JP4610160B2 - Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same - Google Patents

Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same Download PDF

Info

Publication number
JP4610160B2
JP4610160B2 JP2002368719A JP2002368719A JP4610160B2 JP 4610160 B2 JP4610160 B2 JP 4610160B2 JP 2002368719 A JP2002368719 A JP 2002368719A JP 2002368719 A JP2002368719 A JP 2002368719A JP 4610160 B2 JP4610160 B2 JP 4610160B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
semiconductor
hydrogen atom
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368719A
Other languages
Japanese (ja)
Other versions
JP2004200068A5 (en
JP2004200068A (en
Inventor
保 堀内
偉俊 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002368719A priority Critical patent/JP4610160B2/en
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to DE60333014T priority patent/DE60333014D1/en
Priority to AT03771315T priority patent/ATE471356T1/en
Priority to PCT/JP2003/009408 priority patent/WO2004011555A1/en
Priority to EP08012144A priority patent/EP1997855A3/en
Priority to EP08012146A priority patent/EP2009064B1/en
Priority to EP03771315A priority patent/EP1526159B1/en
Priority to US10/488,047 priority patent/US20040256002A1/en
Publication of JP2004200068A publication Critical patent/JP2004200068A/en
Priority to US11/984,199 priority patent/US7615640B2/en
Priority to US11/984,198 priority patent/US7795529B2/en
Publication of JP2004200068A5 publication Critical patent/JP2004200068A5/ja
Application granted granted Critical
Publication of JP4610160B2 publication Critical patent/JP4610160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般式(1)に示される色素を光電変換材料として用いた光電変換素子に関するものである。
【0002】
【従来の技術】
大量の化石燃料の使用で引き起こされるCO濃度増加による地球温暖化、更に人口増加に伴うエネルギー需要の増大は、人類の存亡にまで関わる問題と認識されている。そのため近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコンおよびテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。
【0003】
しかしながら、これらの無機系太陽電池にも欠点がある。例えばシリコン系では、非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高い。それ以外にも軽量化等の要求もあり、特に、ユーザーへのペイバックが長い点でも不利であり、普及には問題があった。
【0004】
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等である。これらを真空蒸着法、キャスト法、またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。
【0005】
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(非特許文献1参照)。この文献には電池作製に必要な材料および製造技術も開示されている。提案された電池は色素増感型太陽電池、あるいはグレッツェル型太陽電池と呼ばれ、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は酸化チタン等の安価な酸化物半導体を高純度まで精製する必要がないこと、従って安価で、更に利用できる光は広い可視光領域にまでわたっており、可視光成分の多い太陽光を有効に電気へ変換できることである。
【0006】
反面、非常に高価なルテニウム錯体が使われており、コスト面で改良が求められている。高価なルテニウム錯体を安価なシアニン等の有機色素へ変更することが出来れば、この問題は解決出来る。この電池の色素としてシアニン色素やメロシアニン色素が報告されている(例えば、特許文献1〜3参照)。しかしながら、これらの色素は酸化チタンへの吸着が低かったり、高い増感効果を得るには至っておらず、また、経時安定性にも問題がある。
【0007】
【特許文献1】
特開平11−238905号公報
【特許文献2】
特開2001−52766号公報
【特許文献3】
特開2001−76773号公報
【非特許文献1】
Nature,353,737(1991)
【0008】
【発明が解決しようとする課題】
本発明の目的は高性能の光電変換素子を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意検討した結果、前記一般式(1)で示される色素の少なくとも1種を光電変換材料として用いることによって目標達成する事が出来た。
【0010】
【化5】

Figure 0004610160
【0011】
一般式(1)において、 は式(101)〜(105)で示されるアリーレン基、ヘテロ環を示す。R は水素原子を示す。R 、R は水素原子を示す。R は、式(21)、(22)、(31)、(43)、(65)〜(67)、(71)で示される酸性基を有する置換基を示す。一般式(1)における下記式(70)が式(49)、(52)、(53)、(54)、(61)、(68)、(69)である。R は水素原子、フェニル基を示す。R 、R 10 は水素原子を示す。X は、アミノ基と共に式(3)、(6)、(7)、(11)、(12)で示される環状構造を形成する連結基を示す。mは0〜1の整数、nは0〜1の整数を示す。炭素−炭素二重結合は、E型またはZ型の何れであってもよい。
【0012】
【化6】
Figure 0004610160
【0013】
【化7】
Figure 0004610160
【0014】
【発明の実施の形態】
ここで、Rの具体例としては、式(101)〜(105)で示されるアリーレン基、ヘテロ環を挙げることができる。また、Rは置換基を有していてもよく、その置換基の具体例としては、メチル基、エチル基、n−プロピル基等のアルキル基、メトキシ基、エトキシ基、n−ヘキシルオキシ基等のアルコキシ基、メチルチオ基、n−ヘキシルチオ基等のアルキルチオ基、フェノキシ基、1−ナフチルオキシ基等のアリールオキシ基、フェニルチオ基等のアリールチオ基、塩素、臭素等のハロゲン原子、ジメチルアミノ基、ジフェニルアミノ基等のジ置換アミノ基、フェニル基、4−メチルフェニル基、2−ナフチル基等のアリール基、フリル基、チエニル基等の複素環、カルボキシル基、カルボキシメチル基のようなカルボキシアルキル基、スルホニルプロピル基のようなスルホニルアルキル基、リン酸基、ヒドロキサム酸基等の酸性基、シアノ基、ニトロ基、トリフルオロメチル基等の電子吸引性基を挙げることができる。R の具体例としては水素原子、上述のアルキル基、上述のアルコキシ基、上述のハロゲン原子を挙げることができるが、本発明のR は水素原子である。とR の具体例としては、水素原子、上述のアルキル基、上述のアルコキシ基、上述のアルキルチオ基、メチルアミノ基、アニリノ基等のモノ置換アミノ基、上述のジ置換アミノ基、ベンジル基等のアラルキル基、ビニル基等のアルケニル基、上述のアリール基、上述のヘテロ環を挙げることができるが、本発明のR とR は水素原子である。、R、R10の具体例としては水素原子、上述のアルキル基、上述のアルコキシ基、上述のアリール基、上述のヘテロ環を挙げることができるが、本発明において、R は水素原子、フェニル基を示す。R 、R 10 は水素原子を示す。はアミノ基と環状構造を形成する連結基であり、その具体例は(3)〜(19)に挙げることができるが、本発明では、(3)、(6)、(7)、(11)、(12)である。(4)、(5)、(8)〜(10)、(13)〜(19)は参考例である。は酸性基を有する置換基であり、その具体例としては(20)〜(47)、(65)〜(67)、(71)に示すものを挙げることができるが、本発明では、(21)、(22)、(31)、(43)、(65)〜(67)、(71)である。(20)、(23)〜(30)、(32)〜(42)、(44)〜(47)は参考例である。とRは水素原子、上述のアルキル基、上述のアリール基、上述のヘテロ環を挙げることができ、一般式(1)における式(70)が(49)、(52)、(53)、(54)、(61)、(68)、(69)である。(48)、(50)、(51)、(55)〜(60)、(62)、(63)は参考例である。しかし、これらの具体例は限定されるものではない。
【0015】
【化8】
Figure 0004610160
【0016】
【化9】
Figure 0004610160
【0017】
【化10】
Figure 0004610160
【0018】
【化11】
Figure 0004610160
【0019】
次に、本発明の光電変換材料の具体例を(A−1)〜(A−14)に挙げるが、これらに限定されるものではない。
【0020】
【化12】
Figure 0004610160
【0021】
【化13】
Figure 0004610160
【0022】
【化14】
Figure 0004610160
【0023】
本発明の光電変換素子は、導電性支持体、導電性支持体上に設置した色素によって増感された半導体層、電荷移動層及び対極からなる。感光層は単層構成でも積層構成でもよく、目的に応じて設計される。また、導電性支持体の導電層と感光層の境界、感光層と移動層の境界等、この素子における境界においては、各層の構成成分は相互に拡散、または混合していてもよい。
【0024】
導電性支持体は、金属のように支持体そのものに導電性があるもの、または表面に導電剤を含む導電層を有するガラスあるいはプラスチックの支持体を用いることができる。後者の場合、導電剤としては白金、金、銀、銅、アルミニウム等の金属、炭素、あるいはインジウム−スズ複合酸化物(以降「ITO」と略記する)、フッ素をドーピングした酸化スズ等の金属酸化物(以降「FTO」と略記する)等が挙げられる。導電性支持体は、光を10%以上透過する透明性を有していることが好ましく、50%以上透過することがより好ましい。この中でも、ITOやFTOからなる導電層をガラス上に堆積した導電性ガラスが特に好ましい。
【0025】
透明導電性基板の抵抗を下げる目的で、金属リード線を用いてもよい。金属リード線の材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、透明基板に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法、あるいは透明導電層上に金属リード線を設置する。
【0026】
半導体としては、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を使用することができる。金属のカルコゲニドとしてはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム、等のリン化物、ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が好ましい。また、ペロブスカイト構造を有する化合物としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が好ましい。
【0027】
本発明に用いられる半導体は、単結晶でも多結晶でもよい。変換効率としては単結晶が好ましいが、製造コスト、原材料確保等の点では多結晶が好ましく、その半導体の粒径は4nm以上、1μm以下であることが好ましい。
【0028】
導電性支持体上に半導体層を形成する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、ゾル−ゲル法等がある。その分散液の作製方法としては、前述のゾル−ゲル法、乳鉢等で機械的に粉砕する方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させ、そのまま使用する方法等が挙げられる。
【0029】
機械的粉砕、あるいはミルを使用して粉砕して作製する分散液の場合、少なくとも半導体微粒子単独、あるいは半導体微粒子と樹脂の混合物を水あるいは有機溶剤に分散して形成される。使用される樹脂としては、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコーン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂等が挙げられる。
【0030】
半導体微粒子を分散する溶媒としては、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができる。これらは単独、あるいは2種以上の混合溶媒として用いることができる。
【0031】
得られた分散液の塗布方法としては、ローラ法、ディップ法、エアナイフ法、ブレード法、ワイヤーバー等、スライドホッパ法、エクストルージョン法、カーテン法、スピン法、あるいはスプレー法を挙げることができる。
【0032】
更に半導体層は、単層であっても多層であってもよい。多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布したり、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。また、一度の塗布で膜厚が不足する場合には多層塗布は有効な手段である。
【0033】
一般的に、半導体層の膜厚が増大するほど単位投影面積当たりの担持色素量も増えるため光の捕獲率が高くなるが、生成した電子の拡散距離も増えるために電荷の再結合も多くなってしまう。従って、半導体層の膜厚は0.1〜100μmが好ましく、1〜30μmがより好ましい。
【0034】
半導体微粒子は導電性支持体上に塗布した後、加熱処理してもしなくともよいが、粒子同士の電子的コンタクト及び塗膜強度の向上や支持体との密着性向上の点から、加熱処理することが好ましい。その際の加熱処理温度は40〜700℃が好ましく、80〜600℃がより好ましい。また、加熱処理時間は5分〜20時間が好ましく、10分〜10時間がより好ましい。
【0035】
半導体微粒子は多くの色素を吸着できるように表面積の大きなものが好ましい。このため半導体層を支持体上に塗設した状態での表面積は、投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。
【0036】
本発明の光電変換素子における色素は、一般式(1)で示される色素を光電変換材料として用いる。
【0037】
半導体層に色素を吸着させる方法としては、色素溶液中あるいは色素分散液中に半導体微粒子を含有する作用電極を浸漬する方法、色素溶液あるいは分散液を半導体層に塗布して吸着させる方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法等を用いることができ、後者の場合は、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等を用いることができる。
【0038】
色素を吸着する際、縮合剤を併用してもよい。縮合剤は、無機物表面に物理的あるいは化学的に色素を結合すると思われる触媒的作用をするもの、または化学量論的に作用し、化学平衡を有利に移動させるものの何れであってもよい。更に、縮合助剤としてチオール、あるいはヒドロキシ化合物を添加してもよい。
【0039】
色素を溶解、あるいは分散する溶媒は、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができ、これらは単独、あるいは2種以上の混合として用いることができる。
【0040】
これらを用い、色素を吸着する際の温度としては、−50℃以上、200℃以下が好ましい。また、この吸着は攪拌しながら行っても構わない。攪拌する場合の方法としては、スターラー、ボールミル、ペイントコンディショナー、サンドミル、アトライター、ディスパーザー、あるいは超音波分散等が挙げられるが、これらに限定されるものではない。吸着に要する時間は、5秒以上、1000時間以下が好ましく、10秒以上、500時間以下がより好ましく、1分以上、150時間が更に好ましい。
【0041】
本発明の電荷移動層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、有機正孔輸送材料等を用いることができる。
【0042】
本発明で使用される電解液は、電解質、溶媒、及び添加物から構成されることが好ましい。好ましい電解質はヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ化物−ヨウ素の組み合わせ、テトラアルキルアンモニウムヨ−ダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩−ヨウ素の組み合わせ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物−臭素の組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物の臭素塩−臭素の組み合わせ、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン−キノン等が挙げられる。上述の電解質は単独の組み合わせであっても混合であってもよい。また、電解質として、室温で溶融状態の溶融塩を用いることもできる。この溶融塩を用いた場合は、特に溶媒を用いなくても構わない。
【0043】
電解液における電解質濃度は、0.05〜20Mが好ましく、0.1〜15Mが更に好ましい。電解液に用いる溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、エタノール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒等が好ましい。また、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物を併用しても構わない。
【0044】
本発明では、電解質はポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化させることもできる。ポリマー添加によりゲル化させる場合の好ましいポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン等を挙げることができる。オイルゲル化剤添加によりゲル化させる場合の好ましいゲル化剤としては、ジベンジルデン−D−ソルビトール、コレステロール誘導体、アミノ酸誘導体、トランス−(1R,2R)−1,2−シクロヘキサンジアミンのアルキルアミド誘導体、アルキル尿素誘導体、N−オクチル−D−グルコンアミドベンゾエート、双頭型アミノ酸誘導体、4級アンモニウム誘導体等を挙げることができる。
【0045】
多官能モノマーによって重合する場合の好ましいモノマーとしては、ジビニルベンゼン、エチレングルコールジメタクリレート、エチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等を挙げることができる。更に、アクリルアミド、メチルアクリレート等のアクリル酸やα−アルキルアクリル酸から誘導されるエステル類やアミド類、マレイン酸ジメチル、フマル酸ジエチル等のマレイン酸やフマル酸から誘導されるエステル類、ブタジエン、シクロペンタジエン等のジエン類、スチレン、p−クロロスチレン、スチレンスルホン酸ナトリウム等の芳香族ビニル化合物、ビニルエステル類、アクリロニトリル、メタクリロニトリル、含窒素複素環を有するビニル化合物、4級アンモニウム塩を有するビニル化合物、N−ビニルホルムアミド、ビニルスルホン酸、ビニリデンフルオライド、ビニルアルキルエーテル類、N−フェニルマレイミド等の単官能モノマーを含有してもよい。モノマー全量に占める多官能性モノマーは、0.5〜70質量%が好ましく、1.0〜50質量%がより好ましい。
【0046】
上述のモノマーは、ラジカル重合によって重合することができる。本発明で使用できるゲル電解質用モノマーは、加熱、光、電子線あるいは電気化学的にラジカル重合することができる。架橋高分子が加熱によって形成される場合に使用される重合開始剤は、2,2´−アゾビスイソブチロニトリル、2,2´−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2´−アゾビス(2−メチルプロピオネート)等のアゾ系開始剤、ベンゾイルパーオキシド等の過酸化物系開始剤等が好ましい。これらの重合開始剤の添加量は、モノマー総量に対して、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましい。
【0047】
ポリマーの架橋反応により電解質をゲル化させる場合、架橋反応に必要な反応性基を含有するポリマー及び架橋剤を併用することが望ましい。架橋可能な反応性基に好ましい例としては、ピリジン、イミダゾール、チアゾール、オキサゾール、トリアゾール、モルフォリン、ピペリジン、ピペラジン等の含窒素複素環を挙げることができ、好ましい架橋剤は、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロリド、イソシアネート等の窒素原子に対して求電子反応可能な2官能以上の試薬を挙げることができる。
【0048】
無機固体化合物を電解質の代わりに用いる場合、ヨウ化銅、チオシアン化銅等をキャスト法、塗布法、スピンコート法、浸漬法、電解メッキ等の手法により電極内部に導入することができる。
【0049】
また、本発明では電解質の代わりに有機電荷輸送物質を用いることができる。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報等に示されているオキサジアゾール類、特公昭45−555号公報等に示されているトリフェニルメタン類、特公昭52−4188号公報等に示されているピラゾリン類、特公昭55−42380号公報等に示されているヒドラゾン類、特開昭56−123544号公報等に示されているオキサジアゾール類、特開昭54−58445号公報に示されているテトラアリールベンジジン類、特開昭58−65440号公報、あるいは特開昭60−98437号公報に示されているスチルベン類等を挙げることができる。その中でも、本発明に使用される電荷輸送物質としては、特開昭60−24553号公報、特開平2−96767号公報、特開平2−183260号公報、並びに特開平2−226160号公報に示されているヒドラゾン類、特開平2−51162号公報、並びに特開平3−75660号公報に示されているスチルベン類が特に好ましい。また、これらは単独、あるいは2種以上の混合物として用いることができる。
【0050】
一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、あるいは1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシド等がある。これらの電子輸送物質は単独、あるいは2種以上の混合物として用いることができる。
【0051】
また、更に増感効果を増大させる増感剤として、ある種の電子吸引性化合物を添加することもできる。この電子吸引性化合物としては例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノン等のキノン類、4−ニトロベンズアルデヒド等のアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、あるいは3,3′,5,5′−テトラニトロベンゾフェノン等のケトン類、無水フタル酸、4−クロロナフタル酸無水物等の酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、あるいは4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリル等のシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、あるいは3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリド等のフタリド類等を挙げることができる。
【0052】
これらの電荷輸送材料を用いて電荷移動層を形成する場合、樹脂を併用することが好ましく、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂等が挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂が優れている。又、これらの樹脂は、単独あるいは共重合体として2種以上を混合して用いることができる。
【0053】
これらの樹脂の中には、引っ張り、曲げ、圧縮等の機械的強度に弱いものがある。この性質を改良するために、可塑性を与える物質を加えることができる。具体的には、フタル酸エステル(例えばDOP、DBP等)、リン酸エステル(例えばTCP、TOP等)、セバシン酸エステル、アジピン酸エステル、ニトリルゴム、塩素化炭化水素等があげられる。これらの物質は、必要以上に添加すると特性に悪影響を及ぼすので、その割合は結着剤樹脂に対し20%以下が好ましい。その他、酸化防止剤やカール防止剤等を必要に応じて添加することができる。
【0054】
用いられる樹脂量は、電荷輸送物質1質量部に対して0.001〜20質量部が好ましく、0.01〜5質量部以下がより好ましい。樹脂の比率が高すぎると感度が低下し、また、樹脂の比率が低くなりすぎると繰り返し特性の悪化や塗膜の欠損を招くおそれがある。
【0055】
電荷移動層の形成方法は大きく2通りの方法が挙げられる。1つは増感色素を担持した半導体微粒子含有層の上に、先に対極を貼り合わせ、その隙間に液状の電荷移動層を挟み込む方法、もう一つは、半導体微粒子含有層の上に直接電荷移動層を付与する方法である。後者の場合、対極はその後新たに付与することになる。
【0056】
前者の場合、電荷移動層の挟み込み方法として、浸漬等による毛管現象を利用する常圧プロセスと常圧より低い圧力にして気相を液相に置換する真空プロセスが挙げられる。後者の場合、湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止を施す必要がある。また、ゲル電解液の場合においては、湿式で塗布して重合等の方法により固体化する方法もある。その場合、乾燥、固定化した後に対極を付与してもよい。電解液の他、有機電荷輸送材料の溶解液やゲル電解質を付与する方法としては、半導体微粒子含有層や色素の付与と同様に、浸漬法、ローラ法、ディップ法、エアーナイフ法、エクストルージョン法、スライドホッパー法、ワイヤーバー法、スピン法、スプレー法、キャスト法、各種印刷法等が挙げられる。
【0057】
対極は通常前述の導電性支持体と同様に導電性層を有する支持体を用いることもできるが、強度や密封性が十分に保たれるような構成では支持体は必ずしも必要ではない。対極に用いる材料の具体例としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、炭素、ITO、FTO等の導電性金属酸化物等が挙げられる。対極の厚さには特に制限はない。
【0058】
感光層に光が到達するためには、前述の導電性支持体と対極の少なくとも一方は実質的に透明でなければならない。本発明の光電変換素子においては、導電性支持体が透明であり、太陽光を支持体側から入射させる方法が好ましい。この場合、対極には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましい。
【0059】
対極の塗設については前述の通り、電荷移動層の上に付与する場合と半導体微粒子層上に付与する場合の2通りがある。何れの場合も対極材料の種類や電荷移動層の種類により、適宜、電荷移動層上または半導体微粒子含有層上に対極材料を塗布、ラミネート、蒸着、貼り合わせ等の手法により形成可能である。また、電荷移動層が固体の場合には、その上に直接、前述の導電性材料を塗布、蒸着、CVD等の手法で対極を形成することができる。
【0060】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0061】
【化15】
Figure 0004610160
【0062】
合成例1 化合物(A−4)の合成
化合物(B−1)(0.92g)、ローダニン−3−酢酸(0.50g)、酢酸アンモニウム(0.25g)を酢酸4.8gに溶解し、120℃で加熱攪拌。30分後、加熱を停止。室温まで冷却後、水(50ml)を加えて攪拌し、析出した結晶を濾取。得た結晶を、水(100ml)、2−プロパノール(10ml)と水(50ml)の混合液で順次洗浄し、例示化合物(A−4)を得た。1.23g。収率96%。
【0063】
実施例1
酸化チタン(日本アエロジル社製P−25)3g、アセチルアセトン0.2g、界面活性剤(アルドリッチ社製Triton X-100)0.3gを水6.5gと共にペイントコンディショナーで6時間分散処理を施した。更に、この分散液にポリエチレングルコール(#20,000)1.2gを加えてペーストを作製した。このペーストをFTOガラス基板上に膜厚10μmになるように塗布し、室温で乾燥後、空気中で500℃で1時間焼成した。
【0064】
例示化合物(A−4)で示した色素の0.3mMエタノール溶液に、先に作製した半導体電極を室温で15時間浸漬し、吸着処理を施した。
【0065】
電解液としては、ヨウ素0.03M、テトラ−n−プロピルアンモニウムヨーダイド0.5Mをプロピレンカーボネート/アセトニトリル=6/4の混合液に溶解したものを使用した。対極にはFTO上に白金をスパッタリングしたものを使用した。
【0066】
両電極間に電解液を浸して光電変換素子を作製した。ここに、作用電極側から光源としてソーラーシミュレーター(AM1.5G、照射強度100mW/cm)から発生した疑似太陽光を照射した。その結果、開放電圧0.65V、短絡電流密度10.5mA/cm、形状因子0.68、変換効率4.64%と良好な値を示した。
【0067】
実施例2〜5
例示化合物(A−4)を、表1に示す色素に変更した以外は実施例1と同様にして素子を作製し評価した。その結果を表1に示す。
【0068】
【表1】
Figure 0004610160
【0069】
表1の結果からわかるように、本発明の色素は良好な変換効率を示すことがわかる。
【0070】
比較例1
例示化合物(A−4)を、(C−1)に示す化合物に変更した以外は実施例1と同様にして素子を作製し、評価した。その結果、開放電圧0.58V、短絡電流密度5.3mA/cm、形状因子0.55、変換効率1.69%と低い値であった。
【0071】
【発明の効果】
以上から明らかなように、本発明によれば良好な変換効率を有する光電変換素子を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion element using a dye represented by the general formula (1) as a photoelectric conversion material.
[0002]
[Prior art]
Global warming caused by CO 2 concentration increases caused by the use of large amounts of fossil fuels, further increase in energy demand associated with population growth have been recognized as problems associated to the fate of mankind. For this reason, in recent years, the use of sunlight that is infinite and does not generate harmful substances has been energetically studied. What is currently put into practical use as sunlight, which is a clean energy source, includes residential single crystal silicon, polycrystalline silicon, amorphous silicon, and inorganic solar cells such as cadmium telluride and indium copper selenide.
[0003]
However, these inorganic solar cells also have drawbacks. For example, a silicon system is required to have a very high purity. Naturally, the purification process is complicated, the number of processes is large, and the manufacturing cost is high. In addition, there is a demand for weight reduction and the like, and in particular, it is disadvantageous in that payback to the user is long, and there is a problem in the spread.
[0004]
On the other hand, many solar cells using organic materials have been proposed. As an organic solar cell, a Schottky photoelectric conversion element that joins a p-type organic semiconductor and a metal having a low work function, a p-type organic semiconductor and an n-type inorganic semiconductor, or a p-type organic semiconductor and an electron-accepting organic compound are joined. There are heterojunction photoelectric conversion elements and the like, and organic semiconductors used are synthetic dyes and pigments such as chlorophyll and perylene, conductive polymer materials such as polyacetylene, or composite materials thereof. These are thinned by a vacuum deposition method, a casting method, a dipping method, or the like to form a battery material. Although organic materials have advantages such as low cost and easy area enlargement, there are many problems that the conversion efficiency is as low as 1% or less and the durability is poor.
[0005]
Under such circumstances, a solar cell exhibiting good characteristics has been reported by Dr. Gretzell of Switzerland (see Non-Patent Document 1). This document also discloses materials and manufacturing techniques necessary for battery fabrication. The proposed battery is called a dye-sensitized solar cell or a Gretzel solar cell, and is a wet solar cell using a titanium oxide porous thin film spectrally sensitized with a ruthenium complex as a working electrode. The advantage of this method is that it is not necessary to purify an inexpensive oxide semiconductor such as titanium oxide to high purity, and therefore, it is inexpensive and more usable light extends over a wide visible light region, so that a solar with a large amount of visible light components is used. It is that light can be effectively converted into electricity.
[0006]
On the other hand, very expensive ruthenium complexes are used, and improvement in cost is required. If an expensive ruthenium complex can be changed to an inexpensive organic dye such as cyanine, this problem can be solved. Cyanine dyes and merocyanine dyes have been reported as dyes for this battery (for example, see Patent Documents 1 to 3). However, these dyes have low adsorption to titanium oxide and have not yet achieved a high sensitizing effect, and also have problems with stability over time.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-238905 [Patent Document 2]
JP 2001-52766 A [Patent Document 3]
JP 2001-76773 A [Non-Patent Document 1]
Nature, 353,737 (1991)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-performance photoelectric conversion element.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors were able to achieve the goal by using at least one dye represented by the general formula (1) as a photoelectric conversion material.
[0010]
[Chemical formula 5]
Figure 0004610160
[0011]
In the general formula (1), R 1 represents an arylene group or a heterocycle represented by the formulas (101) to (105). R 2 represents a hydrogen atom. R 3 and R 4 represent a hydrogen atom. R 5 represents a substituent having an acidic group represented by the formulas (21), (22), (31), (43), (65) to (67), (71). The following formula (70) in the general formula (1) is the formulas (49), (52), (53), (54), (61), (68), and (69). R 8 represents a hydrogen atom or a phenyl group. R 9 and R 10 represent a hydrogen atom. X 1 represents a linking group that forms a cyclic structure represented by the formulas (3), (6), (7), (11), and (12) together with an amino group. m represents an integer of 0 to 1, and n represents an integer of 0 to 1. The carbon-carbon double bond may be either E-type or Z-type.
[0012]
[Chemical 6]
Figure 0004610160
[0013]
[Chemical 7]
Figure 0004610160
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Here, specific examples of R 1 include arylene groups and heterocycles represented by formulas (101) to (105) . R 1 may have a substituent. Specific examples of the substituent include alkyl groups such as a methyl group, an ethyl group, and an n-propyl group, a methoxy group, an ethoxy group, and an n-hexyloxy group. Alkoxy groups such as methylthio groups, alkylthio groups such as n-hexylthio groups, aryloxy groups such as phenoxy groups and 1-naphthyloxy groups, arylthio groups such as phenylthio groups, halogen atoms such as chlorine and bromine, dimethylamino groups, Disubstituted amino groups such as diphenylamino groups, aryl groups such as phenyl groups, 4-methylphenyl groups and 2-naphthyl groups, heterocyclic rings such as furyl groups and thienyl groups, carboxyl groups such as carboxyl groups and carboxymethyl groups Sulfonylalkyl groups such as sulfonylpropyl groups, acidic groups such as phosphoric acid groups and hydroxamic acid groups, cyano groups, An electron withdrawing group such as a rho group and a trifluoromethyl group can be exemplified. Specific examples of R 2 include a hydrogen atom, the above alkyl group, the above alkoxy group, and the above halogen atom . R 2 in the present invention is a hydrogen atom. Specific examples of R 3 and R 4 include a hydrogen atom, the above-described alkyl group, the above-described alkoxy group, the above-described alkylthio group, a mono-substituted amino group such as a methylamino group, an anilino group, the above-mentioned di-substituted amino group, benzyl Examples thereof include an aralkyl group such as a group, an alkenyl group such as a vinyl group, the above-described aryl group, and the above-described heterocycle, and R 3 and R 4 in the present invention are hydrogen atoms. Specific examples of R 8 , R 9 and R 10 include a hydrogen atom, the above alkyl group, the above alkoxy group, the above aryl group, and the above heterocycle. In the present invention, R 8 is a hydrogen atom. An atom and a phenyl group are shown. R 9 and R 10 represent a hydrogen atom. X 1 is a linking group that forms a cyclic structure with an amino group, and specific examples thereof can be listed in (3) to (19). In the present invention, (3), (6), (7), (11) and (12). (4), (5), (8) to (10), (13) to (19) are reference examples. R 5 is a substituent having an acidic group, and specific examples thereof include those shown in (20) to (47), (65) to (67), and (71). (21), (22), (31), (43), (65) to (67), (71). (20), (23) to (30), (32) to (42), and (44) to (47) are reference examples. Examples of R 6 and R 7 include a hydrogen atom, the above-described alkyl group, the above-described aryl group, and the above-described heterocycle . Formula (70) in General Formula (1) is represented by (49), (52), (53 ), (54), (61), (68), (69). (48), (50), (51), (55) to (60), (62), (63) are reference examples. However, these specific examples are not limited.
[0015]
[Chemical 8]
Figure 0004610160
[0016]
[Chemical 9]
Figure 0004610160
[0017]
Embedded image
Figure 0004610160
[0018]
Embedded image
Figure 0004610160
[0019]
Next, although the specific example of the photoelectric conversion material of this invention is given to (A-1)-(A-14), it is not limited to these.
[0020]
Embedded image
Figure 0004610160
[0021]
Embedded image
Figure 0004610160
[0022]
Embedded image
Figure 0004610160
[0023]
The photoelectric conversion element of the present invention comprises a conductive support, a semiconductor layer sensitized by a dye placed on the conductive support, a charge transfer layer, and a counter electrode. The photosensitive layer may be a single layer structure or a stacked structure, and is designed according to the purpose. In addition, at the boundary of this element such as the boundary between the conductive layer and the photosensitive layer of the conductive support, the boundary between the photosensitive layer and the moving layer, the constituent components of each layer may be diffused or mixed with each other.
[0024]
As the conductive support, there can be used a glass or plastic support having a conductive layer containing a conductive agent on the surface thereof, such as a metal having a conductive property in itself. In the latter case, the conductive agent is a metal oxide such as platinum, gold, silver, copper, aluminum or the like, carbon, indium-tin composite oxide (hereinafter abbreviated as “ITO”), or fluorine-doped tin oxide. (Hereinafter abbreviated as “FTO”) and the like. The conductive support preferably has a transparency that transmits light of 10% or more, and more preferably transmits 50% or more. Among these, conductive glass in which a conductive layer made of ITO or FTO is deposited on glass is particularly preferable.
[0025]
A metal lead wire may be used for the purpose of reducing the resistance of the transparent conductive substrate. Examples of the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel. A metal lead wire is installed on a transparent substrate by vapor deposition, sputtering, pressure bonding, or the like, and a method of providing ITO or FTO thereon or a metal lead wire on a transparent conductive layer.
[0026]
As the semiconductor, a single semiconductor such as silicon or germanium, a compound semiconductor typified by a metal chalcogenide, a compound having a perovskite structure, or the like can be used. Metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum oxides, cadmium, zinc, lead, silver, antimony, bismuth. Sulfide, cadmium, lead selenide, cadmium telluride and the like. Other compound semiconductors are preferably phosphides such as zinc, gallium, indium, cadmium, gallium arsenide, copper-indium-selenide, copper-indium-sulfide, and the like. As the compound having a perovskite structure, strontium titanate, calcium titanate, sodium titanate, barium titanate, potassium niobate and the like are preferable.
[0027]
The semiconductor used in the present invention may be single crystal or polycrystalline. As the conversion efficiency, a single crystal is preferable, but a polycrystal is preferable in terms of manufacturing cost, securing raw materials, and the like, and the particle size of the semiconductor is preferably 4 nm or more and 1 μm or less.
[0028]
Examples of a method for forming a semiconductor layer on a conductive support include a method in which a dispersion or colloidal solution of semiconductor fine particles is applied on a conductive support, a sol-gel method, and the like. The dispersion can be prepared by the above-mentioned sol-gel method, a method of mechanically pulverizing with a mortar, etc., a method of dispersing while pulverizing using a mill, or a fine particle in a solvent when synthesizing a semiconductor. And a method of using it as it is.
[0029]
In the case of a dispersion prepared by mechanical pulverization or pulverization using a mill, it is formed by dispersing at least semiconductor fine particles alone or a mixture of semiconductor fine particles and a resin in water or an organic solvent. Resins used include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, acrylic esters, methacrylic esters, silicone resins, phenoxy resins, polysulfone resins, polyvinyl butyral resins, polyvinyl formal resins, polyester resins. , Cellulose ester resin, cellulose ether resin, urethane resin, phenol resin, epoxy resin, polycarbonate resin, polyarylate resin, polyamide resin, polyimide resin and the like.
[0030]
Solvents for dispersing the semiconductor fine particles include alcohol solvents such as water, methanol, ethanol, and isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl formate, ethyl acetate, and n-butyl acetate. Ester solvents, diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or ether solvents such as dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, or amide solvents such as N-methyl-2-pyrrolidone , Dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzene, fluorobenzene, bromobenzene, iodine Halogenated hydrocarbon solvents such as debenzene or 1-chloronaphthalene, n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, Examples thereof include hydrocarbon solvents such as m-xylene, p-xylene, ethylbenzene, and cumene. These can be used alone or as a mixed solvent of two or more.
[0031]
Examples of a method for applying the obtained dispersion include a roller method, a dip method, an air knife method, a blade method, a wire bar, a slide hopper method, an extrusion method, a curtain method, a spin method, and a spray method.
[0032]
Furthermore, the semiconductor layer may be a single layer or multiple layers. In the case of multiple layers, a dispersion of semiconductor fine particles having different particle diameters can be applied in multiple layers, or different types of semiconductors, and application layers having different compositions of resins and additives can be applied in multiple layers. In addition, when the film thickness is insufficient with a single coating, the multilayer coating is an effective means.
[0033]
In general, as the thickness of the semiconductor layer increases, the amount of supported dye increases per unit projected area and the light capture rate increases. However, the diffusion distance of the generated electrons also increases, and the recombination of charges also increases. End up. Therefore, the film thickness of the semiconductor layer is preferably 0.1 to 100 μm, and more preferably 1 to 30 μm.
[0034]
The semiconductor fine particles may or may not be heat-treated after being coated on the conductive support. However, heat treatment is performed from the viewpoint of improving the electronic contact between the particles and the strength of the coating film and improving the adhesion to the support. It is preferable. 40-700 degreeC is preferable and the heat processing temperature in that case has more preferable 80-600 degreeC. The heat treatment time is preferably 5 minutes to 20 hours, and more preferably 10 minutes to 10 hours.
[0035]
The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For this reason, it is preferable that the surface area in the state which coated the semiconductor layer on the support body is 10 times or more with respect to a projection area, and it is more preferable that it is 100 times or more.
[0036]
As the dye in the photoelectric conversion element of the present invention, the dye represented by the general formula (1) is used as a photoelectric conversion material.
[0037]
As a method of adsorbing the dye to the semiconductor layer, a method of immersing a working electrode containing semiconductor fine particles in a dye solution or a dye dispersion, or a method of applying a dye solution or a dispersion to the semiconductor layer and adsorbing it is used. Can do. In the former case, dipping method, dipping method, roller method, air knife method, etc. can be used, and in the latter case, wire bar method, slide hopper method, extrusion method, curtain method, spin method, spray method, etc. Can be used.
[0038]
When adsorbing the dye, a condensing agent may be used in combination. The condensing agent may be either one that has a catalytic action that is supposed to physically or chemically bind the dye to the inorganic surface, or one that acts stoichiometrically to favorably shift the chemical equilibrium. Furthermore, a thiol or a hydroxy compound may be added as a condensation aid.
[0039]
Solvents for dissolving or dispersing the dye are water, methanol, ethanol, alcohol solvents such as isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, ethyl formate, ethyl acetate, or n-butyl acetate. Ester solvents such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone Solvent, dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzene, fluorobenzene, bromobenzene, iodine Halogenated hydrocarbon solvents such as debenzene or 1-chloronaphthalene, n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, Examples thereof include hydrocarbon solvents such as m-xylene, p-xylene, ethylbenzene, and cumene, and these can be used alone or as a mixture of two or more.
[0040]
The temperature at which these are used and the dye is adsorbed is preferably -50 ° C or higher and 200 ° C or lower. Further, this adsorption may be performed while stirring. Examples of the stirring method include, but are not limited to, a stirrer, a ball mill, a paint conditioner, a sand mill, an attritor, a disperser, and ultrasonic dispersion. The time required for adsorption is preferably 5 seconds or more and 1000 hours or less, more preferably 10 seconds or more and 500 hours or less, and further preferably 1 minute or more and 150 hours.
[0041]
As the charge transfer layer of the present invention, an electrolytic solution in which a redox couple is dissolved in an organic solvent, a gel electrolyte in which a liquid in which the redox couple is dissolved in an organic solvent is impregnated in a polymer matrix, a molten salt containing the redox couple, a solid An electrolyte, an organic hole transport material, or the like can be used.
[0042]
The electrolytic solution used in the present invention is preferably composed of an electrolyte, a solvent, and an additive. Preferred electrolytes include metal iodide-iodine combinations such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, and calcium iodide, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, and the like. Iodine salt of quaternary ammonium compound-iodine combination, metal bromide-bromine combination such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide, quaternary compound such as tetraalkylammonium bromide, pyridinium bromide Bromine-bromine combinations of ammonium compounds, metal complexes such as ferrocyanate-ferricyanate, ferrocene-ferricinium ion, sulfur compounds such as sodium polysulfide, alkylthiol-alkyldisulfide, viologen Dye, hydroquinone - quinones, and the like. The above-mentioned electrolytes may be a single combination or a mixture. Further, a molten salt in a molten state at room temperature can also be used as the electrolyte. When this molten salt is used, it is not necessary to use a solvent.
[0043]
The electrolyte concentration in the electrolytic solution is preferably 0.05 to 20M, and more preferably 0.1 to 15M. Solvents used for the electrolyte include carbonate solvents such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether solvents such as dioxane, diethyl ether and ethylene glycol dialkyl ether, methanol, ethanol Alcohol solvents such as polypropylene glycol monoalkyl ether, nitrile solvents such as acetonitrile and benzonitrile, aprotic polar solvents such as dimethyl sulfoxide and sulfolane are preferred. Further, basic compounds such as t-butylpyridine, 2-picoline, and 2,6-lutidine may be used in combination.
[0044]
In the present invention, the electrolyte can be gelled by a technique such as addition of a polymer, addition of an oil gelling agent, polymerization containing a polyfunctional monomer, or a polymer crosslinking reaction. Preferable polymers in the case of gelation by polymer addition include polyacrylonitrile, polyvinylidene fluoride and the like. Preferred gelling agents for gelation by adding an oil gelling agent include dibenzylden-D-sorbitol, cholesterol derivatives, amino acid derivatives, alkylamide derivatives of trans- (1R, 2R) -1,2-cyclohexanediamine, alkylureas Derivatives, N-octyl-D-gluconamide benzoate, double-headed amino acid derivatives, quaternary ammonium derivatives and the like can be mentioned.
[0045]
Preferred monomers for polymerization with a polyfunctional monomer include divinylbenzene, ethylene glycol dimethacrylate, ethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, and the like. be able to. Furthermore, esters and amides derived from acrylic acid such as acrylamide and methyl acrylate and α-alkyl acrylic acid, esters derived from maleic acid and fumaric acid such as dimethyl maleate and diethyl fumarate, butadiene, cyclohexane and the like. Dienes such as pentadiene, aromatic vinyl compounds such as styrene, p-chlorostyrene and sodium styrene sulfonate, vinyl esters, acrylonitrile, methacrylonitrile, vinyl compounds having a nitrogen-containing heterocyclic ring, vinyl having a quaternary ammonium salt A monofunctional monomer such as a compound, N-vinylformamide, vinylsulfonic acid, vinylidene fluoride, vinyl alkyl ethers, N-phenylmaleimide may be contained. 0.5-70 mass% is preferable and the polyfunctional monomer which occupies for the monomer whole quantity has more preferable 1.0-50 mass%.
[0046]
The above-mentioned monomers can be polymerized by radical polymerization. The monomer for gel electrolyte that can be used in the present invention can be radically polymerized by heating, light, electron beam or electrochemical. The polymerization initiator used when the crosslinked polymer is formed by heating is 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl-2. Azo initiators such as 2,2′-azobis (2-methylpropionate) and peroxide initiators such as benzoyl peroxide are preferable. The addition amount of these polymerization initiators is preferably 0.01 to 20% by mass and more preferably 0.1 to 10% by mass with respect to the total amount of monomers.
[0047]
When the electrolyte is gelled by a polymer crosslinking reaction, it is desirable to use a polymer containing a reactive group necessary for the crosslinking reaction and a crosslinking agent in combination. Preferable examples of the crosslinkable reactive group include nitrogen-containing heterocycles such as pyridine, imidazole, thiazole, oxazole, triazole, morpholine, piperidine, piperazine, etc. Preferred crosslinking agents include alkyl halides, halogens Bifunctional or higher functional reagents capable of electrophilic reaction with nitrogen atoms such as aralkyl fluoride, sulfonic acid ester, acid anhydride, acid chloride, and isocyanate can be exemplified.
[0048]
When an inorganic solid compound is used instead of the electrolyte, copper iodide, copper thiocyanide, or the like can be introduced into the electrode by a casting method, a coating method, a spin coating method, a dipping method, electrolytic plating, or the like.
[0049]
In the present invention, an organic charge transport material can be used instead of the electrolyte. Charge transport materials include hole transport materials and electron transport materials. Examples of the former include, for example, oxadiazoles disclosed in Japanese Patent Publication No. 34-5466, triphenylmethanes disclosed in Japanese Patent Publication No. 45-555, and Japanese Patent Publication No. 52-4188. Pyrazolines shown in the above, hydrazones shown in JP-B-55-42380, oxadiazoles shown in JP-A-56-123544, etc., JP-A-54-58445 And tetrasylbenzidines disclosed in JP-A No. 58-65440, and stilbenes disclosed in JP-A No. 60-98437. Among them, examples of the charge transport material used in the present invention are shown in JP-A-60-24553, JP-A-2-96767, JP-A-2-183260, and JP-A-2-226160. Particularly preferred are the hydrazones described, and the stilbenes shown in JP-A-2-51162 and JP-A-3-75660. Moreover, these can be used individually or in mixture of 2 or more types.
[0050]
On the other hand, examples of the electron transport material include chloranil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 1,3,7-trinitrodibenzothiophene, 1,3,7-trinitrodibenzothiophene-5,5-dioxide, etc. . These electron transport materials can be used alone or as a mixture of two or more.
[0051]
Further, as a sensitizer that further increases the sensitizing effect, a certain kind of electron-withdrawing compound can be added. Examples of the electron-withdrawing compound include quinones such as 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 1-chloro-5-nitroanthraquinone, 2-chloroanthraquinone, and phenanthrenequinone, 4-nitro Aldehydes such as benzaldehyde, ketones such as 9-benzoylanthracene, indandione, 3,5-dinitrobenzophenone, or 3,3 ', 5,5'-tetranitrobenzophenone, phthalic anhydride, 4-chloronaphthalic anhydride Acid anhydrides such as terephthalalmalononitrile, 9-anthrylmethylidenemalononitrile, 4-nitrobenzalmalononitrile, or cyano compounds such as 4- (p-nitrobenzoyloxy) benzalmalononitrile, 3-benzalphthalide , 3- (α-cyano- - Nitorobenzaru) phthalide, or 3- (alpha-cyano -p- Nitorobenzaru) -4,5,6,7 can be mentioned phthalides such as tetrachloro phthalide like.
[0052]
When forming a charge transfer layer using these charge transport materials, it is preferable to use a resin together, such as polystyrene resin, polyvinyl acetal resin, polysulfone resin, polycarbonate resin, polyester resin, polyphenylene oxide resin, polyarylate resin, acrylic resin. Methacrylic resin, phenoxy resin and the like. Among these, polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polyester resin, and polyarylate resin are excellent. These resins can be used alone or in admixture of two or more as a copolymer.
[0053]
Some of these resins are weak in mechanical strength such as pulling, bending, and compression. To improve this property, a plasticizing substance can be added. Specific examples include phthalic acid esters (for example, DOP and DBP), phosphoric acid esters (for example, TCP and TOP), sebacic acid esters, adipic acid esters, nitrile rubber, chlorinated hydrocarbons, and the like. If these substances are added more than necessary, the properties are adversely affected, so the ratio is preferably 20% or less with respect to the binder resin. In addition, an antioxidant, an anti-curl agent, etc. can be added as needed.
[0054]
0.001-20 mass parts is preferable with respect to 1 mass part of charge transport materials, and, as for the amount of resin used, 0.01-5 mass parts or less are more preferable. If the ratio of the resin is too high, the sensitivity is lowered, and if the ratio of the resin is too low, the repeated characteristics may be deteriorated or the coating film may be lost.
[0055]
There are two main methods for forming the charge transfer layer. One is a method in which a counter electrode is first pasted on a semiconductor fine particle-containing layer carrying a sensitizing dye, and a liquid charge transfer layer is sandwiched between the opposite electrodes, and the other is a method in which a charge is directly applied on the semiconductor fine particle-containing layer. This is a method of providing a moving layer. In the latter case, the counter electrode is newly added thereafter.
[0056]
In the former case, examples of the method for sandwiching the charge transfer layer include a normal pressure process using a capillary phenomenon due to immersion and a vacuum process in which the gas phase is replaced with a liquid phase at a pressure lower than normal pressure. In the latter case, in the wet charge transfer layer, it is necessary to provide a counter electrode without being dried to prevent liquid leakage at the edge portion. In the case of a gel electrolyte, there is a method in which it is applied in a wet manner and solidified by a method such as polymerization. In that case, you may provide a counter electrode after drying and fixing. In addition to the electrolyte solution, the organic charge transport material solution and gel electrolyte can be applied in the same manner as the semiconductor fine particle-containing layer and the dye, as well as immersion method, roller method, dipping method, air knife method, and extrusion method. , Slide hopper method, wire bar method, spin method, spray method, casting method, various printing methods, and the like.
[0057]
As the counter electrode, a support having a conductive layer can be used in the same manner as the conductive support described above, but the support is not necessarily required in a configuration in which the strength and the sealing performance are sufficiently maintained. Specific examples of the material used for the counter electrode include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, and conductive metal oxides such as carbon, ITO, and FTO. There is no particular limitation on the thickness of the counter electrode.
[0058]
In order for light to reach the photosensitive layer, at least one of the conductive support and the counter electrode must be substantially transparent. In the photoelectric conversion element of this invention, the electroconductive support body is transparent and the method of making sunlight inject from a support body side is preferable. In this case, a material that reflects light is preferably used for the counter electrode, and a metal, glass, plastic, or metal thin film on which a conductive oxide is deposited is preferable.
[0059]
As described above, there are two types of coating of the counter electrode: when applied on the charge transfer layer and when applied on the semiconductor fine particle layer. In any case, the counter electrode material can be appropriately formed on the charge transfer layer or the semiconductor fine particle-containing layer by a technique such as coating, laminating, vapor deposition, or bonding depending on the type of the counter electrode material or the type of the charge transfer layer. When the charge transfer layer is solid, the counter electrode can be formed directly on the charge transfer layer by a technique such as coating, vapor deposition, or CVD.
[0060]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these at all.
[0061]
Embedded image
Figure 0004610160
[0062]
Synthesis Example 1 Synthesis of Compound (A-4) Compound (B-1) (0.92 g), rhodanine-3-acetic acid (0.50 g) and ammonium acetate (0.25 g) were dissolved in 4.8 g of acetic acid, Heat and stir at 120 ° C. After 30 minutes, heating was stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the precipitated crystals were collected by filtration. The obtained crystal was washed in turn with a mixed solution of water (100 ml), 2-propanol (10 ml) and water (50 ml) to obtain Exemplified Compound (A-4). 1.23g. Yield 96%.
[0063]
Example 1
3 g of titanium oxide (P-25, manufactured by Nippon Aerosil Co., Ltd.), 0.2 g of acetylacetone, and 0.3 g of a surfactant (Triton X-100, manufactured by Aldrich) were dispersed with a paint conditioner for 6 hours together with 6.5 g of water. Further, 1.2 g of polyethylene glycol (# 20,000) was added to this dispersion to prepare a paste. This paste was applied on an FTO glass substrate so as to have a film thickness of 10 μm, dried at room temperature, and then baked in air at 500 ° C. for 1 hour.
[0064]
The semiconductor electrode prepared previously was immersed in a 0.3 mM ethanol solution of the dye represented by the exemplary compound (A-4) at room temperature for 15 hours and subjected to an adsorption treatment.
[0065]
As an electrolytic solution, a solution obtained by dissolving 0.03M iodine and 0.5M tetra-n-propylammonium iodide in a mixed solution of propylene carbonate / acetonitrile = 6/4 was used. As the counter electrode, platinum sputtered on FTO was used.
[0066]
An electrolytic solution was immersed between both electrodes to produce a photoelectric conversion element. Here, simulated sunlight generated from a solar simulator (AM1.5G, irradiation intensity 100 mW / cm 2 ) was irradiated as a light source from the working electrode side. As a result, the open circuit voltage was 0.65 V, the short-circuit current density was 10.5 mA / cm 2 , the shape factor was 0.68, and the conversion efficiency was 4.64%.
[0067]
Examples 2-5
A device was prepared and evaluated in the same manner as in Example 1 except that the exemplified compound (A-4) was changed to the dye shown in Table 1. The results are shown in Table 1.
[0068]
[Table 1]
Figure 0004610160
[0069]
As can be seen from the results in Table 1, it can be seen that the dye of the present invention exhibits good conversion efficiency.
[0070]
Comparative Example 1
A device was prepared and evaluated in the same manner as in Example 1 except that the exemplified compound (A-4) was changed to the compound shown in (C-1). As a result, the open circuit voltage was 0.58 V, the short circuit current density was 5.3 mA / cm 2 , the form factor was 0.55, and the conversion efficiency was 1.69%.
[0071]
【The invention's effect】
As is clear from the above, according to the present invention, a photoelectric conversion element having good conversion efficiency can be provided.

Claims (3)

下記一般式(1)で示されることを特徴とする光電変換材料。
Figure 0004610160
(一般式(1)において、 は式(101)〜(105)で示されるアリーレン基、ヘテロ環を示す。R は水素原子を示す。R 、R は水素原子を示す。R は、式(21)、(22)、(31)、(43)、(65)〜(67)、(71)で示される酸性基を有する置換基を示す。一般式(1)における下記式(70)が式(49)、(52)、(53)、(54)、(61)、(68)、(69)である。R は水素原子、フェニル基を示す。R 、R 10 は水素原子を示す。X は、アミノ基と共に式(3)、(6)、(7)、(11)、(12)で示される環状構造を形成する連結基を示す。mは0〜1の整数、nは0〜1の整数を示す。炭素−炭素二重結合は、E型またはZ型の何れであってもよい。
Figure 0004610160
Figure 0004610160
Figure 0004610160
A photoelectric conversion material represented by the following general formula (1):
Figure 0004610160
(In General Formula (1), R 1 represents an arylene group or a heterocycle represented by Formulas (101) to (105). R 2 represents a hydrogen atom. R 3 and R 4 represent a hydrogen atom. 5 shows the substituent which has an acidic group shown by Formula (21), (22), (31), (43), (65)-(67), (71). Formula (70) is Formula (49), (52), (53), (54), (61), (68), (69) R 8 represents a hydrogen atom or a phenyl group, R 9 , R 10 represents a hydrogen atom, and X 1 represents a linking group that forms a cyclic structure represented by the formulas (3), (6), (7), (11), and (12) together with an amino group, m is An integer of 0 to 1 and n represents an integer of 0 to 1. The carbon-carbon double bond may be either E type or Z type.
Figure 0004610160
Figure 0004610160
Figure 0004610160
表面に導電性を有する基板と、その導電性表面上に被覆された半導体層と、その半導体層の表面に吸着した色素からなる半導体電極において、色素が請求項1記載の光電変換材料であることを特徴とする半導体電極。The photoelectric conversion material according to claim 1, wherein the dye is a semiconductor electrode comprising a substrate having conductivity on the surface, a semiconductor layer coated on the conductive surface, and a dye adsorbed on the surface of the semiconductor layer. A semiconductor electrode characterized by the above. 請求項2記載の半導体電極を用いることを特徴とする光電変換素子。A photoelectric conversion element using the semiconductor electrode according to claim 2.
JP2002368719A 2002-07-29 2002-12-19 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same Expired - Fee Related JP4610160B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002368719A JP4610160B2 (en) 2002-12-19 2002-12-19 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
US10/488,047 US20040256002A1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
PCT/JP2003/009408 WO2004011555A1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP08012144A EP1997855A3 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP08012146A EP2009064B1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP03771315A EP1526159B1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
DE60333014T DE60333014D1 (en) 2002-07-29 2003-07-24 ORGANIC DYE, PHOTOELECTRIC SIGNALING MATERIAL, SEMICONDUCTOR ELECTRODE AND PHOTOELECTRIC SIGNALING DEVICE
AT03771315T ATE471356T1 (en) 2002-07-29 2003-07-24 ORGANIC DYE, PHOTOELECTRICAL SIGNALING MATERIAL, SEMICONDUCTOR ELECTRODE AND PHOTOELECTRICAL SIGNALING MATERIAL
US11/984,199 US7615640B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
US11/984,198 US7795529B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368719A JP4610160B2 (en) 2002-12-19 2002-12-19 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same

Publications (3)

Publication Number Publication Date
JP2004200068A JP2004200068A (en) 2004-07-15
JP2004200068A5 JP2004200068A5 (en) 2008-02-14
JP4610160B2 true JP4610160B2 (en) 2011-01-12

Family

ID=32765214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368719A Expired - Fee Related JP4610160B2 (en) 2002-07-29 2002-12-19 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same

Country Status (1)

Country Link
JP (1) JP4610160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166067A (en) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 Water decomposition optical electrochemical cell, hydrogen manufacturing device and hydrogen peroxide manufacturing device using the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096673B2 (en) * 2004-11-30 2012-12-12 三菱製紙株式会社 Semiconductor electrode and photoelectric conversion element
JP5185503B2 (en) * 2005-03-07 2013-04-17 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5185517B2 (en) * 2005-09-22 2013-04-17 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
US20090242027A1 (en) 2006-07-05 2009-10-01 Teruhisa Inoue Dye-Sensitized Solar Cell
JP5185518B2 (en) * 2006-09-14 2013-04-17 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5096758B2 (en) * 2007-02-20 2012-12-12 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5416450B2 (en) * 2009-03-27 2014-02-12 三菱製紙株式会社 Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5981802B2 (en) * 2011-08-23 2016-08-31 保土谷化学工業株式会社 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
US9368288B2 (en) 2013-10-11 2016-06-14 Panasonic Corporation Photoelectric conversion element
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
CN110571334A (en) 2014-04-16 2019-12-13 株式会社理光 Photoelectric conversion element
EP3410506B1 (en) 2016-01-25 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
EP3552253B1 (en) 2016-12-07 2022-02-16 Ricoh Company, Ltd. Photoelectric conversion element
WO2019181176A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
KR102636393B1 (en) 2019-07-16 2024-02-13 가부시키가이샤 리코 Solar modules, electronics, and power modules
CN114341745A (en) 2019-09-26 2022-04-12 株式会社理光 Electronic device, method of producing the same, imaging method, and imaging apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP7508782B2 (en) 2020-01-20 2024-07-02 株式会社リコー Electronic device and its manufacturing method, image forming method, and image forming apparatus
EP3872861B1 (en) 2020-02-27 2023-06-28 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
EP4377978A1 (en) 2021-07-29 2024-06-05 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238905A (en) * 1998-02-20 1999-08-31 Fuji Photo Film Co Ltd Photoelectric converter element and photoelectrochemical cell
JP2001052766A (en) * 1999-06-02 2001-02-23 Agency Of Ind Science & Technol Organic pigment sensitized porous oxide semiconductor electrode and solar cell using the same
JP2001076773A (en) * 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical cell, and new squalenium cyanine dye

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238905A (en) * 1998-02-20 1999-08-31 Fuji Photo Film Co Ltd Photoelectric converter element and photoelectrochemical cell
JP2001052766A (en) * 1999-06-02 2001-02-23 Agency Of Ind Science & Technol Organic pigment sensitized porous oxide semiconductor electrode and solar cell using the same
JP2001076773A (en) * 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical cell, and new squalenium cyanine dye

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166067A (en) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 Water decomposition optical electrochemical cell, hydrogen manufacturing device and hydrogen peroxide manufacturing device using the same

Also Published As

Publication number Publication date
JP2004200068A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4610160B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP4187476B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP2004235052A (en) Photoelectric conversion material, and photoelectric conversion element using it
JP2005123033A (en) Photoelectric conversion material, semiconductor electrode and photoelectric conversion device using it
JP5096673B2 (en) Semiconductor electrode and photoelectric conversion element
JP2007048680A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using it
JP2006156212A (en) Semiconductor electrode and photoelectric conversion element using it
JP5096758B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP2005132914A (en) Photoelectric conversion material, semiconductor electrode and photoelectric converter using the same
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP4326272B2 (en) Dye-sensitized solar cell dye
JP5185517B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP4610158B2 (en) Photoelectric conversion element
JP2005019251A (en) Photoelectric transfer material, semiconductor electrode, and photoelectric transfer element using it
JP2004319120A (en) Manufacturing method of semiconductor electrode, and photoelectric conversion element using it
JP2006244752A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion device using same
JP2007257924A (en) Photoelectric conversion material, semiconductor electrode, photoelectric conversion element fabricated therewith, and semiconductor electrode fabrication method
JP2007048672A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using it
JP2005026114A (en) Semiconductor electrode and photoelectric conversion element using the same
JP2006190534A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP2005063833A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using same
JP2005019253A (en) Semiconductor electrode and photoelectric conversion element using it
JP2005026116A (en) Semiconductor electrode and photoelectric conversion element using the same
JP2005026115A (en) Semiconductor electrode and photoelectric conversion element using the same
JP2005082678A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric converter using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees