JP4148375B2 - Photoelectric conversion element and photoelectrochemical cell - Google Patents

Photoelectric conversion element and photoelectrochemical cell Download PDF

Info

Publication number
JP4148375B2
JP4148375B2 JP21977598A JP21977598A JP4148375B2 JP 4148375 B2 JP4148375 B2 JP 4148375B2 JP 21977598 A JP21977598 A JP 21977598A JP 21977598 A JP21977598 A JP 21977598A JP 4148375 B2 JP4148375 B2 JP 4148375B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
general formula
dye
conversion element
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21977598A
Other languages
Japanese (ja)
Other versions
JPH11214731A (en
Inventor
次郎 塚原
哲也 渡辺
正樹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP21977598A priority Critical patent/JP4148375B2/en
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to AT98120012T priority patent/ATE230517T1/en
Priority to EP00126792A priority patent/EP1091373B1/en
Priority to EP98120012A priority patent/EP0911841B1/en
Priority to DE69823706T priority patent/DE69823706T2/en
Priority to DE69810421T priority patent/DE69810421T2/en
Priority to AT00126792T priority patent/ATE266246T1/en
Publication of JPH11214731A publication Critical patent/JPH11214731A/en
Application granted granted Critical
Publication of JP4148375B2 publication Critical patent/JP4148375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

【0001】
【発明の属する技術分野】
本発明は光電変換素子およびこれを用いた電気化学電池に関し、詳しくは色素で増感された半導体微粒子を用いた光電変換素子および電気化学電池に関する。
【0002】
【従来の技術】
光電変換素子は各種の光センサー、複写機、光発電装置に用いられている。光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。
【0003】
米国特許4927721号、同4684537号、同5084365号、同5350644号、同5463057号、同5525440号の各明細書および特開平7−249790号公報には、色素によって増感された半導体微粒子を用いた光電変換素子(以後、色素増感光電変換素子と略す)、もしくはこれを作成するための材料および製造技術が開示されている。この方式の第一の利点は二酸化チタン等の安価な酸化物半導体を高純度に精製することなく用いることができるため、比較的安価な光電変換素子を提供できる点にある。第二の利点は用いられる色素の吸収がブロードなため、可視光線のほぼ全ての波長領域の光を電気に変換できることである。これらの特徴は太陽エネルギーを電気に変換することを目的とした光電変換素子(いわゆる太陽電池)に応用する際に有利であることから、この方面への応用が検討されている。
【0004】
しかしながら、この方式の色素増感光電変換素子で高い変換効率を実現するには増感色素として高価なルテニウム錯体色素を用いなければならず、実用化の障害となることが懸念される。このような理由から、有機色素のような安価な色素によって増感され、高い効率で光電変換することのできる光電変換素子の開発が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明の目的は有機色素を用いた色素増感光電変換素子を提供することである。第二の目的はこのような光電変換素子を用いて変換効率の向上した光電気化学電池を提供することである。
【0006】
【課題を解決するための手段】
研究の結果、下記の(1)〜(6)が本発明の目的に適うことを突き止めた。(1) 少なくとも導電性支持体および感光層を有する光電変換素子であって、
前記感光層が、下記一般式(1)および(2)で表されるポリメチン色素から選択された少なくとも1種によって増感された半導体微粒子を含有することを特徴とする光電変換素子。
【0007】
【化3】

Figure 0004148375
【0008】
[一般式(1)中、R11、R12、R13およびR14は各々水素原子または1価の置換基を表す。R11〜R14は互いに結合して環を形成してもよい。R15はアルキル基を表す。A11は炭素原子および窒素原子とともに3ないし9員環を形成するための原子団を表し、A12は炭素原子とともに3ないし9員環を形成するための原子団を表す。Xは酸素原子または硫黄原子を表し、n1は1〜4の整数を表す。一般式(1)で表される化合物は分子全体の電荷に応じて対イオンを有してもよい。
一般式(2)中、R21、R22、R23およびR24は各々水素原子または1価の置換基を表す。R21〜R24は互いに結合して環を形成してもよい。R25はアルキル基を表す。A21は炭素原子および窒素原子とともに5ないし9員環を形成するための原子団を表し、A22は炭素原子とともに5ないし9員環を形成するための原子団を表す。Xは酸素原子または硫黄原子を表し、n2は0〜3の整数を表す。一般式(2)で表される化合物は分子全体の電荷に応じて対イオンを有してもよい。]
(2) 一般式(1)で表されるポリメチン色素において炭素原子、窒素原子、およびA11によって構成される複素環が、ベンゾチアゾリン、インドレニン、ナフトチアゾリン、またはベンゾインドレニンである上記(1)に記載の光電変換素子。
(3) 一般式(2)で表されるポリメチン色素において炭素原子、窒素原子、およびA21によって構成される複素環がジヒドロキノリンである上記(1)に記載の光電変換素子。
(4) 一般式(1)で表されるポリメチン色素において炭素原子、およびA12によって構成される環が、ロダニンまたは下記一般式(3)で表される上記(1)または(2)に記載の光電変換素子。
【0009】
【化4】
Figure 0004148375
【0010】
[一般式(3)中、R31はアルキル基を表し、R32およびR33は各々独立にシアノ基またはカルボキシル基を表す。]
(5) ポリメチン色素が少なくとも1つのカルボキシル基を有する上記(1)〜(4)のいずれかに記載の光電変換素子。
(6) 上記(1)〜(5)のいずれかに記載の光電変換素子を有し、さらに少なくとも電荷移動層および対向電極を有する光電気化学電池。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の光電変換素子は、導電性支持体上に感光層を有するものであり、感光層には一般式(1)、(2)で表されるポリメチン色素によって増感された半導体微粒子が含有されている。このように、一般式(1)、(2)で表されるポリメチン色素を用いることによって、変換効率に優れた色素増感光電変換素子を得ることができる。また、コスト面で有利である。
【0012】
一般式(1)で表されるポリメチン色素について詳しく説明する。一般式(1)においてR11、R12、R13およびR14は各々水素原子または1価の置換基を表す。1価の置換基としてはアルキル基ないしアルケニル基(例えばメチル、エチル、ブチル、イソブチル、n−ドデシル、シクロヘキシル、ビニル、アリル、ベンジル、フェネチル等)、アリール基(例えばフェニル、トリル、ナフチル等)、複素環残基(例えばピリジル基、イミダゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、ベンズイミダゾリル基、キノリル基等)、ハロゲン原子(例えば、フッ素、塩素、臭素)、アルコキシ基(例えばメトキシ、エトキシ、ベンジルオキシ等)、アリールオキシ基(例えばフェノキシ等)、アルキルチオ基(例えばメチルチオ、エチルチオ等)、アリールチオ基(例えばフェニルチオ等)、ヒドロキシ基および酸素陰イオン、ニトロ基、シアノ基、アミド基(例えばアセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノ等)、ウレイド基(例えば、3ーフェニルウレイド等)、ウレタン基(例えばイソブトキシカルボニルアミノ、カルバモイルオキシ等)、エステル基(例えばアセトキシ、ベンゾイルオキシ、メトキシカルボニル、フェノキシカルボニル等)、カルバモイル基(例えばN−メチルカルバモイル、N,N−ジフェニルカルバモイル等)、スルファモイル基(例えばN−フェニルスルファモイル等)、アシル基(例えばアセチル、ベンゾイル等)、アミノ基(アミノ、メチルアミノ、アニリノ、ジフェニルアミノ等)、スルホニル基(例えばメチルスルホニル等)、ホスホニル基およびそのエステル、ホスホニルオキシ基およびそのエステル、カルボキシル基、スルホ基等が挙げられる。置換基の炭素原子上にはさらに上記の置換基があっても良い。
【0013】
11〜R14で代表されるメチン鎖置換基は互いに結合して3〜9員の単環もしくは多環性の芳香環、複素環、もしくは脂環式の環を形成してもよい。好ましい環としてはシクロブテン、シクロペンテン、シクロヘキセン、ベンゼン、デヒドロデカリン、ピリジン、ジヒドロピリジン、テトラヒドロピリジン、フラン、ジヒドロフラン、チオフェン、ジヒドロチオフェン、ヘキサヒドロキノリン等が挙げられる。これらすべての環はさらに3〜8員の芳香環、複素環、もしくは脂環式の環が縮合していてもよい。一般式(1)においてR15は総炭素数1〜12の置換もしくは無置換のアルキル基を表す。アルキル基の例、置換基の例はR11〜R14の説明で述べたことが当てはまる。
【0014】
一般式(1)においてA11は炭素原子、窒素原子とともに3〜9員の単環もしくは縮合環を形成するための原子団を表す。原子団の中で環を構成する原子としては炭素、窒素、酸素、硫黄、セレン、テルルである。A11で完成される複素環としてはピロリジン、チアゾリジン、オキサゾリジン、チアゾリン、オキサゾリン、ベンゾチアゾリン、ベンゾオキサゾリン、インドレニン、ナフトチアゾリン、ナフトオキサゾリン、ベンゾインドレニン等が挙げられ、なかでもベンゾチアゾリン、インドレニン、ナフトチアゾリン、ベンゾインドレニンが好ましい。これらは前述の置換基を有していてもよい。
【0015】
12は炭素原子とともに3〜9員の単環もしくは縮合環を形成するための原子団を表す。原子団の中で環を構成する原子としては炭素、窒素、酸素、硫黄、セレン、テルルである。A12で完成される環としては、複素環が好ましく、さらには5員の複素環の環状ケトン(チオケトンも含む)が好ましい。これらは置換基を有していてもよい。置換基は前述のもの以外に置換エキソメチレン基、置換ポリメチン基が挙げられる。
【0016】
置換エキソメチレン基における置換基の例としてはシアノ基、カルボキシル基、スルホニル基、アシル基、および複素環残基などが挙げられる。複素環残基は四級窒素原子に基づく電荷を有していてもよい。置換エキソメチレン基の具体例としてはジシアノメチレン、1−シアノ−1−カルボキシメチレン、1−メタンスルホニル−1−カルボキシメチレン、1−シアノ−1−アセチルメチレン、1−(3−メチルベンゾオキサゾリウム−2−イル)メチレンなどが挙げられる。置換ポリメチン基の例としては下記一般式(4)で表される基が挙げられる。
【0017】
【化5】
Figure 0004148375
【0018】
一般式(4)中、R41、R42、およびR43は一般式(1)中のR11と同義である。R44は一般式(1)中のR15と同義である。n3は0〜3の整数を表す。A3は一般式(1)中のA11と同義である。星印は一般式(1)のA12との結合部位を示す。
【0019】
特に、A12で完成される複素環としては、アルキル基(例えばメチル、エチル、カルボキシメチル、カルボキシエチル)等で置換されていてもよいロダニン、および一般式(3)で表される複素環が好ましい。
【0020】
一般式(3)中、R31はアルキル基(例えばメチル、エチル、カルボキシメチル、カルボキシエチル、フェネチル、アリル)を表す。R32、R33は各々シアノ基またはカルボキシル基を表し、これらは同一でも異なるものであってもよい。
【0021】
一般式(1)においてn1は1〜4の整数を表す。メチン鎖の長さは色素の吸収波長に関係し、n1の値が大きいほど長波な光を吸収するので目的に応じて適宜調節される。
【0022】
一般式(1)で表される化合物は分子全体の電荷に応じて対イオンを有してもよい。対イオンとしては特に制限はなく有機、無機のいずれでもよい。代表的な例としてはハロゲンイオン(フッ素イオン、塩素イオン、臭素イオン、沃素イオン)、水酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロりん酸イオン、酢酸イオン、トリフルオロ酢酸イオン、メタンスルホン酸イオン、パラトルエンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等のアニオン、アルカリ金属(リチウム、ナトリウム、カリウム等)、アルカり土類金属(マグネシウム、カルシウム等)、アンモニウム、アルキルアンモニウム(例えばジエチルアンモニウム、テトラブチルアンモニウム等)、ピリジニウム、アルキルピリジニウム(例えばメチルピリジニウム)、グアニジニウム、テトラアルキルホスホニウム等のカチオンが挙げられる。
【0023】
一般式(1)で表される化合物は酸性基を有する場合、半導体微粒子への吸着性に優れるため特に好ましい。酸性基としては水−テトラヒドロフラン混合溶媒(体積比50対50)中のpKaが10以下のものが好ましい。特に好ましくはカルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基、水酸基、リン酸モノエステルおよびジエステル基等である。このうちカルボキシル基が最も好ましい。これらの基はアルカリ金属等と塩を形成したものであってもよい。また分子内塩を形成していてもよい。
【0024】
次に一般式(2)ついて説明する。一般式(2)おいてR21〜R24は一般式(1)におけるR11と同義である。R25は一般式(1)のR15と同義である。A21は炭素原子、窒素原子とともに5ないし9員の単環もしくは縮合環を形成するための原子団を表す。A21で完成される複素環はジヒドロキノリン等が特に好ましい。これらはA11と同様の置換基を有していてもよい。
【0025】
22は炭素原子とともに3〜9員の単環もしくは縮合環を形成するための原子団を表す。原子団の中で環を構成する原子としては炭素、窒素、酸素、硫黄、セレン、テルルである。A22で完成される環としてはA12で完成される環と同様のものが挙げられ、これらは置換基を有していてもよい。置換基は前述のA12に対する置換基と同様のものである。A22で完成される環の好ましいものはA12で完成される環と同様である。n2は0〜3の整数を表す。一般式(2)で表される化合物は分子全体の電荷に応じて前述の対イオンを有してもよい。一般式(2)で表される化合物も前述の酸性基を有するのが好ましく、酸性基としてはカルボキシル基が最も好ましい。
【0026】
以下に一般式(1)または(2)で表されるポリメチン色素の好ましい具体例を示す。
【0027】
【化6】
Figure 0004148375
【0028】
【化7】
Figure 0004148375
【0029】
【化8】
Figure 0004148375
【0030】
【化9】
Figure 0004148375
【0031】
【化10】
Figure 0004148375
【0032】
【化11】
Figure 0004148375
【0033】
一般式(1)または(2)で表される本発明のポリメチン色素は、エフ・エム・ハーマー(F.M.Harmer)著「ヘテロサイクリック・コンパウンズ−シアニン・ダイズ・アンド・リレイテッド・コンパウンズ(Heterocyclic Compounds-Cyanine Dyes and Related Compounds )」、ジョン・ウィリー・アンド・サンズ (John Willey & Sons) 社、ニューヨーク、ロンドン、1994年刊、ディー・エム・スターマー(D.M.Sturmer) 著「ヘテロサイクリック・コンパウンズ−スペシャル・トピックス・イン・ヘテロサイクリック・ケミストリー(Heterocyclic Compounds - Special Topics In Heterocyclic Chemistry)」、第18章、第14節482項から515項、ジョン・ウィリー・アンド・サンズ(John Willey & Sons)社、ニューヨーク、ロンドン、1977年刊、「ロッズ・ケミストリー・オブ・カーボン・コンパウンズ(Rodd's Chemistry of Carbon Compounds)」2nd Edition Vol.4, PartB、第15章369項から422項、エルセビア・サイエンス・パブリック・カンパニー・インク(Eisevier Science Publishing Company Inc.)社、ニューヨーク、1977年刊、英国特許第1077611号などに記載の方法で合成することができる。
【0034】
次に、本発明に用いられるポリメチン色素の合成法を具体例を挙げて説明するが、本発明はこれらに限定されない。
【0035】
合成例1 例示化合物(1)の合成
下記の合成ルートにて本発明の例示化合物(1)を合成した。
【0036】
【化12】
Figure 0004148375
【0037】
2,3−ジメチルベンゾチアゾリウムヨージド40gとマロンジアルデヒドビスフェニルイミン51gを150mlの無水酢酸中、140℃にて二時間加熱撹拌した。反応液を1リットルの酢酸エチル中に注ぎ、析出した結晶を濾取することにより、化合物(1a)45gを得た。
【0038】
化合物(1a)20g、N−(2−フェニルエチル)ロダニン9.1gをメタノール100mlに溶解し、トリエチルアミン5.31gを加えた。これを50℃にて10分間撹拌し、析出した結晶を濾過して化合物(1b)11.9gを得た。
【0039】
化合物(1b)1.54gを塩化メチレンに溶解し10℃にてトリフルオロメタンスルホン酸メチル0.4mlを徐々に滴下し化合物(1c)とした。別の容器に0.3gのシアノ酢酸を5mlのテトラヒドロフランに溶解し、10℃にてリチウムジイソプロピルアミドの2モル/l溶液(アルドリッチ製)3.6mlを加えた。得られた淡黄色のサスペンジョンを、化合物(1c)の溶液中に0℃にて徐々に滴下した。反応液を直ちに5%酢酸水溶液200ml中に注ぐと目的である本発明の例示化合物(1)の結晶0.34gが得られた。
【0040】
次に本発明のポリメチン色素を応用した色素増感光電変換素子、および光電気化学電池について詳しく説明する。
【0041】
本発明において色素増感光電変換素子は導電性支持体、および導電性支持体上に塗設されるポリメチン色素の吸着した半導体微粒子の層(感光層)よりなる電極である。感光層は目的に応じて設計され単層構成でも多層構成でもよい。一層の感光層中の色素は一種類でも多種の混合でもよい。感光層に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有しており、この電子が色素から半導体微粒子の伝導帯に渡され、さらに拡散によって導電性支持体に到達する。この時色素分子は酸化体となっているが、電極上の電子が外部回路で仕事をしながら色素酸化体に戻るのが光電気化学電池であり、色素増感光電変換素子はこの電池の負極として働く。
【0042】
以下、導電性支持体、および感光層について詳しく説明する。
【0043】
導電性支持体は金属のように支持体そのものに導電性があるものか、または表面に導電剤層を有するガラスもしくはプラスチックの支持体である。後者の場合好ましい導電剤としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。この場合の導電剤層の厚さは0.05〜10μm であることが好ましい。
【0044】
導電性支持体は表面抵抗が低いほどよい。好ましい表面抵抗の範囲としては50Ω/cm2以下であり、さらに好ましくは10Ω/cm2以下である。この下限に特に制限はないが、通常0.1Ω/cm2程度である。
【0045】
導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。透明導電性支持体としてはガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。このときの導電性の金属酸化物の塗布量はガラスもしくはプラスチックの支持体1m2当たり0.1〜100g が好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
【0046】
感光層に用いられる半導体微粒子は金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
【0047】
これらの半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001〜1μm 、分散物の平均粒径として0.01〜100μm であることが好ましい。
【0048】
半導体微粒子を導電性支持体上に塗設する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などが挙げられる。半導体微粒子の分散液を作成する方法としては乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられる。分散媒としては水または各種の有機溶媒(例えばメタノール、エタノール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられる。分散の際、必要に応じてポリマー、界面活性剤、酸、もしくはキレート剤などを分散助剤として用いてもよい。
【0049】
半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。
【0050】
一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層(すなわち感光層)の好ましい厚みは素子の用途によって異なるが、典型的には0.1〜100μm である。光電気化学電池として用いる場合は1〜50μm であることが好ましく、3〜30μm であることがより好ましい。半導体微粒子は支持体に塗布した後に粒子同士を密着させるために100〜800℃の温度で10分〜10時間焼成してもよい。
【0051】
なお、半導体微粒子の支持体1m2当たりの塗布量は0.5〜500g 、さらには5〜100g が好ましい。
【0052】
本発明において、半導体微粒子はポリメチン色素の吸着により増感されているが、半導体微粒子に色素を吸着させるには色素溶液の中によく乾燥した半導体微粒子を長時間浸漬する方法が一般的である。色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させても良い。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。吸着する色素は1種類でもよいし、数種混合して用いてもよい。混合する場合、本発明のポリメチン色素同士を混合してもよいし、米国特許4927721号、同4684537号、同5084365号、同5350644号、同5463057号、同5525440号の各明細書、および特開平7−249790号公報に記載の錯体色素と本発明の色素を混合してもよい。用途が光電気化学電池である場合、光電変換の波長域をできるだけ広くするように混合する色素が選ばれる。
【0053】
色素の使用量は、全体で、支持体1m2当たり0.01〜100mモルが好ましく、より好ましくは0.1〜50mモル、特に好ましくは0.5〜10mモルである。この場合、本発明のポリメチン色素の使用量は5モル%以上とすることが好ましい。
【0054】
また、色素の半導体微粒子に対する吸着量は半導体微粒子1g に対して0.001〜1mモルが好ましく、より好ましくは0.1〜0.5mモルである。
【0055】
このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
【0056】
また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸)等が挙げられる。
【0057】
色素を吸着した後にアミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてはピリジン、4−tert−ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
【0058】
なお、本発明では、導電性支持体と感光層との界面近傍において、導電剤と半導体微粒子とが相互に拡散して混合していてもよい。
【0059】
このようにして作成された色素増感光電変換素子は各種のセンサーや光再生型の光電気化学電池に応用することができる。光電気化学電池に応用する場合、図1に示すように電荷移動層と対向電極が必要である。
【0060】
図1に示される光電気化学電池1は導電性支持体2上に感光層3を有し、さらに感光層3上に電荷移動層4と対向電極5が設けられたものである。
【0061】
以下、電荷移動層と対向電極について詳しく説明する。
【0062】
電荷移動層は色素の酸化体に電子を補充する機能を有する層である。代表的な例としては酸化還元対を有機溶媒に溶解した液体、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。
【0063】
酸化還元対としては、例えば沃素と沃化物(例えば沃化リチウム、沃化テトラブチルアンモニウム、沃化テトラプロピルアンモニウム等)の組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体の組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体の組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうち沃素と沃化物の組み合わせが好ましい。これらを溶かす有機溶媒としては非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3−ジメチルイミダゾリノン、3−メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマーとしては例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては例えば沃化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)が挙げられ、これらにポリエチレンオキシド等のポリマーを混合することにより、室温での流動性を高めてもよい。この場合のポリマーの添加量は1〜50wt% である。
【0064】
酸化還元対は電子のキャリアになるのである程度の濃度が必要である。液体あるいはゲル電解質として用いる場合の溶液中の好ましい濃度としては合計で0.01モル/l以上であり、より好ましくは0.1モル/l以上であり、特に好ましくは0.3モル/l以上である。この場合の上限には特に制限はないが、通常5モル/l程度である。
【0065】
対向電極は光電気化学電池の正極として働くものである。対向電極は通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。
【0066】
感光層に光が到達するためには、前述の導電性支持体と対向電極の少なくとも一方は実質的に透明でなければならない。本発明の光電気化学電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合対向電極は光を反射する性質を有することがさらに好ましい。光電気化学電池の対向電極としては金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。
【0067】
光電気化学電池では構成物の蒸散を防止するために電池の側面をポリマーや接着剤等で密封することが好ましい。
【0068】
このようにして得られる光電気化学電池の特性は、AM1.5Gで100mW/cm2のとき、開放電圧0.01〜3V、短絡電流密度0.001〜20mA/cm2、形状因子0.1〜0.99、変換効率0.001〜25%である。
【0069】
【実施例】
以下に本発明の色素増感光電変換素子および光電気化学電池の作成方法について実施例によって具体的に説明するが、本発明はこれらに限定されない。
【0070】
実施例1
二酸化チタン分散液の調製
内側をテフロンコーティングした内容積200mlのステンレス製ベッセルに二酸化チタン(日本アエロジル社 DegussaP−25)15g、水45g、分散剤(アルドリッチ社製、TritonX−100)1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmにて2時間分散した。分散物からジルコニアビーズを濾過して除いた。この場合の二酸化チタンの平均粒径は2.5μm であった。このときの粒径はMALVERN社製マスターサイザーにて測定したものである。
【0071】
光電変換素子の作成
フッ素をドープした酸化スズをコーティングした導電性ガラス(旭硝子製 TCOガラスを20mm×20mmの大きさに切断加工したもの)の導電面側にガラス棒を用いて上記の分散液を塗布した。なお、導電性ガラスの表面抵抗は約30Ω/cm2であった。
【0072】
この際導電面側の一部(端から3mm)に粘着テープを張ってスペーサーとし、粘着テープが両端に来るようにガラスを並べて一度に8枚ずつ塗布した。塗布後、室温にて1日間風乾し、粘着テープを剥した(粘着テープのついていた部分は光電変換測定の際、計測器と電気的な接触をとるために利用される)。次に、このガラスを電気炉(ヤマト科学製マッフル炉FP−32型)に入れ、450℃にて30分間焼成した。ガラスを取り出し冷却した後、表1に示す例示化合物の色素のエタノール溶液(3×10-4モル/l)に3時間浸漬した。色素の染着したガラスを4−tert−ブチルピリジンの10wt% エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。このようにして得られる感光層の厚さは10μm であり、半導体微粒子の塗布量は20g/m2とした。色素の塗布量は、色素の種類に応じ、適宜0.1〜10mモル/m2の範囲から選択した。
【0073】
反射スペクトルの測定
上記の光電変換素子を積分球を装着した分光光度計(日立製作所U−3500型)を用いて反射スペクトルを測定した。表1には最も長波長側の吸収ピークにおける波長と吸光度の値を示した。
【0074】
光電気化学電池の作成
図1の光電気化学電池の一態様として図2に示すような光電気化学電池を作成した。図2の光電気化学電池10は、ガラス支持体11上に導電剤層12を有する導電性支持体上に感光層13を設けた構成の上記の光電変換素子を用いたものであり、感光層13上に電荷移動層である電解液層14を有し、さらに対向電極として白金蒸着ガラス15を配置したものである。この作成において、上記の光電変換素子をこれと同じ大きさの白金蒸着ガラスと重ねあわせた(図2、光電変換素子の未塗布部分を白金蒸着ガラスに接触させないようにずらしてある)。次に、両ガラスの隙間に毛細管現象を利用して電解液(アセトニトリルとN−メチル−2−オキサゾリジノンの体積比90対10の混合物を溶媒とした沃素0.05モル/l、沃化リチウム0.5モル/lの溶液)を滲み込ませた。
【0075】
光電変換効率の測定
500Wのキセノンランプ(ウシオ製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL−42)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は50mW/cm2であった。
【0076】
上記の光電変換素子にこの光を照射し、発生した電気を電流電圧測定装置(ケースレー238型)にて測定した。これにより求められた光化学電池の開放電圧、短絡電流、形状因子、および変換効率を表1にまとめた。
【0077】
【表1】
Figure 0004148375
【0078】
表1より明らかなように、いずれの色素でも光電変換特性が認められる。さらに詳細に見ると、カルボキシル基を有しない色素(例示化合物29)に比べてカルボキシル基を有する色素(例示化合物1、21、22、23)は色素の染着性にすぐれ、その結果として光電変換効率が高いことがわかる。
【0079】
【発明の効果】
本発明により有機色素を用いた色素増感光電変換素子が提供されることが明らかとなった。従って、このような光電変換素子を用いて光電気化学電池を構成することができた。
【図面の簡単な説明】
【図1】本発明の光電気化学電池の一構成例を示す断面図である。
【図2】実施例で用いた光電気化学電池の一構成例を示す断面図である。
【符号の説明】
1、10 光電気化学電池
2 導電性支持体
3、13 感光層
4 電荷移動層
5 対向電極
11 ガラス支持体
12 導電剤層
14 電解液層
15 白金蒸着ガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion element and an electrochemical cell using the photoelectric conversion element, and more particularly to a photoelectric conversion element and an electrochemical cell using semiconductor fine particles sensitized with a dye.
[0002]
[Prior art]
Photoelectric conversion elements are used in various optical sensors, copying machines, and photovoltaic power generation devices. Various systems such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof have been put to practical use as photoelectric conversion elements.
[0003]
U.S. Pat. Nos. 4,927,721, 4,684,537, 5,084,365, 5,350,644, 5,463,057, and 5,525,440 and JP-A-7-249790 used semiconductor fine particles sensitized with a dye. A photoelectric conversion element (hereinafter abbreviated as a dye-sensitized photoelectric conversion element), or a material and a manufacturing technique for producing the photoelectric conversion element are disclosed. The first advantage of this method is that an inexpensive oxide semiconductor such as titanium dioxide can be used without being purified with high purity, so that a relatively inexpensive photoelectric conversion element can be provided. The second advantage is that the absorption of the dye used is broad, so that light in almost all wavelength regions of visible light can be converted into electricity. Since these characteristics are advantageous when applied to a photoelectric conversion element (so-called solar cell) for the purpose of converting solar energy into electricity, application in this direction is being studied.
[0004]
However, in order to achieve high conversion efficiency with this type of dye-sensitized photoelectric conversion element, an expensive ruthenium complex dye must be used as the sensitizing dye, which may be a hindrance to practical use. For these reasons, it has been desired to develop a photoelectric conversion element that can be sensitized by an inexpensive dye such as an organic dye and can perform photoelectric conversion with high efficiency.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a dye-sensitized photoelectric conversion element using an organic dye. A second object is to provide a photoelectrochemical cell having improved conversion efficiency using such a photoelectric conversion element.
[0006]
[Means for Solving the Problems]
As a result of the research, it was found that the following (1) to (6) are suitable for the purpose of the present invention. (1) A photoelectric conversion element having at least a conductive support and a photosensitive layer,
The photoelectric conversion element, wherein the photosensitive layer contains semiconductor fine particles sensitized by at least one selected from polymethine dyes represented by the following general formulas (1) and (2).
[0007]
[Chemical 3]
Figure 0004148375
[0008]
[In general formula (1), R 11 , R 12 , R 13 And R 14 Each represents a hydrogen atom or a monovalent substituent. R 11 ~ R 14 May combine with each other to form a ring. R 15 Represents an alkyl group. A 11 Represents an atomic group for forming a 3- to 9-membered ring with a carbon atom and a nitrogen atom, and A 12 Represents an atomic group for forming a 3- to 9-membered ring with a carbon atom. X represents an oxygen atom or a sulfur atom, and n 1 Represents an integer of 1 to 4. The compound represented by the general formula (1) may have a counter ion according to the charge of the whole molecule.
In general formula (2), R twenty one , R twenty two , R twenty three And R twenty four Each represents a hydrogen atom or a monovalent substituent. R twenty one ~ R twenty four May combine with each other to form a ring. R twenty five Represents an alkyl group. A twenty one Represents an atomic group for forming a 5- to 9-membered ring with a carbon atom and a nitrogen atom, and A twenty two Represents an atomic group for forming a 5- to 9-membered ring with a carbon atom. X represents an oxygen atom or a sulfur atom, and n 2 Represents an integer of 0 to 3. The compound represented by the general formula (2) may have a counter ion according to the charge of the whole molecule. ]
(2) In the polymethine dye represented by the general formula (1), a carbon atom, a nitrogen atom, and A 11 The photoelectric conversion element according to (1), wherein the heterocyclic ring is benzothiazoline, indolenine, naphthothiazoline, or benzoindolenine.
(3) A carbon atom, a nitrogen atom, and A in the polymethine dye represented by the general formula (2) twenty one The photoelectric conversion element according to the above (1), wherein the heterocycle constituted by dihydroquinoline.
(4) a carbon atom in the polymethine dye represented by the general formula (1), and A 12 The photoelectric conversion element as described in said (1) or (2) by which the ring comprised by a rhodanine or following General formula (3) is represented.
[0009]
[Formula 4]
Figure 0004148375
[0010]
[In general formula (3), R 31 Represents an alkyl group, R 32 And R 33 Each independently represents a cyano group or a carboxyl group. ]
(5) The photoelectric conversion element according to any one of (1) to (4), wherein the polymethine dye has at least one carboxyl group.
(6) A photoelectrochemical cell comprising the photoelectric conversion device according to any one of (1) to (5) above, and further comprising at least a charge transfer layer and a counter electrode.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The photoelectric conversion element of the present invention has a photosensitive layer on a conductive support, and the photosensitive layer contains semiconductor fine particles sensitized by the polymethine dyes represented by the general formulas (1) and (2). Has been. Thus, the dye-sensitized photoelectric conversion element excellent in conversion efficiency can be obtained by using the polymethine dyes represented by the general formulas (1) and (2). Moreover, it is advantageous in terms of cost.
[0012]
The polymethine dye represented by the general formula (1) will be described in detail. In the general formula (1), R 11 , R 12 , R 13 And R 14 Each represents a hydrogen atom or a monovalent substituent. As monovalent substituents, alkyl groups or alkenyl groups (for example, methyl, ethyl, butyl, isobutyl, n-dodecyl, cyclohexyl, vinyl, allyl, benzyl, phenethyl, etc.), aryl groups (for example, phenyl, tolyl, naphthyl, etc.), Heterocyclic residues (eg, pyridyl, imidazolyl, furyl, thienyl, oxazolyl, thiazolyl, benzimidazolyl, quinolyl, etc.), halogen atoms (eg, fluorine, chlorine, bromine), alkoxy groups (eg, methoxy) , Ethoxy, benzyloxy etc.), aryloxy groups (eg phenoxy etc.), alkylthio groups (eg methylthio, ethylthio etc.), arylthio groups (eg phenylthio etc.), hydroxy groups and oxygen anions, nitro groups, cyano groups, amide groups (Eg acetylamino Benzoylamino etc.), sulfonamide groups (eg methanesulfonylamino, benzenesulfonylamino etc.), ureido groups (eg 3-phenylureido etc.), urethane groups (eg isobutoxycarbonylamino, carbamoyloxy etc.), ester groups (eg Acetoxy, benzoyloxy, methoxycarbonyl, phenoxycarbonyl, etc.), carbamoyl groups (eg N-methylcarbamoyl, N, N-diphenylcarbamoyl etc.), sulfamoyl groups (eg N-phenylsulfamoyl etc.), acyl groups (eg acetyl, Benzoyl etc.), amino group (amino, methylamino, anilino, diphenylamino etc.), sulfonyl group (eg methylsulfonyl etc.), phosphonyl group and its ester, phosphonyloxy group and its ester , Carboxyl group, etc. sulfo group. The above substituents may be further present on the carbon atom of the substituent.
[0013]
R 11 ~ R 14 May be bonded to each other to form a 3- to 9-membered monocyclic or polycyclic aromatic ring, heterocyclic ring, or alicyclic ring. Preferred rings include cyclobutene, cyclopentene, cyclohexene, benzene, dehydrodecalin, pyridine, dihydropyridine, tetrahydropyridine, furan, dihydrofuran, thiophene, dihydrothiophene, hexahydroquinoline and the like. All these rings may be further condensed with a 3- to 8-membered aromatic ring, heterocyclic ring or alicyclic ring. In the general formula (1), R 15 Represents a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms in total. Examples of alkyl groups, examples of substituents are R 11 ~ R 14 This is the case in the explanation of.
[0014]
In the general formula (1), A 11 Represents an atomic group for forming a 3- to 9-membered monocyclic or condensed ring together with a carbon atom and a nitrogen atom. The atoms constituting the ring in the atomic group are carbon, nitrogen, oxygen, sulfur, selenium and tellurium. A 11 Examples of the heterocyclic ring completed in pyrrolidine, thiazolidine, oxazolidine, thiazoline, oxazoline, benzothiazoline, benzoxazoline, indolenine, naphthothiazoline, naphthoxazoline, benzoindolenine, among others, benzothiazoline, indolenine, naphtho Thiazoline and benzoindolenin are preferred. These may have the aforementioned substituents.
[0015]
A 12 Represents an atomic group for forming a 3- to 9-membered monocyclic or condensed ring with a carbon atom. The atoms constituting the ring in the atomic group are carbon, nitrogen, oxygen, sulfur, selenium and tellurium. A 12 The ring completed by is preferably a heterocyclic ring, more preferably a 5-membered heterocyclic cyclic ketone (including a thioketone). These may have a substituent. Examples of the substituent include a substituted exomethylene group and a substituted polymethine group other than those described above.
[0016]
Examples of the substituent in the substituted exomethylene group include a cyano group, a carboxyl group, a sulfonyl group, an acyl group, and a heterocyclic residue. The heterocyclic residue may have a charge based on a quaternary nitrogen atom. Specific examples of the substituted exomethylene group include dicyanomethylene, 1-cyano-1-carboxymethylene, 1-methanesulfonyl-1-carboxymethylene, 1-cyano-1-acetylmethylene, 1- (3-methylbenzoxazolium -2-yl) methylene and the like. Examples of the substituted polymethine group include a group represented by the following general formula (4).
[0017]
[Chemical formula 5]
Figure 0004148375
[0018]
In general formula (4), R 41 , R 42 And R 43 Is R in the general formula (1) 11 It is synonymous with. R 44 Is R in the general formula (1) 15 It is synonymous with. n Three Represents an integer of 0 to 3. A Three Is A in the general formula (1) 11 It is synonymous with. The star is A in the general formula (1) 12 The binding site is shown.
[0019]
In particular, A 12 As the heterocyclic ring completed by the above, a rhodanine optionally substituted with an alkyl group (for example, methyl, ethyl, carboxymethyl, carboxyethyl) and the heterocyclic ring represented by the general formula (3) are preferable.
[0020]
In general formula (3), R 31 Represents an alkyl group (for example, methyl, ethyl, carboxymethyl, carboxyethyl, phenethyl, allyl). R 32 , R 33 Each represents a cyano group or a carboxyl group, which may be the same or different.
[0021]
N in general formula (1) 1 Represents an integer of 1 to 4. The length of the methine chain is related to the absorption wavelength of the dye, and n 1 The larger the value of, the longer the light that is absorbed.
[0022]
The compound represented by the general formula (1) may have a counter ion according to the charge of the whole molecule. The counter ion is not particularly limited and may be either organic or inorganic. Typical examples are halogen ion (fluorine ion, chlorine ion, bromine ion, iodine ion), hydroxide ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, acetate ion, trifluoroacetate ion. , Anions such as methanesulfonate ion, paratoluenesulfonate ion, trifluoromethanesulfonate ion, alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (magnesium, calcium, etc.), ammonium, alkylammonium (e.g. Cations such as diethylammonium, tetrabutylammonium, etc.), pyridinium, alkylpyridinium (for example, methylpyridinium), guanidinium, tetraalkylphosphonium and the like.
[0023]
When the compound represented by the general formula (1) has an acidic group, it is particularly preferable because of its excellent adsorptivity to semiconductor fine particles. As the acidic group, those having a pKa of 10 or less in a water-tetrahydrofuran mixed solvent (volume ratio 50:50) are preferable. Particularly preferred are carboxyl group, sulfonic acid group, sulfinic acid group, phosphonic acid group, hydroxyl group, phosphoric acid monoester and diester group. Of these, carboxyl groups are most preferred. These groups may form a salt with an alkali metal or the like. In addition, an inner salt may be formed.
[0024]
Next, the general formula (2) will be described. R in general formula (2) twenty one ~ R twenty four Is R in the general formula (1) 11 It is synonymous with. R twenty five Is R in the general formula (1) 15 It is synonymous with. A twenty one Represents an atomic group for forming a 5- or 9-membered monocyclic or condensed ring together with a carbon atom and a nitrogen atom. A twenty one The heterocyclic ring completed by is particularly preferably dihydroquinoline. These are A 11 And may have the same substituent.
[0025]
A twenty two Represents an atomic group for forming a 3- to 9-membered monocyclic or condensed ring with a carbon atom. The atoms constituting the ring in the atomic group are carbon, nitrogen, oxygen, sulfur, selenium and tellurium. A twenty two As a ring completed in A 12 Examples of the ring completed in the above can be mentioned, and these may have a substituent. Substituent is the aforementioned A 12 It is the same as the substituent for A twenty two A preferred ring completed with 12 This is similar to the ring completed in n 2 Represents an integer of 0 to 3. The compound represented by the general formula (2) may have the aforementioned counter ion according to the charge of the whole molecule. The compound represented by the general formula (2) also preferably has the aforementioned acidic group, and the carboxyl group is most preferable as the acidic group.
[0026]
Preferred specific examples of the polymethine dye represented by the general formula (1) or (2) are shown below.
[0027]
[Chemical 6]
Figure 0004148375
[0028]
[Chemical 7]
Figure 0004148375
[0029]
[Chemical 8]
Figure 0004148375
[0030]
[Chemical 9]
Figure 0004148375
[0031]
[Chemical Formula 10]
Figure 0004148375
[0032]
Embedded image
Figure 0004148375
[0033]
The polymethine dye of the present invention represented by the general formula (1) or (2) is “Heterocyclic Compounds-Cyanine” by FM Harmer (FMHarmer). Dyes and Related Compounds ”, John Willey & Sons, New York, London, 1994, DMSturmer“ Heterocyclic Compounds-Special Topics in “Heterocyclic Compounds-Special Topics In Heterocyclic Chemistry”, Chapter 18, Sections 482-515, John Willey & Sons, New York, London, Published in 1977, “Rods Chemistry of Carbon Co.” "Rodd's Chemistry of Carbon Compounds" 2nd Edition Vol.4, Part B, Chapter 15, 369-422, Eisevier Science Public Company Inc., New York, 1977, It can be synthesized by the method described in British Patent No. 1077611.
[0034]
Next, the method for synthesizing the polymethine dye used in the present invention will be described with specific examples, but the present invention is not limited to these.
[0035]
Synthesis Example 1 Synthesis of Exemplary Compound (1)
Exemplified compound (1) of the present invention was synthesized by the following synthesis route.
[0036]
Embedded image
Figure 0004148375
[0037]
40 g of 2,3-dimethylbenzothiazolium iodide and 51 g of malondialdehyde bisphenylimine were heated and stirred at 140 ° C. for 2 hours in 150 ml of acetic anhydride. The reaction solution was poured into 1 liter of ethyl acetate, and the precipitated crystals were collected by filtration to obtain 45 g of Compound (1a).
[0038]
20 g of compound (1a) and 9.1 g of N- (2-phenylethyl) rhodanine were dissolved in 100 ml of methanol, and 5.31 g of triethylamine was added. This was stirred at 50 ° C. for 10 minutes, and the precipitated crystals were filtered to obtain 11.9 g of Compound (1b).
[0039]
Compound (1b) (1.54 g) was dissolved in methylene chloride, and 0.4 ml of methyl trifluoromethanesulfonate was gradually added dropwise at 10 ° C. to obtain Compound (1c). In a separate container, 0.3 g of cyanoacetic acid was dissolved in 5 ml of tetrahydrofuran, and 3.6 ml of a 2 mol / l lithium diisopropylamide solution (manufactured by Aldrich) was added at 10 ° C. The obtained pale yellow suspension was gradually added dropwise at 0 ° C. to the solution of the compound (1c). When the reaction solution was immediately poured into 200 ml of 5% aqueous acetic acid, 0.34 g of the target compound of the exemplified compound (1) of the present invention was obtained.
[0040]
Next, the dye-sensitized photoelectric conversion element and the photoelectrochemical cell to which the polymethine dye of the present invention is applied will be described in detail.
[0041]
In the present invention, the dye-sensitized photoelectric conversion element is an electrode comprising a conductive support and a layer (photosensitive layer) of semiconductor fine particles adsorbed with a polymethine dye coated on the conductive support. The photosensitive layer is designed according to the purpose and may have a single layer structure or a multilayer structure. The dyes in one photosensitive layer may be one kind or a mixture of various kinds. Light incident on the photosensitive layer excites the dye. The excitation dye has electrons with high energy, and these electrons are transferred from the dye to the conduction band of the semiconductor fine particles, and further reach the conductive support by diffusion. At this time, the dye molecule is an oxidant, but the electrons on the electrode return to the dye oxidant while working in the external circuit, and the dye-sensitized photoelectric conversion element is the negative electrode of this battery. Work as.
[0042]
Hereinafter, the conductive support and the photosensitive layer will be described in detail.
[0043]
The conductive support is a support made of glass or plastic having a conductive agent layer on the surface, such as a metal, which is conductive in itself. In the latter case, preferred conductive agents are metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), carbon, or conductive metal oxides (indium-tin composite oxide, tin oxide doped with fluorine. Etc.). In this case, the thickness of the conductive agent layer is preferably 0.05 to 10 μm.
[0044]
The lower the surface resistance of the conductive support, the better. The preferred surface resistance range is 50 Ω / cm 2 Or less, more preferably 10 Ω / cm 2 It is as follows. This lower limit is not particularly limited, but is usually 0.1Ω / cm 2 Degree.
[0045]
It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more. As the transparent conductive support, a glass or plastic coated with a conductive metal oxide is preferable. At this time, the amount of conductive metal oxide applied is 1 m of glass or plastic support. 2 0.1 to 100 g per unit is preferred. When a transparent conductive support is used, light is preferably incident from the support side.
[0046]
Semiconductor fine particles used in the photosensitive layer are metal chalcogenides (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles. Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, and cadmium selenide. Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
[0047]
The particle diameters of these semiconductor fine particles are 0.001 to 1 μm as primary particles and 0.01 to 100 μm as the average particle diameter of the dispersion in terms of the average particle diameter when the projected area is converted into a circle. It is preferable.
[0048]
The method of coating the semiconductor fine particles on the conductive support includes a method in which a dispersion or colloidal solution of semiconductor fine particles is applied on the conductive support, and a precursor of semiconductor fine particles is applied on the conductive support and air is applied. Examples thereof include a method of obtaining a semiconductor fine particle film by hydrolysis with moisture therein. Examples of a method for preparing a dispersion of semiconductor fine particles include a method of pulverizing with a mortar, a method of dispersing while pulverizing using a mill, or a method of depositing fine particles in a solvent and using them as they are when a semiconductor is synthesized. . Examples of the dispersion medium include water or various organic solvents (for example, methanol, ethanol, dichloromethane, acetone, acetonitrile, ethyl acetate, etc.). During dispersion, a polymer, surfactant, acid, chelating agent, or the like may be used as a dispersion aid as necessary.
[0049]
The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For example, in a state where the semiconductor fine particles are coated on the support, the surface area is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times.
[0050]
In general, as the thickness of the semiconductor fine particle layer increases, the amount of dye that can be carried per unit area increases, so that the light absorption efficiency increases. The preferred thickness of the semiconductor fine particle layer (that is, the photosensitive layer) varies depending on the use of the device, but is typically 0.1 to 100 μm. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 μm, more preferably 3 to 30 μm. The semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support.
[0051]
Semiconductor fine particle support 1m 2 The coating amount per unit is preferably 0.5 to 500 g, more preferably 5 to 100 g.
[0052]
In the present invention, the semiconductor fine particles are sensitized by the adsorption of polymethine dye. In order to adsorb the dye to the semiconductor fine particles, a method of immersing well-dried semiconductor fine particles in a dye solution for a long time is general. The dye solution may be heated to 50 ° C. to 100 ° C. as necessary. The adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the pigment may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing. When baking a coating film, it is preferable to adsorb | suck a pigment | dye after baking. It is particularly preferable that the dye is quickly adsorbed after the baking and before water adsorbs on the surface of the coating film. One type of dye may be adsorbed or a mixture of several types may be used. In the case of mixing, the polymethine dyes of the present invention may be mixed together, US Pat. Nos. 4,927,721, 4,684,537, 5,084,365, 5,350,644, 5,463,057, 5,525,440, and You may mix the complex pigment | dye described in 7-249790, and the pigment | dye of this invention. When the application is a photoelectrochemical cell, a dye to be mixed is selected so as to make the wavelength range of photoelectric conversion as wide as possible.
[0053]
The total amount of dye used is 1m on the support. 2 The amount is preferably from 0.01 to 100 mmol, more preferably from 0.1 to 50 mmol, particularly preferably from 0.5 to 10 mmol. In this case, the amount of the polymethine dye of the present invention is preferably 5 mol% or more.
[0054]
The amount of the dye adsorbed on the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, per 1 g of the semiconductor fine particles.
[0055]
By using such a dye amount, a sensitizing effect in a semiconductor can be sufficiently obtained. On the other hand, when the amount of the dye is small, the sensitizing effect becomes insufficient, and when the amount of the dye is too large, the dye not attached to the semiconductor floats and causes the sensitizing effect to be reduced.
[0056]
Further, a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid).
[0057]
After adsorbing the dye, the surface of the semiconductor fine particles may be treated with amines. Preferable amines include pyridine, 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
[0058]
In the present invention, the conductive agent and the semiconductor fine particles may be diffused and mixed with each other in the vicinity of the interface between the conductive support and the photosensitive layer.
[0059]
The dye-sensitized photoelectric conversion element thus prepared can be applied to various sensors and photoregenerative photoelectrochemical cells. When applied to a photoelectrochemical cell, a charge transfer layer and a counter electrode are required as shown in FIG.
[0060]
A photoelectrochemical cell 1 shown in FIG. 1 has a photosensitive layer 3 on a conductive support 2, and a charge transfer layer 4 and a counter electrode 5 are provided on the photosensitive layer 3.
[0061]
Hereinafter, the charge transfer layer and the counter electrode will be described in detail.
[0062]
The charge transfer layer is a layer having a function of replenishing electrons to the oxidant of the dye. Typical examples include a liquid in which a redox couple is dissolved in an organic solvent, a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which a redox pair is dissolved in an organic solvent, and a molten salt containing the redox couple.
[0063]
Examples of the redox pair include a combination of iodine and iodide (eg, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.), alkyl viologen (eg, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate). ) And a reduced form thereof, a combination of polyhydroxybenzenes (eg, hydroquinone, naphthohydroquinone, etc.) and an oxidized form thereof, a combination of a divalent and trivalent iron complex (eg, red blood salt and yellow blood salt), and the like. It is done. Of these, a combination of iodine and iodide is preferred. As the organic solvent for dissolving them, an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.) is preferable. Examples of the polymer used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride. Examples of the molten salt include lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). By mixing these with a polymer such as polyethylene oxide, the fluidity at room temperature. May be increased. In this case, the amount of the polymer added is 1 to 50 wt%.
[0064]
Since the redox couple becomes an electron carrier, a certain concentration is required. The preferred concentration in the solution when used as a liquid or gel electrolyte is 0.01 mol / l or more in total, more preferably 0.1 mol / l or more, and particularly preferably 0.3 mol / l or more. It is. The upper limit in this case is not particularly limited, but is usually about 5 mol / l.
[0065]
The counter electrode serves as the positive electrode of the photoelectrochemical cell. The counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
[0066]
In order for light to reach the photosensitive layer, at least one of the conductive support and the counter electrode described above must be substantially transparent. In the photoelectrochemical cell of the present invention, the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, the counter electrode more preferably has a property of reflecting light. The counter electrode of the photoelectrochemical cell is preferably glass or plastic deposited with a metal or conductive oxide, and glass deposited with platinum is particularly preferred.
[0067]
In the photoelectrochemical battery, it is preferable to seal the side surface of the battery with a polymer, an adhesive, or the like in order to prevent evaporation of components.
[0068]
The characteristics of the photoelectrochemical cell thus obtained are 100 mW / cm at AM 1.5G. 2 Open circuit voltage 0.01-3V, short circuit current density 0.001-20mA / cm 2 The shape factor is 0.1 to 0.99, and the conversion efficiency is 0.001 to 25%.
[0069]
【Example】
The method for producing the dye-sensitized photoelectric conversion element and the photoelectrochemical cell of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
[0070]
Example 1
Preparation of titanium dioxide dispersion
Teflon-coated stainless steel vessel with inner volume of 200 ml, titanium dioxide (Nippon Aerosil Degussa P-25) 15 g, water 45 g, dispersant (Aldrich Triton X-100) 1 g, 0.5 mm diameter zirconia beads (Nikkato) 30 g), and dispersed for 2 hours at 1500 rpm using a sand grinder mill (manufactured by Imex). The zirconia beads were filtered off from the dispersion. In this case, the average particle diameter of titanium dioxide was 2.5 μm. The particle size at this time is measured with a master sizer manufactured by MALVERN.
[0071]
Creation of photoelectric conversion element
The above dispersion was applied to the conductive surface side of conductive glass coated with tin oxide doped with fluorine (TCO glass manufactured by Asahi Glass cut into a size of 20 mm × 20 mm) using a glass rod. The surface resistance of conductive glass is about 30Ω / cm. 2 Met.
[0072]
At this time, adhesive tape was applied to a part of the conductive surface side (3 mm from the end) to form a spacer, and glass was arranged so that the adhesive tape came to both ends, and 8 sheets were applied at a time. After application, the film was air-dried at room temperature for 1 day, and the adhesive tape was peeled off (the part to which the adhesive tape was attached was used for making electrical contact with the measuring instrument during photoelectric conversion measurement). Next, this glass was put into an electric furnace (a muffle furnace FP-32 manufactured by Yamato Scientific Co., Ltd.) and baked at 450 ° C. for 30 minutes. After the glass is taken out and cooled, it is shown in Table 1. Exemplary compounds Solution of dye in ethanol (3 × 10 -Four Mol / l) for 3 hours. The dyed glass was immersed in a 10 wt% ethanol solution of 4-tert-butylpyridine for 30 minutes, then washed with ethanol and air dried. The thickness of the photosensitive layer thus obtained is 10 μm, and the coating amount of semiconductor fine particles is 20 g / m. 2 It was. The coating amount of the dye is appropriately 0.1 to 10 mmol / m depending on the kind of the dye. 2 Selected from a range of
[0073]
Reflection spectrum measurement
The reflection spectrum was measured using a spectrophotometer (Hitachi, Ltd. U-3500 type) equipped with an integrating sphere. Table 1 shows the wavelength and absorbance values at the absorption peak on the longest wavelength side.
[0074]
Creation of photoelectrochemical cell
As an embodiment of the photoelectrochemical cell of FIG. 1, a photoelectrochemical cell as shown in FIG. 2 was prepared. The photoelectrochemical cell 10 in FIG. 2 uses the above-described photoelectric conversion element having a configuration in which the photosensitive layer 13 is provided on the conductive support having the conductive agent layer 12 on the glass support 11. 13 has an electrolyte layer 14 which is a charge transfer layer, and further has a platinum-deposited glass 15 disposed as a counter electrode. In this preparation, the above-described photoelectric conversion element was overlapped with a platinum-deposited glass having the same size (FIG. 2, the uncoated portion of the photoelectric conversion element was shifted so as not to contact the platinum-deposited glass). Next, using a capillary phenomenon in the gap between the two glasses, an electrolytic solution (0.05 mol / l iodine in a mixture of acetonitrile and N-methyl-2-oxazolidinone in a volume ratio of 90 to 10), lithium iodide 0 .5 mol / l solution).
[0075]
Measurement of photoelectric conversion efficiency
Simulated sunlight containing no ultraviolet rays was generated by passing light from a 500 W xenon lamp (made by Ushio) through an AM1.5G filter (made by Oriel) and a sharp cut filter (KenkoL-42). The intensity of this light is 50mW / cm 2 Met.
[0076]
above The photoelectric conversion element was irradiated with this light, and the generated electricity was measured with a current-voltage measuring device (Keutley 238 type). Table 1 summarizes the open circuit voltage, short circuit current, form factor, and conversion efficiency of the photochemical battery thus determined.
[0077]
[Table 1]
Figure 0004148375
[0078]
As is clear from Table 1, photoelectric conversion characteristics are recognized with any dye. In more detail, the dye having the carboxyl group (Exemplary Compounds 1, 2, 22, and 23) is superior in the dyeing property of the dye compared to the dye having no carboxyl group (Exemplary Compound 29), and as a result, photoelectric conversion. It turns out that efficiency is high.
[0079]
【The invention's effect】
It became clear that the present invention provides a dye-sensitized photoelectric conversion element using an organic dye. Therefore, a photoelectrochemical cell could be constructed using such a photoelectric conversion element.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one structural example of the photoelectrochemical cell of the present invention.
FIG. 2 is a cross-sectional view showing a structural example of a photoelectrochemical cell used in Examples.
[Explanation of symbols]
1, 10 Photoelectrochemical cell
2 Conductive support
3,13 Photosensitive layer
4 Charge transfer layer
5 Counter electrode
11 Glass support
12 Conductive agent layer
14 Electrolyte layer
15 Platinum-deposited glass

Claims (2)

少なくとも導電性支持体および感光層を有する光電変換素子であって、前記感光層が、下記一般式(5)および(6)で表されるポリメチン色素から選択された少なくとも1種によって増感された半導体微粒子を含有することを特徴とする光電変換素子。
Figure 0004148375
一般式(5)中、R11、R12、R13およびR14は各々水素原子または1価の置換基を表す。R11〜R14は互いに結合して環を形成してもよい。R15はアルキル基を表す。 11 、炭素原子および窒素原子によって形成される環は、ベンゾチアゾリン、インドレニン、ベンゾオキサゾリンまたはベンズイミダゾリンを表す。1は1〜4の整数を表す。 31 はアルキル基を表し、R 32 およびR 33 は各々独立にシアノ基またはカルボキシル基を表す。一般式(5)で表される化合物は少なくとも1つのカルボキシル基を有する。一般式(5)で表される化合物は分子全体の電荷に応じて対イオンを有してもよい。
一般式(6)中、R21、R22、R23およびR24は各々水素原子または1価の置換基を表す。R21〜R24は互いに結合して環を形成してもよい。R25はアルキル基を表す。 21 、炭素原子および窒素原子によって形成される環は、 1,4- ジヒドロキノリンを表す。2は0〜3の整数を表す。 31 はアルキル基を表し、R 32 およびR 33 は各々独立にシアノ基またはカルボキシル基を表す。一般式(6)で表される化合物は少なくとも1つのカルボキシル基を有する。一般式(6)で表される化合物は分子全体の電荷に応じて対イオンを有してもよい。]
A photoelectric conversion element having at least a conductive support and a photosensitive layer, wherein the photosensitive layer is sensitized by at least one selected from polymethine dyes represented by the following general formulas (5) and (6) A photoelectric conversion element comprising semiconductor fine particles.
Figure 0004148375
[In General Formula (5) , R 11 , R 12 , R 13 and R 14 each represent a hydrogen atom or a monovalent substituent. R 11 to R 14 may combine with each other to form a ring. R 15 represents an alkyl group. The ring formed by A 11 , carbon atom and nitrogen atom represents benzothiazoline, indolenine, benzoxazoline or benzimidazoline. n1 represents an integer of 1 to 4. R 31 represents an alkyl group, and R 32 and R 33 each independently represent a cyano group or a carboxyl group. The compound represented by the general formula (5) has at least one carboxyl group. The compound represented by the general formula (5) may have a counter ion according to the charge of the whole molecule.
In the general formula (6) , R 21 , R 22 , R 23 and R 24 each represent a hydrogen atom or a monovalent substituent. R 21 to R 24 may combine with each other to form a ring. R 25 represents an alkyl group. The ring formed by A 21 , carbon atom and nitrogen atom represents 1,4 -dihydroquinoline. n 2 represents an integer of 0 to 3. R 31 represents an alkyl group, and R 32 and R 33 each independently represent a cyano group or a carboxyl group. The compound represented by the general formula (6) has at least one carboxyl group. The compound represented by the general formula (6) may have a counter ion according to the charge of the whole molecule. ]
請求項1に記載の光電変換素子を有し、さらに少なくとも電荷移動層および対向電極を有する光電気化学電池。 A photoelectrochemical cell comprising the photoelectric conversion device according to claim 1 and further comprising at least a charge transfer layer and a counter electrode.
JP21977598A 1997-07-18 1998-07-17 Photoelectric conversion element and photoelectrochemical cell Expired - Fee Related JP4148375B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP21977598A JP4148375B2 (en) 1997-07-18 1998-07-17 Photoelectric conversion element and photoelectrochemical cell
EP00126792A EP1091373B1 (en) 1997-10-23 1998-10-22 Photoelectric conversion device and photo-electrochemical cell
EP98120012A EP0911841B1 (en) 1997-10-23 1998-10-22 Photoelectric conversion device and photoelectrochemical cell
DE69823706T DE69823706T2 (en) 1997-10-23 1998-10-22 Photoelectric conversion assembly and photoelectrochemical cell
AT98120012T ATE230517T1 (en) 1997-10-23 1998-10-22 PHOTOELECTRIC CONVERSION ARRANGEMENT AND PHOTOELECTROCHEMICAL CELL
DE69810421T DE69810421T2 (en) 1997-10-23 1998-10-22 Photoelectric conversion assembly and photoelectrochemical cell
AT00126792T ATE266246T1 (en) 1997-10-23 1998-10-22 PHOTOELECTRIC CONVERSION ARRANGEMENT AND PHOTOELECTROCHEMICAL CELL

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP20995897 1997-07-18
JP33811597 1997-11-21
JP9-209958 1997-11-21
JP9-338115 1997-11-21
JP21977598A JP4148375B2 (en) 1997-07-18 1998-07-17 Photoelectric conversion element and photoelectrochemical cell

Publications (2)

Publication Number Publication Date
JPH11214731A JPH11214731A (en) 1999-08-06
JP4148375B2 true JP4148375B2 (en) 2008-09-10

Family

ID=27329073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21977598A Expired - Fee Related JP4148375B2 (en) 1997-07-18 1998-07-17 Photoelectric conversion element and photoelectrochemical cell

Country Status (1)

Country Link
JP (1) JP4148375B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141735B2 (en) 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP4278080B2 (en) 2000-09-27 2009-06-10 富士フイルム株式会社 High sensitivity light receiving element and image sensor
JP5142307B2 (en) * 2000-11-28 2013-02-13 独立行政法人産業技術総合研究所 Semiconductor thin film electrode and photoelectric conversion element using organic dye as photosensitizer
TW541330B (en) 2001-03-07 2003-07-11 Nippon Kayaku Kk Photo-electric conversion device and oxide semiconductor fine particle
EP1422782B1 (en) 2001-07-06 2011-01-12 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
CA2518925C (en) 2003-03-14 2012-08-07 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP4963343B2 (en) * 2004-09-08 2012-06-27 日本化薬株式会社 Dye-sensitized photoelectric conversion element
EP1885015A1 (en) 2005-05-24 2008-02-06 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1892792A4 (en) 2005-06-14 2010-09-01 Nippon Kayaku Kk Dye-sensitized photoelectric conversion device
CN101421359B (en) 2006-03-02 2013-06-26 日本化药株式会社 Dye-sensitized photoelectric conversion device
CA2655192A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2009135318A (en) * 2007-11-30 2009-06-18 Fujifilm Corp Photoelectric conversion device, imaging device and photosensor
KR101137571B1 (en) 2008-05-12 2012-04-19 코니카 미놀타 비지니스 테크놀로지즈 가부시키가이샤 Dye-sensitized solar cell and method for manufacturing the same
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
CN110571334A (en) 2014-04-16 2019-12-13 株式会社理光 Photoelectric conversion element
JP6447754B2 (en) 2016-01-25 2019-01-09 株式会社リコー Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
CN117812920A (en) 2016-12-07 2024-04-02 株式会社理光 Photoelectric conversion element
EP3769327A1 (en) 2018-03-19 2021-01-27 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
WO2021010425A1 (en) 2019-07-16 2021-01-21 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
CN114341745A (en) 2019-09-26 2022-04-12 株式会社理光 Electronic device, method of producing the same, imaging method, and imaging apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP2021113901A (en) 2020-01-20 2021-08-05 株式会社リコー Electronic device and method for manufacturing the same, image forming method, and image forming apparatus
US11502264B2 (en) 2020-02-27 2022-11-15 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Also Published As

Publication number Publication date
JPH11214731A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP4148375B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4148374B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4201095B2 (en) Photoelectric conversion element and photoelectrochemical cell
EP0911841B1 (en) Photoelectric conversion device and photoelectrochemical cell
JP2000106224A (en) Photoelectric conversion element and photo electrochemical cell
JP4363553B2 (en) Electrolyte composition, photoelectric conversion element and photoelectrochemical cell
JPH11185836A (en) Photoelectric conversion element and light reproducing electrochemical cell
JP2004063274A (en) Photoelectric transducing material, semiconductor electrode, and photoelectric transducing element using it
WO2010050574A1 (en) Photoelectrochemical cell
JP2012144688A (en) Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element
JP2000106222A (en) Semiconductor film for photoelectric conversion element and photo-electrochemical cell
JP5051810B2 (en) Dye-sensitized photoelectric conversion element
JP2012227015A (en) Photoelectric conversion element and photoelectrochemical cell
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP2005093307A (en) Photoelectric conversion element
JP4460686B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4169220B2 (en) Photoelectric conversion element
JP5405155B2 (en) Photoelectrochemical cell
JPH1167285A (en) Photoelectric conversion element and photo electrochemical cell
JP2001035253A (en) Electrolyte composition, photoelectric transfer element and photo-electrochemical battery
JP2000150007A (en) Photoelectric conversion element, its manufacture, and photo electrochemical battery
JPH1197725A (en) Photoelectric conversion element and photoelectric chemical cell
JP2007112987A (en) Compound, photoelectric conversion element and photoelectrochemical cell
JP2000036332A (en) Electrolyte, photoelectric conversion element, and photo-regenerative photo-electrochemical battery
JP2005019252A (en) Photoelectric transfer material, semiconductor electrode, and photoelectric transfer element using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees