JP3680094B2 - Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same - Google Patents

Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same Download PDF

Info

Publication number
JP3680094B2
JP3680094B2 JP2000069561A JP2000069561A JP3680094B2 JP 3680094 B2 JP3680094 B2 JP 3680094B2 JP 2000069561 A JP2000069561 A JP 2000069561A JP 2000069561 A JP2000069561 A JP 2000069561A JP 3680094 B2 JP3680094 B2 JP 3680094B2
Authority
JP
Japan
Prior art keywords
group
ring
oxide semiconductor
electrode
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000069561A
Other languages
Japanese (ja)
Other versions
JP2001052766A (en
Inventor
和弘 佐山
裕則 荒川
秀樹 杉原
貞治 菅
真 皐月
奈穂子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000069561A priority Critical patent/JP3680094B2/en
Publication of JP2001052766A publication Critical patent/JP2001052766A/en
Application granted granted Critical
Publication of JP3680094B2 publication Critical patent/JP3680094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機色素増感型多孔質酸化物半導体電極及びそれを含む湿式太陽電池に関するものである。
【0002】
【従来の技術】
有機色素増感型酸化物半導体電極を用いた湿式太陽電池は、その製造コストやリサイクルの面ですぐれていることが知られている。有機色素に関しては、従来、数多くのものが知られているが、有機色素であればどのようなものでも酸化物半導体を増感し得るものではない。例えば、アゾ系の有機色素は酸化物半導体に対しては実質的な増感作用を示さない。従って、酸化物半導体に対して増感作用を示す色素の探索は、数多くの実験によらざるを得ないのが実状である。
これまでも、酸化物半導体に対して増感作用を示す有機色素としては各種のものが提案されている(特開平11−74003号公報、特開平11−126917号公報、特開昭56−130976号公報、特開平11−238905号公報)。
しかしながら、従来のものはその増感作用において未だ満足し得るものではない。
【0003】
【発明が解決しようとする課題】
本発明は、有機色素増感型多孔質酸化物半導体電極において、実用性ある電流−電圧曲線を与える電極及びそれを含む太陽電池を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、有機色素を厚さが200〜20,000nmの多孔質酸化物半導体膜の表面に吸着させて形成した電極であって、該有機色素が下記一般式(1)で表される化合物であることを特徴とする有機色素増感型多孔質酸化物半導体電極。
【化2】

Figure 0003680094
(式中、環Aは置換もしくは無置換の縮合環を有してもよい含窒素の5員環又は6員環を示し、環Bは縮合環を有しない含窒素の5員環又は6員環を示し、1及びX2は炭素原子又はヘテロ原子を示し、Y1及びY2は酸素原子又はイオウ原子を示し、R1及びR2はアンカー基又は炭素数16以上のアルキル基を示すが、該アルキル基は置換基を有していてもよく、かつそれらの一方はアンカー基であり、他方はアルキル基であり、R3及びR4は水素、ハロゲン原子又は連結原子が炭素原子もしくはヘテロ原子である置換基を示し、R3及びR4相互に結合して5員環又は6員環を形成してもよく、mは0〜2の整数を示す
また、本発明によれば、有機色素を吸着させた多孔質酸化物半導体電極とその対電極とそれらの電極に接触するレドックス電解液とから構成される太陽電池において、該多孔質酸化物半導体電極が、前期特定の有機色素増感型多孔質酸化物半導体電極からなることを特徴とする太陽電池が提供される。
【0005】
【発明の実施の形態】
前記一般式(1)において、環Aは、置換もしくは無置換の縮合環を有していてもよい含窒素5員環又は6員環(以下、これらの環を単に複素環とも言う)を示し、環Bは縮合環を有しない含窒素の5員環又は6員環を示す。この場合、縮合環としては、置換もしくは無置換のベンゼン環、ナフタレン環、ピリジン環やシクロヘキサン環等が挙げられる。前記縮合環を有してもよい複素環を示すと、オキサゾリン環、オキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、チアゾリン環、チアゾール環、ベンゾチアゾール環、ナフトチアゾール環、セレナゾール環、ベンゾセレナゾール環、ナフトセレナゾール環、イミダゾリン環、イミダゾール環、ベンゾイミダゾール環、ナフトイミダゾール環、インドレニン環、ベンゾインドレニン環、ピリジン環、キノリン環、バルビツール酸等が挙げられる。
【0006】
前記複素環及び縮合環は置換基を有していもよい。この場合の置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボキシル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、スルホキシ基、アルキルスルホニル基、ヒドロキシ基、ヒドロキシスルホニル基、アリール基、アリールオキシ基、アシルオキシ基、ガルバモイル基、スルホン酸基、スルファモイル基、シクロアルキル基、シアノ基、ニトロ基、アミノ基、アルキルアミノ基、複素環基、アミノスルホニル基、ハロゲン原子、2−ブトキシエチル基、6−ブロモヘキシル基、2−カルボキシエチル基、3−スルホキシプロピル基、4−スルホキジブチル基、2−ヒドロキシエチル基、フェニルメチル基、4−ブトキシフェニルメチル基等が挙げられる。
【0007】
前記一般式(1)において、X1及びX2は炭素原子又はヘテロ原子を示すが、少なくともその一方、好ましくはX2はヘテロ原子であるのが好ましい。ヘテロ原子には、酸素原子、硫黄原子、セレン原子又は置換基(R)を有する窒素原子が包含される。この場合、Rとしては、水素又は前記複素環及び縮合環に関して示した各種のもの及びフェニル基等のアリール基を挙げることができる。
前記一般式(1)におけるR1及びR2は、アンカー基又は炭素数16〜30の置換基を有していてもよいアルキル基を示すが、それらの一方はアンカー基であり、他方はアルキル基であり、2つの基が同時にアンカー基又はアルキル基であることはない。
アンカー基は、半導体表面に結合性を有する基であり、各種アニオン基であることができるが、下記一般式(2)又は(3)で表される基であることが好ましい。
【化3】
Figure 0003680094
【化4】
Figure 0003680094
前記式中、nは0〜10、好ましくは1〜5の数を示し、Mは水素原子又は塩形成性陽イオンを示す。塩形成性陽イオンとしてはナトリウム、カリウム、リチウム等のアルカリ金属の他、アンモニウムや有機アンモニウム等であることができる。
【0008】
アルキル基の炭素数は、16以上、好ましくは16〜30である。このようなアルキル基には、鎖状の飽和もしくは不飽和のものが包含される。その具体例としては、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコサニル、ドコサニル、ヘキサコサニル、トリアコンタニル等の飽和アルキル基;ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、イコセニル、ドコセニル、ヘキサコセニル、トリアコンテニル等の不飽和アルキル基を示すことができる。
前記アルキル基は、置換基を有することができる。この場合、置換基には、炭素数1〜6のアルコキシ基、炭素数6〜10のアリール基又はアリールアルキル基、ハロゲン原子(塩素、臭素、フッ素等)、窒素原子やイオウ原子、酸素原子等のヘテロ原子を含む5員環〜6員環の複素環等が包含される。
前記置換基の具体例を以下に示す。
フェニル基、ナフチル基、トリル基等のアリール基、イミダゾリル基、ベンズイミダゾリル基、ピリジル基、チエニル基、フリル基、アキサゾリル基、チアゾリル基、キノリル基等の複素環残基、ヨウ素、臭素、塩素、フッ素等のハロゲン原子、メトキシ基、エトキシ基、ベンジルオキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、メチルチオ基、エチルチオ基等のアルキルチオ基、フェニルチオ基等のアリールチオ基、アセチルアミノ基、ベンジルアミノ基等のアミド基、ヒドロキシ基、ニトロ基、シアノ基、アセチル基、ベンゾイル基等のアシル基、ベンゾイルオキシ基、エトキシカルボニル基等のエステル基、メタンスルホニルアミド基、ベンゼンスルホニルアミノ基等のスルホンアミド基、3−フェニルウレイド基等のウレイド基、イソブトキシカルボニルアミド基、カルバモイルオキシ基等のウレタン基、N−メチルカルバモイル基等のカルバモイル基、メチルアミノ基、アニリノ基等のアミノ基、メチルスルホニル基等のスルホニル基等。
【0009】
前記一般式(1)で表される色素メロシアニン色素の具体例を以下に示す。
【化5】
Figure 0003680094
前記式中、R1は炭素数16〜30の炭化水素基を示し、R2はアンカー基を示す。
【0010】
本発明の有機色素増感型多孔質酸化物半導体電極は、所定の多孔質酸化物半導体に、特定の有機色素を吸着させることによって製造される。高性能の電池を得る点からは、酸化物半導体の表面積は高い方が好ましいが、高表面積を得るためには、酸化物半導体の1次粒子径が小さいことが好ましい。酸化物半導体の1次粒子径は、1〜200nm、好ましくは50nm以下である。その比表面積は、5〜100m2/g程度である。酸化物半導体を電極とするには、その粉末をそれだけでペレット化して焼結してもよいが、導電性基板上に固定化して用いるのが取扱い上好ましい。この場合の基板としては、チタンやタンタルなどの安定な金属や、導電性ガラス、カーボン等でもよい。基板上の酸化物半導体の厚さは200〜20,000nm、好ましくは1000nm以上が望ましい。
酸化物半導体としては、従来公知の各種のものを用いることができる。このようなものには、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化インジウム(In23)、酸化ニオブ(Nb23)等が包含される。
【0011】
酸化物半導体粒子は、純粋な金属前駆体の分解によって調製する。できるだけ不純物の少ない水酸化物や、硝酸塩、塩化物、アルコキシドを充分精製してから加水分解して純粋な水酸化物を調製しても良い。また不純物が少なく表面積の大きな酸化物半導体微粒子が市販であるときはそれを利用しても良い。
多孔質酸化物半導体電極が充分に機能するためには酸化物又は低温で加水分解した酸化物は前焼成するのが望ましい。この前焼成は、空気中で300〜900℃、好ましくは500〜800℃にゆっくり昇温し、約1時間保ち、またゆっくり温度を下げることによって実施される。
前焼成して形成した酸化物は上述した厚さで基板に固定される。これには酸化物の懸濁液に基板をディッピングしてもいいし、酸化物のスラリーを塗布してもよい。酸化物スラリーは水または界面活性剤水溶液を用いたり、ポリエチレングリコールなどを添加して粘性を高めてもよい。その後基板上でゆっくり乾燥させる。次に基板ごと空気中又は不活性雰囲気下で焼成を行う。焼成温度は300〜900℃、好ましくは400〜800℃で1時間行う。ただし、焼成温度は基板が損傷しない温度以下で行なわなければいけない。
【0012】
次に、有機色素の多孔質酸化物半導体電極への吸着について説明する。
色素を多孔質酸化物半導体電極に単分子吸着させる、このためには、まず、色素をメタノール、エタノール、アセトニトリル、ジメチルホルムアミドなどの溶媒に溶かす。溶媒の種類は、色素に対しある程度の溶解度を持ち、かつ色素の半導体への吸着を阻害しないものを選ぶ。
次に、半導体電極をこの溶液に浸す。溶液温度は室温でもよい。また、溶液を多孔質な電極の内部までしみ込ませるために、減圧、または温度を上げて電極内部の気泡を除去することもできる。温度は溶媒の沸点または色素の分解温度のいずれか低い温度以下にあわせる。吸着時間は30分を基準にするが、数分から1晩行っても良い。濃度は100mg/100mlを基準にするが、その100倍程度濃度が高くても問題ない。色素の溶解度が低い場合は、吸着を繰り返す。色素の吸着がうまくいかないときは、促進剤を添加する。例えば、色素を半導体表面とエステル結合させるには脱水剤を入れると良い。
【0013】
本発明の場合、吸収領域の異なる2種類以上の有機色素を同時に半導体に吸着させるのが好ましく、この場合には光を効率よく利用できる。2種類以上の色素を半導体電極に吸着させるには、色素の混合溶液に電極を浸す。または低濃度の色素溶液に短時間電極を浸し、色素を一部分だけ吸着させた後、次々と別の色素溶液に電極を浸すことで数種類の色素を少しずつ吸着させる方法もある。
異なる色素の同時吸着で問題になるのは、色素間の電子移動やエネルギー移動が優先して起きることで色素から半導体への電子移動や色素−レドックス間の電子移動の効率が低下してしまうことである。それを防ぐ手段としては、まず第一に、2種類の色素の構造ができるだけ異なるもの同士を用いれば会合が形成しにくくなる。また、大きな官能基をつけたり、色素以上に会合体を作りやすい化合物を同時に加えることでも問題の解決になる。
【0014】
本発明の太陽電池は、前記のようにして得られる有機色素増感型多孔質酸化物半導体電極と、その対電極と、それらの電極に接触するレドックス電解液とから構成される。
この場合の電解液の溶媒としては、電気化学的に不活性で、かつ電解質を充分な量溶解できる物質が望まれる、例えば、アセトニトリルや炭酸プロピレンなどがある。
電解質については安定なイオンのレドックス対で電荷を充分な速度で電極間を輸送できる物質が望まれる、レドックス対としてはI-/I3 -やBr-/Br3 -、キノン/ヒドロキノン対がある、例えばI-/I3 -対をつくるときには沃素のアンモニウム塩と沃素を混合する。陽イオンは電解質が溶媒に溶解しやすいものを選択する。また、レドックス電解液には、イミダゾリウム塩及びピリジン系化合物を添加するのが好ましい。イミダゾリウム塩としては、トリアルキルイミダゾリウムヨウ素や1,2−ジメチル−3−プロピルイミダゾリウムヨウ素等のヨウ素塩等が挙げられる。その添加量は、電解液中0.01〜2モル/L、好ましくは0.1〜1モル/Lである。ピリジン系化合物としては、ピリジン系化合物としては、ピリジンの他、炭素数1〜6のアルキル基を有するアルキルピリジン等が挙げられる。その添加量は、電解液中、0.01〜5モル/L、好ましくは0.1〜3モル/Lである。
対電極についてはI3 -イオンなどの酸化型レドックスの還元反応を充分な早さでおこなわせる触媒能を持った材料が望まれる、例えば白金又はこれを導電性材料に把持した電極などがある。最終的に電池を作成するときには有機色素を吸着させた電極と対極との間にレドックスを含む電界溶液をはさみ、シール剤で射止する。以上の作業は空気中の水分や酸素を完全に触れさせないような条件下でおこなわなければいけない。
【0015】
【実施例】
次に、本発明を実施例によりさらに詳細に説明する。
【0016】
実施例1
TiO2酸化物半導体粉末として、チタンイソプロポキシドを加水分解し、オートクレーブ中で210℃で1晩結晶化したものを用いた。このチタン酸化物粉末は、これを水、アセチルアセトン、界面活性剤と混合しスラリー状にした。このスラリーを導電性ガラス(F−SnO2、10Ω/sq)上に焼成後に所定の膜厚になるように塗布した。焼成はいずれも500℃、1時間空気中でおこないTi酸化物半導体電極を作成した。
次に、下記式で表されるメロシアニン色素を、エタノール中に100mg/100mlの濃度で溶解し、この溶液に前記チタン酸化物半導体電極を入れて、80℃、1時間還流して色素を電極に吸着させた。その後、室温で乾燥し、色素吸着した電極を得た。
前記電極の対極としては、白金を20nmの厚さで蒸着した導電性ガラスを用いた。
【化6】
Figure 0003680094
レドックス電解液としては、ヨウ化リチウム(0.1M)、1,2ジメチル3プロピルイミダゾリウムヨウ素(0.6M)、ヨウ素(0.05M)、4−tブチルピリジン(1M)のメトキシアセトニトリル溶液を用いた。
前記の半導体電極、対極及びレドックス電解液を用いて太陽電池を構成し、光源としてソーラーシュミレーターによる光照射(AM15,100mW/cm2)を用いて、その性能を判定し、その結果を表1に示す。
【表1】
Figure 0003680094
【0017】
【発明の効果】
本発明の電極を用いることにより、高い光/電気変換効率を有する太陽電池を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic dye-sensitized porous oxide semiconductor electrode and a wet solar cell including the same.
[0002]
[Prior art]
It is known that a wet solar cell using an organic dye-sensitized oxide semiconductor electrode is excellent in terms of manufacturing cost and recycling. Many organic dyes are conventionally known, but any organic dye cannot sensitize an oxide semiconductor. For example, an azo organic dye does not exhibit a substantial sensitizing action on an oxide semiconductor. Therefore, in reality, the search for dyes that exhibit a sensitizing action on oxide semiconductors must be carried out through numerous experiments.
In the past, various organic dyes that have a sensitizing action on oxide semiconductors have been proposed (Japanese Patent Laid-Open Nos. 11-74003, 11-126917, and 56-130976). No., JP-A-11-238905).
However, the conventional one is not yet satisfactory in its sensitizing action.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrode that gives a practical current-voltage curve in an organic dye-sensitized porous oxide semiconductor electrode and a solar cell including the electrode.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, an electrode is formed by adsorbing an organic dye on the surface of a porous oxide semiconductor film having a thickness of 200 to 20,000 nm, and the organic dye is represented by the following general formula (1). An organic dye-sensitized porous oxide semiconductor electrode, which is a compound represented by
[Chemical formula 2]
Figure 0003680094
(In the formula, ring A represents a nitrogen-containing 5-membered or 6-membered ring which may have a substituted or unsubstituted condensed ring, and ring B represents a nitrogen-containing 5-membered or 6-membered ring having no condensed ring. Represents a ring, X 1 and X 2 represent a carbon atom or a hetero atom, Y 1 and Y 2 represent an oxygen atom or a sulfur atom, and R 1 and R 2 represent an anchor group or an alkyl group having 16 or more carbon atoms. However, the alkyl group may have a substituent, and one of them is an anchor group, the other is an alkyl group, and R 3 and R 4 are each a hydrogen atom, a halogen atom, or a linking atom is a carbon atom or represents a substituent is a heteroatom, may form a 5- or 6-membered ring bonded to R 3 and R 4 mutually, m is an integer of 0 to 2)
Further, according to the present invention, in a solar cell composed of a porous oxide semiconductor electrode adsorbing an organic dye, a counter electrode thereof, and a redox electrolyte in contact with the electrode, the porous oxide semiconductor electrode Is provided with a specific organic dye-sensitized porous oxide semiconductor electrode in the previous period.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the general formula (1), ring A represents a nitrogen-containing 5-membered ring or 6-membered ring (hereinafter, these rings are also simply referred to as a heterocyclic ring) which may have a substituted or unsubstituted condensed ring. and ring B shows the 5- or 6-membered ring nitrogen-containing no fused rings. In this case, examples of the condensed ring include a substituted or unsubstituted benzene ring, naphthalene ring, pyridine ring, and cyclohexane ring. Examples of the heterocyclic ring that may have the condensed ring include oxazoline ring, oxazole ring, benzoxazole ring, naphthoxazole ring, thiazoline ring, thiazole ring, benzothiazole ring, naphthothiazole ring, selenazole ring, benzoselenazole ring Naphthoselenazole ring, imidazoline ring, imidazole ring, benzimidazole ring, naphthimidazole ring, indolenine ring, benzoindolenine ring, pyridine ring, quinoline ring, barbituric acid and the like.
[0006]
The heterocyclic ring and the condensed ring may have a substituent. Examples of the substituent in this case include an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a carboxyl group, an alkylcarbonyloxy group, an alkoxycarbonyl group, a sulfoxy group, an alkylsulfonyl group, a hydroxy group, a hydroxysulfonyl group, and an aryl group. , Aryloxy group, acyloxy group, galvamoyl group, sulfonic acid group, sulfamoyl group, cycloalkyl group, cyano group, nitro group, amino group, alkylamino group, heterocyclic group, aminosulfonyl group, halogen atom, 2-butoxyethyl Group, 6-bromohexyl group, 2-carboxyethyl group, 3-sulfoxypropyl group, 4-sulfoxydibutyl group, 2-hydroxyethyl group, phenylmethyl group, 4-butoxyphenylmethyl group and the like.
[0007]
In the general formula (1), X 1 and X 2 each represent a carbon atom or a hetero atom, and at least one of them, preferably X 2 is preferably a hetero atom. The hetero atom includes an oxygen atom, a sulfur atom, a selenium atom or a nitrogen atom having a substituent (R). In this case, examples of R include hydrogen or various groups shown for the heterocyclic ring and the condensed ring, and aryl groups such as a phenyl group.
R 1 and R 2 in the general formula (1) represent an anchor group or an alkyl group which may have a substituent having 16 to 30 carbon atoms, one of which is an anchor group and the other is an alkyl group. And the two groups are not simultaneously an anchor group or an alkyl group.
The anchor group is a group having a binding property to the semiconductor surface, and can be various anionic groups, but is preferably a group represented by the following general formula (2) or (3).
[Chemical 3]
Figure 0003680094
[Formula 4]
Figure 0003680094
In the above formula, n represents a number of 0 to 10, preferably 1 to 5, and M represents a hydrogen atom or a salt-forming cation. Examples of the salt-forming cation include ammonium, organic ammonium, and the like, in addition to alkali metals such as sodium, potassium, and lithium.
[0008]
The alkyl group has 16 or more carbon atoms, preferably 16 to 30 carbon atoms. Such alkyl groups include those that are chain saturated or unsaturated. Specific examples thereof include saturated alkyl groups such as hexadecyl, heptadecyl, octadecyl, nonadecyl, icosanyl, docosanyl, hexacosanyl, triacontanyl; hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icocenyl, dococenyl, hexacocenyl, triacontenyl it can show al kill group.
The alkyl group can have a substituent. In this case, the substituent includes an alkoxy group having 1 to 6 carbon atoms, an aryl group or arylalkyl group having 6 to 10 carbon atoms, a halogen atom (chlorine, bromine, fluorine, etc.), a nitrogen atom, a sulfur atom, an oxygen atom, etc. 5-membered to 6-membered heterocycles containing the above heteroatoms are included.
Specific examples of the substituent are shown below.
Aryl group such as phenyl group, naphthyl group, tolyl group, imidazolyl group, benzimidazolyl group, pyridyl group, thienyl group, furyl group, heterocyclic residue such as axazolyl group, thiazolyl group, quinolyl group, iodine, bromine, chlorine, Halogen atoms such as fluorine, alkoxy groups such as methoxy group, ethoxy group and benzyloxy group, aryloxy groups such as phenoxy group, alkylthio groups such as methylthio group and ethylthio group, arylthio groups such as phenylthio group, acetylamino group, benzyl Amide groups such as amino groups, acyl groups such as hydroxy groups, nitro groups, cyano groups, acetyl groups and benzoyl groups, ester groups such as benzoyloxy groups and ethoxycarbonyl groups, sulfones such as methanesulfonylamide groups and benzenesulfonylamino groups Amide group, 3-phenylureido group, etc. Ureido group, isobutoxycarbonyl amido group, carbamoyl urethane groups such as oxy group, a carbamoyl group, such as N- methylcarbamoyl group, methylamino group, an amino group such as anilino group, and a sulfonyl group such as a methylsulfonyl group.
[0009]
Specific examples of the merocyanine dye represented by the general formula (1) are shown below.
[Chemical formula 5]
Figure 0003680094
In the above formula, R 1 represents a hydrocarbon group having 16 to 30 carbon atoms, and R 2 represents an anchor group.
[0010]
The organic dye-sensitized porous oxide semiconductor electrode of the present invention is produced by adsorbing a specific organic dye to a predetermined porous oxide semiconductor. From the viewpoint of obtaining a high-performance battery, the surface area of the oxide semiconductor is preferably high, but in order to obtain a high surface area, it is preferable that the primary particle diameter of the oxide semiconductor is small. The primary particle diameter of the oxide semiconductor is 1 to 200 nm, preferably 50 nm or less. Its specific surface area is about 5 to 100 m 2 / g. In order to use an oxide semiconductor as an electrode, the powder may be pelletized by itself and sintered, but it is preferable to fix the powder on a conductive substrate for handling. In this case, the substrate may be a stable metal such as titanium or tantalum, conductive glass, carbon, or the like. The thickness of the oxide semiconductor on the substrate is 200 to 20,000 nm, preferably 1000 nm or more.
Various conventionally known oxide semiconductors can be used. Such materials include, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), niobium oxide (Nb 2 O 3 ), and the like. The
[0011]
Oxide semiconductor particles are prepared by decomposition of a pure metal precursor. A pure hydroxide may be prepared by sufficiently purifying a hydroxide with as little impurities as possible, nitrates, chlorides, and alkoxides and then hydrolyzing them. Further, when oxide semiconductor fine particles having a small amount of impurities and a large surface area are commercially available, they may be used.
In order for the porous oxide semiconductor electrode to function sufficiently, it is desirable to pre-fire the oxide or the oxide hydrolyzed at a low temperature. This pre-baking is carried out by slowly raising the temperature in air to 300 to 900 ° C., preferably 500 to 800 ° C., keeping it for about 1 hour, and slowly lowering the temperature.
The oxide formed by pre-baking is fixed to the substrate with the thickness described above. For this, the substrate may be dipped into an oxide suspension, or an oxide slurry may be applied. As the oxide slurry, water or a surfactant aqueous solution may be used, or polyethylene glycol or the like may be added to increase the viscosity. Thereafter, it is slowly dried on the substrate. Next, the substrate is baked in air or in an inert atmosphere. The baking temperature is 300 to 900 ° C., preferably 400 to 800 ° C. for 1 hour. However, the firing temperature must be below the temperature at which the substrate is not damaged.
[0012]
Next, adsorption of the organic dye to the porous oxide semiconductor electrode will be described.
In order to adsorb the dye to the porous oxide semiconductor electrode by a single molecule, first, the dye is dissolved in a solvent such as methanol, ethanol, acetonitrile, or dimethylformamide. The type of solvent is selected so that it has a certain degree of solubility in the dye and does not inhibit the adsorption of the dye to the semiconductor.
Next, the semiconductor electrode is immersed in this solution. The solution temperature may be room temperature. Further, in order to soak the solution into the inside of the porous electrode, the bubbles inside the electrode can be removed by reducing the pressure or raising the temperature. The temperature is adjusted to a temperature lower than the boiling point of the solvent or the decomposition temperature of the dye. Although the adsorption time is based on 30 minutes, it may be performed for several minutes to overnight. The concentration is based on 100 mg / 100 ml, but there is no problem even if the concentration is about 100 times higher. If the solubility of the dye is low, the adsorption is repeated. If dye adsorption is not successful, an accelerator is added. For example, a dehydrating agent may be added to esterify the dye with the semiconductor surface.
[0013]
In the case of the present invention, it is preferable that two or more types of organic dyes having different absorption regions are simultaneously adsorbed on the semiconductor, and in this case, light can be used efficiently. In order to adsorb two or more kinds of dyes to the semiconductor electrode, the electrode is immersed in a mixed solution of the dyes. Alternatively, there is a method in which several kinds of dyes are adsorbed little by little by immersing the electrode in a low concentration dye solution for a short time and adsorbing only a part of the dye, and then immersing the electrode in another dye solution one after another.
The problem with simultaneous adsorption of different dyes is that the efficiency of electron transfer from the dye to the semiconductor or between the dye and the redox is reduced because the electron transfer and energy transfer between the dyes take precedence. It is. As a means for preventing this, first of all, it is difficult to form an association if two types of dyes having different structures are used as much as possible. The problem can also be solved by adding a large functional group or adding a compound that more easily forms an aggregate than the dye.
[0014]
The solar cell of the present invention is composed of an organic dye-sensitized porous oxide semiconductor electrode obtained as described above, a counter electrode thereof, and a redox electrolyte solution in contact with these electrodes.
As the solvent of the electrolytic solution in this case, a substance which is electrochemically inert and can dissolve a sufficient amount of the electrolyte is desired, for example, acetonitrile and propylene carbonate.
As for the electrolyte, a substance capable of transporting charges between electrodes at a sufficient rate with a stable ion redox pair is desired. Examples of the redox pair include I / I 3 , Br / Br 3 , and quinone / hydroquinone pairs. For example, when forming an I / I 3 pair, an ammonium salt of iodine and iodine are mixed. The cation is selected so that the electrolyte is easily dissolved in the solvent. Further, it is preferable to add an imidazolium salt and a pyridine-based compound to the redox electrolyte. Examples of the imidazolium salt include iodine salts such as trialkylimidazolium iodine and 1,2-dimethyl-3-propylimidazolium iodine. The amount added is 0.01 to 2 mol / L, preferably 0.1 to 1 mol / L in the electrolytic solution. As the pyridine compound, examples of the pyridine compound include pyridine and alkyl pyridine having an alkyl group having 1 to 6 carbon atoms. The amount added is 0.01 to 5 mol / L, preferably 0.1 to 3 mol / L in the electrolytic solution.
For counterelectrode I 3 - material having a catalytic ability to perform a sufficient fast reduction reaction of oxidized redox ion is desired, for example, a platinum or which grasped conductive material electrodes. When a battery is finally produced, an electric field solution containing redox is sandwiched between an electrode on which an organic dye is adsorbed and a counter electrode, and is shot with a sealant. The above work must be performed under conditions that prevent moisture and oxygen in the air from being completely exposed.
[0015]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0016]
Example 1
As the TiO 2 oxide semiconductor powder, titanium isopropoxide was hydrolyzed and crystallized overnight at 210 ° C. in an autoclave. This titanium oxide powder was mixed with water, acetylacetone and a surfactant to form a slurry. This slurry was applied on conductive glass (F-SnO 2 , 10Ω / sq) so as to have a predetermined film thickness after firing. Both firings were performed in air at 500 ° C. for 1 hour to prepare a Ti oxide semiconductor electrode.
Next, a merocyanine dye represented by the following formula is dissolved in ethanol at a concentration of 100 mg / 100 ml. The titanium oxide semiconductor electrode is placed in this solution, and the dye is refluxed at 80 ° C. for 1 hour. Adsorbed. Then, it dried at room temperature and obtained the dye-adsorbed electrode.
As the counter electrode of the electrode, conductive glass in which platinum was deposited with a thickness of 20 nm was used.
[Chemical 6]
Figure 0003680094
As a redox electrolyte, a methoxyacetonitrile solution of lithium iodide (0.1 M), 1,2 dimethyl 3-propylimidazolium iodine (0.6 M), iodine (0.05 M), and 4-tbutylpyridine (1 M) is used. Using.
A solar cell is constructed using the semiconductor electrode, the counter electrode and the redox electrolyte, and its performance is determined using light irradiation (AM15, 100 mW / cm 2 ) by a solar simulator as a light source. Show.
[Table 1]
Figure 0003680094
[0017]
【The invention's effect】
By using the electrode of the present invention, a solar cell having high photo / electric conversion efficiency can be obtained.

Claims (4)

有機色素を厚さが200〜20,000nmの多孔質酸化物半導体膜の表面に吸着させて形成した電極であって、該有機色素が下記一般式(1)で表される化合物であることを特徴とする有機色素増感型多孔質酸化物半導体電極。
Figure 0003680094
(式中、環Aは置換もしくは無置換の縮合環を有してもよい含窒素の5員環又は6員環を示し、環Bは縮合環を有しない含窒素の5員環又は6員環を示し、1及びX2は炭素原子又はヘテロ原子を示し、Y1及びY2は酸素原子又はイオウ原子を示し、R1及びR2はアンカー基又は炭素数16以上のアルキル基を示すが、該アルキル基は置換基を有していてもよく、かつそれらの一方はアンカー基であり、他方はアルキル基であり、R3及びR4は水素、ハロゲン原子又は連結原子が炭素原子もしくはヘテロ原子である置換基を示し、R3及びR4相互に結合して5員環又は6員環を形成してもよく、mは0〜2の整数を示す
An electrode formed by adsorbing an organic dye on the surface of a porous oxide semiconductor film having a thickness of 200 to 20,000 nm, wherein the organic dye is a compound represented by the following general formula (1) An organic dye-sensitized porous oxide semiconductor electrode.
Figure 0003680094
(In the formula, ring A represents a nitrogen-containing 5-membered or 6-membered ring which may have a substituted or unsubstituted condensed ring, and ring B represents a nitrogen-containing 5-membered or 6-membered ring having no condensed ring. Represents a ring, X 1 and X 2 represent a carbon atom or a hetero atom, Y 1 and Y 2 represent an oxygen atom or a sulfur atom, and R 1 and R 2 represent an anchor group or an alkyl group having 16 or more carbon atoms. However, the alkyl group may have a substituent, and one of them is an anchor group, the other is an alkyl group, and R 3 and R 4 are each a hydrogen atom, a halogen atom, or a linking atom is a carbon atom or represents a substituent is a heteroatom, may form a 5- or 6-membered ring bonded to R 3 and R 4 mutually, m is an integer of 0 to 2)
該半導体が二酸化チタンからなる請求項1の電極。The electrode of claim 1 wherein the semiconductor comprises titanium dioxide. 有機色素を吸着させた多孔質酸化物半導体電極とその対電極とそれらの電極に接触するレドックス電解液とから構成される太陽電池において、該多孔質酸化物半導体電極が、請求項1又は2の有機色素増感型多孔質酸化物半導体電極からなることを特徴とする太陽電池。In the solar cell comprised from the porous oxide semiconductor electrode which adsorb | sucked the organic pigment | dye, the counter electrode, and the redox electrolyte solution which contacts those electrodes, this porous oxide semiconductor electrode of Claim 1 or 2 A solar cell comprising an organic dye-sensitized porous oxide semiconductor electrode. 該レドックス電解液がイミダゾリウム塩とピリジン系化合物を含む請求項3の太陽電池。The solar cell according to claim 3, wherein the redox electrolyte contains an imidazolium salt and a pyridine-based compound.
JP2000069561A 1999-06-02 2000-03-13 Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same Expired - Lifetime JP3680094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069561A JP3680094B2 (en) 1999-06-02 2000-03-13 Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-155334 1999-06-02
JP15533499 1999-06-02
JP2000069561A JP3680094B2 (en) 1999-06-02 2000-03-13 Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same

Publications (2)

Publication Number Publication Date
JP2001052766A JP2001052766A (en) 2001-02-23
JP3680094B2 true JP3680094B2 (en) 2005-08-10

Family

ID=26483360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069561A Expired - Lifetime JP3680094B2 (en) 1999-06-02 2000-03-13 Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same

Country Status (1)

Country Link
JP (1) JP3680094B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918396B2 (en) * 2000-03-24 2007-05-23 セイコーエプソン株式会社 Semiconductor, semiconductor manufacturing method and solar cell
JP4897145B2 (en) * 2000-07-04 2012-03-14 株式会社林原生物化学研究所 Optical functional materials
JP5299717B2 (en) * 2000-07-04 2013-09-25 株式会社林原 Optical functional materials
JP4624576B2 (en) * 2001-02-21 2011-02-02 富士フイルム株式会社 Method for producing photoelectric conversion element and photoelectric conversion element
KR100384893B1 (en) * 2001-04-09 2003-05-23 한국전자통신연구원 Nano-particle oxide solar cells and fabrication method of the same and solar cell modules and transparent electric window using the same
WO2003005481A1 (en) 2001-07-06 2003-01-16 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with coloring matter
JP4610158B2 (en) * 2002-10-15 2011-01-12 三菱製紙株式会社 Photoelectric conversion element
JP4610160B2 (en) * 2002-12-19 2011-01-12 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
WO2004011555A1 (en) 2002-07-29 2004-02-05 Mitsubishi Paper Mills Limited Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
US7615640B2 (en) 2002-07-29 2009-11-10 Mitsubishi PaperMillsLtd. Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
US8227690B2 (en) 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP4963343B2 (en) 2004-09-08 2012-06-27 日本化薬株式会社 Dye-sensitized photoelectric conversion element
JP4507834B2 (en) * 2004-11-04 2010-07-21 ソニー株式会社 Dye-sensitized photoelectric conversion element and method for producing the same
JP5138371B2 (en) 2005-05-24 2013-02-06 日本化薬株式会社 Dye-sensitized photoelectric conversion element
CA2610759A1 (en) 2005-06-14 2006-12-21 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1990373B1 (en) 2006-03-02 2012-10-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US20090242027A1 (en) 2006-07-05 2009-10-01 Teruhisa Inoue Dye-Sensitized Solar Cell
KR20110134470A (en) * 2009-03-12 2011-12-14 신닛테츠가가쿠 가부시키가이샤 Dye-sensitized solar cell, photoelectric conversion element, and dye for use in the solar cell and the element
JP5444195B2 (en) * 2010-11-24 2014-03-19 積水化学工業株式会社 Method for dyeing porous material
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
CN110571334A (en) 2014-04-16 2019-12-13 株式会社理光 Photoelectric conversion element
EP3410506B1 (en) 2016-01-25 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
EP3552253B1 (en) 2016-12-07 2022-02-16 Ricoh Company, Ltd. Photoelectric conversion element
WO2019181176A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
KR102636393B1 (en) 2019-07-16 2024-02-13 가부시키가이샤 리코 Solar modules, electronics, and power modules
CN114341745A (en) 2019-09-26 2022-04-12 株式会社理光 Electronic device, method of producing the same, imaging method, and imaging apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP7508782B2 (en) 2020-01-20 2024-07-02 株式会社リコー Electronic device and its manufacturing method, image forming method, and image forming apparatus
EP3872861B1 (en) 2020-02-27 2023-06-28 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
EP4377978A1 (en) 2021-07-29 2024-06-05 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Also Published As

Publication number Publication date
JP2001052766A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP3680094B2 (en) Organic dye-sensitized porous oxide semiconductor electrode and solar cell using the same
JP4148375B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP5142307B2 (en) Semiconductor thin film electrode and photoelectric conversion element using organic dye as photosensitizer
JP4201095B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4148374B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4177172B2 (en) Dye-sensitized solar cell
US8022294B2 (en) Dye-sensitized photoelectric conversion device
KR20130082489A (en) Novel thiophene-based dye and preparation thereof
JP2000090991A (en) Photoelectrochemical battery
KR100849706B1 (en) Pigment sensitizing photoelectric conversion element
CN101867018A (en) Photo-electric conversion element and solar cell
JP4460686B2 (en) Photoelectric conversion element and photoelectrochemical cell
KR20120040666A (en) Dye-sensitized solar cell having high efficiency and method for preparing the same
JP2003086257A (en) Dye sensitizing photoelectric conversion element
JP6253167B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
TW201513437A (en) Dye-sensitized solar cell
JP4264511B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP4082480B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4739693B2 (en) Photoelectric conversion element
EP3272814B1 (en) Ruthenium complex dye, dye solution, photoelectric conversion element, and dye-sensitized solar cell
WO2005122320A1 (en) Photoelectric conversion material, photoelectric converter and photoelectrochemical cell
JP2002175841A (en) Water-containing electrolysis body
JP2003017146A (en) Dye sensitized photoelectric conversion element
JP4295954B2 (en) Dye-sensitized solar cell
JP2006063034A (en) Photoelectric conversion material, photoelectric transducer and photoelectrochemical cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3680094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term