JP3682475B2 - Water-soluble anticancer agent - Google Patents

Water-soluble anticancer agent Download PDF

Info

Publication number
JP3682475B2
JP3682475B2 JP21605993A JP21605993A JP3682475B2 JP 3682475 B2 JP3682475 B2 JP 3682475B2 JP 21605993 A JP21605993 A JP 21605993A JP 21605993 A JP21605993 A JP 21605993A JP 3682475 B2 JP3682475 B2 JP 3682475B2
Authority
JP
Japan
Prior art keywords
adriamycin
water
group
anticancer agent
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21605993A
Other languages
Japanese (ja)
Other versions
JPH0769900A (en
Inventor
昌幸 横山
一則 片岡
光夫 岡野
靖久 桜井
隆 ▲勢▼藤
重人 福島
好美 山田
久雄 浴本
一也 岡本
洋子 真柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Kayaku Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nippon Kayaku Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nippon Kayaku Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP21605993A priority Critical patent/JP3682475B2/en
Publication of JPH0769900A publication Critical patent/JPH0769900A/en
Application granted granted Critical
Publication of JP3682475B2 publication Critical patent/JP3682475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ブロック共重合体と、アドリアマイシンとの複合体からなる水溶性抗癌剤に関する。
【0002】
【従来の技術】
親水性高分子構造部分とアドリアマイシンを結合せしめた高分子構造部分とを有するブロック共重合体からなる水溶性高分子化抗癌剤については、特開平2−300133号公報に記載されている。
【0003】
【発明が解決しようとする課題】
特開平2−300133号公報に記載された方法によって得られる水溶性高分子化抗癌剤は優れた抗癌活性を示すが、至適投与量がアドリアマイシンに比べかなり高くなっていた。
【0004】
【課題を解決するための手段】
本発明者らは、前記水溶性高分子化抗癌剤の抗癌活性を改良するために鋭意検討した結果本発明を完成した。
【0005】
即ち、本発明は、
(1)式(1)、(2)またはこれらの塩の構造を有するブロック共重合体と、アドリアマイシンとの複合体からなる水溶性抗癌剤、
【0006】
【化3】

Figure 0003682475
【0007】
(式中、R1 は水素または低級アルキル基を表し、R2 は結合基を表し、R3 はメチレン基またはエチレン基を表し、Yは水素または保護基を表し、またRはそれぞれ独立して水酸基または式(3)の構造を有するアドリアマイシンの残基を表すものとし、nは5〜1,000、mは2〜300、xは0〜300の整数を示すが、xはmより大きくないものとする。)
【0008】
【化4】
Figure 0003682475
【0009】
(2)ブロック共重合体が、ポリエチレングリコール構造部分を外側に、ポリアミノ酸またはその塩構造部分を内側とするミセルを形成し、ミセル内にアドリアマイシンを含有するものである上記(1)記載の水溶性抗癌剤、
(3)R1 がメチル基である上記(1)または(2)記載の水溶性抗癌剤、
(4)R2 が炭素数2〜4のアルキレン基である上記(1)、(2)または(3)記載の水溶性抗癌剤、
(5)R3 がメチレン基である上記(1)、(2)、(3)または(4)記載の水溶性抗癌剤、
に関する。
【0010】
本発明の水溶性抗癌剤は高い薬理効果を有する。
【0011】
以下、本発明について詳細に説明する。
【0012】
前記式(1)または(2)において、R1 は水素または低級アルキル基を表すが、好ましいものはメチル基である。R2 は本発明の水溶性抗癌剤の水溶性を損なわない限り(好ましくは、さらに本発明の水溶性抗癌剤のミセル形成能を損なわない限り)、特に限定されず、ポリエチレングリコール構造部分の末端にポリアミノ酸構造部分を形成させる際、ポリエチレングリコール構造部分を構成することになる化合物の末端を該形成に適した構造に変換させるために使用した方法及び化合物に対応した構造をとる。例えばメチレン基(−CH2 −)、エチレン基(−CH2 CH2 −)、プロピレン基(−CH(CH3 )CH2 −)、トリメチレン基(−CH2 CH2 CH2 −)、イソブチレン基(−CH2 CH(CH3 )CH2 −)等の炭素数1〜8、好ましくは炭素数1〜4のアルキレン基等が挙げられる。ポリアミノ酸の塩としては、ナトリウム塩、カリウム塩等が挙げられるが、特に限定されるものではない。前記式(1)において、Yは水素または保護基を表し、保護基としてはアセチル基等が挙げられるが、特に限定されない。
【0013】
水溶性抗癌剤に用いられるブロック共重合体は、水溶性である限りその分子量は特に限定されないが、好ましくは1,000〜100,000、特に好ましくは5,000〜50,000である。ブロック共重合体中の、ポリエチレングリコール構造部分とアドリアマイシンを結合せしめたポリアミノ酸構造部分の割合は、ブロック共重合体の水溶性が保たれる限り特に限定されないが、好ましくは1:0.1〜10(重量比)、特に好ましくは1:0.2〜5(重量比)である。また、nは5〜1,000であるが好ましくは15〜400であり、mは2〜300であるが好ましくは10〜100であり、xは0〜300であるが好ましくは0〜100である。ブロック共重合体に結合させるアドリアマイシンの量は特に限定されないが、通常ブロック共重合体中の量が3〜80重量%となる量であり、好ましくは5〜60重量%となる量である。ブロック共重合体に結合しているアドリアマイシンの量と結合していないアドリアマイシンの量の比は特に限定されないが、通常1:0.01〜10(重量比)であり、好ましくは1:0.1〜2である。
【0014】
ブロック共重合体におけるアドリアマイシンを結合せしめる担持用担体は種々の方法により製造することができる。例えばポリエチレングリコールまたはその末端を化学修飾したものにポリアミノ酸を反応させ、その後保護基を含むものは保護基を除去することにより、またはポリエチレングリコールまたはその末端を化学修飾したものと重合性アミノ酸またはアミノ酸誘導体モノマーを反応させ、保護基を含むものは保護基を除去することにより担持用担体が得られる。
【0015】
ポリエチレングリコールの末端の化学修飾は、公知の方法によって行うことができ、例えば水酸基をアミノ基に変換する方法として、エチレンイミンを反応させる方法、アクリロニトリルやメタクリロニトリルをマイケル付加後、ニトリル基を還元しアミノ基に変換する方法、水酸基をハロゲン基に置換した後、エタノールアミン等のアルコールアミンを反応する方法、または水酸基を直接ニトリルに変換後、還元しアミノ基に変換する方法等で行うことができる。また、水酸基をカルボキシル基に変換する方法として、通常の酸化反応、縮合反応、付加反応、加水分解反応、またはこれらを組み合わせた反応等を採用できる。例えば、水酸基を金属ナトリウムでアルコラートとした後、ブロモ酢酸エチル等のハロゲン化脂肪酸エステルを付加し、その後加水分解する方法で水酸基をカルボキシル基に変換することができる。
【0016】
また、保護基を除去する方法は、アルカリによる方法、酸による方法及び還元法で可能である。アルカリ法で用いるアルカリ性物質としては、カセイソーダ、カセイカリ、ヒドラジン、アンモニア等通常のアルカリ性物質を用いることができる。酸法で用いる酸性物質としては、トリフルオロメタンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、酢酸、ギ酸、フッ化水素酸、臭化水素酸、塩化水素酸等の通常の酸性物質を用いることができる。また副反応を防止するため、アニソール、チオアニソール、m−クレゾール、o−クレゾール等を加えることもできる。還元法としては、接触還元法、接触水素移動還元法等一般的な方法を用いることができる。
【0017】
また、ポリアミノ酸構造部分が、末端にアミノ基を有する場合、末端アミノ基を修飾したものを担持用担体として用いることもできる。修飾法としては酸無水物または酸ハロゲン化物等を用いる方法が挙げられる。修飾は保護基を除去する前でも後でもどちらでも可能である。
【0018】
このようにして得られる担持用担体に必要によりアドリアマイシンを反応させることにより本発明で用いられるブロック共重合体が得られる。例えば式(1)のブロック共重合体でアドリアマイシンが結合したものを得るには、式(1)においてすべてのRが水酸基である担持用担体にアドリアマイシンを反応させればよい。担持用担体にアミド結合でアドリアマイシンを結合させる際、反応はペプチド結合生成法として知られる常法に準じて行うことができる。例えば、酸ハロゲン化物法、酸無水物法、カップリング法等が使用できるが、縮合剤を使用するカップリング法が望ましい。縮合剤としては、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)、ジシクロヘキシルカルボジイミド(DCC)、カルボニルジイミダゾール(CDI)、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキシキノリン(EEDQ)、ジフェニルホスホリルアジド(DPPA)等が使用できる。縮合剤はアドリアマイシンに対して0.5〜20倍モル用いるのが好ましく、特に1〜10倍モル用いるのが好ましい。またこの際、N−ヒドロキシサクシンイミド(HONSu)、1−ヒドロキシベンゾトリアゾール(HOBt)、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボン酸イミド(HONB)等を共存させてもよい。
【0019】
アドリアマイシンの使用量は特に限定されないが、通常担持用担体のカルボキシル基1当量に対し、0.1〜2モル用いる。
【0020】
縮合反応は溶媒中で行うのが好ましく、溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ジオキサン、テトラヒドロフラン(THF)、水及びそれらの混合溶媒等種々のものが使用でき、特に限定されない。溶媒の使用量は特に限定されないが、通常担持用担体に対して10〜500重量倍用いる。
【0021】
縮合反応は、−10〜40℃で行うのが好ましく、特に、−5〜30℃で行うのが好ましい。反応は2〜48時間行えば充分である。
【0022】
本発明で用いられるブロック共重合体に、アドリアマイシンを添加した後、適当な処理をすることにより、本発明の水溶性抗癌剤が得られる。あるいはアドリアマイシンを添加する代わりに、縮合反応の条件により、すなわちアドリアマイシンの量を多めにする、縮合剤の量を少なめにする、反応時間を短くするといった方法により、未反応のアドリアマイシンを残した後、適当な処理をすることにより得ることもできる。
【0023】
処理の方法としては、縮合反応液にアドリアマイシンまたはアドリアマイシンの溶液を添加したもの、あるいは未反応のアドリアマイシンを残した縮合反応液を透析、限外濾過することにより、水溶液とする方法が挙げられる。あるいは縮合反応液をイソプロピルエーテル(IPE)等の貧溶媒で沈析した後適当な溶媒に溶解したもの、もしくはブロック共重合体を適当な溶媒に溶解したものにアドリアマイシンまたはアドリアマイシンの溶液を添加し、透析、限外濾過してもよい。あるいは縮合反応液を透析、限外濾過した後、アドリアマイシンまたはアドリアマイシンの溶液を添加し、再度透析、限外濾過してもよい。ブロック共重合体とアドリアマイシンを混合する際用いる溶媒としては、ブロック共重合体とアドリアマイシンを共によく溶解するものが好ましい。例えばDMF、DMFと水の混合溶媒等が挙げられる。また、ブロック共重合体とアドリアマイシンを混合する際、超音波照射等の処理を行ってもよい。
【0024】
限外濾過を行った後でも、ブロック共重合体に結合していないアドリアマイシンが存在することは、種々の分析手段により確認できる。例えば、液体クロマトグラフ、質量分析等の手段が挙げられる。定量することも可能である。
【0025】
以下に、ポリエチレングリコール構造部分とポリアスパラギン酸構造部分とからなる担持用担体で、アドリアマイシンをポリアスパラギン酸の側鎖に結合させたブロック共重合体にアドリアマイシンを添加した水溶性抗癌剤を例にとり、その合成法を詳しく述べる。
【0026】
この水溶性抗癌剤に用いるブロック共重合体の合成は、以下の反応式に示すごとくβ−ベンジル−L−アスパルテート−N−カルボン酸無水物(BLA−NCA)を、片末端にメトキシ基を有し、他の片末端に3−アミノプロピル基を有するポリエチレングリコール(PEG−NH2 )を開始剤として、DMF、DMSO、ジオキサン、クロロホルム、THF、アセトニトリル等の溶媒中で開環重合させ、ポリエチレングリコール−ポリ(β−ベンジル−L−アスパルテート)ブロック共重合体(PEG−PBLA)を得、次いでこのPEG−PBLAのベンジルエステルを加水分解してポリエチレングリコール−ポリアスパラギン酸ブロック共重合体(PEG−P(Asp.))を得る。このPEG−P(Asp.)に抗癌剤のアドリアマイシンとEDC、DCC等の縮合剤を加え、溶液中で反応させることにより、アドリアマイシンの一級アミノ基とポリアスパラギン酸のカルボキシル基とをアミド結合で結合させたブロック共重合体(PEG−P(Asp.)ADRを得る。
【0027】
【化5】
Figure 0003682475
【0028】
(式中、Rは水酸基あるいは式(3)を表し、nは5〜1,000、mは2〜300、xは0〜300の整数を示すが、xはmより大きくないものとする。)
【0029】
【化6】
Figure 0003682475
【0030】
縮合反応液を透析、限外濾過し、アドリアマイシン換算で20mg/ml程度の水溶液とし、アドリアマイシンのDMF溶液を添加し、10分間超音波照射を行い、その後再度透析、限外濾過を行うことにより、本発明の水溶性抗癌剤を得ることができる。あるいは縮合反応液をIPEで沈析した後DMFに溶解し、アドリアマイシンのDMF−水混合溶液を添加し、10分間超音波照射を行い、透析、限外濾過を行っても得ることができる。
【0031】
本発明の水溶性抗癌剤は高いアドリアマイシン含量にもかかわらず良好な水溶性を有しており、凍結乾燥したり濃縮してもその水溶性は保たれている。
【0032】
この水溶性抗癌剤の抗癌活性は、表1に示すように元のアドリアマイシン自体よりも高いものである。しかもその高い抗癌活性はアドリアマイシンよりも少ない副作用の範囲でも達成される。また特開平2−300133号公報に記載されている水溶性高分子化抗癌剤に比べ、少ない投与量で同等の抗癌活性を示している。
【0033】
本発明の水溶性抗癌剤は、一般的に使用される種々の剤型、例えば固形剤、軟膏、液剤などの形で使用しうるが、通常注射剤として使用され、その投与量は、1週間当り1〜3回投与で、総量50〜1,000mg/m2 週程度である。
【0034】
【実施例】
次に実施例により本発明を具体的に説明する。
【0035】
実施例1
β−ベンジル−L−アスパルテート−N−カルボン酸無水物(BLA−NCA)7.1gをN,N−ジメチルホルムアミド(DMF)70mlに溶解した。片末端メトキシ基片末端3−アミノプロピル基のポリエチレングリコール(PEG−NH2 )(分子量5,100)5.0gをDMF50mlに溶解し、その溶液をBLA−NCA溶液に加えた。40時間後に反応混合物をイソプロピルエーテル(IPE)1,000mlに滴下して沈澱したポリマーを濾過で回収し、IPEで洗浄した後に真空乾燥してポリエチレングリコール−ポリ(β−ベンジル−L−アスパルテート)ブロック共重合体(PEG−PBLA)9.3gを得た。PEG−PBLA7.0gを0.5N水酸化ナトリウムに懸濁しながら室温でベンジルエステルを加水分解した。ポリマーが溶解した後、酢酸でpHを酸性とし、ADVANTEC UK−10(分画分子量=10,000)の限外濾過膜で限外濾過した。濃縮液を凍結乾燥してポリエチレングリコール−ポリアスパラギン酸ブロック共重合体(PEG−P(Asp.))5.1gを得た。このPEG−P(Asp.)1,230mgを水15mlに溶解した。アドリアマイシン塩酸塩1,500mgをDMF150mlに懸濁し、氷冷下トリエチルアミン353μlを加えた後PEG−P(Asp.)水溶液を加えた。この混合溶液にN−ヒドロキシサクシンイミド375mg、および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)525μlを加え、氷冷下4時間反応させた。その後EDC525μlを追加し室温で18時間反応させた。反応後、反応混合液中には全アドリアマイシンに対して2.5%の未反応のアドリアマイシンが残っていた。反応混合液をシリカゲルカラム(ワコーゲルC−100)およびイオン交換樹脂(強酸性イオン交換樹脂PK−216)を用いて精製し、未反応のアドリアマイシン等の低分子物質を除去した。精製後の液を透析膜(分画分子量=12,000)を用いて0.1M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液35mlを得た。得られたPEG−P(Asp.)ADRは前記式(1)の構造を有し、R1 はメチル基、R2 はトリメチレン基、R3 はメチレン基、Yは水素を表す。n=115、m=20、x=4でRの一部は水酸基で残りは前記残基式(3)である。アドリアマイシン含有率は47重量%であるが良好な水溶性を示した。このPEG−P(Asp.)ADRの20mg/ml(アドリアマイシン換算)の水溶液10mlにアドリアマイシン塩酸塩20mg、トリエチルアミン5μlをDMF20mlに溶解した溶液を添加し、10分間の超音波照射を行った後、透析膜(分画分子量=12,000)を用いて0.01M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液10.2mlを得た。液体クロマトグラフによる分析の結果、ブロック共重合体に結合していないアドリアマイシンの量は全アドリアマイシン中の8.5%であった。このものも元のPEG−P(Asp.)ADRと同様良好な水溶性を示した。
【0036】
実施例2
実施例1で得たPEG−P(Asp.)ADRの20mg/ml(アドリアマイシン換算)の水溶液10mlにアドリアマイシン塩酸塩50mg、トリエチルアミン12μlをDMF20mlに溶解した溶液を添加し、10分間の超音波照射を行った後、透析膜(分画分子量=12,000)を用いて0.01M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液11.5mlを得た。液体クロマトグラフによる分析の結果、ブロック共重合体に結合していないアドリアマイシンの量は全アドリアマイシン中の18.4%であった。このものも元のPEG−P(Asp.)ADRと同様良好な水溶性を示した。
【0037】
実施例3
β−ベンジル−L−アスパルテート−N−カルボン酸無水物(BLA−NCA)6.4gをN,N−ジメチルホルムアミド(DMF)60mlに溶解した。片末端メトキシ基片末端3−アミノプロピル基のポリエチレングリコール(PEG−NH2 )(分子量5,100)3.0gをDMF30mgに溶解し、その溶液をBLA−NCA溶液に加えた。40時間後に反応混合物をイソプロピルエーテル(IPE)700mlに滴下して沈澱したポリマーを濾過で回収し、IPEで洗浄した後に真空乾燥してポリエチレングリコール−ポリ(β−ベンジル−L−アスパルテート)ブロック共重合体(PEG−PBLA)7.2gを得た。PEG−PBLA5.0gを0.5N水酸化ナトリウムに懸濁しながら室温でベンジルエステルを加水分解した。ポリマーが溶解した後、酢酸でpHを酸性とし、ADVANTEC UK−10(分画分子量=10,000)の限外濾過膜で限外濾過した。濃縮液を凍結乾燥してポリエチレングリコール−ポリアスパラギン酸ブロック共重合体(PEG−P(Asp.))3.1gを得た。このPEG−P(Asp.)1,010mgを水15mlに溶解した。アドリアマイシン塩酸塩1,500mgをDMF150mlに懸濁し、氷冷下トリエチルアミン353μlを加えた後PEG−P(Asp.)水溶液を加えた。この混合溶液にN−ヒドロキシサクシンイミド375mg、および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)525μlを加え、氷冷下4時間反応させた。その後EDC525μlを追加し、室温で18時間反応させた。反応後、反応混合液中には全アドリアマイシンに対して2.3%の未反応のアドリアマイシンが残っていた。反応混合液をシリカゲルカラム(ワコーゲルC−100)およびイオン交換樹脂(強酸性イオン交換樹脂PK−216)を用いて精製し、未反応のアドリアマイシン等の低分子物質を除去した。精製後の液を透析膜(分画分子量=12,000)を用いて0.1M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液37mlを得た。得られたPEG−P(Asp.)ADRは前記式(1)の構造を有し、R1 はメチル基、R2 はトリメチレン基、R3 はメチレン基、Yは水素を表す。n=115、m=30、x=6でRの一部は水酸基で残りは前記式(3)である。アドリアマイシン含有率は54重量%であるが良好な水溶性を示した。このPEG−P(Asp.)ADRの20mg/ml(アドリアマイシン換算)の水溶液10mlにアドリアマイシン塩酸塩15mg、トリエチルアミン4μlをDMF20mlに溶解した溶液を添加し、10分間の超音波照射を行った後、透析膜(分画分子量=12,000)を用いて0.01M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液9.8mlを得た。液体クロマトグラフによる分析の結果、ブロック共重合体に結合していないアドリアマイシンの量は全アドリアマイシン中の5.5%であった。このものも元のPEG−P(Asp.)ADRと同様良好な水溶性を示した。
【0038】
実施例4
実施例3で得たPEG−P(Asp.)ADRの20mg/ml(アドリアマイシン換算)の水溶液10mlにアドリアマイシン塩酸塩50mg、トリエチルアミン12μlをDMF20mlに溶解した溶液を添加し、10分間の超音波照射を行った後、透析膜(分画分子量=12,000)を用いて0.01M酢酸中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、アドリアマイシン換算で20mg/ml(紫外分光光度計で485nmの吸収より算出)の水溶液10.5mlを得た。液体クロマトグラフによる分析の結果、ブロック共重合体に結合していないアドリアマイシンの量は全アドリアマイシン中の14.4%であった。このものも元のPEG−P(Asp.)ADRと同様良好な水溶性を示した。
【0039】
実施例5
実施例3で得たPEG−PBLA2.0gを0.5N水酸化ナトリウムに懸濁しながら室温でベンジルエステルを加水分解した。ポリマーが溶解した後、酢酸でpHをほぼ中性とし、アミコンYM−1(分画分子量=1,000)の限外濾過膜で限外濾過した。限外濾過を続けながら、0.05N塩酸で洗浄し、さらに水洗を充分に行った。濃縮液を凍結乾燥してポリエチレングリコール−ポリアスパラギン酸ブロック共重合体(PEG−P(Asp.))1.3gを得た。このPEG−P(Asp.)100mgをDMF10mlに溶解し、氷冷下アドリアマイシン塩酸塩71.2mg、トリエチルアミン27.3μl、および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)67.2mgを加え4時間反応させた。さらに室温で20時間反応させた。反応後、反応混合液中には未反応のアドリアマイシンはほとんど残っていなかった。反応混合液をイソプロピルエーテル(IPE)100mlに滴下して沈澱したポリマーを濾過で回収し、IPEで洗浄した後真空乾燥した。水に溶解し、アミコンYM−3(分画分子量=1,000)の限外濾過膜で限外濾過した。限外濾過を続けながら、水、メタノール、酢酸の混合液で洗浄し、さらに水洗を充分に行った後濃縮して、固形分重量で約50mg/ml(一部を凍結乾燥してその重量より算出)の水溶液3.1mlを得た。得られたPEG−P(Asp.)ADRは前記式(1)の構造を有し、R1 はメチル基、R2 はトリメチレン基、R3 はメチレン基、Yは水素を表す。n=115、m=30、x=6でRの一部は水酸基で残りは前記式(3)である。アドリアマイシン含有率は40%であるが良好な水溶性を示した。このPEG−P(Asp.)ADRの50mg/ml(固形分)の水溶液1mlにアドリアマイシン塩酸塩10mg、トリエチルアミン2.5μlをDMF10mlに溶解した溶液を添加し、10分間室温で撹拌した後、透析膜(分画分子量=12,000)を用いて水中で3時間透析した。透析後、ADVANTEC UK−50(分画分子量=50,000)の限外濾過膜で限外濾過した。水洗と濃縮を繰り返し、2mlの水溶液を得た。液体クロマトグラフによる分析の結果、ブロック共重合体に結合していないアドリアマイシンの量は全アドリアマイシン中の18%であった。このものも元のPEG−P(Asp.)ADRと同様良好な水溶性を示した。
【0040】
応用例1
CDF1メスのマウスの背側部皮下にマウス大腸癌Colon 26細胞を移植し、腫瘍の体積が100mm3 前後に達した時点から実施例1、2、3または4で得られた水溶性抗癌剤、または実施例1および2または3および4に対応する抗癌剤(フリーのアドリアマイシン塩酸塩)を添加しないPEG−P(Asp.)ADR、またはアドリアマイシン塩酸塩を4日間隔1回、計3回静脈内に投与し、進行癌に対する効果を検討した。各薬剤は生理食塩水に用時溶解して用いた。また投与量はすべて全アドリアマイシンの量に換算して用いた。薬剤の抗腫瘍効果は、腫瘍消失マウス数と腫瘍増殖曲線から判定した。結果を表1と図1〜7に示す。図から明らかなように、アドリアマイシン塩酸塩を投与した場合、移植した腫瘍の増殖抑制効果は認められるが腫瘍の縮小はほとんど認められないのに対し、本発明の水溶性抗癌剤を投与した場合、移植した腫瘍の増殖抑制効果に優れ、移植した腫瘍が消失したケースも認められた。また、投与量については、ブロック共重合体に結合していないアドリアマイシンの割合が増えるに従って、低い投与量で抗癌活性が見られた。また、毒性の一つの指標である体重減少については、本発明の水溶性抗癌剤はアドリアマイシンに比べ低い体重変化の範囲でも、腫瘍の消失が見られるマウスが存在した。
【0041】
【表1】
Figure 0003682475
【0042】
【発明の効果】
本発明の水溶性抗癌剤は、良好な水溶性を有し、しかも遊離のアドリアマイシンに比較して低い毒性の範囲でも高い抗腫瘍効果を示す。また、従来の水溶性高分子化抗癌剤に比べ、低い投与量で同等の抗癌活性を示すことより、本発明により極めて有用な医薬を提供できるものである。
【図面の簡単な説明】
【図1】アドリアマイシン塩酸塩を投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図2】実施例1の水溶性抗癌剤を投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図3】実施例2の水溶性抗癌剤を投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図4】実施例1および2に対応する抗癌剤(フリーのアドリアマイシン塩酸塩)を添加しないPEG−P(Asp.)ADRを投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図5】実施例3の水溶性抗癌剤を投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図6】実施例4の水溶性抗癌剤を投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。
【図7】実施例3および4に対応する抗癌剤(フリーのアドリアマイシン塩酸塩)を添加しないPEG−P(Asp.)ADRを投与した場合の、マウス大腸癌Colon 26の腫瘍増殖曲線。[0001]
[Industrial application fields]
The present invention relates to a water-soluble anticancer agent comprising a complex of a block copolymer and adriamycin.
[0002]
[Prior art]
A water-soluble polymerized anticancer agent comprising a block copolymer having a hydrophilic polymer structure portion and a polymer structure portion to which adriamycin is bonded is described in JP-A No. 2-300133.
[0003]
[Problems to be solved by the invention]
Although the water-soluble polymerized anticancer agent obtained by the method described in JP-A No. 2-300133 shows excellent anticancer activity, the optimum dose is considerably higher than that of adriamycin.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention as a result of intensive studies to improve the anticancer activity of the water-soluble polymerized anticancer agent.
[0005]
That is, the present invention
(1) A water-soluble anticancer agent comprising a complex of a block copolymer having the structure of formula (1), (2) or a salt thereof and adriamycin,
[0006]
[Chemical 3]
Figure 0003682475
[0007]
(Wherein R 1 Represents hydrogen or a lower alkyl group, R 2 Represents a linking group and R Three Represents a methylene group or an ethylene group, Y represents a hydrogen atom or a protecting group, and each R independently represents a hydroxyl group or a residue of adriamycin having the structure of the formula (3), and n is from 5 to 1, 000, m represents an integer of 2 to 300, and x represents an integer of 0 to 300, but x is not larger than m. )
[0008]
[Formula 4]
Figure 0003682475
[0009]
(2) The water-soluble solution according to the above (1), wherein the block copolymer forms a micelle having a polyethylene glycol structure portion on the outside and a polyamino acid or a salt structure portion on the inside, and contains adriamycin in the micelle. Sex cancer drugs,
(3) R 1 The water-soluble anticancer agent according to the above (1) or (2), wherein is a methyl group,
(4) R 2 The water-soluble anticancer agent according to (1), (2) or (3), wherein is an alkylene group having 2 to 4 carbon atoms,
(5) R Three The water-soluble anticancer agent according to (1), (2), (3) or (4), wherein is a methylene group,
About.
[0010]
The water-soluble anticancer agent of the present invention has a high pharmacological effect.
[0011]
Hereinafter, the present invention will be described in detail.
[0012]
In the formula (1) or (2), R 1 Represents hydrogen or a lower alkyl group, and preferred is a methyl group. R 2 Is not particularly limited as long as the water solubility of the water-soluble anticancer agent of the present invention is not impaired (preferably, unless the ability of micelle formation of the water-soluble anticancer agent of the present invention is further impaired). When the portion is formed, the structure corresponding to the method and the compound used to convert the terminal of the compound constituting the polyethylene glycol structural portion into a structure suitable for the formation is adopted. For example, a methylene group (—CH 2 -), Ethylene group (-CH 2 CH 2 -), Propylene group (-CH (CH Three ) CH 2 -), Trimethylene group (-CH 2 CH 2 CH 2 -), Isobutylene group (-CH 2 CH (CH Three ) CH 2 Examples thereof include alkylene groups having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms such as-). Examples of the polyamino acid salt include, but are not particularly limited to, a sodium salt and a potassium salt. In the formula (1), Y represents hydrogen or a protecting group, and examples of the protecting group include an acetyl group, but are not particularly limited.
[0013]
The molecular weight of the block copolymer used for the water-soluble anticancer agent is not particularly limited as long as it is water-soluble, but it is preferably 1,000 to 100,000, particularly preferably 5,000 to 50,000. The ratio of the polyamino acid structural part in which the polyethylene glycol structural part and adriamycin are combined in the block copolymer is not particularly limited as long as the water solubility of the block copolymer is maintained, but preferably 1: 0.1 to 0.1 10 (weight ratio), particularly preferably 1: 0.2 to 5 (weight ratio). N is 5 to 1,000, preferably 15 to 400, m is 2 to 300, preferably 10 to 100, and x is 0 to 300, preferably 0 to 100. is there. The amount of adriamycin to be bound to the block copolymer is not particularly limited, but is usually an amount such that the amount in the block copolymer is 3 to 80% by weight, and preferably 5 to 60% by weight. The ratio of the amount of adriamycin bound to the block copolymer to the amount of unbound adriamycin is not particularly limited, but is usually 1: 0.01 to 10 (weight ratio), preferably 1: 0.1. ~ 2.
[0014]
The carrier for supporting adriamycin in the block copolymer can be produced by various methods. For example, a polyamino acid is reacted with polyethylene glycol or a chemically modified end thereof, and then a protecting group is removed by removing a protecting group, or polyethylene glycol or a chemically modified end thereof and a polymerizable amino acid or amino acid A carrier for support can be obtained by reacting a derivative monomer and removing the protecting group from those containing a protecting group.
[0015]
Chemical modification of the end of polyethylene glycol can be carried out by a known method. For example, as a method of converting a hydroxyl group to an amino group, a method of reacting ethyleneimine, Michael addition of acrylonitrile or methacrylonitrile, and reduction of the nitrile group This can be carried out by a method for converting to an amino group, a method for reacting an alcohol amine such as ethanolamine after substitution of a hydroxyl group with a halogen group, or a method for converting a hydroxyl group directly to a nitrile and then reducing to a amino group. it can. Moreover, as a method for converting a hydroxyl group into a carboxyl group, a normal oxidation reaction, condensation reaction, addition reaction, hydrolysis reaction, or a combination of these can be employed. For example, the hydroxyl group can be converted to a carboxyl group by a method in which the hydroxyl group is converted to an alcoholate with metallic sodium, a halogenated fatty acid ester such as ethyl bromoacetate is added, and then hydrolyzed.
[0016]
Moreover, the method of removing a protecting group is possible by the method by an alkali, the method by an acid, and the reduction method. Usable alkaline substances such as caustic soda, caustic potash, hydrazine, and ammonia can be used as the alkaline substance used in the alkali method. As the acidic substance used in the acid method, ordinary acidic substances such as trifluoromethanesulfonic acid, methanesulfonic acid, trifluoroacetic acid, acetic acid, formic acid, hydrofluoric acid, hydrobromic acid, and hydrochloric acid can be used. . In order to prevent side reactions, anisole, thioanisole, m-cresol, o-cresol and the like can be added. As the reduction method, a general method such as a catalytic reduction method or a catalytic hydrogen transfer reduction method can be used.
[0017]
Moreover, when the polyamino acid structure part has an amino group at the terminal, a modified terminal amino group can be used as a carrier for support. Examples of the modification method include a method using an acid anhydride or an acid halide. Modification can be done either before or after removal of the protecting group.
[0018]
The block copolymer used in the present invention can be obtained by reacting the thus obtained supporting carrier with adriamycin as necessary. For example, in order to obtain a block copolymer of formula (1) to which adriamycin is bonded, adriamycin may be reacted with a carrier for support in which all Rs are hydroxyl groups in formula (1). When adriamycin is bound to the support by an amide bond, the reaction can be performed according to a conventional method known as a peptide bond generation method. For example, an acid halide method, an acid anhydride method, a coupling method and the like can be used, but a coupling method using a condensing agent is desirable. Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC / HCl), and dicyclohexylcarbodiimide (DCC). Carbonyldiimidazole (CDI), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline (EEDQ), diphenylphosphoryl azide (DPPA) and the like can be used. The condensing agent is preferably used in an amount of 0.5 to 20 times, particularly 1 to 10 times the mol of adriamycin. At this time, N-hydroxysuccinimide (HONSu), 1-hydroxybenzotriazole (HOBt), N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (HONB), etc. may coexist.
[0019]
Although the amount of adriamycin used is not particularly limited, it is usually used in an amount of 0.1 to 2 mol per 1 equivalent of the carboxyl group of the carrier for support.
[0020]
The condensation reaction is preferably carried out in a solvent. Examples of the solvent include N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dioxane, tetrahydrofuran (THF), water, and mixed solvents thereof. Can be used and is not particularly limited. The amount of the solvent used is not particularly limited, but is usually 10 to 500 times by weight with respect to the carrier for support.
[0021]
The condensation reaction is preferably performed at −10 to 40 ° C., particularly preferably −5 to 30 ° C. It is sufficient to carry out the reaction for 2 to 48 hours.
[0022]
The water-soluble anticancer agent of the present invention can be obtained by adding adriamycin to the block copolymer used in the present invention and then performing an appropriate treatment. Alternatively, instead of adding adriamycin, after leaving unreacted adriamycin according to the conditions of the condensation reaction, that is, by increasing the amount of adriamycin, decreasing the amount of condensing agent, and shortening the reaction time, It can also be obtained by appropriate processing.
[0023]
Examples of the treatment method include a method of adding an adriamycin or a solution of adriamycin to the condensation reaction solution, or a method of preparing an aqueous solution by dialysis and ultrafiltration of the condensation reaction solution leaving unreacted adriamycin. Alternatively, a solution of adriamycin or adriamycin is added to a solution obtained by precipitating the condensation reaction solution with a poor solvent such as isopropyl ether (IPE) and then dissolving in a suitable solvent, or a solution obtained by dissolving the block copolymer in a suitable solvent, Dialysis and ultrafiltration may be performed. Alternatively, after dialysis and ultrafiltration of the condensation reaction solution, adriamycin or a solution of adriamycin may be added, followed by dialysis and ultrafiltration again. The solvent used when mixing the block copolymer and adriamycin is preferably a solvent that well dissolves both the block copolymer and adriamycin. Examples thereof include DMF, a mixed solvent of DMF and water, and the like. Further, when the block copolymer and adriamycin are mixed, a treatment such as ultrasonic irradiation may be performed.
[0024]
Even after ultrafiltration, the presence of adriamycin not bound to the block copolymer can be confirmed by various analytical means. For example, means such as liquid chromatograph and mass spectrometry can be used. It is also possible to quantify.
[0025]
The following is an example of a water-soluble anticancer agent in which adriamycin is added to a block copolymer in which adriamycin is bonded to a side chain of polyaspartic acid, which is a carrier for support composed of a polyethylene glycol structural part and a polyaspartic acid structural part. The synthesis method will be described in detail.
[0026]
The block copolymer used for this water-soluble anticancer agent was synthesized with β-benzyl-L-aspartate-N-carboxylic acid anhydride (BLA-NCA) and a methoxy group at one end as shown in the following reaction formula. And polyethylene glycol having a 3-aminopropyl group at the other end (PEG-NH 2 ) As an initiator and ring-opening polymerization in a solvent such as DMF, DMSO, dioxane, chloroform, THF, acetonitrile, and the like, and a polyethylene glycol-poly (β-benzyl-L-aspartate) block copolymer (PEG-PBLA) The benzyl ester of PEG-PBLA is then hydrolyzed to obtain a polyethylene glycol-polyaspartic acid block copolymer (PEG-P (Asp.)). An anticancer agent, adriamycin, and a condensing agent such as EDC and DCC are added to this PEG-P (Asp.) And reacted in solution to bond the primary amino group of adriamycin and the carboxyl group of polyaspartic acid with an amide bond. Block copolymer (PEG-P (Asp.) ADR) is obtained.
[0027]
[Chemical formula 5]
Figure 0003682475
[0028]
(In the formula, R represents a hydroxyl group or formula (3), n represents 5 to 1,000, m represents an integer of 2 to 300, and x represents an integer of 0 to 300, but x is not larger than m. )
[0029]
[Chemical 6]
Figure 0003682475
[0030]
By dialysis and ultrafiltration of the condensation reaction solution to make an aqueous solution of about 20 mg / ml in terms of adriamycin, add a DMF solution of adriamycin, perform ultrasonic irradiation for 10 minutes, and then perform dialysis and ultrafiltration again. The water-soluble anticancer agent of the present invention can be obtained. Alternatively, the condensation reaction solution is precipitated with IPE, dissolved in DMF, adriamycin in DMF-water mixed solution is added, ultrasonic irradiation is performed for 10 minutes, and dialysis and ultrafiltration can be performed.
[0031]
The water-soluble anticancer agent of the present invention has a good water solubility despite a high adriamycin content, and the water solubility is maintained even when lyophilized or concentrated.
[0032]
As shown in Table 1, the anticancer activity of this water-soluble anticancer agent is higher than that of the original adriamycin itself. Moreover, its high anticancer activity is achieved even in the range of fewer side effects than adriamycin. Moreover, compared with the water-soluble polymerized anticancer agent described in JP-A No. 2-300133, the same anticancer activity is shown with a small dose.
[0033]
The water-soluble anticancer agent of the present invention can be used in various commonly used dosage forms, for example, solids, ointments, liquids, etc., but is usually used as an injection, and its dosage is per week. 1 to 3 doses, total 50 to 1,000 mg / m 2 About a week.
[0034]
【Example】
Next, the present invention will be described specifically by way of examples.
[0035]
Example 1
7.1 g of β-benzyl-L-aspartate-N-carboxylic anhydride (BLA-NCA) was dissolved in 70 ml of N, N-dimethylformamide (DMF). One end methoxy group One end 3-aminopropyl group polyethylene glycol (PEG-NH 2 ) (Molecular weight 5,100) 5.0 g was dissolved in 50 ml of DMF, and the solution was added to the BLA-NCA solution. After 40 hours, the reaction mixture was dropped into 1,000 ml of isopropyl ether (IPE), and the precipitated polymer was collected by filtration, washed with IPE, and then vacuum-dried to polyethylene glycol-poly (β-benzyl-L-aspartate). 9.3 g of a block copolymer (PEG-PBLA) was obtained. The benzyl ester was hydrolyzed at room temperature while suspending 7.0 g of PEG-PBLA in 0.5N sodium hydroxide. After the polymer was dissolved, the pH was acidified with acetic acid, and ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-10 (fraction molecular weight = 10,000). The concentrated solution was lyophilized to obtain 5.1 g of a polyethylene glycol-polyaspartic acid block copolymer (PEG-P (Asp.)). 1,230 mg of this PEG-P (Asp.) Was dissolved in 15 ml of water. 1,500 mg of adriamycin hydrochloride was suspended in 150 ml of DMF, 353 μl of triethylamine was added under ice cooling, and then an aqueous PEG-P (Asp.) Solution was added. To this mixed solution, 375 mg of N-hydroxysuccinimide and 525 μl of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) were added and reacted for 4 hours under ice cooling. Thereafter, 525 μl of EDC was added and reacted at room temperature for 18 hours. After the reaction, 2.5% of unreacted adriamycin remained in the reaction mixture with respect to the total adriamycin. The reaction mixture was purified using a silica gel column (Wakogel C-100) and an ion exchange resin (strongly acidic ion exchange resin PK-216) to remove low-molecular substances such as unreacted adriamycin. The purified solution was dialyzed for 3 hours in 0.1 M acetic acid using a dialysis membrane (fraction molecular weight = 12,000). After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 35 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). The obtained PEG-P (Asp.) ADR has the structure of the above formula (1), and R 1 Is a methyl group, R 2 Is trimethylene group, R Three Represents a methylene group and Y represents hydrogen. n = 115, m = 20, x = 4, a part of R is a hydroxyl group and the rest is the residue formula (3). Although the content of adriamycin was 47% by weight, it showed good water solubility. A solution prepared by dissolving 20 mg of adriamycin hydrochloride and 5 μl of triethylamine in 20 ml of DMF was added to 10 ml of an aqueous solution of 20 mg / ml (in terms of adriamycin) of PEG-P (Asp.) ADR, followed by dialysis for 10 minutes. The membrane (fraction molecular weight = 12,000) was dialyzed in 0.01 M acetic acid for 3 hours. After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 10.2 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). As a result of analysis by liquid chromatography, the amount of adriamycin not bound to the block copolymer was 8.5% of the total adriamycin. This also showed good water solubility, similar to the original PEG-P (Asp.) ADR.
[0036]
Example 2
A solution of 50 mg of adriamycin hydrochloride and 12 μl of triethylamine in 20 ml of DMF was added to 10 ml of an aqueous solution of 20 mg / ml (converted to adriamycin) of PEG-P (Asp.) ADR obtained in Example 1, and subjected to ultrasonic irradiation for 10 minutes. Then, the mixture was dialyzed for 3 hours in 0.01 M acetic acid using a dialysis membrane (fraction molecular weight = 12,000). After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 11.5 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). As a result of analysis by liquid chromatography, the amount of adriamycin not bound to the block copolymer was 18.4% of the total adriamycin. This also showed good water solubility, similar to the original PEG-P (Asp.) ADR.
[0037]
Example 3
6.4 g of β-benzyl-L-aspartate-N-carboxylic acid anhydride (BLA-NCA) was dissolved in 60 ml of N, N-dimethylformamide (DMF). One end methoxy group One end 3-aminopropyl group polyethylene glycol (PEG-NH 2 ) (Molecular weight 5,100) 3.0 g was dissolved in 30 mg of DMF, and the solution was added to the BLA-NCA solution. After 40 hours, the reaction mixture was added dropwise to 700 ml of isopropyl ether (IPE), and the precipitated polymer was collected by filtration, washed with IPE, and then vacuum-dried to dry the polyethylene glycol-poly (β-benzyl-L-aspartate) block. The polymer (PEG-PBLA) 7.2g was obtained. The benzyl ester was hydrolyzed at room temperature while suspending 5.0 g of PEG-PBLA in 0.5N sodium hydroxide. After the polymer was dissolved, the pH was acidified with acetic acid, and ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-10 (fraction molecular weight = 10,000). The concentrated solution was freeze-dried to obtain 3.1 g of a polyethylene glycol-polyaspartic acid block copolymer (PEG-P (Asp.)). This PEG-P (Asp.) 1,010 mg was dissolved in 15 ml of water. 1,500 mg of adriamycin hydrochloride was suspended in 150 ml of DMF, 353 μl of triethylamine was added under ice cooling, and then an aqueous PEG-P (Asp.) Solution was added. To this mixed solution, 375 mg of N-hydroxysuccinimide and 525 μl of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) were added and reacted for 4 hours under ice cooling. Thereafter, 525 μl of EDC was added and reacted at room temperature for 18 hours. After the reaction, 2.3% of unreacted adriamycin remained in the reaction mixture with respect to the total adriamycin. The reaction mixture was purified using a silica gel column (Wakogel C-100) and an ion exchange resin (strongly acidic ion exchange resin PK-216) to remove low-molecular substances such as unreacted adriamycin. The purified solution was dialyzed for 3 hours in 0.1 M acetic acid using a dialysis membrane (fraction molecular weight = 12,000). After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 37 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). The obtained PEG-P (Asp.) ADR has the structure of the above formula (1), and R 1 Is a methyl group, R 2 Is trimethylene group, R Three Represents a methylene group and Y represents hydrogen. n = 115, m = 30, x = 6, a part of R is a hydroxyl group and the rest is the formula (3). The adriamycin content was 54% by weight but showed good water solubility. A solution prepared by dissolving 15 mg of adriamycin hydrochloride and 4 μl of triethylamine in 20 ml of DMF was added to 10 ml of an aqueous solution of 20 mg / ml (converted to adriamycin) of PEG-P (Asp.) ADR. The membrane (fraction molecular weight = 12,000) was dialyzed in 0.01 M acetic acid for 3 hours. After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 9.8 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). As a result of analysis by liquid chromatography, the amount of adriamycin not bound to the block copolymer was 5.5% of the total adriamycin. This also showed good water solubility, similar to the original PEG-P (Asp.) ADR.
[0038]
Example 4
A solution of 50 mg of adriamycin hydrochloride and 12 μl of triethylamine in 20 ml of DMF was added to 10 ml of an aqueous solution of 20 mg / ml (converted to adriamycin) of PEG-P (Asp.) ADR obtained in Example 3, and subjected to ultrasonic irradiation for 10 minutes. Then, the mixture was dialyzed for 3 hours in 0.01 M acetic acid using a dialysis membrane (fraction molecular weight = 12,000). After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 10.5 ml of an aqueous solution of 20 mg / ml in terms of adriamycin (calculated from absorption at 485 nm with an ultraviolet spectrophotometer). As a result of analysis by liquid chromatography, the amount of adriamycin not bound to the block copolymer was 14.4% of the total adriamycin. This also showed good water solubility, similar to the original PEG-P (Asp.) ADR.
[0039]
Example 5
The benzyl ester was hydrolyzed at room temperature while suspending 2.0 g of PEG-PBLA obtained in Example 3 in 0.5N sodium hydroxide. After the polymer was dissolved, the pH was made almost neutral with acetic acid, and ultrafiltration was performed with an ultrafiltration membrane of Amicon YM-1 (fraction molecular weight = 1,000). While continuing ultrafiltration, it was washed with 0.05N hydrochloric acid and further washed thoroughly with water. The concentrated solution was lyophilized to obtain 1.3 g of a polyethylene glycol-polyaspartic acid block copolymer (PEG-P (Asp.)). 100 mg of this PEG-P (Asp.) Was dissolved in 10 ml of DMF, and 71.2 mg of adriamycin hydrochloride, 27.3 μl of triethylamine, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC. HCl) 67.2 mg was added and reacted for 4 hours. Furthermore, it was made to react at room temperature for 20 hours. After the reaction, almost no unreacted adriamycin remained in the reaction mixture. The reaction mixture was dropped into 100 ml of isopropyl ether (IPE), and the precipitated polymer was collected by filtration, washed with IPE, and then vacuum dried. It melt | dissolved in water and ultrafiltered with the ultrafiltration membrane of Amicon YM-3 (fraction molecular weight = 1,000). While continuing ultrafiltration, wash with a mixture of water, methanol, and acetic acid, and after washing thoroughly with water, concentrate and concentrate to a solid content weight of about 50 mg / ml (partly freeze-dried, 3.1 ml of an aqueous solution was obtained. The obtained PEG-P (Asp.) ADR has the structure of the above formula (1), and R 1 Is a methyl group, R 2 Is trimethylene group, R Three Represents a methylene group and Y represents hydrogen. n = 115, m = 30, x = 6, a part of R is a hydroxyl group and the rest is the formula (3). Although the content of adriamycin was 40%, it showed good water solubility. A solution of 10 mg of adriamycin hydrochloride and 2.5 μl of triethylamine in 10 ml of DMF was added to 1 ml of an aqueous solution of 50 mg / ml (solid content) of PEG-P (Asp.) ADR, and the mixture was stirred for 10 minutes at room temperature. Dialysis was carried out in water for 3 hours using (fraction molecular weight = 12,000). After dialysis, ultrafiltration was performed with an ultrafiltration membrane of ADVANTEC UK-50 (fraction molecular weight = 50,000). Washing with water and concentration were repeated to obtain 2 ml of an aqueous solution. As a result of analysis by liquid chromatography, the amount of adriamycin not bound to the block copolymer was 18% of the total adriamycin. This also showed good water solubility, similar to the original PEG-P (Asp.) ADR.
[0040]
Application example 1
Mouse colon cancer Colon 26 cells were implanted subcutaneously in the dorsal part of a CDF1 female mouse, and the tumor volume was 100 mm. Three PEG-P without the addition of the water-soluble anticancer agent obtained in Example 1, 2, 3 or 4 or the anticancer agent corresponding to Example 1 and 2 or 3 and 4 (free adriamycin hydrochloride) from the time point reached before or after (Asp.) ADR or adriamycin hydrochloride was administered intravenously once every 4 days for a total of 3 times to examine the effect on advanced cancer. Each drug was dissolved in physiological saline before use. All doses were converted to total adriamycin. The antitumor effect of the drug was determined from the number of tumor-eliminated mice and the tumor growth curve. The results are shown in Table 1 and FIGS. As is apparent from the figure, when adriamycin hydrochloride was administered, the growth suppression effect of the transplanted tumor was observed but the tumor was hardly reduced, whereas when the water-soluble anticancer agent of the present invention was administered, In some cases, the transplanted tumor disappeared because of its excellent growth-suppressing effect. As for the dose, anticancer activity was observed at a lower dose as the proportion of adriamycin not bound to the block copolymer increased. In addition, regarding weight loss, which is one index of toxicity, there was a mouse in which the disappearance of the tumor was observed even in the range of weight change in which the water-soluble anticancer drug of the present invention was lower than that of adriamycin.
[0041]
[Table 1]
Figure 0003682475
[0042]
【The invention's effect】
The water-soluble anticancer agent of the present invention has good water-solubility and exhibits a high antitumor effect even in a low toxicity range compared to free adriamycin. In addition, the present invention can provide an extremely useful pharmaceutical because it exhibits an equivalent anticancer activity at a lower dose compared to conventional water-soluble polymerized anticancer agents.
[Brief description of the drawings]
FIG. 1 shows the tumor growth curve of mouse colon cancer Colon 26 when adriamycin hydrochloride is administered.
FIG. 2 is a tumor growth curve of mouse colon cancer Colon 26 when the water-soluble anticancer agent of Example 1 is administered.
FIG. 3 shows the tumor growth curve of mouse colon cancer Colon 26 when the water-soluble anticancer agent of Example 2 was administered.
FIG. 4 is a tumor growth curve of mouse colon cancer Colon 26 when PEG-P (Asp.) ADR without the addition of an anticancer agent (free adriamycin hydrochloride) corresponding to Examples 1 and 2 was administered.
FIG. 5 is a tumor growth curve of mouse colon cancer Colon 26 when the water-soluble anticancer agent of Example 3 was administered.
6 is a tumor growth curve of mouse colon cancer Colon 26 when the water-soluble anticancer agent of Example 4 is administered. FIG.
FIG. 7 is a tumor growth curve of mouse colon cancer Colon 26 when PEG-P (Asp.) ADR without addition of an anticancer agent (free adriamycin hydrochloride) corresponding to Examples 3 and 4 was administered.

Claims (5)

式(1)またはこれらの塩の構造を有するブロック共重合体と、アドリアマイシンとの複合体からなる水溶性抗癌剤。
Figure 0003682475
(式中、Rは水素またはメチル基を表し、R炭素数1〜4のアルキレン基を表し、Rはメチレン基またはエチレン基を表し、Yは水素またはアセチル基を表し、またRはそれぞれ独立して水酸基または式(3)の構造を有するアドリアマイシンの残基を表すものとし、アドリアマイシンの結合量はブロック共重合体の5〜60重量%であり、nは5〜1,000、mは2〜300、xは0〜300の整数を示すが、xはmより大きくないものとする。)
Figure 0003682475
A water-soluble anticancer agent comprising a complex of a block copolymer having the structure of formula (1) or a salt thereof and adriamycin.
Figure 0003682475
(Wherein R 1 represents hydrogen or a methyl group , R 2 represents an alkylene group having 1 to 4 carbon atoms , R 3 represents a methylene group or an ethylene group, Y represents hydrogen or an acetyl group , and R Each independently represents a hydroxyl group or a residue of adriamycin having the structure of formula (3), and the amount of adriamycin bound is 5 to 60% by weight of the block copolymer, n is 5 to 1,000, m represents an integer of 2 to 300, and x represents an integer of 0 to 300, but x is not greater than m.)
Figure 0003682475
ブロック共重合体が、ポリエチレングリコール構造部分を外側に、ポリアミノ酸またはその塩構造部分を内側とするミセルを形成し、ミセル内にアドリアマイシンを含有するものである請求項1記載の水溶性抗癌剤。    The water-soluble anticancer agent according to claim 1, wherein the block copolymer forms a micelle having a polyethylene glycol structure portion on the outside and a polyamino acid or a salt structure portion on the inside, and contains adriamycin in the micelle. がメチル基である請求項1または2記載の水溶性抗癌剤。The water-soluble anticancer agent according to claim 1 or 2, wherein R 1 is a methyl group. が炭素数2〜4のアルキレン基である請求項1、2または3記載の水溶性抗癌剤。R 2 is according to claim 1, 2 or 3 water-soluble anticancer agent, wherein the alkylene group having 2 to 4 carbon atoms. がメチレン基である請求項1、2、3または4記載の水溶性抗癌剤。The water-soluble anticancer agent according to claim 1, 2, 3 or 4, wherein R 3 is a methylene group.
JP21605993A 1993-08-31 1993-08-31 Water-soluble anticancer agent Expired - Lifetime JP3682475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21605993A JP3682475B2 (en) 1993-08-31 1993-08-31 Water-soluble anticancer agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21605993A JP3682475B2 (en) 1993-08-31 1993-08-31 Water-soluble anticancer agent

Publications (2)

Publication Number Publication Date
JPH0769900A JPH0769900A (en) 1995-03-14
JP3682475B2 true JP3682475B2 (en) 2005-08-10

Family

ID=16682636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21605993A Expired - Lifetime JP3682475B2 (en) 1993-08-31 1993-08-31 Water-soluble anticancer agent

Country Status (1)

Country Link
JP (1) JP3682475B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093391A (en) * 1992-10-08 2000-07-25 Supratek Pharma, Inc. Peptide copolymer compositions
US6153193A (en) * 1993-04-28 2000-11-28 Supratek Pharma Inc. Compositions for targeting biological agents
CN1069099C (en) * 1995-09-29 2001-08-01 科学技术振兴事业团 Novel anthraeycline compound derivatives and its medical preparation
WO2003000771A1 (en) 2001-06-20 2003-01-03 Nippon Kayaku Kabushiki Kaisha Block copolymer reduced in impurity content, polymeric carrier, pharmaceutical preparations in polymeric form and process for the preparation of the same
JP2004010479A (en) * 2002-06-03 2004-01-15 Japan Science & Technology Corp New solid pharmaceutical preparation comprising block copolymer and anthracycline anticancer agent, and method for producing the same
JP2004018494A (en) * 2002-06-19 2004-01-22 Japan Science & Technology Corp Method for producing block copolymer-medicine composite material
JP5044150B2 (en) 2005-08-05 2012-10-10 Toto株式会社 Pharmaceutical titanium dioxide composite that loses its efficacy by light irradiation
JP5183478B2 (en) * 2006-08-31 2013-04-17 ナノキャリア株式会社 Transdermal composition containing active ingredient-containing polymer micelle, transdermal pharmaceutical composition, and transdermal cosmetic composition
KR101444274B1 (en) 2006-10-19 2014-09-26 나노캬리아 가부시키가이샤 Block copolymer for drug complex and pharmaceutical composition
CN104434877A (en) * 2013-09-16 2015-03-25 成都市绿科华通科技有限公司 Poly methyl olefinic acid-containing macromolecule drug microcapsule
CN104434878A (en) * 2013-09-16 2015-03-25 成都市绿科华通科技有限公司 Polymethacrylic acid-containing self-assembled drug carrier microcapsule system
CA2974936A1 (en) * 2015-02-23 2016-09-01 Nippon Kayaku Kabushiki Kaisha Block copolymer conjugate of physiologically active substance
JP6817956B2 (en) * 2015-11-18 2021-01-20 日本化薬株式会社 Compositions containing novel glutamic acid derivatives and block copolymers and their uses
CA3009130A1 (en) 2015-12-22 2017-06-29 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of sulfoxide derivative-coordinated platinum(ii) complex

Also Published As

Publication number Publication date
JPH0769900A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP3268913B2 (en) Polymer carrier
US10774181B2 (en) N-maleimidyl polymer derivatives
JP3270592B2 (en) Block copolymer-anticancer drug complex pharmaceutical preparation
JP3682475B2 (en) Water-soluble anticancer agent
JP3310000B2 (en) Water-soluble polymer anticancer agent and carrier for drug support
JP4344110B2 (en) Heterobifunctional polyethylene glycol derivatives and methods for their preparation
JPH05117385A (en) Production of block copolymer, block copolymer and water-soluble polymeric carcinostatic agent
JP4039466B2 (en) Novel anthracycline-based compound derivatives and pharmaceutical preparations containing the same
JP2003518178A (en) Sterically hindered derivatives of water-soluble polymers
JPH06206830A (en) Block copolymer-medicinal agent composite and block copolymer
WO2006120914A1 (en) Polymeric derivative of cytidine metabolic antagonist
JP3111099B2 (en) Manufacturing method of water-soluble polymerized drug
JP2008174755A (en) Hetero-bifunctional polyethylene glycol derivative and method for preparing it
JP5953459B2 (en) Heterobifunctional polyethylene glycol derivatives and methods for their preparation
JP6500318B2 (en) Heterobifunctional polyethylene glycol derivative and method for preparing the same
CA2206333C (en) Novel anthracycline compound derivative and pharmaceutical preparation containing the same
JP6361083B2 (en) Heterobifunctional polyethylene glycol derivatives and methods for their preparation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250