A S is driven into the filter chamber in the filter press 8 by the driving pump 24, and then the piping is switched to drive the mud slurry B S. As shown in FIG. 2, when the B mud slurry B S is poured into the A mud slurry A S placed in the filtration chamber 8a, the dehydration of the A mud slurry A S proceeds, and the A A precoat layer is formed by the mud, dehydration of the B mud proceeds through the precoat layer and the filter cloth, and solid-liquid separation into a dewatered cake C (A mud and B mud) and filtered water W. After the completion of the dehydration, the mold is opened and the dehydrated cake C is taken out.

ここで、廃棄物焼却施設の解体時の洗浄作業で発生する汚染水には、DXN類を含有する灰や残渣あるいは可溶性のDXN類が存在する。A泥は、DXN類を捕捉するためのフィルター、吸着層であり、主材料は、石粉(炭酸カルシウム、珪石粉等)またはベントナイト等の非水溶性無機粒子からなる泥土材Dで構成する。この泥土材Dは、75μm以上の粒群が10質量%以下で、且つ、平均粒径が10μm以下のものを使用するのが好ましい。   Here, in the contaminated water generated in the washing operation at the time of dismantling the waste incineration facility, there are ash and residues containing DXNs or soluble DXNs. A mud is a filter and an adsorption layer for trapping DXNs, and the main material is composed of mud material D composed of water-insoluble inorganic particles such as stone powder (calcium carbonate, silica stone powder, etc.) or bentonite. As the mud material D, it is preferable to use those having a particle group of 75 μm or more in 10% by mass or less and having an average particle size of 10 μm or less.

また、大部分はSS分に由来するが、可溶性のDXN類が存在することを考慮して、A泥の処理材Aとして、無機系凝集剤(PAC、硫酸バンド、消石灰、ポリ硫酸鉄等)や有機系凝集剤(ポリアクリルアミド等)をベースに、吸着剤(活性炭やゼオライト等)を添加するのが好ましい。   In addition, in consideration of the existence of soluble DXNs, most of them are derived from SS, but as a treatment material A for mud A, inorganic coagulants (PAC, sulfate band, slaked lime, polyiron sulfate, etc.) It is preferable to add an adsorbent (activated carbon, zeolite, etc.) based on an organic coagulant (polyacrylamide, etc.).

B泥スラリーは、濃度の変化があるので(洗浄水は低濃度が予想される)、必要に応じて、粘土や石粉(炭酸カルシウム、珪石粉等)よりなる泥土材Dにより加泥する。また、B泥スラリーには、脱水ケーキ内に捕捉したDXN類を不溶化するために、無機系凝集剤(PAC、硫酸バンド、消石灰、ポリ硫酸鉄等)や有機系凝集剤(ポリアクリルアミド等)あるいはセメントや石灰系の凝集・固化材を処理材Bとして添加することもある。直ちに焼却処分する場合には、この処理材Bの添加は不要である。   Since the B mud slurry has a change in concentration (washing water is expected to have a low concentration), the slurry is muddy with a mud material D made of clay or stone powder (calcium carbonate, silica stone powder, etc.) as necessary. In addition, in order to insolubilize DXNs trapped in the dewatered cake, an inorganic coagulant (PAC, sulfate band, slaked lime, iron polysulfate, etc.) or an organic coagulant (polyacrylamide, etc.) A cement or lime-based coagulating / solidifying material may be added as the treatment material B. In the case of immediate incineration, the addition of the treated material B is unnecessary.

(4) 以上のようなプリコート層の構成とこれらの処理や添加剤等により、DXN類が脱水ケーキC(A泥及びB泥)内に捕捉、吸着、不溶化等により封じ込められる。フィルタープレス8からの減容化した脱水ケーキCは、ベルトコンベア25で搬送され、新排出基準適合の処理施設等で溶融または焼成処分される。一方、濾水Wは、濾水槽9、中和槽10、放水監視槽11を経て、排出基準(DXN 10pg-TEQ/L) 以下にして放流される。なお、濾水槽9の濾水Wは、上澄水槽4へ戻され、洗浄水として再利用される。   (4) DXNs are trapped, adsorbed, insolubilized, and the like in the dewatered cake C (mud A and mud B) by the above-described configuration of the precoat layer, these treatments, additives, and the like. The reduced volume of the dewatered cake C from the filter press 8 is conveyed by a belt conveyor 25, and is melted or fired at a treatment facility or the like that conforms to the new discharge standard. On the other hand, the drainage W is discharged through the drainage tank 9, the neutralization tank 10, and the water discharge monitoring tank 11 at a discharge standard (DXN 10pg-TEQ / L) or less. The filtered water W from the filtered water tank 9 is returned to the supernatant water tank 4 and reused as washing water.

また、図示例ではフィルタープレス8への打込配管がA泥・B泥共有であるため、次工程打込開始時に前工程配管内残留B泥と次工程A泥が混ざり、A泥の濾水中にもDXN類などが混入するため、A泥濾水の出始めの一部をB泥混合槽7へ戻し(図示省略)、B泥スラリーBS に回収する。 Further, in the illustrated example, since the driving pipes to the filter press 8 share the A mud and the B mud, the residual B mud and the next step A mud in the previous step pipe are mixed at the start of the next step driving, and the A mud is drained. Since DXNs and the like are also mixed in the mixture, a part of the beginning of the mud filtrate discharged is returned to the B mud mixing tank 7 (not shown) and collected in the B mud slurry B S.

なお、以上は、フィルタープレスを用いる場合を例示したが、これに限らず、その他の脱水処理設備でもよい。   In addition, although the case where the filter press is used has been illustrated above, the present invention is not limited to this, and other dehydration processing equipment may be used.

[第2実施形態]
この第2実施形態の対象は汚染泥土であり、汚染泥土はDXN類や重金属を含有した港湾や湖沼の底質や汚染土壌の粗粒分離後の汚染物質が濃集した細粒土である。例えば、浚渫された汚染底質は、その性状(やわらかさ)に応じ、粗粒の分離が容易となるよう清水で加水調整(もしくは振動ふるい時に加水)した後、トロンメル、振動ふるい、掻き取りゲート、液体サイクロン等で有害物質を含まない、粗粒土を分離する。この粗粒分離後の有害物質を含有する細粒土が処理の対象となる。処理設備は、図1の上流側の汚染洗浄水に関連する部分が異なるだけで、図1と同様の処理設備を用いて同様に処理することができる。
[Second embodiment]
The target of the second embodiment is a contaminated mud, and the contaminated mud is a fine-grained soil in which contaminants are concentrated after segregation of coarse particles of sediment or contaminated soil of a port or lake containing DXNs or heavy metals. For example, dredged contaminated sediment is adjusted according to its properties (softness) with fresh water so that coarse particles can be easily separated (or added with vibrating sieve), then trommel, vibrating sieve, scraping gate Separate coarse-grained soil that does not contain harmful substances using a hydrocyclone. The fine-grained soil containing harmful substances after the coarse-grain separation is to be treated. The processing equipment can be similarly processed using the same processing equipment as in FIG. 1 except for the part related to the contaminated cleaning water on the upstream side in FIG.

DXN類などの有害物質の補足・吸着層となるA泥は、75μm以上の粒群が10質量%以下で、且つ、平均粒径が20μm以下である非水溶性無機粒子よりなる泥土材スラリーに、必要に応じて凝集剤、吸着剤を加えて調製する。非水溶性無機粒子としては、炭酸カルシウム、珪石粉等の鉱物を所定粒度に粉砕した石粉またはベントナイト、カオリナイト等の各種粘土または石炭灰等の1種もしくは2種以上の混合物が好適に使用できる。このうち、石炭灰は有害物質を吸着処理可能な未燃炭素を2〜20%程度含有しているものが好ましい。しかし、石炭灰の性状によっては、所定の粒度の範囲内であったとしても、粒度分布が狭く、A泥自体の脱水抵抗が小さすぎる場合がある。この場合、A泥がフィルタープレスの濾室に完全に充填される前に、脱水が進行し、均一なA泥ケーキの形成が困難となる。このため、必要に応じて、石炭灰にベントナイトなどの粘土を添加して脱水抵抗を調整する。ベントナイトの添加量は通常、石炭灰に対して50%以下が好ましい。   The mud A serving as a supplement / adsorption layer for harmful substances such as DXNs is a mud slurry composed of water-insoluble inorganic particles having a particle group of 75 μm or more in an amount of 10% by mass or less and an average particle diameter of 20 μm or less. It is prepared by adding a flocculant and an adsorbent as needed. As the water-insoluble inorganic particles, one or a mixture of two or more of various kinds of clay such as bentonite and kaolinite or coal ash and the like can be suitably used. . Of these, coal ash preferably contains about 2 to 20% of unburned carbon capable of absorbing harmful substances. However, depending on the properties of the coal ash, the particle size distribution may be narrow, and the dewatering resistance of the A mud itself may be too small, even within the range of the predetermined particle size. In this case, before the mud A is completely filled in the filter chamber of the filter press, dehydration proceeds, and it is difficult to form a uniform mud cake. Therefore, if necessary, clay such as bentonite is added to coal ash to adjust the dewatering resistance. Usually, the addition amount of bentonite is preferably 50% or less based on the coal ash.

これらの泥土材は加水して含水比を300〜2000%、好ましくは含水比500〜1700%のスラリーとする。含水比が2000%より高い(希薄)場合、フィルタープレスへの打設スラリー量が増加し、脱水時間が長くなるとともに、材料分離が大きくハンドリング性が悪化する。一方、含水比が300%より低い(濃厚)場合、A泥層の厚さが不均一となり、また、A泥はその最も薄い部分を基準に所要厚を設計する必要があるため、平均A泥層厚が増加し、脱水可能な汚染泥土(B泥)の量が少なくなる。   These mud materials are hydrated to form a slurry having a water content of 300 to 2000%, preferably 500 to 1700%. When the water content is higher than 2,000% (dilute), the amount of the slurry poured into the filter press increases, the dewatering time becomes longer, and the material separation becomes large, resulting in poor handling. On the other hand, if the water content is lower than 300% (thick), the thickness of the A mud layer becomes uneven, and the required thickness of the A mud must be designed based on the thinnest part. The layer thickness increases and the amount of dewaterable contaminated mud (B mud) decreases.

この泥土材スラリーには、汚染泥土スラリー(B泥)の脱水の過度な抵抗にならないこと、また、可溶性のDXN類や重金属が存在する可能性を考慮して、PAC、硫酸バンド、ポリ硫酸鉄等の酸性の凝集剤および/または活性炭やゼオライト等の吸着剤を添加するのが好ましい。PAC、硫酸バンド、ポリ硫酸鉄等の酸性凝集剤の添加量は30〜200kg/tds・A(泥土材乾分1t当たりの添加量)である。A泥層は、後述の汚染泥水に加える凝集・固化材が一般にアルカリ性であるため、そのアルカリ濾水を中和する機能も併せ持つ。この中和の効果は後述の吸着剤の能力を適正に発揮させる効果も示す。即ち、底質に含まれる有機物の種類によっては、アルカリの作用で有機物(COD、T−N)が濾液に溶出し易くなる場合があるため、これらの有機物が吸着剤に吸着されやすいpH(中性以下)に調整する機能を有する。なお、凝集・固化材の種類や添加量によっては、酸性凝集剤のみでは、B泥濾液を中和できない場合もあるため、アルミン酸ナトリウムを併用することにより、A泥のアルカリ中和能を向上させることもできる。   In consideration of the fact that the mud slurry does not cause excessive resistance to dewatering of the contaminated mud slurry (B mud) and the possibility of the presence of soluble DXNs and heavy metals, PAC, sulfate band, polyiron sulfate, etc. It is preferable to add an acidic flocculant such as activated carbon and / or an adsorbent such as activated carbon and zeolite. The addition amount of the acidic flocculant such as PAC, sulfate band, and iron polysulfate is 30 to 200 kg / tds · A (addition amount per 1 t of mud material dry matter). The A mud layer also has a function of neutralizing the alkaline drainage since the coagulating / solidifying material added to the contaminated mud described later is generally alkaline. This neutralizing effect also has the effect of properly exerting the ability of the adsorbent described below. That is, depending on the type of organic matter contained in the sediment, the organic matter (COD, TN) may be easily eluted into the filtrate by the action of alkali. ). Depending on the type and amount of the coagulating / solidifying material, the acidic coagulant alone may not be able to neutralize the B mud filtrate. Therefore, by using sodium aluminate together, the alkali neutralizing ability of the A mud is improved. It can also be done.

次に、汚染泥土スラリーに、脱水速度を高めるとともに、脱水ケーキ内に捕捉したDXN類を固化・不溶化するために、凝集・固化材を添加してB泥を調製する。   Next, in order to increase the dewatering speed and consolidate and insolubilize DXNs trapped in the dewatered cake, a coagulation / solidification material is added to the contaminated mud slurry to prepare B mud.

凝集・固化材としては、各種ポルトランドセメントや消石灰、生石灰またはそれらをベースとした、各種セメント系、石灰系、セメント・石灰系固化材、また、マグネシアやそれをベースとしたマグネシア系の凝集・固化材を添加する。これらの凝集・固化材は実際の対象泥土を用いた配合試験により適正な種類を選択する。   As the coagulating / solidifying material, various types of Portland cement, slaked lime, quicklime, or various types of cement-based, lime-based, cement-lime-based solidifying materials, or magnesia-based and magnesia-based coagulating / solidifying materials Add ingredients. The appropriate type of these coagulated / solidified materials is selected by a compounding test using actual target mud.

なお、マグネシアとしては、900℃程度で炭酸マグネシウムなどを焼成して得られる、BET比表面積で10〜150m2 /gの軽焼マグネシアが好適に使用できる。その粉末度は100メッシュ(目開き149μm)アンダー品が好ましく、さらに200メッシュ(目開き74μm)〜300メッシュ(目開き48μm)アンダー品の使用がより好ましい。 As magnesia, light-burned magnesia having a BET specific surface area of 10 to 150 m 2 / g obtained by calcining magnesium carbonate or the like at about 900 ° C. can be suitably used. The fineness of the fineness is preferably 100 mesh (mesh size: 149 μm), and more preferably 200 mesh (mesh size: 74 μm) to 300 mesh (mesh size: 48 μm).

マグネシア系固化材はマグネシアをベースに、過燐酸石灰、重過燐酸石灰、ヘキサメタ燐酸ナトリウム、ピロ燐酸ナトリウム、硫酸バンド、硫酸鉄、各種せっこう、高炉スラグ、各種ポルトランドセメント、アルミナセメント等を添加し、マグネシアの凝集性能や固化強度を高めたものである。一般にこれらの添加材の量はマグネシアに対し、20質量%以下である。   Magnesia-based solidifying material is based on magnesia, with lime superphosphate, lime heavy superphosphate, sodium hexametaphosphate, sodium pyrophosphate, sulfate band, iron sulfate, various gypsum, blast furnace slag, various portland cement, alumina cement, etc. , The cohesive performance and solidification strength of magnesia are increased. Generally, the amount of these additives is 20% by mass or less based on magnesia.

マグネシアおよびマグネシア系固化材の汚染泥土への添加量は、通常30〜200kg/tds・Bで汚染泥土スラリーとの混合時間は0.5〜3時間とすることが望ましい。マグネシアおよびマグネシア系固化材は汚染泥土との混合時間中に水和反応し、土粒子を極めて効率的に凝集させることが特徴であり、これによって脱水速度も速くなり、固化強度も大幅に向上する。このため、攪拌時間が短い場合、十分な脱水速度が得られない。反面、攪拌時間が長くなりすぎると、脱水後の脱水ケーキの高強度化に寄与する未反応分が少なくなり、ケーキ強度の伸びが小さくなる。   The amount of magnesia and magnesia-based solidified material added to the contaminated mud is usually 30 to 200 kg / tds · B, and the mixing time with the contaminated mud slurry is preferably 0.5 to 3 hours. Magnesia and magnesia-based solidification materials are characterized by a hydration reaction during the mixing time with the contaminated mud, causing the soil particles to aggregate very efficiently, thereby increasing the dehydration rate and greatly increasing the solidification strength. . Therefore, if the stirring time is short, a sufficient dehydration rate cannot be obtained. On the other hand, if the stirring time is too long, the amount of unreacted components that contribute to increasing the strength of the dewatered cake after dehydration decreases, and the elongation of the cake strength decreases.

これらのA泥、B泥をフィルタープレスにA泥、B泥の順に打設する。フィルタープレスは低圧(0.5MPa程度)装置を使用しても、B泥に添加した凝集・固化材の効果で高強度のケーキが得られるが、高圧(4MPa程度)装置を使用してもよい。この場合、ケーキの含水比が低下し、さらに高いケーキ強度が得られるため、凝集・固化材の添加量を低減しても良い。また、固化機能を有さない通常の凝集剤を使用しても良い。   These A mud and B mud are cast into a filter press in the order of A mud and B mud. The filter press can use a low pressure (approximately 0.5 MPa) device, and a high-strength cake can be obtained by the effect of the coagulating and solidifying material added to the B mud. However, a high pressure (approximately 4 MPa) device may be used. . In this case, the water content of the cake is reduced, and a higher cake strength is obtained. Therefore, the amount of the coagulating / solidifying material may be reduced. Moreover, you may use the usual flocculant which does not have a solidification function.

なお、以上は、フィルタープレスを用いる場合を例示したが、これに限らず、その他の脱水処理設備でもよい。   In addition, although the case where the filter press is used has been illustrated above, the present invention is not limited to this, and other dehydration processing equipment may be used.

この実施例は、第2実施形態の汚染泥土の場合である。
(1)対象汚染泥土
実施例および比較例に使用した対象汚染泥土の特性を下表1に示す。なお、フィルタープレス脱水は、本対象泥土を分級洗浄し粗粒分を除去(0.3mmアンダー)した泥水を使用した。
This example is the case of the contaminated mud of the second embodiment.
(1) Target contaminated mud The characteristics of the target contaminated mud used in Examples and Comparative Examples are shown in Table 1 below. In the filter press dewatering, muddy water was used in which the target mud was classified and washed to remove coarse particles (under 0.3 mm).

Figure 2004276019
Figure 2004276019

(2)処理材
実施例および比較例に使用した処理材の材料は次のとおりである。
石炭灰:未燃炭素含有量8%の微紛炭ボイラー灰
ベントナイト:阿蘇、日本ベントナイト工業(株)製
ポリ塩化アルミニウム:アルミナ分10%水溶液、浅田化学(株)製
マグネシア:軽焼マグネシア、BET比表面積19cm2 /g
消石灰:特号S(粒度200メッシュ以下)(株)宇部マテリアルズ製.
(2) Processing Material The materials of the processing materials used in Examples and Comparative Examples are as follows.
Coal ash: Pulverized coal boiler ash with an unburned carbon content of 8% Bentonite: Poly aluminum chloride manufactured by Aso, Nippon Bentonite Co., Ltd .: Alumina content 10% aqueous solution, Magnesia manufactured by Asada Chemical Co., Ltd .: Light burned magnesia, BET Specific surface area 19cm 2 / g
Slaked lime: Special name S (particle size 200 mesh or less) manufactured by Ube Materials Co., Ltd.

(3)脱水
脱水は、小型フィルタープレス(□400×15mm×9室(容積15リットル)、ポンプ圧力:0.4 MPa、流量:0.8m3 /h)を使用した。
(3) Dehydration For dehydration, a small filter press (□ 400 × 15 mm × 9 chambers (volume: 15 liters), pump pressure: 0.4 MPa, flow rate: 0.8 m 3 / h) was used.

(4)濾水性状試験
濾水について次の測定を行い脱水処理効果の評価をした。
pH:JIS−K−0102.12
COD:JIS−K−0102.17
T−N:JIS−K−0102.45
T−P:JIS−K−0102.46
DXN類:公定法分析
(4) Drainage test The following measurement was performed on the filtrate to evaluate the dewatering effect.
pH: JIS-K-0102.12.
COD: JIS-K-0102.17
T-N: JIS-K-0102.45
TP: JIS-K-0102.46
DXNs: Official method analysis

(5)脱水ケーキの評価:脱水ケーキのコーン指数および溶出試験
上記(3)で得られた脱水ケーキは、解きほぐし、9.5mm篩を通した後、直径10cm、容量1リットルのモールドに締固め、JISA1228に則った方法でコーン指数を測定した。
(5) Evaluation of dewatered cake: cone index and dissolution test of dewatered cake The dewatered cake obtained in the above (3) was unraveled, passed through a 9.5 mm sieve, and compacted into a mold having a diameter of 10 cm and a capacity of 1 liter. The cone index was measured by a method according to JIS A1228.

脱水ケーキからのDXN類溶出量は、脱水ケーキを材齢7日で解きほぐし、海防法に規定の方法(環告14号法:2mm篩を通した後、pH7.8 〜8.3に調製した蒸留水により6時間振とうし、1μmガラス繊維濾紙で濾過)で実施し、その検液中のDXN類を測定した。   The amount of DXNs eluted from the dehydrated cake was adjusted to pH 7.8 to 8.3 after unpacking the dehydrated cake at the age of 7 days and passing it through a method prescribed in the Coast Guard Law (Announcement No. 14: 2 mm sieve). The mixture was shaken with distilled water for 6 hours, and filtered with a 1 μm glass fiber filter paper) to measure DXNs in the test solution.

フィルタープレスによる脱水実験結果(実施例1〜3、比較例1〜2)を表2に示す。本発明の範囲の脱水条件では、脱水時間が通常の脱水方法(一般的な凝集剤としてPACと消石灰の組合せ)に比較して短く、濾水はプリコート層の効果によりDXN類の濃度を排水基準以下とすることが可能であることが確認された。また、pHは10以下の低アルカリとなり、COD、T−NおよびT−Pは通常の脱水以下の値となった。さらに脱水ケーキの強度は、材齢7日で利用用途の広い第2種改良土相当(ときほぐし・締固め直後のコーン指数:800kN/m2 )以上の高強度が得られることが確認された。脱水ケーキからのDXN類溶出量は、マグネシア系固化材の凝集・固化による不溶化効果が得られ、本発明の範囲ではいずれも1pg−TEQ/L以下の値となった。 Table 2 shows the results of the dehydration experiment using the filter press (Examples 1 to 3 and Comparative Examples 1 and 2). Under the dehydration conditions in the range of the present invention, the dehydration time is shorter than that of a normal dehydration method (combination of PAC and slaked lime as a general flocculant), and the drainage is determined by the effect of the pre-coat layer on the concentration of DXNs based on the drainage. It has been confirmed that it is possible to: Further, the pH became low alkali of 10 or less, and the values of COD, TN and TP became lower than ordinary dehydration. Furthermore, it was confirmed that the strength of the dewatered cake was 7 days or more, and a high strength equivalent to Class II improved soil which is widely used (corn index immediately after loosening and compaction: 800 kN / m 2 ) or more was obtained. The amount of DXNs eluted from the dehydrated cake had an insolubilizing effect by agglomeration and solidification of the magnesia-based solidifying material, and all values were 1 pg-TEQ / L or less within the scope of the present invention.

Figure 2004276019
Figure 2004276019

なお、以上は、フィルタープレスを用いる場合を例示したが、これに限らず、その他の脱水処理設備でもよい。   In addition, although the case where the filter press is used has been illustrated above, the present invention is not limited to this, and other dehydration processing equipment may be used.

[第3実施形態]
この第3実施形態は、洗浄汚染水などの汚染水、浚渫土などの汚染泥土や汚染土壌の処理において脱水処理にフィルタープレスを用いた場合、フィルタープレスにおける、打込み口内残留B泥の除去・洗浄と、打込み口直近部までA泥層で完全ラッピングされ、かつ脱水が一様なケーキを形成する処理技術である。図3は、洗浄汚染水の処理設備に適用した例である。
[Third embodiment]
In the third embodiment, when a filter press is used for dewatering in the treatment of contaminated water such as cleaning contaminated water, contaminated mud or contaminated soil such as dredged soil, removal and cleaning of residual B mud in the insertion port in the filter press This is a processing technique that forms a cake that is completely wrapped with a mud layer up to the vicinity of the injection port and that is uniformly dehydrated. FIG. 3 shows an example in which the present invention is applied to a treatment facility for cleaning contaminated water.

図3において、フィルタープレスの構造と配管等を除き、第1実施形態の処理設備と同様の処理設備であり、また第1実施形態と同様のダイオラップ工法であり、DXN類等の有害物質を含有する汚染水や汚染泥土等処理を簡易な処理設備と処理方法により、低コストでDXN類等の有害物質を確実に捕捉して排出基準以下の濾水を得るという技術である。さらに、A泥層をフィルターおよび吸着層として汚染水等で構成されるB泥スラリーを脱水し、脱水ケーキと濾水に固液分離し、脱水ケーキ(A泥及びB泥)内にDXN類等の有害物質を捕捉、吸着、不溶化(固化)等により封じ込めるものである。通常、フィルタープレスを用いる場合の概略手順は、フィルタープレスにA泥打込み→B泥打込み・加圧脱水→開枠(脱水ケーキ取出し)→閉枠→→→A泥打込み→B泥打込み・加圧脱水→開枠(脱水ケーキ取出し)→閉枠→→→以下同サイクルの繰り返しとなる。   In FIG. 3, the processing equipment is the same as the processing equipment of the first embodiment, except for the structure of the filter press and the piping, etc., and it is the same dio lap method as that of the first embodiment, and contains harmful substances such as DXNs. This is a technology that reliably captures harmful substances such as DXNs at low cost and obtains drainage below the discharge standard by using simple processing equipment and processing methods for processing contaminated water and contaminated mud. Further, the mud B slurry composed of contaminated water and the like is dewatered using the mud A layer as a filter and an adsorbing layer, and solid-liquid separated into a dewatered cake and filtrate, and DXNs and the like are contained in the dewatered cakes (A mud and B mud). Harmful substances are trapped, adsorbed, and insolubilized (solidified). In general, when using a filter press, the general procedure is as follows: A mud driving → B mud driving / pressurized dehydration → opening (dewatering cake removal) → closed frame →→→ A mud driving → B mud driving / pressing Dehydration → open frame (dehydrated cake removal) → closed frame → → → The same cycle is repeated below.

以上のA泥、B泥の役割と手順に示すように、当然、フィルター層である清浄なA泥と有害汚染水等で構成されるB泥が処理過程等において混合すれば、本発明の処理技術の意味は小さくなり、その一方でA泥、B泥とは交互に打ち込む形態となっている。   As shown in the roles and procedures of the above-mentioned mud A and mud B, if the mud B composed of clean A mud and harmful polluted water, which is a filter layer, is mixed in the treatment process and the like, naturally, the treatment of the present invention is performed. The meaning of the technology has become smaller, while the A mud and B mud are alternately driven.

(a)フィルタープレスの洗浄
上記のようなA泥、B泥の混合を防ぐためには、設備的には、図3に示すように、A泥、B泥の混合槽6、7、打込ポンプ24および打込み配管40を別物として、完全分離することが理想的である。しかし、このようにしても、配管に続くフィルタープレス内の打込み口は、構造上、自ずと一系統となっており、上記の手順で打込むと、次工程A泥打ち込みの際、前工程B泥に次工程A泥が混合することになる。そこで、フィルタープレスの打込み口内に残留するB泥を、次工程のA泥打込み前に除去・洗浄するようにした。
(A) Washing of filter press In order to prevent the mixing of A mud and B mud as described above, as equipment, as shown in Fig. 3, mixing tanks 6, 7 for A mud and B mud, a driving pump It is ideal that the 24 and the driving pipe 40 are separated and completely separated. However, even in this case, the injection port in the filter press following the pipe is naturally one system due to its structure. Then, the next step A mud is mixed. Therefore, B mud remaining in the insertion port of the filter press is removed and washed before the A mud implantation in the next step.

フィルタープレス8は、図3〜図5に示すように、一対の濾枠41により形成される濾室42をプレス方向(中心軸)に複数配設して構成され、濾枠41の濾室側の面に濾布43が貼り付けられている。また、濾枠41の中心軸側の端部には、鍔状の濾布固定板44が取付けられており、この濾布固定板44により打込み口45が形成され、さらにこの打込み口45が多数連続することで、プレス中心に打込み流路46が形成される。   As shown in FIGS. 3 to 5, the filter press 8 is configured by arranging a plurality of filter chambers 42 formed by a pair of filter frames 41 in the pressing direction (center axis). The filter cloth 43 is stuck on the surface of. A flange-shaped filter cloth fixing plate 44 is attached to an end of the filter frame 41 on the center axis side, and a driving hole 45 is formed by the filter cloth fixing plate 44. By being continuous, the driving channel 46 is formed at the center of the press.

除去・洗浄の概略手順は、A泥打込み→B泥打込み・加圧脱水→打込み口内残留B泥除去・洗浄→開枠(脱水ケーキ取出し)→閉枠→→→A泥打込み→B泥打込み・加圧脱水→打込み口内残留B泥除去・洗浄→開枠(脱水ケーキ取出し)→閉枠→→→以下同サイクルの繰り返しとなる。なお、この方法は、打込み口内残留B泥、同洗浄水を排出するので、適用するフィルタープレス8には、図3に示すように、排出配管47を付加する。   The general procedure of removal / washing is as follows: A mud driving → B mud driving / pressure dehydration → Removal / washing of residual B mud in the injection port → open frame (dehydrated cake removal) → closed frame → → → A mud driving → B mud driving Pressurized dehydration → Removal and washing of residual B mud in the injection port → Open frame (dehydrated cake removal) → Closed frame → → → The same cycle is repeated. Since this method discharges the residual B mud and the washing water in the injection port, a discharge pipe 47 is added to the applicable filter press 8 as shown in FIG.

打込み口内残留B泥除去・洗浄の基本的な具体手順を次に示す。   The following is a basic specific procedure for removing and cleaning the residual B mud in the injection port.

(1) B泥打込み・加圧脱水終了後に、エア圧力により打込み口内残留B泥を一次除去する。即ち、先ず打込み口内B泥の圧密状態を解除する。図3に示すように、打込み配管48に三方弁を介して圧縮機49を接続してプレス内の打込み流路46内にエアを供給する。   (1) After the completion of the B mud driving and pressurized dehydration, the B mud remaining in the driving port is primarily removed by air pressure. That is, first, the consolidation state of the B mud in the driving port is released. As shown in FIG. 3, a compressor 49 is connected to the driving pipe 48 via a three-way valve to supply air into the driving flow path 46 in the press.

(2) 次に二次除去を行う。二次除去は、図5に示すように、プランジャー(ロケット状の発泡ウレタンゴム等製、打込み口内径より若干大きめの直径)50を打込み配管48のプランジャー挿入ハンドホール51より挿入し、続いてプランジャー背面を加圧(エア、清水、清浄ベントナイト水など)することにより行う。プランジャー50は背面の加圧力を受け、打込み口内残留B泥をスクレープしながら残留B泥と共に排出配管47より吐き出され、回収する。プランジャースクレープを必要回数繰り返す。   (2) Next, secondary removal is performed. In the secondary removal, as shown in FIG. 5, a plunger (made of rocket-like urethane foam rubber or the like, having a diameter slightly larger than the inner diameter of the insertion port) 50 is inserted through the plunger insertion hand hole 51 of the driving pipe 48, This is done by pressurizing the back of the plunger (air, fresh water, clean bentonite water, etc.). The plunger 50 receives the pressing force on the back surface, scrapes out the residual B mud in the driving hole, and discharges and collects the residual B mud from the discharge pipe 47 together with the residual B mud. Repeat plunger scraping as necessary.

(3) 次に三次除去を行う。三次除去は、清水等を打込み流路46内に必要量通すことにより行う。図3に示すように、清水等の水槽52を設置し、A泥の打込み配管40aに三方弁を介して接続する。なお、A泥スラリーの打込み配管40aは打込み配管48の反プレス側に接続され、B泥スラリーの打込み配管40bは打込み配管48のプレス側に接続される。これら一連の洗浄作業の後に次の工程へと進める。   (3) Next, tertiary removal is performed. The tertiary removal is performed by passing a required amount of fresh water or the like through the driving flow channel 46. As shown in FIG. 3, a water tank 52 of fresh water or the like is installed, and is connected to a mud driving pipe 40a via a three-way valve. The driving pipe 40a for the mud slurry A is connected to the non-press side of the driving pipe 48, and the driving pipe 40b for the mud slurry B is connected to the press side of the driving pipe 48. After these series of cleaning operations, the process proceeds to the next step.

なお、図3に示すように、排水槽53に貯まった洗浄汚染水は循環処理ができる仕組みとなっている。また、プランジャーは、ケーキ性状やフィルタープレス構造に対応させて、スクレープ効果がより得られるように寸法・形状・材質を吟味、採用する。   In addition, as shown in FIG. 3, the cleaning contaminated water stored in the drain tank 53 is configured to be circulated. In addition, the plunger is examined and adopted in size, shape, and material so as to obtain a scraping effect in accordance with the properties of the cake and the structure of the filter press.

また、砂分を多く含有するなど泥水性状によっては、脱水が過剰に促進され、打込み口内泥土まで脱水硬化が及ぶことも想定される。このような場合、上記に示す単なる一次〜三次除去による方法では対応できない可能性もある。このような場合には一次除去に先行して、メカニカルな穿孔法を用いる。これは従来からある挿入回転式の排水施設用維持管理器具(有名な商品名としてカンツールがある)で対応でき、穿孔貫通後は、上述の一次〜三次除去を併用する。   In addition, depending on the muddy water property such as containing a large amount of sand, it is supposed that dehydration is excessively promoted and dehydration hardens to the mud in the driving hole. In such a case, it may not be possible to cope with the above-described method based on simple primary to tertiary removal. In such a case, a mechanical perforation method is used prior to the primary removal. This can be dealt with by a conventional insertion rotary type maintenance equipment for drainage facilities (a well-known product name is Cantool). After the perforation, the above primary to tertiary removal is used together.

ところで、元々、本技術は汎用フィルタープレスをほぼそのまま(大改造なし)で適用できることも特長としている。従って、実工事等では種々のフィルタープレスを採用することが考えられる。それ故、打込み口内面の構造も様々であることも予測される。例えば打込み口内面が平滑でない構造等が考えられる。基本的には前述のようにプランジャースクレープの実施ができることが前提となるので、プランジャースクレープができる構造への事前改造が必要となるが、これらは小規模、小コスト改造なので、システム全体から見た場合、何ら問題はない。   By the way, originally, the present technology also has a feature that a general-purpose filter press can be applied almost as it is (without major modification). Therefore, it is conceivable to employ various filter presses in actual work or the like. Therefore, it is expected that the structure of the inner surface of the driving hole is also various. For example, a structure in which the inner surface of the driving hole is not smooth may be considered. Basically, it is premised that plunger scraping can be carried out as described above, so it is necessary to make advance modifications to a structure that allows plunger scraping. If you look, there is no problem.

(b)フィルタープレスの構造
汎用フィルータープレスの濾板構成を図4に示す。フィルータープレス脱水の基本メカニズムは、圧力泥水を打ち込むことにより、泥水中の水分のみ(厳密には濾布目より小さい超微粒土分は通過する)が濾布を通過し、濾布目より大きい土粒子が濾布内側へ残留することにより、固液分離が図れるというものである。他方、過去のフィルタープレス脱水における実施例の多くから下記の現象が確認されている。脱水ケーキ全体としては所要の脱水が図れるが、ケーキCの中心付近の脱水状態が十分でなく半固化状態あるいは半液化状態C’となっている現象である。この要因は、前述の基本メカニズムおよび濾板構造から以下であると推測できる。
(B) Structure of Filter Press FIG. 4 shows a filter plate configuration of a general-purpose filter router press. The basic mechanism of filter root press dewatering is that, by driving pressure mud, only the water in the mud (strictly, ultrafine soil smaller than the filter cloth passes) passes through the filter cloth, and soil particles larger than the filter cloth Is left inside the filter cloth, so that solid-liquid separation can be achieved. On the other hand, the following phenomena have been confirmed from many examples in the past of filter press dewatering. Although the required dehydration can be achieved as a whole of the dehydrated cake, the dehydration state in the vicinity of the center of the cake C is not sufficient and the cake C is in a semi-solidified state or a semi-liquefied state C ′. This factor can be inferred from the basic mechanism and the filter plate structure described above.

(1) 図4に示すように、濾板中心の打込み口45の周囲には濾布43を固定するための鍔状をした濾布固定板44が存在する。(2) この濾布固定板44は、例えばベークライト製等で水分を通さない材質、構造のものであり、概ね鍔径より中心に位置する泥水中の水分は抜けにくい状態にある。(3) 故にケーキ中心付近は、他部に比べ著しく脱水状態が劣る。(4) さらに、B泥層をA泥層で完全にラッピングし、B泥が直接濾布に接しないようにすることも前提(B泥が直接濾布に接するとB泥中のDXN類等が濾水に混入する可能性がきわめて高くなる)であるが、概ね鍔径より中心側の水分を通さない箇所では、水分が通過しないが故にA泥層の形成は不可能である。反対に水分が透過する濾布面においては、A泥層の形成は確実である。   (1) As shown in FIG. 4, a flange-shaped filter cloth fixing plate 44 for fixing the filter cloth 43 is present around the driving hole 45 at the center of the filter plate. (2) The filter cloth fixing plate 44 is made of, for example, bakelite and is made of a material and structure that does not allow moisture to pass therethrough. (3) Therefore, the dehydration state is remarkably inferior in the vicinity of the cake center compared with other parts. (4) It is also assumed that the B mud layer is completely wrapped with the A mud layer so that the B mud does not come into direct contact with the filter cloth. However, the possibility of mixing with the drainage becomes extremely high), but in places where water does not generally pass through the center side of the flange diameter, formation of the mud layer A is impossible because water does not pass through. Conversely, on the filter cloth surface through which moisture permeates, formation of the mud layer A is reliable.

これらに着目し、鍔径より中心に位置する泥水中の水分の脱水促進が図れ、かつ、A泥層の形成が確実な方法を考案した。この考案した方法を述べる前に、先ずこの必要性について述べる。前述のフィルタープレスの洗浄で示したように、フィルタープレスの打込み口内に残留するB泥は、次工程のA泥打込み前に除去・洗浄する方法によって解決ができる。しかし、前記方法では打込み口より外周部に存在する「半固化状態あるいは半液化状態」の泥土の除去・洗浄はできない。   Focusing on these factors, a method was devised in which the dehydration of water in the muddy water located at the center from the flange diameter could be promoted and the formation of the A mud layer was reliable. Before describing the invented method, this need is first addressed. As shown in the above-mentioned washing of the filter press, the B mud remaining in the insertion port of the filter press can be solved by a method of removing and washing before the next step of A mud implantation. However, the method described above cannot remove and wash mud in the “semi-solidified or semi-liquefied state” existing on the outer peripheral portion from the injection port.

他方、打込み口より外側に存在する半固・液状態泥土が開枠時に脱水ケーキとして完全に剥離・脱落すれば、次工程のA泥打込みの際にさほど問題とはならないが、半固・液状態なので、現実的にはケーキ取出しの際、半固・液泥土は濾布あるいは濾布固定板にほぼ確実に付着する。さらに濾布固定板は水分を通さない材質・構造なので、概ね鍔径より中心側においてA泥層は未形成である。従って、半固・液状態のB泥が直接、濾布等に付着する状態を呈する。   On the other hand, if the semi-solid / liquid mud existing outside the injection port completely separates and falls off as a dehydrated cake at the time of opening the frame, there is not much problem at the time of the next step A mud driving, but the semi-solid / liquid In the actual state, the semi-solid / liquid mud is almost certainly attached to the filter cloth or the filter cloth fixing plate when the cake is taken out. Further, since the filter cloth fixing plate is made of a material and a structure that does not allow moisture to pass through, the A mud layer is not formed substantially on the center side of the flange diameter. Therefore, the semi-solid / liquid state B mud directly adheres to the filter cloth or the like.

そこで、図5に示すように、打込み口45の直近部まで透水性を確保するために、鍔状の濾布固定板44上に補助濾布60を貼付けた。濾布固定板44の内側の側面に補助濾布60を貼付け、濾布43と連続一体化させる。この方法の実効果を確認するために実験を実施し、次の結果を得た。(1) 脱水ケーキの中心部も含めて一様な脱水ケーキが形成された。(2) 打込み口直近まで、A泥層が形成できた。   Therefore, as shown in FIG. 5, an auxiliary filter cloth 60 was stuck on a flange-shaped filter cloth fixing plate 44 in order to ensure water permeability up to a portion immediately adjacent to the insertion port 45. The auxiliary filter cloth 60 is attached to the inner side surface of the filter cloth fixing plate 44 and is continuously integrated with the filter cloth 43. An experiment was conducted to confirm the actual effect of this method, and the following results were obtained. (1) A uniform dewatered cake including the central part of the dewatered cake was formed. (2) A mud layer could be formed right near the injection hole.

以上の2方法(打込み口内残留B泥除去・洗浄法と、打込み口直近部までの透水性確保によるA泥層で完全ラッピングされた一様な脱水ケーキ形成法)の付加によりダイオラップ工法がより拡充されたものとなった。   The addition of the above two methods (a method of removing and cleaning residual B mud in the injection port and a method of forming a uniform dewatered cake completely wrapped with the A mud layer by securing water permeability to the area immediately adjacent to the injection port) further expands the diop wrap method. It was done.

(c)長大フィルタープレスへの対応
以上ダイオラップ工法の拡充手段を示した。前述のように本工法の適用対象は、廃棄物焼却施設の解体作業におけるDXN類等含有の洗浄水処理、DXN類等含有底質などの脱水・減容化・不溶化(固化)処理である。底質の脱水・減溶化・不溶化処理については一般に対象処理量が大容量となるので、自ずとフィルタープレスも大型のものが採用される。大型フィルタープレスは、濾枠寸法が大きくなるだけでなく、濾室の数が増える。従って、打込み口管路延長も長くなり、打込み口内に残留している半固・液状態の泥土の流動抵抗が大きくなる。よって、前述のフィルタープレスの洗浄で示した単なるエア圧力、圧力水を用いたプランジャー除去・洗浄法では、エア・水の加圧力より流動抵抗力が大きいという状況も考えられ、そのままでは除去・洗浄が困難あるいは不能となる。
(C) Correspondence to long and long filter press The above shows the means of expanding the diolapping method. As described above, the application of this method is a washing water treatment containing DXNs and the like in a dismantling operation of a waste incineration facility, and a dehydration, volume reduction, and insolubilization (solidification) treatment of a sediment containing DXNs and the like. In general, the target amount of the dewatering / reducing / insolubilizing treatment of the sediment is large, so that a large filter press is naturally used. Large filter presses not only increase the size of the filter frame, but also increase the number of filter chambers. Accordingly, the length of the pipeline of the injection port becomes longer, and the flow resistance of the semi-solid / liquid mud remaining in the injection port becomes larger. Therefore, in the plunger removal / cleaning method using the mere air pressure and pressure water described in the above-described filter press cleaning, a situation in which the flow resistance is larger than the pressure of air / water may be considered. Cleaning becomes difficult or impossible.

そこで大型フィルタープレスの使用時等の打込み口管路延長が長い(流動抵抗が大きい)場合の除去・洗浄方法を考案した。図6に示すように、打込み流路の途中を区切る形態で、分岐型の打込み口内残留泥排出配管70(以下分岐排出管と記載)を設ける。任意間隔で分岐排出管70を設けることにより、加圧力より流動抵抗力が大きくなるという関係を避けることができる。同時に、分岐排出管路70には自動開閉制御バルブ71を設け、任意単独・連動等の開閉制御機能を付加する。   Therefore, a method for removing and cleaning when the length of the pipeline at the insertion port is long (large flow resistance) when using a large filter press or the like was devised. As shown in FIG. 6, a branch-type discharge pipe 70 for residual mud in the injection port (hereinafter referred to as a branch discharge pipe) is provided in a form that partitions the middle of the driving flow path. By providing the branch discharge pipes 70 at arbitrary intervals, it is possible to avoid the relationship that the flow resistance becomes larger than the pressing force. At the same time, an automatic opening / closing control valve 71 is provided in the branch discharge line 70, and an opening / closing control function such as an independent opening / closing operation is added.

分岐排出管の具体制御例を次に示す。4つの分岐排出管70を閉→A泥打込み→B泥打込み・加圧脱水終了後、分岐排出管70aを開、分岐排出管70b〜dを閉とし、エア圧力により打込み口端部〜分岐排出管70aまでの残留泥土を1段除去する。次に、分岐排出管70aを閉、70bを開、70c・dを閉、続いてエア加圧して、70a〜b間の残留泥土を2段除去する。同じ手順を繰り返し、3・4段除去を行う。このように区間ごと段階的に管内流動抵抗を一旦解除し、その後は、前記と同じプランジャー、清水による方法で洗浄を行う。この方法は一事例であるが、状況により適宜前述方法等を駆使することにより、長大フィルタープレスへの対応も可能である。   A specific control example of the branch discharge pipe will be described below. After closing the four branch discharge pipes 70 → A mud driving → B mud driving / pressure dehydration, the branch discharge pipe 70a is opened, and the branch discharge pipes 70b to 70d are closed, and the inlet end to the branch discharge by air pressure. The remaining mud up to the pipe 70a is removed by one stage. Next, the branch discharge pipe 70a is closed, 70b is opened, 70c · d is closed, and then the air is pressurized to remove two-stage residual mud between 70a and 70b. The same procedure is repeated to perform 3.4 step removal. In this way, the flow resistance in the pipe is temporarily released stepwise for each section, and thereafter, cleaning is performed by the same method using plunger and fresh water as described above. This method is an example, but it is possible to cope with a long filter press by making the best use of the above-mentioned method depending on the situation.

[第4実施形態]
この第4実施形態は、B泥濾水中のDXN類等の有害物質を光触媒により分解し、固形分を濾別して、濾水を排出基準以下に処理する処理技術であり、主として洗浄汚染水などの汚染水の処理に適用される。浚渫土などの汚染泥土や汚染土壌の処理にも適用できる。図7は洗浄汚染水の処理に適用した例である。
[Fourth embodiment]
This fourth embodiment is a treatment technique for decomposing harmful substances such as DXNs in mud filtration water B with a photocatalyst, filtering solids, and treating the filtrate to a discharge standard or less. Applied to the treatment of contaminated water. It can also be applied to the treatment of contaminated mud and contaminated soil such as dredged soil. FIG. 7 shows an example applied to the treatment of cleaning contaminated water.

図7の実施形態は、例えば、廃棄物焼却施設解体時に行う施設洗浄汚水のDXN類の処理技術であり、洗浄作業で発生する汚染水は、固形分として焼却灰や施設構造体表面剥落物、有害有機物質として固形分に比較的強固に付着した水に溶解しないDXN類等や、洗浄水に溶解したDXN類等が存在する。本処理技術は、これら存在形態の異なるDXN類等を効率的に分離・分解する工法であり、大別して2段階の工程からなる。即ち、その第1工程は汚染水中の固液分離及び水に溶解したDXN類等の一部を除去する脱水工程、第2工程は濾水中の溶解したDXN類等の光触媒分解やDXN類等を吸着した固形分を濾別する工程で構成される。濾水はDXN類等の排出基準以下にして放流すると共に、減容化した脱水ケーキは新排出基準適合の処理施設等(例えば産業廃棄物焼却施設)で溶融または焼成(焼却)によりDXN類等を分解する環境負荷低減型の処理工法である。   The embodiment of FIG. 7 is, for example, a technology for treating DXNs in facility cleaning sewage performed at the time of dismantling a waste incineration facility. The contaminated water generated in the cleaning operation is incinerated ash and facility structure surface debris as solids, As harmful organic substances, there are DXNs and the like which do not dissolve in water relatively firmly adhered to solids, DXNs and the like dissolved in washing water. This treatment technique is a method of efficiently separating and decomposing DXNs having different existing forms, and is roughly divided into two stages. That is, the first step is a solid-liquid separation in contaminated water and a dehydration step of removing a part of DXNs and the like dissolved in water, and the second step is a photocatalytic decomposition of DXNs and the like and DXNs and the like dissolved in the filtrate. It comprises a step of filtering off the adsorbed solids. The drainage water is discharged below the discharge standard for DXNs, etc., and the reduced volume of the dewatered cake is melted or burned (incinerated) at treatment facilities (eg, industrial waste incineration facilities) that comply with the new discharge standards. This is a processing method of the environmental load reduction type that decomposes.

さらに詳述すると、図7において、脱水工程は第1実施形態と同様であり、B泥濾水の処理装置を除き、第1実施形態と同様の処理装置が用いられる。即ち、第1実施形態と同様に、A泥は、DXN類等の吸着固形分の捕捉および水溶性DXN類等の吸着層であり、清水に石粉やベントナイト等の泥土材Dを加え、必要に応じて無機系または有機系凝集剤や活性炭またはゼオライト等の吸着剤(処理材)Aを添加する。   More specifically, in FIG. 7, the dewatering step is the same as that of the first embodiment, and the same processing apparatus as that of the first embodiment is used except for the processing apparatus of the mud filtrate B. That is, similarly to the first embodiment, the mud A is a layer for capturing adsorbed solids such as DXNs and the like, and an adsorbing layer for water-soluble DXNs. Accordingly, an adsorbent (treatment material) A such as an inorganic or organic coagulant or activated carbon or zeolite is added.

次に、フィルタープレス8において、A泥に引き続き、B泥を打ち込む。B泥は、上澄水を除く沈降汚泥水であり、プリコート層(A泥層)を通して脱水し、脱水ケーキCと濾水Wとに固液分離する。B泥中の固形分濃度が低い場合には泥土材Dを加えることによって対応できる。なお、B泥には、必要に応じて固形分の再泥化を防止するためにセメント系や石灰系の固化材(処理材)Bを添加することもできる。但し、仮置き等をしないで直ちに焼却処分するために搬出する場合には固化材Bの添加は不要となる。   Next, in the filter press 8, B mud is driven in after A mud. B mud is settled sludge water excluding supernatant water, and is dehydrated through a precoat layer (A mud layer), and solid-liquid separated into a dewatered cake C and filtrate W. When the solid content concentration in B mud is low, it can be dealt with by adding mud material D. In addition, a cement-based or lime-based solidifying material (treatment material) B can be added to the B mud as necessary in order to prevent re-mudification of solids. However, the solidified material B is not required to be carried out for immediate incineration without temporary storage.

以上のように、脱水工程単独で水溶性あるいは不溶性DXN類等の殆どを最終的に脱水ケーキC内に捕捉することができる。一方、脱水後の濾水Wは、従来、濾水槽9、必要に応じて中和槽10や監視槽11を経由して、排水基準(DXN 10pg−TEQ/L)以下にして、公共水域に放流するが、本発明では光触媒繊維でDXN類等を分解する。この工程は濾水槽9または中和槽10から濾水を光触媒繊維による分解装置30に取り込んで行い、濾水の処理量に応じて複数の分解装置30を直列あるいは並列に使用して分解する。通常この分解は濾水を循環して行うので、必要容量の貯水槽31を併設する。DXN類等を分解した濾水は、最終的には監視槽11から公共水域に放流する。   As described above, most of the water-soluble or insoluble DXNs can be finally captured in the dehydrated cake C by the dehydration step alone. On the other hand, the drainage water W after dehydration is conventionally reduced to a drainage standard (DXN 10 pg-TEQ / L) or less through a drainage tank 9 and, if necessary, a neutralization tank 10 and a monitoring tank 11 to a public water area. In the present invention, DXNs and the like are decomposed by the photocatalytic fiber. In this step, the filtrate is taken from the drainage tank 9 or the neutralization tank 10 into the photocatalytic fiber decomposing device 30 and decomposed by using a plurality of decomposing devices 30 in series or in parallel according to the throughput of the filtrate. Usually, this decomposition is performed by circulating the drainage water, so that a water storage tank 31 having a required capacity is provided. The filtrate that has decomposed DXNs and the like is finally discharged from the monitoring tank 11 to public waters.

なお、以上は、フィルタープレスを用いる場合を例示したが、これに限らず、その他の脱水処理設備でもよい。   In addition, although the case where the filter press is used has been illustrated above, the present invention is not limited to this, and other dehydration processing equipment may be used.

本発明の基本的な処理方法を実施するための処理設備の1例を示す設備フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the equipment flow which shows an example of the processing equipment for implementing the basic processing method of this invention. 本発明のフィルタープレスにおける基本的な処理工程を工程順に示す断面図である。It is sectional drawing which shows the basic process in the filter press of this invention in order of a process. 本発明の基本的な処理方法にフィルタープレスの洗浄法等を付加した処理設備の1例を示す設備フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the equipment flow which shows an example of the processing equipment which added the washing | cleaning method of the filter press etc. to the basic processing method of this invention. 汎用フィルタープレスの濾板構造、ケーキイメージ等を示す断面図である。It is sectional drawing which shows the filter plate structure, cake image, etc. of a general purpose filter press. 本発明のフィルタープレスの濾板構造、ケーキイメージ等を示す断面図である。It is sectional drawing which shows the filter plate structure, cake image, etc. of the filter press of this invention. 長大フィルタープレスにおける本発明の打込み口流路内泥土の除去・洗浄を示すプレスの断面図である。It is sectional drawing of the press which shows removal and washing | cleaning of the mud in the injection port flow path of this invention in a long filter press. 本発明の基本的な処理方法に光触媒による濾水処理を付加した処理設備の1例を示す設備フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the equipment flow which shows an example of the processing equipment which added the drainage processing with a photocatalyst to the basic processing method of this invention.

符号の説明Explanation of reference numerals

S …A泥スラリー
S …B泥スラリー
C……脱水ケーキ
D……泥土材
0 …汚染水
W……濾水
1……洗浄ノズル
2……汚染水集水ピット
3……礫砂分分離装置
4……上澄水槽
5……貯留槽
6……A泥混合槽
7……B泥混合槽
8……フィルタープレス
9……濾水槽
10……中和槽
11……放水監視槽
12……作泥槽
13……溶解槽A
14……溶解槽B
20……移送ポンプ
21……攪拌機
22……高圧噴射機
23……移送ポンプ
24……打込ポンプ
25……ベルトコンベア
30……分解装置
31……貯水層
40……打込み配管
41……濾枠
42……濾室
43……濾布
44……濾布固定板
45……打込み口
46……打込み流路
47……排出配管
48……打込み配管
49……圧縮機
50……プランジャー
51……プランジャー挿入ハンドホール
52……水槽
53……排水槽
A S : A mud slurry B S : B mud slurry C: Dewatered cake D: Mud material W 0 : Contaminated water W: Filtration water 1: Cleaning nozzle 2: Contaminated water collecting pit 3: Gravel sand Separation device 4 ... Supernatant tank 5 ... Storage tank 6 ... A mud mixing tank 7 ... B mud mixing tank 8 ... Filter press 9 ... Filtration tank 10 ... Neutralization tank 11 ... Water discharge monitoring tank 12 ... mud tank 13 ... dissolution tank A
14 Dissolution tank B
20 transfer pump 21 stirrer 22 high-pressure injector 23 transfer pump 24 driving pump 25 belt conveyor 30 disassembling device 31 water reservoir 40 driving piping 41 filter Frame 42 Filter chamber 43 Filter cloth 44 Filter cloth fixing plate 45 Driving port 46 Driving flow path 47 Drain pipe 48 Driving pipe 49 Compressor 50 Plunger 51 …… Plunger insertion hand hole 52 …… Water tank 53 …… Drain tank

Claims (13)

有害物質を含有する、汚染水、浚渫土などの汚染泥土、その他の汚染処理対象物の処理方法であり、有害物質を捕捉する泥土材から構成されるA泥スラリーを脱水処理室に打設し、有害物質を含有する汚染処理対象物から構成されるB泥スラリーを前記A泥スラリー内に打設し、次いで、A泥層をプリコート層としてB泥スラリーを脱水し、脱水ケーキと濾水に固液分離し、脱水ケーキ内に有害物質を確実に捕捉し、濾水を排出基準以下に処理することを特徴とする汚染処理対象物の処理方法。   This is a method for treating contaminated mud containing contaminated water, dredged soil, and other contaminated substances containing harmful substances. A mud slurry composed of mud material that captures harmful substances is cast into a dehydration chamber. A mud slurry B composed of an object to be treated for pollution containing harmful substances is cast into the mud slurry A, and then the mud slurry is dewatered using the mud layer A as a pre-coat layer to form a dewatered cake and drainage water. A method for treating an object to be contaminated, wherein solid-liquid separation is performed, harmful substances are reliably captured in a dewatered cake, and drainage is treated to a discharge standard or less. 請求項1に記載の処理方法において、A泥スラリーの泥土材が、75μm以上の粒群が10質量%以下で、且つ、平均粒径が20μm以下である非水溶性無機粒子よりなることを特徴とする汚染処理対象物の処理方法。   2. The treatment method according to claim 1, wherein the mud material of the A mud slurry comprises water-insoluble inorganic particles having a particle group of 75 μm or more in an amount of 10% by mass or less and an average particle diameter of 20 μm or less. The method of treating the object to be contaminated. 請求項2に記載の処理方法において、非水溶性無機粒子が、汚染水の処理の場合、石粉またはベントナイトの1種または2種以上の混合物よりなる泥土材であり、汚染泥土の処理の場合、粘土、石粉、石炭灰の1種または2種以上の混合物よりなる泥土材であることを特徴とする汚染処理対象物の処理方法。   The treatment method according to claim 2, wherein the water-insoluble inorganic particles are mud material composed of one or two or more kinds of stone powder or bentonite in the case of treating contaminated water, and in the case of treating contaminated mud, A method for treating an object to be treated for contamination, characterized by being a mud material comprising one or a mixture of two or more of clay, stone powder and coal ash. 請求項1から3までのいずれか一つに記載の処理方法において、A泥スラリーに、汚染水の処理の場合、無機系凝集剤、有機系凝集剤、または吸着剤のうち1種または2種以上が添加され、汚染泥土の処理の場合、無機系凝集剤および/または吸着剤のうち1種または2種以上が添加されていることを特徴とする汚染処理対象物の処理方法。   In the treatment method according to any one of claims 1 to 3, one or two of an inorganic coagulant, an organic coagulant, and an adsorbent in the case of treating contaminated water in the A mud slurry. A method for treating an object to be treated for contamination, characterized in that in the case of treating contaminated mud, one or more of an inorganic coagulant and / or an adsorbent are added. 請求項1から4までのいずれか一つに記載の処理方法において、汚染水の処理の場合のB泥スラリーには、粘土または石粉の1種以上が添加されていることを特徴とする汚染処理対象物の処理方法。   5. The treatment method according to claim 1, wherein at least one of clay and stone powder is added to the B mud slurry in the case of treating contaminated water. How to process the object. 請求項1から5までのいずれか一つに記載の処理方法において、B泥スラリーには、汚染水の処理の場合、無機系凝集剤、有機系凝集剤、またはセメントや石灰系等の凝集・固化材のうち1種または2種以上が添加され、汚染泥土の処理の場合、セメント系や石灰系、マグネシア系等の凝集・固化材のうち1種または2種以上が添加されていることを特徴とする汚染処理対象物の処理方法。   The treatment method according to any one of claims 1 to 5, wherein the B mud slurry contains an inorganic coagulant, an organic coagulant, or a cement or lime-based coagulant when treating contaminated water. One or more solidified materials are added, and in the case of treatment of contaminated mud, one or two or more coagulated and solidified materials such as cement, lime, and magnesia are added. A method for treating a contaminated target object. 請求項1から6までのいずれか一つに記載の処理方法において、脱水処理にフィルタープレスを用いることを特徴とする汚染処理対象物の処理方法。   The processing method according to any one of claims 1 to 6, wherein a filter press is used for the dehydration processing. 請求項1から7までのいずれか一つに記載の処理方法において、脱水処理におけるA泥濾水の出始めの一部をB泥スラリーに回収することを特徴とする汚染処理対象物の処理方法。   The method for treating a contaminated object according to any one of claims 1 to 7, wherein a part of the A mud filtrate that has started to be discharged in the dehydration treatment is collected in a B mud slurry. . 請求項1から8までのいずれか一つに記載の処理方法において、汚染水の処理の場合、施設を洗浄して得られた汚染水を固液分離し、上澄み水を洗浄水として再利用し、沈殿物をB泥スラリーとして次工程へ供給することを特徴とする汚染処理対象物の処理方法。   In the treatment method according to any one of claims 1 to 8, in the case of treating contaminated water, the contaminated water obtained by washing the facility is separated into solid and liquid, and the supernatant water is reused as washing water. And supplying the sediment as a B mud slurry to the next step. 請求項1から9までのいずれか一つに記載の処理方法において、A泥スラリーとB泥スラリーの脱水処理に、複数の濾室をプレス方向に配設してなるフィルタープレスを用い、複数の濾室の打込み口から形成されるプレス方向に連続する打込み流路に外部からエア圧力を供給して打込み口残留B泥を一次除去し、次に前記打込み流路の横断面を閉塞可能な形状のスクレーパーを前記打込み流路内を通過させて二次除去を行い、次いで清水を前記打込み流路内に通すことにより三次除去を行うことを特徴とする汚染処理対象物の処理方法。   The treatment method according to any one of claims 1 to 9, wherein a plurality of filter chambers are arranged in a press direction for a dehydration treatment of the A mud slurry and the B mud slurry. A shape capable of temporarily removing the residual B mud at the injection port by supplying air pressure from the outside to an injection flow path that is continuous from the injection port formed in the filter chamber in the press direction, and then closing the cross section of the injection flow path. A secondary removal by passing the scraper through the driving flow path, and then performing a tertiary removal by passing fresh water through the driving flow path. 請求項1から10までのいずれか一つに記載の処理方法において、A泥スラリーとB泥スラリーの脱水処理を行うフィルタープレスの濾室の打込み口に設けられた濾布の固定部材の表面に前記濾布に連続する補助濾布が設けられていること特徴とする汚染処理対象物の処理方法。   The treatment method according to any one of claims 1 to 10, wherein a surface of a filter cloth fixing member provided at a driving port of a filter chamber of a filter press for performing dehydration treatment of A mud slurry and B mud slurry. A method for treating an object to be contaminated, wherein an auxiliary filter cloth continuous with the filter cloth is provided. 請求項1から11までのいずれか一つに記載の処理方法において、B泥スラリーの濾水中の有害物質を光触媒により分解し、固形分を濾別して、濾水を排水基準以下に処理することを特徴とする汚染処理対象物の処理方法。   The treatment method according to any one of claims 1 to 11, wherein a harmful substance in the filtrate of the B mud slurry is decomposed by a photocatalyst, a solid content is separated by filtration, and the filtrate is treated to a wastewater standard or lower. A method for treating a contaminated target object. 請求項12に記載の処理方法において、有害物質の分解を、シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属酸化物相(第2相)との複合酸化物相からなる繊維であって、繊維の表層に向かって第2相の少なくとも1つの構成成分の存在割合が傾斜的に増大した光触媒機能を有するシリカ基複合繊維の織布からなるフィルターと、紫外線ランプとを備えた浄化装置で行うことを特徴とする汚染処理対象物の処理方法。
13. The processing method according to claim 12, wherein the decomposition of the harmful substance is performed from a composite oxide phase of an oxide phase mainly composed of a silica component (first phase) and a metal oxide phase other than silica (second phase). A filter comprising a woven fabric of a silica-based composite fiber having a photocatalytic function in which the proportion of at least one component of the second phase is inclinedly increased toward the surface layer of the fiber, and an ultraviolet lamp. A method for treating an object to be contaminated, wherein the method is performed by a purification device provided.
JP2004039551A 2003-02-26 2004-02-17 Disposal methods for contaminated water, contaminated mud, and other contaminants Expired - Fee Related JP4557566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039551A JP4557566B2 (en) 2003-02-26 2004-02-17 Disposal methods for contaminated water, contaminated mud, and other contaminants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003049064 2003-02-26
JP2004039551A JP4557566B2 (en) 2003-02-26 2004-02-17 Disposal methods for contaminated water, contaminated mud, and other contaminants

Publications (2)

Publication Number Publication Date
JP2004276019A true JP2004276019A (en) 2004-10-07
JP4557566B2 JP4557566B2 (en) 2010-10-06

Family

ID=33301767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039551A Expired - Fee Related JP4557566B2 (en) 2003-02-26 2004-02-17 Disposal methods for contaminated water, contaminated mud, and other contaminants

Country Status (1)

Country Link
JP (1) JP4557566B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238198A (en) * 2004-02-27 2005-09-08 Taiheiyo Cement Corp Method for suppressing diffusion of dioxins
JP2006122795A (en) * 2004-10-28 2006-05-18 Daicen Membrane Systems Ltd Wastewater treatment method
JP2006297266A (en) * 2005-04-20 2006-11-02 Minowa Koki Kk Waste water treatment equipment
JP2014025794A (en) * 2012-07-26 2014-02-06 Koyo:Kk Radioactive decontamination apparatus
CN104230123A (en) * 2014-09-29 2014-12-24 重庆大学 Devices for removing inorganic particles in sewage treatment system
CN104803571A (en) * 2015-05-08 2015-07-29 山东省环境保护科学研究设计院 Method for treating bottom mud polluted by heavy metals based on particle size distribution
CN104803572A (en) * 2015-05-12 2015-07-29 山东省环科院环境工程有限公司 Method and system for carrying out sediment dredging and ectopic treatment on seasonal river heavy metal pollution
CN106082568A (en) * 2016-07-01 2016-11-09 苏加强 A kind of contamination with chloroform sludge treating agent and preparation method thereof
JP2019209324A (en) * 2018-05-30 2019-12-12 大矢建設工業株式会社 Wastewater treatment system and wastewater treatment method
JP6800366B1 (en) * 2020-06-08 2020-12-16 セントラルフィルター工業株式会社 Wastewater treatment method
CN113480116A (en) * 2021-07-20 2021-10-08 深圳市市政工程总公司 Dredged sediment solidification modification drying method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936512A (en) * 1982-08-20 1984-02-28 Kurita Kasen Kk Dehydrating method of oil-containing sludge
JPS6138611A (en) * 1984-07-31 1986-02-24 Showa Kagaku Kogyo Kk Filtering method by precoating filter aid subjected to flocculation treatment
JPS6291217A (en) * 1985-10-17 1987-04-25 Aizaburo Yagishita Filtration process of suspension
JPH0192206A (en) * 1987-10-02 1989-04-11 Japan Synthetic Rubber Co Ltd Acrylic ester polymer
JPH04118103U (en) * 1991-03-28 1992-10-22 石垣機工株式会社 Filtration device in filter press
JPH06277682A (en) * 1993-03-31 1994-10-04 Nippon Shokubai Co Ltd Waste water treatment process
JP2000024694A (en) * 1998-07-09 2000-01-25 Ohmoto Gumi Co Ltd Method for dehydrating and solidifying high-water- content slurry
JP2001025613A (en) * 1999-07-16 2001-01-30 Kurita Mach Mfg Co Ltd Filter plate of filter press
JP2002177902A (en) * 2000-12-08 2002-06-25 Kurita Water Ind Ltd Method for cleaning equipment of waste incinerator
JP2003010612A (en) * 2001-04-05 2003-01-14 Ube Ind Ltd Harmful substance removing filter
JP2003236597A (en) * 2002-02-20 2003-08-26 Fuji Eng Kk Method for filtering water which contains heavy metal when mud which contains heavy metal is dehydrated

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936512A (en) * 1982-08-20 1984-02-28 Kurita Kasen Kk Dehydrating method of oil-containing sludge
JPS6138611A (en) * 1984-07-31 1986-02-24 Showa Kagaku Kogyo Kk Filtering method by precoating filter aid subjected to flocculation treatment
JPS6291217A (en) * 1985-10-17 1987-04-25 Aizaburo Yagishita Filtration process of suspension
JPH0192206A (en) * 1987-10-02 1989-04-11 Japan Synthetic Rubber Co Ltd Acrylic ester polymer
JPH04118103U (en) * 1991-03-28 1992-10-22 石垣機工株式会社 Filtration device in filter press
JPH06277682A (en) * 1993-03-31 1994-10-04 Nippon Shokubai Co Ltd Waste water treatment process
JP2000024694A (en) * 1998-07-09 2000-01-25 Ohmoto Gumi Co Ltd Method for dehydrating and solidifying high-water- content slurry
JP2001025613A (en) * 1999-07-16 2001-01-30 Kurita Mach Mfg Co Ltd Filter plate of filter press
JP2002177902A (en) * 2000-12-08 2002-06-25 Kurita Water Ind Ltd Method for cleaning equipment of waste incinerator
JP2003010612A (en) * 2001-04-05 2003-01-14 Ube Ind Ltd Harmful substance removing filter
JP2003236597A (en) * 2002-02-20 2003-08-26 Fuji Eng Kk Method for filtering water which contains heavy metal when mud which contains heavy metal is dehydrated

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238198A (en) * 2004-02-27 2005-09-08 Taiheiyo Cement Corp Method for suppressing diffusion of dioxins
JP2006122795A (en) * 2004-10-28 2006-05-18 Daicen Membrane Systems Ltd Wastewater treatment method
JP2006297266A (en) * 2005-04-20 2006-11-02 Minowa Koki Kk Waste water treatment equipment
JP4599481B2 (en) * 2005-04-20 2010-12-15 ミノワ工機株式会社 Wastewater treatment equipment
JP2014025794A (en) * 2012-07-26 2014-02-06 Koyo:Kk Radioactive decontamination apparatus
CN104230123A (en) * 2014-09-29 2014-12-24 重庆大学 Devices for removing inorganic particles in sewage treatment system
CN104803571A (en) * 2015-05-08 2015-07-29 山东省环境保护科学研究设计院 Method for treating bottom mud polluted by heavy metals based on particle size distribution
CN104803572A (en) * 2015-05-12 2015-07-29 山东省环科院环境工程有限公司 Method and system for carrying out sediment dredging and ectopic treatment on seasonal river heavy metal pollution
CN106082568A (en) * 2016-07-01 2016-11-09 苏加强 A kind of contamination with chloroform sludge treating agent and preparation method thereof
JP2019209324A (en) * 2018-05-30 2019-12-12 大矢建設工業株式会社 Wastewater treatment system and wastewater treatment method
JP6800366B1 (en) * 2020-06-08 2020-12-16 セントラルフィルター工業株式会社 Wastewater treatment method
JP2021192894A (en) * 2020-06-08 2021-12-23 セントラルフィルター工業株式会社 Wastewater treatment method
CN113480116A (en) * 2021-07-20 2021-10-08 深圳市市政工程总公司 Dredged sediment solidification modification drying method

Also Published As

Publication number Publication date
JP4557566B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
KR20130010072A (en) Treatment method and treatment device for converting chlorine-containing waste into raw material for cement
JP2019098312A (en) Soil remediation system
JP4557566B2 (en) Disposal methods for contaminated water, contaminated mud, and other contaminants
CN101255991A (en) System and method for innocent treatment of garbage flying ash
JP5787264B2 (en) Polluted water purification system
WO2005025768A1 (en) Method and apparatus for treating incineration fly ash
TW394799B (en) Method and apparatus for removing and/or causing recycling of materials
JP3689094B2 (en) Purification method for heavy metal contaminated soil
CN206519439U (en) Dystopy elution circuit for repairing hexavalent chromium polluted soil
JPH10328700A (en) Treatment of waste sludge
KR102013076B1 (en) Movable sludge dewatering appratus
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
JP2011235253A (en) Inorganic neutral flocculant derived from reclaimed gypsum, and system for cleaning polluted water using the same
JP4595099B2 (en) Method and system for cleaning contaminated soil
JP2001104997A (en) Sludge treatment apparatus
JP4250074B2 (en) Treatment method and equipment for dredged mud
JP2001062330A (en) Treatment of mud of civil engineering muddy water
JP2019098336A (en) Soil remediation system
JP3436690B2 (en) Dewatering and solidification of high water content slurry
JP2004008945A (en) Method of insolubilization of harmful material
JPH06178983A (en) Method and device for treating waste muddy water containing sludge
JP2750381B2 (en) Treatment method of waste ready-mixed concrete
JP2005028343A (en) Method for preventing elution of harmful metal from harmful metal contaminated waste product
JPS59147700A (en) Treatment of sludge
JP2951499B2 (en) Two-stage slurry processing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees