JP3683395B2 - Calcinated powder and polycrystal for Bi-based high-temperature superconductor - Google Patents
Calcinated powder and polycrystal for Bi-based high-temperature superconductor Download PDFInfo
- Publication number
- JP3683395B2 JP3683395B2 JP30624197A JP30624197A JP3683395B2 JP 3683395 B2 JP3683395 B2 JP 3683395B2 JP 30624197 A JP30624197 A JP 30624197A JP 30624197 A JP30624197 A JP 30624197A JP 3683395 B2 JP3683395 B2 JP 3683395B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- temperature
- calcined powder
- crystal
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
この出願の発明は、Bi系高温相超電導体用の仮焼粉とこの仮焼粉より得られる高Jc高温相超電導体多結晶体に関するものである。
【0002】
【従来の技術とその課題】
Bi系酸化物高温超電導体については、Tc(臨界温度)が100Kレベルの高温相結晶体と、80Kレベルの低温相結晶体があることが知られており、前者の高温相結晶体は、その成分組成が(Bi,Pb)2 Sr2 Ca2 Cu3 Ox として標準化して表わされる2223相の結晶からなり、一方、低温相結晶体は、Bi2 Sr2 Ca1 Cu2 Ox として標準化して表わされる2212相の結晶からなることが明らかにされている。
【0003】
これらBi系超電導体のうち、前者の高温2223相超電導体については、線材化が難しく、Jc(臨界電流密度)が低いという問題点を解消すべく、その実用化について精力的に検討が進められており、たとえばこれまでにも、短い試料ではあるが、Agシース法により、Jc≧60,000A/cm2 の特性を有するものが実現されたと報告されている。
【0004】
しかしながら、大きな期待にもかかわらず、2223高温相超電導体のJcは、一般的な焼結法では一桁低い1,000〜2,500A/cm2 レベルにとどまっているのが現状であり、この点についての抜本的で大幅な特性改善が望まれているところである。
このような問題の解決には、製造工程の改善がなによりも考慮され、焼結のための原料粉の扱いも見直されるべきと考えられる。実際、たとえば、「粉体及び粉末冶金」35(1988)、P1020、または「粉体及び粉末冶金」39(1992)、P378には、原料粉を焼結して超電導焼結体を製造するさいに、中間圧縮工程を挿入するとC軸配向組織の形成と高密度化により臨界電流密度が大きく向上すると報告されている。また、焼結に適用する原料粉(仮焼粉)の状態を示す評価手段として、XRD図、TG−DTA図を用いることは一般的に行われている。例えば、Jpn. J.Appl.Phys.,28(1989),L2196には、酸素分圧や、示差熱分析の昇温速度によってDTA吸熱曲線の形状が変化することが報告されている。
【0005】
しかし、焼結に適用する原料粉(仮焼粉)の状態が超電導焼結体の臨界電流密度に及ぼす影響については報告例は少なく、充分に解析されていない。
そこで、この出願の発明は、以上のとおりの従来技術の限界を克服し、焼結に適用する原料粉(仮焼粉)に着目することで、Bi系酸化物高温相超電導体のJc(臨界電流密度)を大幅に向上させるための新しい技術的手段を提供することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、焼結法に適用するためのBi系酸化物高温2223相超電導体の焼結体用仮焼粉であって、全体組成は焼結体と実質的に同一であり、かつ、大気中、最高温度720〜800℃で仮焼されていて、結晶形態は主成分のBi−2212相結晶に超伝導相以外の不純物酸化物相あるいはBi−2201相が取り込まれることなく均一に分散し、DTA吸熱ピークとして、860〜875℃に頂点を持つ低温側吸熱ピークと、875〜890℃に頂点を持つ高温側吸熱ピークとが表われることを特徴とするBi系高温相超電導体用の仮焼粉(請求項1)と、焼結法に適用するためのBi系酸化物高温2223相超電導体の焼結体用仮焼粉であって、全体組成は焼結体と実質的に同一であり、かつ、大気中、最高温度800〜840℃で仮焼されていて、結晶形態はBi−2212相結晶あるいはBi−2223相結晶に超伝導相以外の不純物酸化物相が均一に取り込まれて分散し、DTA吸熱ピークとして、875〜890℃に頂点を持つ吸熱ピークのみが表われることを特徴とするBi系高温相超電導体用の仮焼粉(請求項2)を提供する。また、この出願の発明は、上記の仮焼粉について、成分組成が次式(1)
【0007】
【化3】
【0008】
(式中の元素数は次の値を示す。
1.20≦a≦2.50
0≦b≦0.80
1.20≦c≦3.00
1.20≦d≦3.00
9.00≦x≦10.00)
で表わされるBi系酸化物高温相超電導体の焼結体製造用の仮焼粉であって、全体組成は前記式(1)と実質的に同一であり、かつ、次式(2)
【0009】
【化4】
【0010】
(式中の元素数は次の値を示す。
1.50≦a≦2.50
0≦b≦0.05
1.50≦c≦2.50
0.50≦d≦1.50
7.00≦x≦8.00)
で表わされる成分組成の結晶とそれ以外のBi,Pb,Sr,CaおよびCuの元素の1種以上のものの酸化物とを含有することを特徴とするBi系高温相超電導体用の仮焼粉(請求項3)をも提供する。
【0011】
そして、さらにこの出願の発明は、以上の仮焼粉が焼結されてなるBi系酸化物高温相超電導体の多結晶体であって、Jc(臨界電流密度)≧9000A/cm2 の特性を有することを特徴とするBi系高温相超電導体の多結晶体(請求項4)も提供する。
【0012】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴を持つものであるが、発明者による詳細な検討の結果導かれた新しい知見に基づいて完成されている。
発明は、この知見に留意することにより様々な形態として実施することができる。
【0013】
すなわち、まず、一般に焼結法によるBi系2223相焼結体は、多結晶体であるがために結晶粒界が多く存在し、粒界間の弱結合により超電導電流が阻害され臨界電流密度(Jc)が最大で2,500A/cm2 程度しか得られていなかったが、同じ多結晶体でありながら、Agシース線材ではJc数万A/cm2 以上得られている。このことから、粒界の性状を改善する事により多結晶体であっても現状の値から大きく改善することができると考えられることから、発明者は、焼結する前の段階における仮焼粉に着目し、様々な要因を検討している。
【0014】
仮焼粉の一般的製造プロセスは、たとえば図1に示すことができ、また、多結晶体の製造プロセスは、たとえば図2に示すことができるが、高Jcが得られる多結晶体とするには、仮焼粉を大気中で焼結する際にBi系2223相が成長しやすく、粒界間に不純物が出来るだけ存在しないような、仮焼の段階での適切な結晶形態とその割合があると考えられる。また、Bi系2223相はBi−2212相とCa2PbO4,CuOなどの超電導相以外の酸化物が反応して成長することが知られている。そこで理想的な仮焼粉は、Bi−2212相結晶にCa2PbO4,CuOなどの超電導相以外の不純物酸化物相あるいはBi−2201相が均一に分散されていることが望ましいことがわかる。
【0015】
このような超電導相と不純物相あるいはBi−2201相の分散状態を熱分析のTG−DTA(熱重量−示差熱分析装置)を用いることで判断できることが見出されている。たとえば、高温相の結晶と実質的に同じ成分組成に原料を調整し、最高温度700℃で仮焼すると2201相の結晶ができ、さらに温度を上昇して720℃〜800℃の最高温度で仮焼するとBi−2212相結晶とCa2 PbO4 ,CuOなどの超電導相以外の不純物相とBi−2201相となる。粉砕を行い、再度同条件で仮焼することにより主成分のBi−2212相結晶にCa2 PbO4 ,CuOなどの超電導相以外の不純物相あるいはBi−2201相が取り込まれることなく均一に分散している状態となる。そのとき所定の条件で測定すると図3▲1▼のDTA曲線となる。この曲線の特徴は860℃〜875℃に頂点を持つ低温側吸熱ピークと875℃〜890℃に頂点を持つ高温側吸熱ピークの2つの吸熱ピークを持つことにある。
【0016】
また、最高温度800℃にて仮焼し、粉砕を行い再度同条件で仮焼すると、やはりBi−2212相結晶とCa2 PbO4 ,CuOなどの超電導相以外の不純物相あるいはBi−2201相の結晶形態であるが、その主成分のBi−2212相結晶にCa2 PbO4 ,CuOなどの超電導相以外の不純物相が一部取り込まれて分散している状態となる。そのとき所定の条件で図3▲2▼のDTA曲線となる。この曲線の特徴は、前述の860℃〜875℃に頂点を持つ低温側吸熱ピークが高温側にシフトし、その曲線が前述の875℃〜890℃に頂点を持つ高温側吸熱曲線と一部重なっていることにある。
【0017】
最高温度800℃〜840℃にて仮焼すると、Bi−2212相結晶とCa2 PbO4 ,CuOなどの超電導相以外の不純物相の結晶、Bi−2223相の結晶の混相状態となるが、そのBi−2212相結晶、あるいはBi−2223相の結晶にCa2 PbO4 ,CuOなどの超電導相以外の不純物相が均一に取り込まれて分散している状態となる。そのとき所定の条件で図3▲3▼のDTA曲線となる。この曲線の特徴は、前述の低温側吸熱ピークが無くなり、875℃〜890℃に頂点を持つ一つの吸熱ピークのみということにある。
【0018】
最高温度840℃〜融点以下にて仮焼するとBi−2212相結晶とCa2 PbO4 ,CuOなどの超電導相以外の不純物相の結晶、Bi−2223相の結晶の混相状態となるが、Bi−2223相が主成分となる。そのため多結晶焼結体を作成時に高温相が成長するところは少なく、結果的にBi−2223相になりきらない部分が残り、高Jcが得られなくなる。そのときのDTA曲線は、所定の測定条件で、図3▲3▼となる。この曲線の特徴は、前述の低温側吸熱ピークが無くなり、875℃〜890℃に頂点を持つ一つの吸熱ピークのみということにある。
【0019】
そして、以上の仮焼粉の組成構成、結晶の混晶状態、並びにDTA吸熱ピークとJc(臨界電流密度)との対応関係からは、Bi系2223相多結晶体で高い臨界電流密度を得るには、焼結する前の段階における仮焼粉がBi系2223相の結晶と実質的に同じ成分組成を有し、Bi−2212相の結晶が主成分となり、Bi,Pb,Sr,CaまたはCuの1種以上の酸化物から実質的になるものであり、主成分のBi−2212相の結晶に取り込まれることなくその他の酸化物が均一に分散しているためDTAの吸熱ピークが所定の測定条件で図3▲1▼の特徴を持つものであればよいことがわかる。また、その仮焼条件は、最高温度720℃〜800℃望ましくは740℃〜780℃であり、さらにその焼成時間は固相反応の開始に最低必要な0.1時間以上であればよいが、あまり長いと外部からのコンタミネーションが懸念されるため、最長でも300時間とするが、望ましくは1時間〜100時間である。
【0020】
あるいは、仮焼粉は、Bi−2212相の結晶が主成分となり、Bi,Pb,Sr,CaまたはCuの1種以上の酸化物から実質的になるものであり、主成分のBi−2212相の結晶にその他の酸化物が均一に取り込まれているためDTAの吸熱ピークが所定の測定条件で図3▲3▼の特徴を持つものであればよいことがわかる。また、その仮焼条件が最高温度800℃〜840℃望ましくは805℃〜830℃であり、さらにその焼成時間は上記と同様の理由により0.1時間〜300時間望ましくは1時間〜100時間である。
【0021】
そこで、この出願の発明の仮焼粉では、前記のとおり、DTA吸熱ピークとして、860〜875℃に頂点を持つ低温側吸熱ピークと875〜890℃に頂点を持つ高温側吸熱ピークとが表われるもので、特に、最高温度720〜800℃、望ましくは740〜780℃で、上記と同様の理由により0.1〜300時間、望ましくは1〜100時間仮焼されてなるものであること、あるいは、DTA吸熱ピークとして、875〜890℃のみに頂点を持つ吸熱ピークが表われるもので、特に、最高温度800〜840℃、望ましくは805〜830℃で、上記と同様の理由により0.1〜300時間、望ましくは1〜100時間仮焼されてなるものであることを特徴としている。
【0022】
また、この発明の仮焼粉は、成分組成が式(1)で表わされるBi系酸化物高温相超電導体の焼結体製造用の仮焼粉であって、全体組成は前記式(1)と実質的に同一であり、式(2)で表わされる成分組成の結晶とそれ以外のBi,Pb,Sr,CaおよびCuの元素の1種以上のものの酸化物とを含有することを適当としている。
【0023】
式(1)(2)における元素数は、各々Cuを3および2として標準化した時のものである。そしてこの元素数の上下限の範囲は、高温相超電導体の焼結体としての多結晶体を得るために望ましいものである。
なお、前記の「実質的に同一」との規定は、不可避的要因(不純物の混入等)を除いて同一であることを意味している。
【0024】
仮焼粉の製造プロセスについては、図1のような一般的なものとして適宜に考慮される。また、この発明のJc≧9000A/cm2 の特性の多結晶体の製造も図2のような一般的なものとして適宜に考慮される。
また、前記のDTA吸熱ピークについても、その測定は通常の手法によるものとして考慮される。
【0025】
以下、実施例を示し、さらに詳しくこの発明の実施の形態について例示説明する。もちろん、この発明は以下の例により何ら限定されることはない。
【0026】
【実施例】
以下の実施例においては次の諸条件が共通して採用されている。
TG−DTA(熱重量−示差熱分析)装置は、マックサイエンス製2000型を用いた。
測定条件は、700℃〜920℃で2℃/minの昇温速度、試料充填量は内容積0.1ccのアルミナ容器に20mg、乾燥Air雰囲気で行った。
【0027】
1軸成形条件としては、1.0〜5.0Ton/cm2 のプレス成形を行った。
中間圧縮はCIP装置を用い1〜3Ton/cm2 の圧力をかけ、必要に応じて数回行った。
焼結条件は、温度820〜860℃、雰囲気は大気である。
【0028】
Jc測定にあたっては、上記プロセスにて得られた多結晶体を短冊状に切り出し、電極を作成して測定用試料とした。この試料を4端子通電法にてJcを測定した。
実施例1
所要の原料を、酸化物組成がBi1.85Pb0.35Sr1.90Ca2.05Cu3.05OX となるように調整し、圧粉体を形成してこれを仮焼した。
【0029】
仮焼は乾燥空気中760℃で10時間行った。粉砕は極性有機溶媒と非極性有機溶媒5:100(重量比)の混合液を溶媒に用いて、Zrボールを使用しての湿式粉砕により行った。粉砕は、平均粒子径が2.0μm以下になるまで行った。粉砕後の乾燥は減圧乾燥法で密閉系で行い大気中の水分やカーボンが吸着しないようにした。再び仮焼を乾燥空気中760℃で10時間行い仮焼粉を得た。平均粒径は2.5μm以下であり、XRDにて確認したところBi−2212相Bi−2201相及びCa2 PbO4 ,CuOなどの超電導相以外の不純物相からなっていた。また、TG−DTA測定を行ったところ、865℃と883℃の頂点を持つ吸熱ピークが確認された。この時の仮焼粉の炭素含有量は180ppmであった。この仮焼粉を用いて、前記焼結条件に沿って、以下の条件で焼結体を作製した。
【0030】
プレス成型:直径20φmm、厚さ1mmの円盤状圧粉体に3.0Ton/cm2
焼結:850℃*50時間(大気中)
中間圧縮:CIP法で3.0Ton/cm2
こうして得られた試料を短冊状に切り出し、Ag電極を作製し、4端子通電法により77Kで臨界電流密度Jcを測定したところ、10,500A/cm2 の値が得られた。
実施例2
実施例1において仮焼粉作製時に仮焼温度を820℃とした以外は、同様な方法でJc測定用試料を作製した。XRDにて確認したところ仮焼粉はBi−2223相、Bi−2212相及びCa2 PbO4 ,CuOなどの超電導相以外の不純物相からなっており、Bi−2223相の割合は5%であった。TG−DTA測定を行ったところ、883℃の頂点を持つ吸熱ピークが確認された。この時の仮焼粉の炭素含有量は160ppmであった。この試料のJcは、9,000A/cm2 の値を示した。
実施例3
実施例1において得られた仮焼粉を銀シースに充填し外径が約2mmになるまで線引きを行った。その後電気炉にて簡単な熱処理を行い、テープ厚が0.2mm程度になるまで圧延を行い、その後840℃前後で25〜100時間焼成を行う。この圧延と焼成を数回繰り返し試料を作製した。こうして得られた試料のJcは、20,000A/cm2 の値を示した。
実施例4
実施例1において作製した仮焼粉と同じ条件で作製した仮焼粉を、有機溶剤及び有機バインダーにより合成した有機ビヒクルと重量比3:1でそれぞれ混合し、三本ロールにより均一分散させ、超電導ペーストを得た。このペーストを用い、スクリーン印刷法により銀基板上に膜厚50μmのペースト厚膜を作製し、850℃×50時間の熱処理を行って試料を作製した。この試料のJcは、11,200A/cm2 の値を示した。
比較例1
実施例1において仮焼粉作製時に仮焼温度を800℃とした以外は、同様な方法でJc測定用試料を作製した。Bi−2212相及びCa2 PbO4 ,CuOなどの超電導相以外の不純物相からなっており、またTG−DTA測定を行ったところ、875℃と885℃に頂点を持つ吸熱ピークが確認された。この時の仮焼粉の炭素含有量は190ppmであった。この試料のJcは、5,000A/cm2 の値を示した。
比較例2
実施例1において仮焼粉作製時に仮焼温度を700℃とした以外は、同様な方法でJc測定用試料を作製した。Bi−2201相・Bi−2122相及びCa2 PbO4 ,CuOなどの超電導相以外の不純物相からなっていて、その主成分は、Bi−2201相であった。また、TG−DTA測定を行ったところ、830〜890℃に4つの吸熱ピークが確認された。この時の仮焼粉の炭素含有量は380ppmであった。この試料のJcは、1,500A/cm2 の値を示した。
比較例3
実施例1において仮焼粉作製時に仮焼温度を850℃とした以外は、同様な方法でJc測定用試料を作製した。Bi−2223相、Bi−2212相及びCa2 PbO4 ,CuOなどの超電導相以外の不純物相からなっていて、その主成分は、Bi−2223相であり、割合は90%であった。また、TG−DTA測定を行ったところ、884℃にのみ吸熱ピークが確認された。この時の仮焼粉の炭素含有量は180ppmであった。この試料のJcは、1,000A/cm2 の値を示した。
比較例4
比較例1で得られた仮焼粉を用い、焼結時の焼結温度を830℃とした以外は、実施例1と同じ手法で焼結体を作製した。この試料のJcを測定したところ、800A/cm2 の値しか得られなかった。
比較例5
比較例3で得られた仮焼粉を用いた以外は、実施例3と同一条件にて銀テープを作製した。この試料のJcを測定したところ、8,500A/cm2 の値しか得られなかった。
比較例6
比較例3で得られた仮焼粉を用いた以外は、実施例4と同一条件にてペースト厚膜を作製した。この試料のJcを測定したところ、4,300A/cm2 の値しか得られなかった。
【0031】
【発明の効果】
以上詳しく説明したとおり、この出願の発明により、Agシース等の手段を採用することなしに、焼結によって、Jc(臨界電流密度)の高いBi系高温相超電導体が提供されることになる。
【図面の簡単な説明】
【図1】仮焼粉の製造プロセスを示した工程図である。
【図2】焼結多結晶体の製造プロセスを示した工程図である。
【図3】DTA吸熱ピークを示した図である。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a calcined powder for a Bi-based high-temperature phase superconductor and a high Jc high-temperature phase superconductor polycrystal obtained from the calcined powder.
[0002]
[Prior art and its problems]
Regarding Bi-based oxide high-temperature superconductors, it is known that there are high-temperature phase crystals with a Tc (critical temperature) of 100K level and low-temperature phase crystals with an 80K level. The composition is composed of 2223 phase crystals expressed as standardized as (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x , while the low-temperature phase crystal is standardized as Bi 2 Sr 2 Ca 1 Cu 2 O x . It is clarified that it consists of 2212-phase crystals expressed as follows.
[0003]
Among these Bi-based superconductors, the former high-temperature 2223-phase superconductor is vigorously studied for practical use in order to solve the problems that it is difficult to make a wire and the Jc (critical current density) is low. For example, it has been reported so far that a sample having a characteristic of Jc ≧ 60,000 A / cm 2 has been realized by the Ag sheath method although it is a short sample.
[0004]
However, in spite of high expectations, the Jc of the 2223 high-temperature superconductor remains at the 1,000 to 2,500 A / cm 2 level, which is an order of magnitude lower in the general sintering method. A drastic and drastic improvement in characteristics is desired.
In order to solve such problems, it is considered that the improvement of the manufacturing process is taken into consideration, and the handling of the raw material powder for sintering should be reviewed. Actually, for example, in “Powder and Powder Metallurgy” 35 (1988), P1020, or “Powder and Powder Metallurgy” 39 (1992), P378, raw powder is sintered to produce a superconducting sintered body. In addition, it is reported that the insertion of an intermediate compression step greatly improves the critical current density due to the formation and densification of the C-axis oriented structure. Moreover, using an XRD figure and a TG-DTA figure as an evaluation means which shows the state of the raw material powder (calcined powder) applied to sintering is generally performed. For example, Jpn. J. Appl. Phys., 28 (1989), L2196 reports that the shape of the DTA endothermic curve changes depending on the oxygen partial pressure and the temperature increase rate of differential thermal analysis.
[0005]
However, there are few reports on the influence of the state of the raw material powder (calcined powder) applied to the sintering on the critical current density of the superconducting sintered body, and it has not been fully analyzed.
Therefore, the invention of this application overcomes the limitations of the prior art as described above, and focuses on the raw material powder (calcined powder) applied to sintering, so that the Jc (criticality) of Bi-based oxide high-temperature phase superconductor can be obtained. It is an object to provide a new technical means for greatly improving current density.
[0006]
[Means for Solving the Problems]
The invention of this application is a calcined powder for a sintered body of a Bi-based oxide high-temperature 2223 phase superconductor to be applied to a sintering method in order to solve the above-mentioned problems, and the overall composition is a sintered body And is calcined at a maximum temperature of 720 to 800 ° C. in the atmosphere , and the crystal form is an impurity oxide phase other than the superconducting phase or Bi− The 2201 phase is uniformly dispersed without being taken in , and as a DTA endothermic peak, a low temperature side endothermic peak having a peak at 860 to 875 ° C. and a high temperature side endothermic peak having a peak at 875 to 890 ° C. appear. A calcined powder for a Bi-based high-temperature phase superconductor (Claim 1) and a calcined powder for a sintered body of a Bi-based oxide high-temperature 2223-phase superconductor for application to a sintering method, the composition is substantially identical to the sintered body, or , In the air, it has been calcined at a maximum temperature of from 800 to 840 ° C., the crystalline form impurities oxide phases other than the superconducting phase is dispersed is incorporated uniformly into Bi-2212 phase crystal or Bi-2223 phase crystal, Only the endothermic peak having an apex at 875 to 890 ° C. appears as a DTA endothermic peak. In addition, the invention of this application is such that the component composition of the calcined powder is the following formula (1)
[0007]
[Chemical 3]
[0008]
(The number of elements in the formula shows the following values.
1.20 ≦ a ≦ 2.50
0 ≦ b ≦ 0.80
1.20 ≦ c ≦ 3.00
1.20 ≦ d ≦ 3.00
9.00 ≦ x ≦ 10.00)
A calcined powder for producing a sintered body of a Bi-based oxide high-temperature phase superconductor represented by the following formula, wherein the overall composition is substantially the same as the above formula (1), and the following formula (2)
[0009]
[Formula 4]
[0010]
(The number of elements in the formula shows the following values.
1.50 ≦ a ≦ 2.50
0 ≦ b ≦ 0.05
1.50 ≦ c ≦ 2.50
0.50 ≦ d ≦ 1.50
7.00 ≦ x ≦ 8.00)
And a calcined powder for a Bi-based high-temperature superconductor, characterized in that it contains a crystal having a component composition represented by formula (II) and an oxide of one or more other elements of Bi, Pb, Sr, Ca and Cu. (Claim 3 ) is also provided.
[0011]
Further, the invention of this application is a polycrystalline body of a Bi-based oxide high-temperature phase superconductor obtained by sintering the above calcined powder, and has a characteristic of Jc (critical current density) ≧ 9000 A / cm 2 . The present invention also provides a polycrystalline body of a Bi-based high-temperature phase superconductor (claim 4 ).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the characteristics as described above, but has been completed based on new findings derived as a result of detailed examination by the inventors.
The invention can be implemented in various forms by paying attention to this finding.
[0013]
That is, first, in general Bi-based 2223 phase sintered body by sintering method, polycrystal is the crystal grain boundaries often exist for critical current density superconducting current is inhibited by the weak coupling between the grain boundary ( Jc) was only obtained at a maximum of about 2,500 A / cm 2 , but the Ag sheath wire has a Jc of several tens of thousands A / cm 2 even though it is the same polycrystal . From this, it is considered that even if it is a polycrystalline body by improving the properties of the grain boundary, it can be greatly improved from the current value. We are studying various factors.
[0014]
The general manufacturing process of the calcined powder can be shown, for example, in FIG. 1, and the manufacturing process of the polycrystalline body can be shown, for example, in FIG. When the calcined powder is sintered in the air , the Bi-based 2223 phase is likely to grow, and the appropriate crystal form and the ratio at the calcining stage are such that impurities are not present between the grain boundaries as much as possible. It is believed that there is. Further, it is known that the Bi-based 2223 phase grows by the reaction of the Bi-2212 phase and oxides other than the superconducting phase such as Ca 2 PbO 4 and CuO. Therefore, it can be seen that an ideal calcined powder desirably has an impurity oxide phase other than a superconducting phase such as Ca 2 PbO 4 or CuO or a Bi-2201 phase uniformly dispersed in a Bi-2212 phase crystal.
[0015]
It has been found that the dispersion state of such a superconducting phase and impurity phase or Bi-2201 phase can be judged by using a thermal analysis TG-DTA (thermogravimetric-differential thermal analyzer). For example, if the raw material is adjusted to a composition substantially the same as that of a high-temperature phase crystal and calcined at a maximum temperature of 700 ° C., a 2201 phase crystal is formed, and the temperature is further increased to a temporary temperature of 720 ° C. to 800 ° C. When baked, Bi-2212 phase crystals and impurity phases other than the superconducting phase, such as Ca 2 PbO 4 and CuO, and Bi-2201 phases are formed. By pulverizing and calcining again under the same conditions, the main component Bi-2212 phase crystal is uniformly dispersed without incorporating an impurity phase other than the superconducting phase such as Ca 2 PbO 4 , CuO or the Bi-2201 phase. It will be in the state. At that time, when measured under predetermined conditions, the DTA curve shown in FIG. The characteristic of this curve is that it has two endothermic peaks, a low temperature side endothermic peak having a peak at 860 ° C. to 875 ° C. and a high temperature side endothermic peak having a peak at 875 ° C. to 890 ° C.
[0016]
In addition, when calcined at the maximum temperature of 800 ° C., pulverized and calcined again under the same conditions, an impurity phase other than the superconducting phase such as Bi-2212 phase crystal and Ca 2 PbO 4 , CuO or Bi-2201 phase Although it is in a crystal form, a part of the impurity phase other than the superconducting phase such as Ca 2 PbO 4 or CuO is taken in and dispersed in the Bi-2212 phase crystal as its main component. At that time, the DTA curve shown in FIG. The characteristic of this curve is that the low temperature side endothermic peak having the peak at 860 ° C. to 875 ° C. shifts to the high temperature side, and the curve partially overlaps with the high temperature side endothermic curve having the peak at 875 ° C. to 890 ° C. There is in being.
[0017]
When calcined at a maximum temperature of 800 ° C. to 840 ° C., a Bi-2212 phase crystal, a crystal of an impurity phase other than a superconducting phase such as Ca 2 PbO 4 , CuO, and a Bi-2223 phase crystal are mixed. Impurity phases other than the superconducting phase such as Ca 2 PbO 4 and CuO are uniformly taken in and dispersed in the Bi-2212 phase crystal or Bi-2223 phase crystal. At that time, the DTA curve shown in FIG. The characteristic of this curve is that the above-mentioned low-temperature side endothermic peak disappears and only one endothermic peak having a peak at 875 ° C. to 890 ° C. is present.
[0018]
When calcined at a maximum temperature of 840 ° C. to a melting point or lower, a Bi-2212 phase crystal, a crystal of an impurity phase other than a superconducting phase such as Ca 2 PbO 4 , CuO, and a Bi-2223 phase crystal are mixed, but Bi− The 2223 phase is the main component. For this reason, there are few places where the high-temperature phase grows at the time of producing the polycrystalline sintered body, and as a result, a portion that cannot be the Bi-2223 phase remains, and high Jc cannot be obtained. The DTA curve at that time is as shown in FIG. The characteristic of this curve is that the above-mentioned low-temperature side endothermic peak disappears and only one endothermic peak having a peak at 875 ° C. to 890 ° C. is present.
[0019]
From the above-mentioned composition of the calcined powder, the mixed crystal state of the crystal, and the correspondence between the DTA endothermic peak and Jc (critical current density), a Bi 2223 phase polycrystal has a high critical current density. In the pre-sintering stage, the calcined powder has substantially the same composition as the Bi-based 2223 phase crystal, the Bi-2212 phase crystal is the main component, and Bi, Pb, Sr, Ca or Cu. The DTA endothermic peak is a predetermined measurement because the other oxides are uniformly dispersed without being incorporated into the main component Bi-2212 phase crystal. It can be seen that any condition having the characteristics shown in FIG. The calcining conditions are a maximum temperature of 720 ° C. to 800 ° C., preferably 740 ° C. to 780 ° C., and the firing time may be at least 0.1 hour required for the start of the solid phase reaction, If it is too long, there is a concern about contamination from the outside, so the maximum is 300 hours, but it is preferably 1 to 100 hours.
[0020]
Alternatively, the calcined powder is mainly composed of a Bi-2212 phase crystal, and is substantially composed of one or more oxides of Bi, Pb, Sr, Ca, or Cu. Since other oxides are uniformly incorporated into the crystal, it can be understood that the endothermic peak of DTA only needs to have the characteristics shown in FIG. Further, the calcining conditions are a maximum temperature of 800 ° C. to 840 ° C., preferably 805 ° C. to 830 ° C., and the firing time is 0.1 to 300 hours, preferably 1 to 100 hours for the same reason as described above. is there.
[0021]
Therefore, in the calcined powder of the invention of this application, as described above, as the DTA endothermic peak, a low temperature side endothermic peak having a peak at 860 to 875 ° C. and a high temperature side endothermic peak having a peak at 875 to 890 ° C. appear. In particular, the maximum temperature is 720 to 800 ° C., preferably 740 to 780 ° C., and is calcined for 0.1 to 300 hours, preferably 1 to 100 hours, for the same reason as above, or , An endothermic peak having an apex only at 875-890 ° C. appears as the DTA endothermic peak, particularly at a maximum temperature of 800-840 ° C., preferably 805-830 ° C. It is characterized by being calcined for 300 hours, preferably 1 to 100 hours.
[0022]
The calcined powder of the present invention is a calcined powder for producing a sintered body of a Bi-based oxide high-temperature phase superconductor whose component composition is represented by the formula (1), and the overall composition is the formula (1). And containing a crystal having a component composition represented by the formula (2) and an oxide of one or more other elements of Bi, Pb, Sr, Ca and Cu. Yes.
[0023]
The numbers of elements in the formulas (1) and (2) are those when standardized with Cu of 3 and 2, respectively. The upper and lower limits of the number of elements are desirable for obtaining a polycrystalline body as a sintered body of a high-temperature phase superconductor.
The above-mentioned definition “substantially the same” means that it is the same except for inevitable factors (mixing of impurities, etc.).
[0024]
About the manufacturing process of calcining powder, it considers suitably as a general thing like FIG. In addition, the production of a polycrystal having a characteristic of Jc ≧ 9000 A / cm 2 according to the present invention is appropriately considered as a general one as shown in FIG.
In addition, the measurement of the DTA endothermic peak is considered to be based on a normal method.
[0025]
Hereinafter, examples will be shown, and the embodiments of the present invention will be described in detail. Of course, the present invention is not limited to the following examples.
[0026]
【Example】
In the following embodiments, the following conditions are commonly adopted.
As a TG-DTA (thermogravimetric-differential thermal analysis) apparatus, a 2000 model manufactured by Mac Science was used.
The measurement conditions were 700 ° C. to 920 ° C., a temperature increase rate of 2 ° C./min, and the sample filling amount was 20 mg in an alumina container with an internal volume of 0.1 cc in a dry Air atmosphere.
[0027]
As uniaxial molding conditions, 1.0 to 5.0 Ton / cm 2 of press molding was performed.
Intermediate compression was performed several times as required using a CIP device, applying a pressure of 1 to 3 Ton / cm 2 .
The sintering conditions are a temperature of 820 to 860 ° C., and the atmosphere is air.
[0028]
In the Jc measurement, the polycrystalline body obtained by the above process was cut into a strip shape, and an electrode was prepared as a measurement sample. This sample was measured for Jc by the 4-terminal energization method.
Example 1
The required raw materials were adjusted so that the oxide composition was Bi 1.85 Pb 0.35 Sr 1.90 Ca 2.05 Cu 3.05 O x , a green compact was formed, and this was calcined.
[0029]
The calcination was performed in dry air at 760 ° C. for 10 hours. The pulverization was performed by wet pulverization using Zr balls using a mixed liquid of a polar organic solvent and a nonpolar organic solvent 5: 100 (weight ratio) as a solvent. The pulverization was performed until the average particle size became 2.0 μm or less. Drying after pulverization was performed in a closed system by a reduced pressure drying method so that moisture and carbon in the atmosphere were not adsorbed. Calcination was again performed at 760 ° C. for 10 hours in dry air to obtain a calcined powder. The average particle size was 2.5 μm or less, and as confirmed by XRD, it consisted of impurity phases other than the superconducting phase such as Bi-2212 phase Bi-2201 phase and Ca 2 PbO 4 , CuO. Moreover, when TG-DTA measurement was performed, the endothermic peak which has the peak of 865 degreeC and 883 degreeC was confirmed. The carbon content of the calcined powder at this time was 180 ppm. Using this calcined powder, a sintered body was produced under the following conditions in accordance with the sintering conditions.
[0030]
Press molding: 3.0 Ton / cm 2 on a disk-shaped green compact with a diameter of 20 mm and a thickness of 1 mm
Sintering: 850 ° C. * 50 hours (in air)
Intermediate compression: 3.0 Ton / cm 2 by CIP method
The sample thus obtained was cut into a strip shape, an Ag electrode was prepared, and the critical current density Jc was measured at 77 K by a four-terminal energization method. A value of 10,500 A / cm 2 was obtained.
Example 2
A sample for Jc measurement was produced in the same manner as in Example 1 except that the calcining temperature was set to 820 ° C. when the calcined powder was produced. As confirmed by XRD, the calcined powder is composed of impurity phases other than the superconducting phase such as Bi-2223 phase, Bi-2212 phase and Ca 2 PbO 4 , CuO, and the ratio of Bi-2223 phase is 5%. It was. When TG-DTA measurement was performed, an endothermic peak having an apex of 883 ° C. was confirmed. The carbon content of the calcined powder at this time was 160 ppm. Jc of this sample showed a value of 9,000 A / cm 2 .
Example 3
The calcined powder obtained in Example 1 was filled in a silver sheath and drawn until the outer diameter was about 2 mm. Thereafter, simple heat treatment is performed in an electric furnace, rolling is performed until the tape thickness is about 0.2 mm, and then baking is performed at around 840 ° C. for 25 to 100 hours. This rolling and firing were repeated several times to prepare a sample. The Jc of the sample thus obtained showed a value of 20,000 A / cm 2 .
Example 4
The calcined powder produced under the same conditions as the calcined powder produced in Example 1 was mixed with an organic vehicle synthesized with an organic solvent and an organic binder at a weight ratio of 3: 1 and uniformly dispersed by a three roll, superconductivity A paste was obtained. Using this paste, a paste thick film having a film thickness of 50 μm was produced on a silver substrate by a screen printing method, and a heat treatment was performed at 850 ° C. × 50 hours to produce a sample. Jc of this sample showed a value of 11,200 A / cm 2 .
Comparative Example 1
A sample for Jc measurement was prepared in the same manner as in Example 1 except that the calcining temperature was set to 800 ° C. when the calcined powder was produced. It consists of impurity phases other than the superconducting phase, such as Bi-2212 phase and Ca 2 PbO 4 , CuO. When TG-DTA measurement was performed, endothermic peaks having vertices at 875 ° C. and 885 ° C. were confirmed. The carbon content of the calcined powder at this time was 190 ppm. Jc of this sample showed a value of 5,000 A / cm 2 .
Comparative Example 2
A sample for Jc measurement was prepared in the same manner as in Example 1 except that the calcining temperature was set to 700 ° C. when the calcined powder was produced. It consists of impurity phases other than the superconducting phase such as Bi-2201 phase / Bi-2122 phase and Ca 2 PbO 4 , CuO, and the main component was the Bi-2201 phase. Moreover, when TG-DTA measurement was performed, four endothermic peaks were confirmed at 830 to 890 ° C. The carbon content of the calcined powder at this time was 380 ppm. Jc of this sample showed a value of 1,500 A / cm 2 .
Comparative Example 3
A sample for Jc measurement was produced in the same manner as in Example 1 except that the calcining temperature was set to 850 ° C. when the calcined powder was produced. Bi-2223 phase, consist Bi-2212 phase and Ca 2 PbO 4, impurity phases other than the superconducting phase such as CuO, its main component, a Bi-2223 phase, the proportion was 90%. Moreover, when TG-DTA measurement was performed, the endothermic peak was confirmed only at 884 degreeC. The carbon content of the calcined powder at this time was 180 ppm. Jc of this sample showed a value of 1,000 A / cm 2 .
Comparative Example 4
A sintered body was produced in the same manner as in Example 1 except that the calcined powder obtained in Comparative Example 1 was used and the sintering temperature during sintering was changed to 830 ° C. When Jc of this sample was measured, only a value of 800 A / cm 2 was obtained.
Comparative Example 5
A silver tape was produced under the same conditions as in Example 3 except that the calcined powder obtained in Comparative Example 3 was used. When Jc of this sample was measured, only a value of 8,500 A / cm 2 was obtained.
Comparative Example 6
A paste thick film was produced under the same conditions as in Example 4 except that the calcined powder obtained in Comparative Example 3 was used. When Jc of this sample was measured, only a value of 4,300 A / cm 2 was obtained.
[0031]
【The invention's effect】
As described above in detail, according to the invention of this application, a Bi-based high-temperature phase superconductor having a high Jc (critical current density) is provided by sintering without employing a means such as an Ag sheath.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a process for producing calcined powder.
FIG. 2 is a process diagram showing a manufacturing process of a sintered polycrystalline body.
FIG. 3 is a diagram showing a DTA endothermic peak.
Claims (4)
1.20≦a≦2.50
0≦b≦0.80
1.20≦c≦3.00
1.20≦d≦3.00
9.00≦x≦10.00)
で表わされるBi系酸化物高温相超電導体の焼結体製造用の仮焼粉であって、全体組成は前記式(1)と実質的に同一であり、かつ、次式(2)
1.50≦a≦2.50
0≦b≦0.05
1.50≦c≦2.50
0.50≦d≦1.50
7.00≦x≦8.00)
で表わされる成分組成の結晶とそれ以外のBi,Pb,Sr,CaおよびCuの元素の1種以上のものの酸化物とを含有する請求項1または2の仮焼粉。The component composition is the following formula (1)
1.20 ≦ a ≦ 2.50
0 ≦ b ≦ 0.80
1.20 ≦ c ≦ 3.00
1.20 ≦ d ≦ 3.00
9.00 ≦ x ≦ 10.00)
A calcined powder for producing a sintered body of a Bi-based oxide high-temperature phase superconductor represented by the following formula, wherein the overall composition is substantially the same as the above formula (1), and the following formula (2)
1.50 ≦ a ≦ 2.50
0 ≦ b ≦ 0.05
1.50 ≦ c ≦ 2.50
0.50 ≦ d ≦ 1.50
7.00 ≦ x ≦ 8.00)
The calcined powder according to claim 1 or 2, comprising a crystal having a component composition represented by formula (1) and an oxide of at least one of the other elements Bi, Pb, Sr, Ca and Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30624197A JP3683395B2 (en) | 1997-11-07 | 1997-11-07 | Calcinated powder and polycrystal for Bi-based high-temperature superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30624197A JP3683395B2 (en) | 1997-11-07 | 1997-11-07 | Calcinated powder and polycrystal for Bi-based high-temperature superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11139824A JPH11139824A (en) | 1999-05-25 |
JP3683395B2 true JP3683395B2 (en) | 2005-08-17 |
Family
ID=17954708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30624197A Expired - Fee Related JP3683395B2 (en) | 1997-11-07 | 1997-11-07 | Calcinated powder and polycrystal for Bi-based high-temperature superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3683395B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007026773A (en) * | 2005-07-13 | 2007-02-01 | Sumitomo Electric Ind Ltd | Superconducting wire material and manufacturing method thereof |
-
1997
- 1997-11-07 JP JP30624197A patent/JP3683395B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11139824A (en) | 1999-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3039513B2 (en) | Barium titanate powder, semiconductor ceramic, and semiconductor ceramic element | |
JP3683395B2 (en) | Calcinated powder and polycrystal for Bi-based high-temperature superconductor | |
JPH0764560B2 (en) | Layered copper oxide | |
JPH11199232A (en) | Calcined powder for superconductor and superconducting polycrystal | |
JP4215180B2 (en) | The manufacturing method of calcining powder used for Bi type 2223 oxide superconductor manufacture, and the manufacturing method of Bi type 2223 oxide superconductor. | |
JP4109363B2 (en) | Oxide superconducting material and manufacturing method thereof | |
JP2689439B2 (en) | Grain boundary insulation type semiconductor porcelain body | |
JPH10101337A (en) | Calcined powder for producing bi-containing oxide superconductor | |
JPH06176637A (en) | Manufacture of bi oxide superconductive wire | |
JPH10226569A (en) | Calcined powder for producing bi-containing oxide superconductor and bi-2223 phase polycrystalline body obtained by sintering same | |
JP2555734B2 (en) | Production method of superconducting material | |
JPH0199279A (en) | Manufacture of superconducting ceramic substrate | |
JP2964258B2 (en) | Manufacturing method of oxide superconductor | |
JP3568657B2 (en) | Manufacturing method of oxide superconductor | |
JP3590567B2 (en) | Manufacturing method of oxide superconducting wire and oxide superconducting wire | |
JP3461654B2 (en) | Manufacturing method of oxide superconductor | |
JP2971504B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH06183823A (en) | Production of superconductor of oxide | |
JPH02204358A (en) | Oxide superconductor and production thereof | |
CN115724662A (en) | Oxide solid electrolyte and preparation process thereof | |
JP2761727B2 (en) | Manufacturing method of oxide superconductor | |
JP2866484B2 (en) | Manufacturing method of oxide superconductor | |
JPS63307111A (en) | Production of electric conductor | |
JP2590242B2 (en) | Manufacturing method of oxide superconductor | |
JPH08337424A (en) | Production of bismuth-containing oxide superconducting wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080603 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080603 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |