JP3684376B2 - In-situ shear tester - Google Patents

In-situ shear tester Download PDF

Info

Publication number
JP3684376B2
JP3684376B2 JP2001053147A JP2001053147A JP3684376B2 JP 3684376 B2 JP3684376 B2 JP 3684376B2 JP 2001053147 A JP2001053147 A JP 2001053147A JP 2001053147 A JP2001053147 A JP 2001053147A JP 3684376 B2 JP3684376 B2 JP 3684376B2
Authority
JP
Japan
Prior art keywords
shear
box
force loading
force
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001053147A
Other languages
Japanese (ja)
Other versions
JP2002212938A (en
Inventor
壱章 三浦
雅裕 友則
哲朗 山本
素之 鈴木
Original Assignee
国立大学法人山口大学
株式会社広測コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学, 株式会社広測コンサルタント filed Critical 国立大学法人山口大学
Priority to JP2001053147A priority Critical patent/JP3684376B2/en
Publication of JP2002212938A publication Critical patent/JP2002212938A/en
Application granted granted Critical
Publication of JP3684376B2 publication Critical patent/JP3684376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、斜面表層土等のせん断強度を測定するせん断試験機に関し、詳細には原地盤に直立柱状に切り出し成形された供試体にせん断箱を装着し、原位置の土粒子構造を保持した状態でせん断強度を測定する現場せん断試験機に関する。
【0002】
【従来の技術】
集中豪雨、地震等による斜面崩壊、地滑等を未然に防止するために、斜面表層土等のせん断強度をせん断試験機で測定し、測定結果に基づいて斜面崩壊の安定性を検討するとともに、対策工の設計で用いる強度定数の妥当性を判断することが行なわれている。
【0003】
ところで、せん断試験機において、せん断強度を精度良く測定するためには原位置の土粒子構造を保持した状態で直接測定することが好ましく、原地盤に直立柱状に切り出し成形された供試体にせん断箱を装着してせん断強度を測定する現場せん断試験機が各種提案されている。現場せん断試験機としては、供試体に1つのせん断箱を装着し、垂直力載荷手段により供試体の頭部全面に所定の垂直力を付与した状態でせん断箱をせん断力載荷手段で水平移動し、原地盤とせん断箱との間で供試体をせん断する一面せん断形式のものが主流であつた。ところが、せん断中における水平反力を付与するために、せん断力載荷手段を供試体の周囲に掘つた孔の壁又は押え板で支持し、また垂直力載荷手段による垂直反力を付与するために、垂直力載荷手段を鉄塊やコンクリート等の錘によつてかけたり、パワーシヨベルで押え込んだり、アースアンカーで地盤に固定する等が行なわれていた。そのため、現場せん断試験機を設置するための付属設備は大規模で広い場所が必要であり、設置作業に多大の時間、労力、費用等を要する等の問題点があつた。
【0004】
そこで、例えば特開平8−247913号公報に記載のように、せん断箱が供試体を通す開口部を設けた基盤に案内部材で水平方向に案内支持され、せん断力載荷手段が基盤に設けられた固定壁で支持され、垂直力載荷手段が基盤に設けられた反力支持体で支持された一面せん断形式の現場せん断試験機が提案されている。また、土と基礎、Vol.31、No.2の第27〜31頁及び第23回土質工学研究発表会(昭和63年6月)研究論文集第1755〜1756頁に記載のように、せん断箱が下部せん断箱、中間せん断箱及び上部せん断箱からなり、下部せん断箱と上部せん断箱とが上部せん断箱が上下動自在にコ字型枠で連結され、中間せん断箱がせん断力載荷手段に連結され、せん断力載荷手段がコ字型枠に支持され、垂直力載荷手段がせん断箱を跨いで設置された鋼製枠に設けられ、中間せん断箱を水平移動することにより中間せん断箱と下部せん断箱及び上部せん断箱との間でせん断する二面せん断形式の現場せん断試験機が提案されている。
【0005】
【発明が解決しようとする課題】
ところが、前記従来の一面せん断形式の現場せん断試験機については、水平反力及び垂直反力のいずれをも基盤により付与することになるため、基盤の寸法、重量等が大きくなり、設置作業の空間、時間、労力、費用等を十分に減少することは難しい。また、基盤とせん断箱とを一緒に供試体に装着するため、供試体を壊さぬように装着せねばならず、その装着作業に多大の時間、労力等を要する。
【0006】
一方、前記従来の二面せん断形式の現場せん断試験機については、鋼製枠が3段重ねのせん段箱を跨いで設置され、鉄塊を載せて垂直反力を付与することから、鋼製枠の寸法、重量等が大きくなり、設置作業の時間、労力等を十分に減少することは難しい。また、中間せん断箱が案内支持されていないため水平なせん断面が得難く、せん断中に供試体が膨張するときには上部せん断箱が上動するため垂直応力に誤差を生じやすく、中間せん断箱と下部せん断箱及び上部せん断箱とが接触しているため発生する摩擦力によりせん断応力に誤差を生じやすい等により、測定精度が必ずしも良好とはいい難い。
【0007】
本発明は、前記従来の問題点を解消するためになされたもので、その課題は、測定精度に悪影響を及ぼす因子を減少し、設置作業を簡単かつ迅速になし得る現場せん断試験機を提供することにある。
【0008】
【課題を解決するための手段】
前記課題を解決するために、本発明は、原地盤に直立柱状に切り出し成形された供試体に下部せん断箱及び上部せん断箱を装着し、垂直力載荷手段により供試体の頭部全面に所定の垂直力を付与した状態で下部せん断箱をせん断力載荷手段で水平に移動し、供試体を下部せん断箱と原地盤及び上部せん断箱との間でせん断し、供試体のせん断強度を直接測定する現場せん断試験機であつて、下部せん断箱が供試体の周囲に水平に設置されたせん断力載荷枠に水平方向に案内支持され、上部せん断箱が下部せん断箱と接触しないように間隙を空けてせん断力載荷枠に固定設置され、せん断力載荷手段が下部せん断箱とせん断力載荷枠とを連結して設置され、垂直力載荷手段がせん断力載荷枠に固定された垂直力載荷枠に設置されていることを特徴としている。
【0009】
せん断力載荷枠は、スクリユーアンカ又は押圧板を有する溝付き杭で原地盤に固定保持するようになつていることが好ましい。上部せん断箱は、ボルトとナツトとからなる上下調節兼固定手段によりせん断力載荷枠に固定設置されていることが好ましい。また、せん断力載荷枠は、下部せん断箱を水平に案内支持する前後一対の案内支持枠部とせん断力載荷手段を支持する水平反力支持枠部とを互いに平行に配置し、これらを左右一対の縦枠部によりボルトで固定連結し、全体形状が矩形状になつていることが好ましい。
【0010】
【発明の実施の形態】
本発明の実施形態を図に基づいて説明する。図において、1は供試体で、原地盤に直立柱状に切り出して成形されている。2は現場せん断試験機、3は下部せん断箱、4は上部せん断箱、5はせん断力載荷枠である。せん断力載荷枠5は、下部せん断箱3を水平に案内支持する前後一対の案内支持枠部6、後述するせん断力載荷手段17を支持する水平反力支持枠部7とこれらを連結する左右一対の縦枠部8とからなり、図2に示すように全体形状が矩形に組立てられている。せん断力載荷枠5の組立は、図6の(a)に示すように供試体1に下部せん断箱3を装着した後に、図6の(b)に示すように下部せん断箱3の前後に突出して設けられた各一対の案内棒9に案内スリーブ10が係合するように前後の案内支持枠部6を設置し、図6の(c)に示すように各案内支持枠部6に設けられたボルト11、上部ナツト12及び下部ナツト13とからなる上下調節兼固定手段14により上部せん断箱のL字状の取付板15を取付け、図6の(d)に示すように下部ナツト13を緩めて上部せん断箱4を下部せん断箱3に接触するように下げ、ロツキングボルト16で下部せん断箱3と上部せん断箱4とを締め付け固定し、上部ナツト12を下げ下部ナツト13を上げて取付板15を固定する。しかる後、せん断力載荷手段17の前端が後方の案内支持枠部6を貫通して下部せん断箱3に係合するように水平反力支持枠部7を設置し、左右一対の縦枠部8を各枠部6,7にボルト18で固定し、矩形に組立てる。なお、上部せん断箱4の高さは、下部せん断箱3よりも低く、例えば下部せん断箱3の40パーセント程度に設定されている。上部せん断箱4は、L字状の取付板15の垂直部にボルト19とナツト20により固定され、下部せん断箱3と合致するように調節可能になつている。
【0011】
せん断力載荷手段17は、せん断力を発生させるスクリユージヤツキ21と下部せん断箱3に係合しせん断力を伝達する押圧部22との間にせん断力測定用力計23が設けられてなり、ハンドル24でスクリユージヤツキ21を作動させることにより下部せん断箱3に付与されるせん断力をせん断力測定用力計23で計測するようになつている。25は、下部せん断箱3の水平変位を示す水平変位触子で、図2に示すように水平変位計26が水平変位触子25に当接するようにせん断力載荷枠の縦枠部8に取付けられている。
【0012】
27は垂直力載荷枠で、溝型材で下向きにコ字状に一体に形成され、せん断力載荷枠5を組立てた後に図3に示すように上部せん断箱4を跨ぎ各下端部をせん断力載荷枠の縦枠部8にボルト28で固定して設置されている。29は垂直力載荷手段で、油圧ジヤツキの油圧作動部30と供試体1の頭部全面に当接し垂直力を伝達する加圧板31との間に垂直力測定用力計32が設けられてなり、油圧ジヤツキの油圧発生部(図示せず)を作動させることにより供試体1に付与される垂直力を垂直力測定用力計32で計測するようになつている。そして、垂直力載荷手段29は加圧板31が上部せん断箱4の直上で供試体1の頭部全面と合致するように垂直力載荷枠27に取付けられている。加圧板31には複数の排水孔(図示せず)が上下貫通状に設けられ、加圧時に供試体1から出る水分を排出するようになつている。33は、供試体1の垂直変位を示す垂直変位触子で、図1及び図3に示すように垂直力変位計34が垂直変位触子33に当接するように垂直力載荷枠27に取付けられている。
【0013】
35は、せん断力載荷枠5を地盤に固定するスクリユーアンカーで、垂直力載荷枠27をせん断力載荷枠5に取付けた後にせん断力載荷枠の縦枠部8の両端に設けられた筒状の固定部35に挿入し、レンチで回転して地盤にねじ込み、図1に示すように所定量ねじ込んだ後にフランジ状のストツパー37を装着し、スクリユーアンカー35の上部側に刻設されたねじ(図示せず)にアンカー用ナツト38をねじ込み、ストツパー37の上面に当接させて締め付けることにより設置される。スクリユーアンカー35は、地盤に強固に保持され、垂直反力を十分に付与することができる。なお、図8に示すように頭部に押圧板40を有する溝付杭39であつてもよい。この溝付杭39は、スクリユーアンカー35の貫入が困難な場合に使用し、押圧板40でせん断力載荷枠の縦枠部8を押圧保持するように地盤に打ち込んで設置される。
【0014】
本発明の実施形態は、上記のように構成されており、その作用を試験方法とともに説明する。供試体1を切り出し、現場せん断試験機2を設置する箇所が水平になるように豊浦標準砂を敷き、前記したように図6に示す過程で上部せん断箱4を設置して下部せん断箱3と上部せん断箱4とをロツキングボルト16で固定した後、上部せん断箱4からはみ出ている箇所をへらで取り除き、隙間に削りかすを入れ、はけで仕上げる。次に、前記したようにせん断力載荷手段17の設置、せん断力載荷枠5の組立、垂直力載荷枠27の取付、スクリユーアンカー35によるせん断力載荷枠5の固定を順次行い、油圧ジヤツキの油圧発生部と油圧作動部30とを連結し、水平変位計26及び垂直変位計34を前記のように取付ける。以上により準備過程が終了し、圧密過程を行う。
【0015】
圧密過程においては、下部せん断箱3と上部せん断箱4とは図1〜4に示すようにロツキングボルト16で締め付けて固定され、供試体1の試料が下部せん断箱3と上部せん断箱4との間から漏れないようになつている。供試体1の加圧面にろ紙(図示せず)を載せ、油圧ジヤツキの油圧発生部(図示せず)を静かに手動で作動するとともに、垂直力測定用力計32を人力で上方に支えながらゆつくりと下ろし、垂直力測定用力計32の目盛が僅かに動き始める位置で一旦止め、垂直力測定用力計32の目盛をゼロに設定する。次に、所定の拘束圧を載荷して圧密時間を設定し、垂直変位計34の初期値を読み、その後垂直変位計34を100分の1mm単位で読み記録する。なお、圧密時間中は、常に拘束圧が定圧状態になるように油圧ジヤツキの油圧発生部(図示せず)を調整する。
【0016】
圧密過程が終了した後、せん断過程を行う。下部せん断箱3と上部せん断箱4とは、圧密過程終了時には図4に示すようにロツキングボルト16で締め付け固定された状態であるが、せん断過程においては下部せん断箱3が上部せん断箱4と接触して摩擦力を生じないように、図5に示すように間隙を空ける。先ず、上下調節兼固定手段の上部ナツト12を緩め、ロツキングボルト16の頭頂面と上部せん断箱4の上面との距離がロツキングボルト16の頭の厚さと間隙寸法との和になるようにノギスで測定しながらロツキングボルト16を緩める。次に、上下調節兼固定手段の下部ナツト13を上昇し、上部せん断箱4の上面をロツキングボルト16の頭の下面に当接させ、上下調節兼固定手段の上部ナツト12を締め付けて上部せん断箱4を固定する。前記間隙の調整を終了した後、ロツキングボルト16を抜き取り、せん断力載荷手段17を作動してせん断を開始する。ハンドル24をゆつくり回してスクリユージヤツキ21を前進作動させ、せん断力測定用力計23と水平変位計26の目盛が僅かに動き始める位置で一旦止め、せん断力測定用力計23と水平変位計26をゼロに設定する。そして、垂直力載荷手段29により供試体1に所定の拘束圧をかけた後に垂直変位計34の初期値を読み、所定のせん断速度でせん断を開始し、せん断変位に応じたせん断力及び垂直変位を順次記録し、せん断の打ち切り変位に到達した時にスクリユージヤツキ21を停止する。その際、供試体1は、例えば図7に示すように、下部せん断箱3と地盤及び上部せん断箱4との間の二面でせん断される。各せん断面は、下部せん断箱3が案内支持枠部6で案内され水平に移動し、上部せん断箱4が案内支持枠部6に固定され上下動しないため、ほぼ規定の水平面になる。また、上部せん断箱4が下部せん断箱4と間隙を明けて固定設置されているため、下部せん断箱3と上部せん断箱4とで摩擦力が生ぜず、せん断力載荷手段17によるせん断力が正確に伝達され、水平変位も正確に現れる。圧密過程及びせん断過程においては、垂直力載荷手段29により供試体1に垂直力が付与されているが、垂直力載荷枠27がせん断力載荷枠5に一体に固定され、せん断力載荷枠5がスクリユーアンカー35で地盤に固定され、スクリユーアンカー35がアンカー用ナツト38で引き上げ方向に締め付け固定されているため、スクリユーアンカー35により十分な垂直反力が付与され、供試体1に適切に垂直力を作用させることができる。なお、拘束圧は、せん断中一定になるように油圧ジヤツキの油圧発生部(図示せず)により調整する。
【0017】
せん断過程を終了した後、現場せん断試験機2を解体する。解体作業の手順は次の通りである。せん断力載荷手段17のハンドル24を回しスクリユージヤツキ21を後退作動させ、元に戻す。垂直力載荷手段29の油圧ジヤツキの油圧発生部(図示せず)のエアコツクを緩め、垂直力測定用力計32を引き上げて元の位置に戻し、エアコツクを締める。垂直変位計34と水平変位計26を取り外し、スクリユーアンカー35をアンカー用ナツト38及びストツパー37を装着したまま逆回しして抜いて固定部36から取り外す。油圧ジヤツキの油圧発生部(図示せず)と油圧作動部30との連結を解く。次に、垂直力載荷枠27をせん断力載荷枠5から取り外し、せん断力載荷枠5を解体する。縦枠部8と案内支持枠部6及び水平反力支持枠部7とのボルト18を抜き、縦枠部8を取り外す。そして、水平反力支持枠部7をせん断力載荷手段17と一体に下部せん断箱3から取り除く。上下調節兼固定手段14の上部ナツト12を取り外し、上部せん断箱4を取り除き、上部せん断箱4内の試料を持ち帰る。案内支持枠部6を下部せん断箱3から取り外すことにより、下部せん断箱3のみが残り、解体が終了する。下部せん断箱3内の試料も持ち帰る。以上のように、せん断力載荷枠5、垂直力載荷枠27、上部せん断箱4及び下部せん断箱3がボルト結合により組立られているため、簡単かつ迅速に解体し得る。そして、解体されることにより、嵩が小さく、しかも軽量な単位にまとめて運搬、収納し得る。
【0018】
【発明の効果】
本発明によれば、下部せん断箱を水平移動して上部せん断箱との間において地盤を二面せん断するようになつているため、地盤に水平に設置したせん断力載荷枠にせん断力載荷手段を支持させることにより、水平反力を十分に付与することができ、従来よりもはるかに小型化、簡素化し、設置作業性に優れた現場せん断試験機を得ることが可能になつた。
【0019】
下部せん断箱がせん断力載荷枠に水平移動するように案内支持され、上部せん断箱がせん断力載荷枠に固定設置されていることから、供試体をほぼ水平面でせん断し得る。下部せん断箱と上部せん断箱間に間隙が設けられていることから、両者の摩擦力の影響を受けることなく、せん断し得る。従って、従来よりもはるかに測定結果に悪影響を与える因子を除去することが可能になつた。
【0020】
せん断力載荷枠をスクリユーアンカーで固定するものについては、スクリユーアンカーを地盤に貫入した後、アンカー用ナツトで引き上げ方向に締め付けることにより、スクリユーアンカーが地盤に強固に固定保持される。これにより、垂直反力を十分に付与することができ、従来よりも小型の手段により供試体に垂直力を正確に付与し、良好な測定精度を得ることが可能になつた。
【0021】
せん断力載荷枠が案内支持枠部、水平反力支持枠部及び縦枠部とをボルト結合により組立てるようになつたものについては、運搬、収納は勿論のこと設置・解体作業を簡便かつ迅速に行うことが可能になつた。
【図面の簡単な説明】
【図1】本発明の実施形態の概念的説明図で、現場せん断試験機を設置した状態における縦断面図である。
【図2】本発明の実施形態の概念的説明図で、図1に対応した平面図である。
【図3】本発明の実施形態の概念的説明図で、図2のX−X線に沿う断面図である。
【図4】図1における下部せん断箱と上部せん断箱との関係を示す拡大図である。
【図5】本発明の実施形態の概念的説明図で、せん断過程開始直前における下部せん断箱と上部せん断箱との関係を示す拡大図である。
【図6】本発明の実施形態の概念的説明図で、現場せん断試験機を供試体に装着して設置する過程における上部せん断箱を設置するまでの過程を示す。(a)は下部せん断箱を供試体に装着した状態、(b)は案内支持枠部を設置した状態、(c)は上部せん断箱を下部せん断箱の上方に設置した状態、(d)は上部せん断箱を下部せん断箱にロツキングボルトで締め付け固定した状態を示す。
【図7】本発明の実施形態の概念的説明図で、せん断終了時における下部せん断箱、上部せん断箱及び供試体の関係の1例を示す断面図である。
【図8】本発明の実施形態における要部の変形例の概念的説明図である。
【符号の説明】
1 供試体 2 現場せん断試験機
3 下部せん断箱 4 上部せん断箱
5 せん断力載荷枠 6 案内支持枠部
7 水平反力支持枠部 8 縦枠部
9 下部せん断箱の案内棒 10 案内スリーブ
14 上下調節兼固定手段 15 取付板
16 ロツキングボルト 17 せん断力載荷手段
29 垂直力載荷手段 31 加圧板
35 スクリユーアンカー 36 固定部
37 ストツパー 38 アンカー用ナツト
39 溝付杭 40 押圧板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shear tester for measuring the shear strength of slope surface soil, etc. Specifically, a shear box was attached to a specimen cut into an upright column shape on the original ground and the original soil particle structure was retained. The present invention relates to an on-site shear tester that measures shear strength in a state.
[0002]
[Prior art]
In order to prevent landslides and landslides due to torrential rain, earthquakes, etc., the shear strength of the slope surface soil was measured with a shear tester, and the stability of landslides was examined based on the measurement results. Judging the validity of strength constants used in the design of countermeasures.
[0003]
By the way, in the shear tester, in order to measure the shear strength with high accuracy, it is preferable to directly measure in a state in which the soil particle structure in the original position is maintained. Various in-situ shear test machines that measure shear strength by attaching a slab have been proposed. As an in-situ shear tester, one shear box is attached to the specimen, and the shear box is horizontally moved by the shear force loading means in a state where a predetermined normal force is applied to the entire head of the specimen by the vertical force loading means. The mainstream type is a one-sided shear type in which the specimen is sheared between the ground and the shear box. However, in order to apply a horizontal reaction force during shearing, the shear force loading means is supported by a hole wall or a press plate dug around the specimen, and a vertical reaction force by the normal force loading means is provided. The vertical force loading means is applied with a weight such as an iron lump or concrete, pressed down with a power shovel, or fixed to the ground with an earth anchor. For this reason, the auxiliary equipment for installing the on-site shear tester requires a large-scale and large space, and there are problems such as requiring a lot of time, labor, and cost for the installation work.
[0004]
Therefore, for example, as described in JP-A-8-247913, a shear box is guided and supported in a horizontal direction by a guide member on a base provided with an opening through which a specimen is passed, and shearing force loading means is provided on the base. A field shear tester of the single-sided shear type supported by a fixed wall and supported by a reaction force support provided with a normal force loading means on the base has been proposed. Also, soil and foundation, Vol. 31, no. 2, pages 27-31 and 23rd Geotechnical Research Presentation (June 1988), Research Papers Nos. 1755-1756, the shear box is a lower shear box, an intermediate shear box, and an upper shear box. It consists of a box, the lower shear box and the upper shear box are connected by a U-shaped frame so that the upper shear box can move up and down, the intermediate shear box is connected to the shearing force loading means, and the shearing force loading means is the U-shaped frame And a vertical force loading means is provided on a steel frame installed across the shear box, and the intermediate shear box is sheared between the lower shear box and the upper shear box by horizontally moving the intermediate shear box. A field shear tester of the two-sided shear type has been proposed.
[0005]
[Problems to be solved by the invention]
However, the conventional one-side shear type in-situ shear testing machine applies both the horizontal reaction force and the vertical reaction force by the base, so that the dimensions and weight of the base become large and the installation work space becomes large. It is difficult to sufficiently reduce time, labor, and cost. In addition, since the base and the shear box are attached to the specimen together, the specimen must be attached so as not to break, and the mounting work requires a lot of time and labor.
[0006]
On the other hand, for the conventional two-plane shear type in-situ shear tester, the steel frame is installed across the three-tiered cardboard box, and a vertical reaction force is applied by placing an iron ingot. The size and weight of the frame increase, and it is difficult to sufficiently reduce the installation time and labor. In addition, since the intermediate shear box is not guided and supported, it is difficult to obtain a horizontal shear plane, and when the specimen expands during shearing, the upper shear box moves up, and errors in vertical stress are likely to occur. Since the shear box and the upper shear box are in contact with each other, it is difficult to say that the measurement accuracy is good because the shearing force tends to cause an error in the shearing stress.
[0007]
The present invention has been made to solve the above-mentioned conventional problems, and its problem is to provide an on-site shear test machine that can reduce factors that adversely affect measurement accuracy and can easily and quickly perform installation work. There is.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention attaches a lower shear box and an upper shear box to a specimen cut out and formed into an upright column on the original ground, and applies a predetermined force to the entire head of the specimen by vertical force loading means. With the normal force applied, move the lower shear box horizontally using the shear force loading means, shear the specimen between the lower shear box, the ground and the upper shear box, and directly measure the shear strength of the specimen. An in-situ shear tester, where the lower shear box is guided and supported in a horizontal direction by a shear loading frame installed horizontally around the specimen, and a gap is provided so that the upper shear box does not contact the lower shear box. It is fixedly installed on the shear force loading frame, the shear force loading means is installed by connecting the lower shear box and the shear force loading frame, and the vertical force loading means is installed on the vertical force loading frame fixed to the shear force loading frame. Special that It is set to.
[0009]
It is preferable that the shear load carrying frame is fixed and held on the original ground by a grooved pile having a screw anchor or a pressing plate. It is preferable that the upper shear box is fixedly installed on the shearing force loading frame by vertical adjustment and fixing means including bolts and nuts. The shear force loading frame has a pair of front and rear guide support frame portions that horizontally support and support the lower shear box and a horizontal reaction force support frame portion that supports the shear force loading means arranged in parallel to each other, and these are paired on the left and right sides. It is preferable that the vertical shape is fixedly connected with a bolt and the overall shape is rectangular.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes a specimen, which is cut and formed into an upright column shape on the original ground. 2 is a field shear tester, 3 is a lower shear box, 4 is an upper shear box, and 5 is a shear force loading frame. The shear force loading frame 5 includes a pair of front and rear guide support frame portions 6 that horizontally guide and support the lower shear box 3, a horizontal reaction force support frame portion 7 that supports shear force loading means 17 to be described later, and a pair of left and right connecting them. 2 and the entire shape is assembled in a rectangular shape as shown in FIG. As shown in FIG. 6A, the assembly of the shear force loading frame 5 is carried out after the lower shear box 3 is mounted on the specimen 1 and then protrudes forward and backward of the lower shear box 3 as shown in FIG. 6B. The front and rear guide support frame portions 6 are installed so that the guide sleeves 10 are engaged with the respective pair of guide rods 9 provided in this manner, and are provided on each guide support frame portion 6 as shown in FIG. The L-shaped mounting plate 15 of the upper shear box is attached by the vertical adjustment / fixing means 14 including the bolt 11, the upper nut 12, and the lower nut 13, and the lower nut 13 is loosened as shown in FIG. The upper shear box 4 is lowered so as to come into contact with the lower shear box 3, the lower shear box 3 and the upper shear box 4 are fastened and fixed by the locking bolts 16, the upper nut 12 is lowered and the lower nut 13 is raised, and the mounting plate 15 is fixed. Thereafter, the horizontal reaction force support frame portion 7 is installed so that the front end of the shear force loading means 17 penetrates the rear guide support frame portion 6 and engages with the lower shear box 3, and a pair of left and right vertical frame portions 8 are installed. Are fixed to the frame portions 6 and 7 with bolts 18 and assembled into a rectangular shape. The height of the upper shear box 4 is lower than that of the lower shear box 3 and is set to about 40 percent of the lower shear box 3, for example. The upper shear box 4 is fixed to the vertical part of the L-shaped mounting plate 15 by bolts 19 and nuts 20 and can be adjusted to match the lower shear box 3.
[0011]
The shear force loading means 17 includes a shear force measuring force gauge 23 provided between a screw jacket 21 that generates a shear force and a pressing portion 22 that is engaged with the lower shear box 3 and transmits the shear force. By operating the screw jack 21 at 24, the shear force applied to the lower shear box 3 is measured by a shear force measuring force meter 23. Reference numeral 25 denotes a horizontal displacement contactor indicating the horizontal displacement of the lower shear box 3, and is attached to the vertical frame portion 8 of the shear force loading frame so that the horizontal displacement meter 26 contacts the horizontal displacement contactor 25 as shown in FIG. It has been.
[0012]
Reference numeral 27 denotes a vertical force loading frame, which is integrally formed in a U-shape downward with a groove mold material. After assembling the shearing force loading frame 5, it straddles the upper shear box 4 as shown in FIG. It is fixed to the vertical frame portion 8 of the frame with bolts 28. Reference numeral 29 denotes a vertical force loading means, and a vertical force measuring force meter 32 is provided between a hydraulic operating portion 30 of the hydraulic jack and a pressure plate 31 that contacts the entire head of the specimen 1 and transmits the vertical force. The vertical force applied to the specimen 1 is measured by a vertical force measuring force meter 32 by operating a hydraulic pressure generating portion (not shown) of the hydraulic jack. The vertical force loading means 29 is attached to the vertical force loading frame 27 so that the pressure plate 31 coincides with the entire head of the specimen 1 immediately above the upper shear box 4. The pressure plate 31 is provided with a plurality of drain holes (not shown) penetrating vertically so as to discharge moisture from the specimen 1 during pressurization. Reference numeral 33 denotes a vertical displacement contactor indicating the vertical displacement of the specimen 1, and is attached to the vertical force loading frame 27 so that the vertical force displacement meter 34 contacts the vertical displacement contactor 33 as shown in FIGS. 1 and 3. ing.
[0013]
Reference numeral 35 denotes a screw anchor for fixing the shear force loading frame 5 to the ground, and a cylindrical shape provided at both ends of the vertical frame portion 8 of the shear force loading frame after the vertical force loading frame 27 is attached to the shear force loading frame 5. Screwed in the upper part of the screw anchor 35 after being inserted into the fixing part 35, rotated with a wrench and screwed into the ground, screwed in a predetermined amount as shown in FIG. The anchor nut 38 is screwed into (not shown) and is placed in contact with the upper surface of the stopper 37 and tightened. The screw anchor 35 is firmly held on the ground and can sufficiently apply a vertical reaction force. In addition, as shown in FIG. 8, you may be the grooved pile 39 which has the press plate 40 in a head. This grooved pile 39 is used when penetration of the squeeze anchor 35 is difficult, and is driven into the ground so as to press and hold the vertical frame portion 8 of the shear force loading frame with the pressing plate 40.
[0014]
The embodiment of the present invention is configured as described above, and its operation will be described together with a test method. The specimen 1 is cut out, and Toyoura standard sand is laid so that the place where the in-situ shear test machine 2 is installed is horizontal, and the upper shear box 4 is installed in the process shown in FIG. After fixing the upper shear box 4 with the locking bolt 16, the portion protruding from the upper shear box 4 is removed with a spatula, shavings are put in the gap, and the brush is finished. Next, as described above, the installation of the shear force loading means 17, the assembly of the shear force loading frame 5, the attachment of the vertical force loading frame 27, and the fixing of the shear force loading frame 5 by the screw anchor 35 are performed in order. The hydraulic pressure generating unit and the hydraulic operating unit 30 are connected, and the horizontal displacement meter 26 and the vertical displacement meter 34 are attached as described above. Thus, the preparation process is completed, and the consolidation process is performed.
[0015]
In the consolidation process, the lower shear box 3 and the upper shear box 4 are fastened and fixed with a locking bolt 16 as shown in FIGS. It is designed not to leak from between. A filter paper (not shown) is placed on the pressure surface of the specimen 1 and the hydraulic pressure generator (not shown) of the hydraulic jack is manually operated gently, and the vertical force measuring force meter 32 is supported upward while being manually supported. Then, the vertical force measuring force meter 32 is temporarily stopped at a position where the scale starts to move slightly, and the vertical force measuring force meter 32 is set to zero. Next, a predetermined restraint pressure is loaded, a consolidation time is set, the initial value of the vertical displacement meter 34 is read, and then the vertical displacement meter 34 is read and recorded in units of 1/100 mm. During the consolidation time, the hydraulic pressure generating portion (not shown) of the hydraulic jack is adjusted so that the restraint pressure is always in a constant pressure state.
[0016]
After the consolidation process is completed, a shearing process is performed. The lower shear box 3 and the upper shear box 4 are in a state of being fastened and fixed by a locking bolt 16 as shown in FIG. 4 at the end of the consolidation process. In the shearing process, the lower shear box 3 and the upper shear box 4 A gap is formed as shown in FIG. 5 so as not to cause a friction force upon contact. First, the upper nut 12 of the vertical adjustment / fixing means is loosened so that the distance between the top surface of the locking bolt 16 and the upper surface of the upper shear box 4 is the sum of the thickness of the locking bolt 16 and the gap dimension. Loosen the locking bolt 16 while measuring with a caliper. Next, the lower nut 13 of the vertical adjustment / fixing means is raised, the upper surface of the upper shear box 4 is brought into contact with the lower surface of the head of the locking bolt 16, and the upper nut 12 of the vertical adjustment / fixing means is fastened to tighten the upper shear. The box 4 is fixed. After the adjustment of the gap is completed, the locking bolt 16 is pulled out and the shearing force loading means 17 is activated to start shearing. By slowly turning the handle 24, the screw jack 21 is moved forward, temporarily stopped at the position where the graduations of the shear force measuring force gauge 23 and the horizontal displacement gauge 26 slightly move, and the shear force measuring force gauge 23 and the horizontal displacement gauge 26 are moved. Is set to zero. Then, after applying a predetermined restraining pressure to the specimen 1 by the vertical force loading means 29, the initial value of the vertical displacement meter 34 is read, shearing is started at a predetermined shear rate, and the shear force and the vertical displacement corresponding to the shear displacement are read. Are sequentially recorded, and when the shear discontinuation displacement is reached, the screw jack 21 is stopped. At that time, the specimen 1 is sheared on two surfaces between the lower shear box 3 and the ground and upper shear box 4, for example, as shown in FIG. The lower shear box 3 is guided by the guide support frame portion 6 and moved horizontally, and the upper shear box 4 is fixed to the guide support frame portion 6 and does not move up and down. Further, since the upper shear box 4 is fixedly installed with a clearance from the lower shear box 4, no friction force is generated between the lower shear box 3 and the upper shear box 4, and the shear force by the shear force loading means 17 is accurate. The horizontal displacement also appears accurately. In the consolidation process and the shearing process, a vertical force is applied to the specimen 1 by the normal force loading means 29. However, the vertical force loading frame 27 is fixed integrally to the shearing force loading frame 5, and the shear force loading frame 5 is Since the screw anchor 35 is fixed to the ground and the screw anchor 35 is fastened and fixed in the pulling direction by the anchor nut 38, a sufficient vertical reaction force is applied by the screw anchor 35, and the A normal force can be applied. The restraining pressure is adjusted by a hydraulic pressure generating portion (not shown) of the hydraulic jack so as to be constant during shearing.
[0017]
After finishing the shearing process, the in-situ shear tester 2 is disassembled. The procedure for dismantling is as follows. The handle 24 of the shearing force loading means 17 is turned to cause the screw jack 21 to retreat and return to its original state. The air cock of the hydraulic pressure generating portion (not shown) of the hydraulic jack of the vertical force loading means 29 is loosened, the vertical force measuring force gauge 32 is pulled back to the original position, and the air cock is tightened. The vertical displacement meter 34 and the horizontal displacement meter 26 are removed, and the screw anchor 35 is removed by rotating it in the reverse direction with the anchor nut 38 and the stopper 37 attached, and removed from the fixing portion 36. The connection between the hydraulic pressure generating section (not shown) of the hydraulic jack and the hydraulic operating section 30 is released. Next, the vertical force loading frame 27 is removed from the shearing force loading frame 5 and the shearing force loading frame 5 is disassembled. The bolt 18 between the vertical frame portion 8 and the guide support frame portion 6 and the horizontal reaction force support frame portion 7 is pulled out, and the vertical frame portion 8 is removed. Then, the horizontal reaction force support frame portion 7 is removed from the lower shear box 3 integrally with the shear force loading means 17. The upper nut 12 of the vertical adjustment / fixing means 14 is removed, the upper shear box 4 is removed, and the sample in the upper shear box 4 is brought back. By removing the guide support frame 6 from the lower shear box 3, only the lower shear box 3 remains, and the disassembly is completed. Take the sample in the lower shear box 3 with you. As described above, since the shear force loading frame 5, the vertical force loading frame 27, the upper shear box 4 and the lower shear box 3 are assembled by bolt connection, they can be easily and quickly disassembled. And by being dismantled, it can be transported and stored in a unit that is small in volume and lightweight.
[0018]
【The invention's effect】
According to the present invention, the lower shear box is horizontally moved so that the ground is sheared in two planes with the upper shear box. Therefore, the shear force loading means is provided on the shear force loading frame installed horizontally on the ground. By supporting it, a horizontal reaction force can be sufficiently applied, and it has become possible to obtain an in-situ shear tester that is much smaller and simplified than before and has excellent installation workability.
[0019]
Since the lower shear box is guided and supported so as to move horizontally on the shear force loading frame, and the upper shear box is fixedly installed on the shear force loading frame, the specimen can be sheared almost horizontally. Since a gap is provided between the lower shear box and the upper shear box, shearing can be performed without being affected by the frictional force between the two. Therefore, it has become possible to remove factors that adversely affect the measurement result far more than before.
[0020]
In the case where the shearing load frame is fixed by the squeeze anchor, the squeeze anchor is firmly fixed and held on the ground by being penetrated into the ground and then tightened in the pulling direction by the anchor nut. As a result, the vertical reaction force can be sufficiently applied, and the normal force can be accurately applied to the specimen by means smaller than the conventional one, thereby making it possible to obtain good measurement accuracy.
[0021]
When the shear load frame is constructed such that the guide support frame, horizontal reaction force support frame, and vertical frame are assembled by bolting, the installation and disassembly work is easy and quick as well as transportation and storage. It became possible to do.
[Brief description of the drawings]
FIG. 1 is a conceptual explanatory view of an embodiment of the present invention, and is a longitudinal sectional view in a state where an in-situ shear tester is installed.
FIG. 2 is a conceptual explanatory diagram of an embodiment of the present invention, and is a plan view corresponding to FIG.
3 is a conceptual explanatory diagram of an embodiment of the present invention, and a cross-sectional view taken along line XX of FIG.
4 is an enlarged view showing a relationship between a lower shear box and an upper shear box in FIG. 1. FIG.
FIG. 5 is a conceptual explanatory diagram of an embodiment of the present invention, and is an enlarged view showing a relationship between a lower shear box and an upper shear box just before the start of a shearing process.
FIG. 6 is a conceptual explanatory diagram of an embodiment of the present invention and shows a process until an upper shear box is installed in a process of installing and installing a field shear tester on a specimen. (A) is a state where the lower shear box is mounted on the specimen, (b) is a state where the guide support frame is installed, (c) is a state where the upper shear box is installed above the lower shear box, (d) is a state where The state where the upper shear box is fastened to the lower shear box with a locking bolt is shown.
FIG. 7 is a conceptual explanatory diagram of an embodiment of the present invention, and is a cross-sectional view showing an example of a relationship between a lower shear box, an upper shear box, and a specimen at the end of shearing.
FIG. 8 is a conceptual explanatory diagram of a modification of the main part in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Specimen 2 On-site shear testing machine 3 Lower shear box 4 Upper shear box 5 Shear force loading frame 6 Guide support frame 7 Horizontal reaction force support frame 8 Vertical frame 9 Lower shear box guide rod 10 Guide sleeve 14 Vertical adjustment Combined fixing means 15 Mounting plate 16 Locking bolt 17 Shear force loading means 29 Vertical force loading means 31 Pressure plate 35 Screw anchor 36 Fixing part 37 Stopper 38 Anchor nut 39 Grooved pile 40 Pressing plate

Claims (5)

  1. 原地盤に直立柱状に切り出し成形された供試体(1)に下部せん断箱(3)及び上部せん断箱(4)を装着し、垂直力載荷手段(29)により供試体(1)の頭部全面に所定の垂直力を付与した状態で下部せん断箱(3)をせん断力載荷手段(17)で水平に移動し、供試体(1)を下部せん断箱(3)と原地盤及び上部せん断箱(4)との間でせん断し、供試体(1)のせん断強度を直接測定する現場せん断試験機(2)であつて、下部せん断箱(3)が供試体(1)の周囲に水平に設置されたせん断力載荷枠(5)に水平方向に案内支持され、上部せん断箱(4)が下部せん断箱(3)と接触しないように間隙を空けてせん断力載荷枠(5)に固定設置され、せん断力載荷手段(17)が下部せん断箱(3)とせん断力載荷枠(5)とを連結して設置され、垂直力載荷手段(29)がせん断力載荷枠(5)に固定された垂直力載荷枠(27)に設置されていることを特徴とする現場せん断試験機。A lower shear box (3) and an upper shear box (4) are mounted on a specimen (1) cut out and formed into an upright column on the original ground, and the entire head of the specimen (1) is mounted by a vertical force loading means (29). The lower shear box (3) is moved horizontally by the shear force loading means (17) in a state where a predetermined vertical force is applied to the lower shear box (3), the original ground and the upper shear box ( 4) In-situ shear tester (2) that directly measures the shear strength of the specimen (1), and the lower shear box (3) is installed horizontally around the specimen (1) It is guided and supported in the horizontal direction by the shearing force loading frame (5), and is fixedly installed on the shearing force loading frame (5) with a gap so that the upper shearing box (4) does not contact the lower shearing box (3). The shearing force loading means (17) connects the lower shearing box (3) and the shearing force loading frame (5). Is installed by forming a vertical force loading means (29) shear force field shear tester, characterized in that installed in the loading frame is fixed to (5) a vertical force loading frame (27).
  2. せん断力載荷枠(5)は、スクリユーアンカー(35)で原地盤に固定保持されている請求項1記載の現場せん断試験機。2. The in-situ shear testing machine according to claim 1, wherein the shear force loading frame (5) is fixed and held on the original ground by a screw anchor (35).
  3. せん断力載荷枠(5)は、頭部に押圧板(40)を有する溝付杭(39)で原地盤に固定保持されている請求項1記載の現場せん断試験機。2. The field shear test machine according to claim 1, wherein the shear force loading frame (5) is fixedly held on the raw ground by a grooved pile (39) having a pressing plate (40) at the head.
  4. 上部せん断箱(4)は、ボルト(11)とナツト(12,13)とからなる上下調節兼固定手段(14)によりせん断力載荷枠(5)に固定設置されている請求項1、2又は3記載の現場せん断試験機。The upper shear box (4) is fixedly installed on the shear force loading frame (5) by means of vertical adjustment and fixing means (14) comprising bolts (11) and nuts (12, 13). In-situ shear tester according to 3.
  5. せん断力載荷枠(5)は、下部せん断箱(3)を水平に案内支持する前後一対の案内支持枠部(6)とせん断力載荷手段(17)を支持する水平反力支持枠部(7)とを互いに平行に配置し、これら(6,7)を左右一対の縦枠部(8)によりボルト(18)で固定連結し、全体形状が矩形状になつている請求項1〜4のいずれか1項記載の現場せん断試験機。The shear force loading frame (5) includes a pair of front and rear guide support frame portions (6) for horizontally guiding and supporting the lower shear box (3) and a horizontal reaction force support frame portion (7) for supporting the shear force loading means (17). Are arranged in parallel with each other, and these (6, 7) are fixedly connected with bolts (18) by means of a pair of left and right vertical frames (8), and the overall shape is rectangular. An in-situ shear tester according to any one of the preceding claims.
JP2001053147A 2001-01-22 2001-01-22 In-situ shear tester Expired - Lifetime JP3684376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053147A JP3684376B2 (en) 2001-01-22 2001-01-22 In-situ shear tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053147A JP3684376B2 (en) 2001-01-22 2001-01-22 In-situ shear tester

Publications (2)

Publication Number Publication Date
JP2002212938A JP2002212938A (en) 2002-07-31
JP3684376B2 true JP3684376B2 (en) 2005-08-17

Family

ID=18913653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053147A Expired - Lifetime JP3684376B2 (en) 2001-01-22 2001-01-22 In-situ shear tester

Country Status (1)

Country Link
JP (1) JP3684376B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798574A (en) * 2012-07-11 2012-11-28 深圳中建院建筑科技有限公司 Lifting displacement type device for the detection of concrete compression strength by method of in-situ single shear
CN102854070A (en) * 2012-09-26 2013-01-02 深圳中建院建筑科技有限公司 Concrete core simple-shear device
CN105445119A (en) * 2015-11-13 2016-03-30 长安大学 Device and method for testing torsion resistance and shear performance of bituminous mixture
CN111089781A (en) * 2020-01-16 2020-05-01 中国科学院武汉岩土力学研究所 Rock shear test equipment and direct shear test method for rock test block

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101155592B1 (en) * 2011-11-08 2012-06-19 한국지질자원연구원 Ring shear apparatus
KR101155552B1 (en) * 2011-11-08 2012-06-19 한국지질자원연구원 Ring shear apparatus considering wall-slip effect
CN103278400B (en) * 2013-04-24 2015-09-16 中国科学院力学研究所 Soil in-situ ring cuts experiment instrument
KR101447507B1 (en) 2013-07-16 2014-10-08 한국지질자원연구원 Horizontality and verticality shear test apparatus and method for gouge
CN104142277B (en) * 2014-08-08 2016-07-06 重庆大学 A kind of soil body torsional shear infiltration experiment device and method of testing
CN104596868B (en) * 2015-01-30 2017-03-01 北京交通大学 A kind of shift shaft type rubble railway ballast direct shear apparatus
CN104792629B (en) * 2015-04-29 2018-01-19 深圳大学 A kind of hand-held constant stiffness ring shear apparatus and its application method
CN104964884B (en) * 2015-06-26 2018-02-13 中国科学院地质与地球物理研究所 Large geotechnical direct shear strength test device under low temperature control condition
CN105203409B (en) * 2015-10-15 2017-11-24 山东科技大学 A kind of rock mass field direct shear test method for anchoring pressurization
CN105890947B (en) * 2016-04-07 2018-07-31 三峡大学 A kind of device and method of scene Soil Direct Shear experiment soil body preparation and direct shear test
RU2634312C1 (en) * 2016-09-14 2017-10-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВО "ЗабГУ") Device for determining poisson factors and transverse deformations of fragments of crushed rock array and evaluating their compressibility in array
CN108426784A (en) * 2017-12-15 2018-08-21 浙江科技学院 A kind of structural plane shear box assemble method based on combined multi-stage limiting plate
CN110779811B (en) * 2019-10-25 2020-10-30 武汉科技大学 Rainfall seepage and blasting vibration coupling simulation soft rock shear rheology test system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798574A (en) * 2012-07-11 2012-11-28 深圳中建院建筑科技有限公司 Lifting displacement type device for the detection of concrete compression strength by method of in-situ single shear
CN102798574B (en) * 2012-07-11 2014-05-07 深圳中建院建筑科技有限公司 Lifting displacement type device for detection of concrete compression strength by method of in-situ single shear
CN102854070A (en) * 2012-09-26 2013-01-02 深圳中建院建筑科技有限公司 Concrete core simple-shear device
CN102854070B (en) * 2012-09-26 2014-06-18 深圳中建院建筑科技有限公司 Concrete core simple-shear device
CN105445119A (en) * 2015-11-13 2016-03-30 长安大学 Device and method for testing torsion resistance and shear performance of bituminous mixture
CN105445119B (en) * 2015-11-13 2018-01-12 长安大学 A kind of test device and method of asphalt anti-torsion and cutting performance
CN111089781A (en) * 2020-01-16 2020-05-01 中国科学院武汉岩土力学研究所 Rock shear test equipment and direct shear test method for rock test block

Also Published As

Publication number Publication date
JP2002212938A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
Yin et al. Influence of grouting pressure and overburden stress on the interface resistance of a soil nail
CN101592575B (en) Airbag-loading potable weak and soft interlayer direct shear apparatus
Kitazume et al. Internal stability of group column type deep mixing improved ground under embankment loading
AU2005200108B2 (en) Improvements relating to the testing of mechanical properties of materials
CN105352820B (en) Multi-function fracture rock mass pressure shear test device
Tang et al. A method for testing tensile strength in unsaturated soils
CN101963555B (en) Anchor rod or anchor rope support stress test method and device
CN201145658Y (en) Portable on site and indoor dual-purpose direct shear test instrument
EP2833112B1 (en) Large deformation tensile testing system
Fox et al. Design and evaluation of a large direct shear machine for geosynthetic clay liners
CN204439474U (en) The field direct shear test device of landslide rock mass shearing strength
CN103234830B (en) Anchoring property experiment platform of anchor rod
KR101072721B1 (en) Apparatus for pile load test
JP2012255305A (en) Foundation load testing method
CN102410962A (en) Portable rock mass structural plane direct shear test apparatus for field and indoor use
CN103674723A (en) Test method for determining uniaxial tensile strength of soil mass
CN101105433B (en) Portable on-spot and indoor dual-purpose direct-cutting experiment instrument and its sampling method
CN101769075B (en) Method for detecting concrete beam anchor lower prestress and device for realizing method
JP5239042B2 (en) Compact loading test apparatus and test method therefor
KR101761122B1 (en) Improved Bi-Directional for Pile Load Test Apparatus and thereof Method
CN103389247A (en) Testing system for simulating hydraulic fracture of concrete members under high water pressure
KR20050002682A (en) Road-cell, apparatus for testing bearing power of subterranean concrete pile and method for testing bearing power using the same
CN103471941B (en) Anchor rod shock resistance simulation test system
JPH0658270B2 (en) Device and method for testing load bearing capacity of underground shafts
CN105675409A (en) Integrated type rock mass structural surface direct shear apparatus and direct shear test method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117