JP3679722B2 - マルチキャリア通信チャネルのための増強されたビットローディング - Google Patents

マルチキャリア通信チャネルのための増強されたビットローディング Download PDF

Info

Publication number
JP3679722B2
JP3679722B2 JP2001072480A JP2001072480A JP3679722B2 JP 3679722 B2 JP3679722 B2 JP 3679722B2 JP 2001072480 A JP2001072480 A JP 2001072480A JP 2001072480 A JP2001072480 A JP 2001072480A JP 3679722 B2 JP3679722 B2 JP 3679722B2
Authority
JP
Japan
Prior art keywords
bit
channel
subchannel
bitloading
assignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001072480A
Other languages
English (en)
Other versions
JP2001292127A (ja
Inventor
アーネスト・シーグレイヴス
Original Assignee
センチリアム・コミュニケーションズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by センチリアム・コミュニケーションズ・インコーポレーテッド filed Critical センチリアム・コミュニケーションズ・インコーポレーテッド
Publication of JP2001292127A publication Critical patent/JP2001292127A/ja
Application granted granted Critical
Publication of JP3679722B2 publication Critical patent/JP3679722B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Description

【0001】
[関連出願に対する相互参照]
本出願は、2000年3月14日付けで出願された米国仮り出願No.60/189,209の恩恵を主張するものであり、その出願は本明細書に援用されている。
【0002】
[発明の分野]
本発明は、通信システムに関し、特に非定常雑音を受け易いマルチキャリア通信チャネルのためのビットローディングを実行することに関する。
【0003】
[発明の背景]
国際電気通信連合の通信標準セクション(「ITU−T」と記す。)は、通信産業の標準化を容易にするための勧告を与える。これらのうちの2つの勧告は、それぞれG.992.1及びG.992.2と呼ばれる。勧告G.992.1は、8.192mbit/sまでの下り(加入者に向けた)の速度で且つ640kbit/sまでの上り(中央局又はネットワーク管理者に向けた)の速度でのネットワーク・アクセスのためのADSL産業標準である非対称ディジタル加入者回線(ADSL)トランシーバに言及する。他方、勧告G.992.2は、G.992.1ADSLトランシーバのより低いデータ速度ヴァージョンであるADSLトランシーバに言及する。下り方向の1.5mbit/sまでのビット・レート及び上りの512kbit/sまでのビット・レートは、この標準を用いて可能である。一般的に、そのようなトランシーバは、それらがデータをインターネットのような高トラフィック・ネットワークを介して通信するための実際的な解法を提供するので、普及している。
【0004】
G.992.1及びG.992.2の両方は、時分割方向制御伝送方式−統合サービス・ディジタル網(TCM−ISDN)雑音環境の下でのADSLトランシーバのための特別の勧告を規定する付録Cを有する。これらのそれぞれの付録の各々は、その全体を本明細書に援用されている。「付録C」に対する参照が、G.992.1及びG.992.2のうちのいずれか又はその両方に対して行われる。TCM−ISDNは、ITU−T勧告G.961付録IIIに定義されている。この勧告もその全体を本明細書に援用されている。勧告G.961付録IIIは、2つのトランシーバ間のデータの送信(及び受信)がTCM−ISDNタイミング基準(TTR)と呼ばれる400Hzクロックの制御の下で実行されるピンポン・スキームを記述する。G.992.1及びG.992.2付録Cトランシーバは、信号をこのTTR信号に基づいて送信及び受信する。例えば、中央局トランシーバは、データ・ストリームをTTR期間の第1の半分で送信し、そして顧客トランシーバは、基本的にTTR期間の第2の半分に送信する。そのようなピンポン・スキームは、特に、ケーブル束内にある品質の劣る絶縁物(例えば、パルプ・ベースの絶縁物)の類似物に起因した高いクロストーク干渉レベルを有する通信チャネルの文脈において有効である。なお、ケーブル束内にある品質の劣る絶縁物(例えば、パルプ・ベースの絶縁物)の類似物により、中央局及び顧客の両方のトランシーバからの同時送信を実行不可能にさせる。
【0005】
G.992.1及びG.992.2標準は、それら両方が離散的マルチトーン(DMT)変調技術と呼ばれるマルチキャリア変調スキームを用いる点で互いに類似している。DMT変調は、上り及び下りの両方の通信に対して複数のキャリアを用いる。そのようなマルチキャリア・タイプのシステムにおいては、周波数分割多重化が多くの場合用いられ、そこにおいて上り及び下りの通信は、異なる周波数帯域で複数のキャリアを用いる一方、当該技術で既知のエコー・キャンセラを用いることによりスペクトルの重なりも可能である。単一のキャリアとは異なる多数のキャリアを用いて動作させることにより、使用可能なチャネル容量を最大化することにより、送信帯域幅の性能を最適化する。
【0006】
事前定義された性能マージン及び所望のビット誤り率(BER)が与えられた場合、各キャリアがその最適ローディングで動作することを保証するため、ビットローディング・アルゴリズムを用いることができる。種々の通常のビットローディング技術が使用可能である。例えば、DMTベースのチャネルのための最適エネルギ分布を達成するため注水(water−pouring)技術を用いることができる。しかしながら、そのような技術は、難しい計算(特にDSL応用において)を含み、そして信号集合体(コンステレーション)のサイズにおいて無限の粒状度を仮定することは実行不可能である。他方、ヒューズ−ハートグズ(Hughes−Hartogs)技術は、有限粒度のDMTベースのローディング・アルゴリズムを与えるが、しかし特にADSL応用においては、処理時間が増大するという犠牲を伴って与える。
【0007】
他の通常のビットローディング技術は、与えられる特定されたBER(例えば、10-7)にビン毎のベースでシステム雑音余裕を等化しようと試みる反復的アルゴリズムを含む。従って、一定の雑音余裕が全てのビンに対して仮定される。そのような技術は、定常雑音(stationary noise)(例えば、付加白色雑音−AWGN)の下での最適な解法を与え得る一方、それらの技術は、非定常雑音(例えば、インパルス雑音)に対する次善の解法を与える。例えば、チャネルの各ビン上の非定常雑音の衝撃は、一般的に、各ビンのSNRと関連付けられる。より大きい容量(例えば、SNR曲線のピーク部分)を有するビンは、比較的低い容量(例えば、SNR曲線の谷部分)を有するビンと比較して、そのような雑音により一層の悪影響を及ぼされる。この状況は、いつ非定常雑音と関連したチャネル障害が、BERが目標BER(例えば、10-7)より上に上昇するようにさせる雑音余裕より大きい量までSNRを低減させるかにとって特に重要である。
【0008】
従って、必要とされることは、非定常雑音が存在する中でマルチキャリア通信チャネルに対して改善されたビットローディングを与える技術である。
【0009】
[発明の概要]
本発明の一実施形態は、複数のサブチャネル及び1ビット以上の処分可能な容量を有するマルチキャリア通信チャネルに対するビットローディング割り当てを識別する方法を与える。この方法は、他のサブチャネルのビットローディングに対して最大ビットローディングを有するサブチャネルを識別するステップ、前記の識別されたサブチャネルのビットローディングを少なくとも1ビットだけ減分することにより前記の識別されたサブチャネルと他のサブチャネルとの間のビットローディング差を低減するステップ、及び処分可能なビット容量を、前記の識別されたサブチャネル・ローディングが減分されたビット数だけ減分するステップを含む。サブチャネル・ビットローディング同士間の所望の程度の等化が達成される(例えば、処分可能なビット容量がゼロになる)まで、前記識別するステップ及び前記減分するステップが反復され得て、それによりマルチキャリア通信チャネルに対するビットローディング割り当てを生成する。
【0010】
本発明の別の実施形態は、複数のサブチャネル及び1ビット以上の処分可能なビット容量を有するマルチキャリア通信チャネルに対するビットローディング割り当てを識別するトランシーバを与える。トランシーバは、サブチャネル・ビットローディング同士間の所望の程度の等化が達成されるまで(例えば、処分可能なビット容量がゼロとなるまで)高いビットロード・サブチャネルを選択的に減分することによりサブチャネルのビットローディング割り当てを発生するビットローディング割り当てモジュールを含む。マルチキャリア通信チャネルに対するビットローディング割り当てが生成される。
【0011】
これら及び他の実施形態が発明の詳細な説明に記載されている。明細書に記載された特徴及び利点は、全てが包括的であるとは限らず、そして、特に、多くの追加の特徴及び利点が、図面、明細書及び特許請求の範囲を見て当業者に明らかになるであろう。更に、本明細書で用いられている用語は、主に、読みやすさ及び教示的目的のため選択され、発明的主題事項を限定するものでは無いことに留意すべきである。
【0012】
[発明の詳細な説明]
図1は、本発明の一実施形態に従ってビットローディングを実行することができるADSLトランシーバのブロック図である。トランシーバ10は、送信器90、アナログ・フロントエンド44、ハイブリッド回路91、クロック制御ユニット58及び受信器92から成る。図1に示される1つ以上の機能は、ディジタル信号プロセッサ(DSP)により実現され得る。例えば、送信器90及び/又は受信器92は、DSP技術により実行されることができる。更に、図1に示される1つ以上の機能は、ソフトウエア、ハードウエア、ファームウエア又はそれらの任意の組み合わせで実現され得る。当業者は、トランシーバ10を構成する構成要素が個々のユニットとして図示されているが、構成要素の任意の組み合わせもまた単一の個別ユニットで実現され得ることを認めるであろう。例えば、送信器90及び受信器92は、単一のDSPチップ又はチップ・セットで実現されることができる。トランシーバ10は、顧客構内又は中央局のいずれかで用いられることができる。中央局の構成がこの事例に示されている。
【0013】
概観
ハイブリッド回路91は、2対4線変換を実行することにより、伝送回線からの双方向2線信号を2対の一方向伝送に変換する。1対は受信用であり、他の対は送信用である。ハイブリッド回路91は、所望の伝送帯域外の望ましくない信号をフィルタリングで除くためのスプリッタを含むことができる。例えば、低周波数の通常の旧電話サービス(POTS)信号はスプリッタにより阻止されることができ、それによりPOTS信号は、当業者に周知のように高周波数ADSL信号と干渉しないであろう。ハイブリッド回路91はまた、トランシーバ10の電子機器を伝送回線から絶縁するための絶縁変圧器を含むことができる。
【0014】
アナログ・フロントエンド44は、アナログ/ディジタル(A/D)変換器及びディジタル/アナログ(D/A)変換器を含む(いずれの変換器も図示されていない)。ハイブリッド回路91からアナログ・フロントエンド44により受信された分離され、フィルタリングされた信号は、アナログからディジタルにA/D変換器により変換され、そして受信器92に送られる。アナログ・フロントエンド44は更に、受信器92に送られた信号を最適化するための利得調整モジュールを備え得る。他方、送信器90からの出力は、ディジタルからアナログにアナログ・フロントエンド44の中のD/A変換器により変換され、そしてフィルタリングされ、ハイブリッド回路91に送られる。
【0015】
送信器
送信器90は、送信バッファ96、スクランブラ100、送信器レート変換器101、ビット対シンボル符号器102、IFFT変調器103、送信器フィルタ104及びバッファ106から成る。送信準備済みデータが、顧客データ端末装置から、又は電話会社ネットワークから受け取られ、そして送信バッファ96によりバッファされる。
【0016】
スクランブラ100は、データ・パターンをランダム化するため入力データ・ビットを操作する。そのようなランダム化は、伝送性能を最適化するためである。スクランブリングはまた、繰り返しデータ・パターンの可能性を最小化する。一実施形態において、スクランブラ100は更に、順方向誤り訂正(FEC)符号器モジュール及びインタリーバ・モジュールと組み合わされる。そのようなモジュールは、当該技術で周知のように、強固で効率的な送信を更に保証するため実現されることができる。
【0017】
送信器レート変換器101を用いて、ユーザ・データ速度(それは通常、32キロビット/秒(kbps)の倍数である。)と物理層データ速度(それは必ずしも32kbpsの倍数でなくてもよい。)との間の差を等化するため、ダミー・ビットをスクランブルされたデータ・ストリームの中に挿入することができる。
【0018】
ビット対シンボル符号器102は、送信器レート変換器101からビットのシークエンスを受け取り、そしてそれらを信号コンステレーション(signalconstellation)の中の信号点として符号化する。このプロセスは、一般的にビットローディングと呼ばれる。QAM変調に対して、コンステレーションの中の各信号点が同相成分と直交成分とを有する二次元信号コンステレーションが用いられる。各サブチャネルの信号コンステレーションのサイズに応じて、各シンボルは複数のビットを担持する。例えば、64QAMは、コンステレーションに64点を有し、それは各シンボルにおいて、サブチャネルが6個のバイナリ・ビットを担持することができることを意味する。更に一層大きな信号コンステレーション(例えば、128点コンステレーション)を1シンボル当たりより多いビットを担持するため用い得る。送信されるビットの合計数は、各サブチャネルにより送信されるビット数の和である。一実施形態において、ビット対シンボル符号器102は更に、コーディング・ゲイン(coding gain)を得るためのたたみこみ符号器(convolutional encoder)モジュールを含む。ビット対シンボル符号器102は、代替として、ビットローディング割り当てモジュール116を含んでよく、それは、本発明に従ってビットローディング割り当てを生成する。このビットローディング割り当てモジュール116は、受信器92の文脈において説明されるであろう。
【0019】
ビット対シンボル符号器102にはIFFT変調器103が続き、該IFFT変調器103は、信号コンステレーション(例えばQAMコンステレーション)を使用可能な送信サブチャネル上へ変調し、全てのサブチャネルを送信のため一緒に組み合わせる。
【0020】
送信器90の伝送速度は、シンボル当たりのビット合計数及びシンボル・レートの関数である、例えば、各サブチャネルが8ビット/シンボルを坦持する96サブチャネルを4Kボー・シンボル・レートで用いると、4×96×8=3072kbit/秒の伝送速度が達成される。FEXTビットマップ・モードを用いる場合、TCM−ISDN雑音に起因して、各送信方向はデータをその時間の126/340=37%のみに送る。従って、上記の例示的ケースの場合の平均伝送速度は、1138kbps≒1120kbps(32kbpsの最も近い倍数に丸めた)である。従って、1120kbpsのユーザ・データ転送速度が達成される一方、物理層データは1138kbpsである。送信器レート変換器101により挿入されたダミー・ビットは、上記2つの速度(レート)間の差を補償する。
【0021】
送信器フィルタ104は、送信された信号を整形し、帯域外の信号成分を低減する。巡回プレフィックスが送信器フィルタ104の前に加えられ、受信器が符号間干渉を排除するのを助けるためシンボル間に分離を加えることができる。バッファ106は、送信のためフィルタリングされたサンプルを格納する。アナログ・フロントエンド44のD/A変換器は、サンプルをアナログ信号に変換する。次いで、それらのアナログ信号は、フィルタリングされ、増幅され、そしてハイブリッド回路91を介して伝送回線に結合される。
【0022】
クロック制御
中央局において、クロック制御ユニット58は、バースト・クロック56(これはまたTCM−ISDNタイミング基準又はTTRと呼ばれる。)を中央局TCM−ISDNバースト・タイミング制御回路(図示せず)から受け取る。TTRを用いて、中央局トランシーバ(ATU−C)ローカル・クロック周波数にロックし、そのATU−Cローカル・クロック周波数は、ATU−CのA/D及びD/Aサンプリング速度、及び送信器及び受信器シンボル・レートを制御する。ATU−C送信器はまた、システムTTRの位相をチェックし、そしてそのハイパーフレーム・ウインドウをTTRにロックする。遠隔のトランシーバ(ATU−R)において、受信器は、ATU−C送信器から受信された信号を追跡し、ローカル・クロックをATU−Cクロック周波数にロックする。ATU−Rはまた、ATU−Cから受信された信号からハイパーフレーム・パターンを検出し、そしてそのシンボル・カウンタをハイパーフレーム・パターンに対して整列する(ハイパーフレーム整列と呼ばれる。)。シンボル・カウンタは、シンボル・インデックスを追跡するため用いられ、そして各シンボルに対して1だけ増分される。カウンタは、それが345に達するとゼロにリセットされる。
【0023】
受信器
受信器92は、A/Dバッファ107、時間領域等化器(TEQ)108、高速フーリエ変換(FFT)復調器110、周波数領域等化器(FEQ)113、シンボル決定/シンボル対ビット復号器モジュール114、ビットローディング割り当てモジュール(BAM)116、受信器レート変換器118、デスクランブラ120及び受信器バッファ122を含む。データは、伝送回線から受信され、ハイブリッド回路91を介して処理され、アナログ・フロントエンド44のA/D変換器によりそのディジタルの等価なものに変換される。A/Dバッファ107は、アナログ・フロントエンド44からディジタル信号を受け取る。
【0024】
TEQ 108は時間領域におけるチャネル歪みを補償し、それにより通信チャネル及びTEQ 108の組み合わされたインパルス応答は巡回プレフィックスの長さ内にある。TEQ 108に結合されているFFT復調器110は、全てのサブチャネルを分離し復調する。巡回プレフィックスは、TEQ 108の後に除去される。
【0025】
FFT復調器110の後で、FEQ 113は、各キャリアに対する振幅及び位相歪みに対する更に別の補償を与える(キャリアはまたビン又はサブチャネルと呼ばれる場合があることに留意されたい。)。従って、通信の各サブチャネルに対して1つのFEQ 113がある。等化器の係数は、関連のサブチャネルの歪みを特徴付けし、そしてその歪みを補償するため用いることができる。
【0026】
シンボル決定/シンボル対ビット復号器モジュール114は、信号コンステレーションからのどの信号点が各サブチャネルにおける受信された信号を表すかを判断する。シンボル決定/シンボル対ビット復号器モジュール114の実際の構造は、遠隔送信器により用いられる符号化スキームに応じて変わり得る。非符号化システム(uncoded system)に対して、シンボル決定/シンボル対ビット復号器モジュール114のシンボル決定部分は、スライサであってよい。トレリス符号変調システムに対して、ビタビ(Viterbi)復号器をシンボル決定のため用いて、判断の信頼性を改善することができる。一般的に、FEQ等化器113の出力とシンボル決定の出力との差は、FEQ係数を調整するため用いることができる誤差信号である。
【0027】
各シンボルにおいて、各サブチャネルは一連のビットを符号化することができるので、シンボル決定/シンボル対ビット復号器モジュール114のシンボル対ビット復号器部分は、シンボルをバイナリ・ビットに変換する。従って、シンボル決定/シンボル対ビット復号器モジュール114は、遠隔トランシーバの送信器90のビット対シンボル符号器102により送信されたコンステレーションの中にロードされたビット・ストリームを回復するため用いられる。
【0028】
シンボル決定/シンボル対ビット復号器モジュール114はまた、ビットローディング割り当てモジュール116を含み(又はそれに対するアクセスを有し)、該ビットローディング割り当てモジュール116は、本発明に従ってビットローディング割り当てを改善する。ビットローディング割り当てモジュール116の機能は、図4を参照して詳細に説明される。図1に図示されている実施形態はビットローディング割り当てモジュール116をシンボル決定/シンボル対ビット復号器モジュール114の一部として示しているが、ビットローディング割り当てモジュール116の機能を他のトランシーバの構成要素で又は内蔵モジュールで実行することができる。ビットローディング割り当てモジュール116は、代替として、以下に説明されるように送信器のビット対シンボル符号器102に対して作動的に結合されることができることに注目されたい。
【0029】
受信器レート変換器118は、送信器レート変換器101により挿入されたダミー・ビットを取り除き、ユーザ・データ・ビットのみをデスクランブラ120へ通す。デスクランブラ120は、当該ビットを、それらが送信しているトランシーバのスクランブラ100によりスクランブリングされる前のそれらの元の値に復元する。スクランブル解除されたビット・ストリームは、中央局の高速データ・ネットワークへ、又は顧客データ端末装置へ送られる前に、受信器バッファ122によりバッファされる。一実施形態において、デスクランブラ120は更に、強固で効率の良い伝送を保証するため、順方向誤り訂正(FEC)復号器モジュール及びデインタリーバ(deinterleaver)・モジュールと組み合わされる。
【0030】
当業者は、図1に示されるトランシーバ10が1つのあり得るトランシーバ形態のほんの一例であることを認めるであろう。他のトランシーバは、図面に特に表されていない構成要素(例えば、トーン・オーダリング・モジュール、CRCユニット、変調信号発生器)から構成されてよい。また、他のトランシーバは、図1に示される構成要素を含まなくてもよい。つまり、トランシーバの形態は、特定の応用(例えば、ADSLベースの応用)のような要因に依存する。また、トランシーバの動作モード(例えば、データ・モード、TEQ訓練モード、ビットローディング最適化モード、FEQ訓練モード)に応じて、図示された種々の構成要素が実際に作用したり又はしなかったりすることに注目されたい。例えば、スクランブラ100、送信器レート変換器101、デスクランブラ120及び受信器レート変換器118は、一般的に、トランシーバ10が訓練されそして等化された後のデータ・モードでのみ用いられる。本発明の原理は、マルチキャリア・ベースのシステムに適用することができ、そして、いずれの1つの特定のシステム又はトランシーバタイプに限定されることを意図するものではない。
【0031】
図2aは、TCM−ISDN伝送回線のためのタイミング図を図示する。時間期間又はウインドウ22の間に、データが、中央局のTCM−ISDNトランシーバから顧客構内のTCM−ISDNトランシーバへ送信される。下りデータは、ウインドウ24の間に顧客構内の遠隔トランシーバに到達する。休止は、この下り送信が完了した後に起こる。この休止は、時にTTRのターンアラウンド期間と呼ばれる。ウインドウ26の間に、上りデータは、顧客構内のトランシーバから遠隔の中央局トランシーバに送信される。上りデータは、受信ウインドウ28の間に中央局の遠隔トランシーバに到達する。いずれの特定の時間に、TCM−ISDN回線の一方の端のみが送信しつつあり、一方他方の端は受信しつつある。エコー・キャンセルは、送信された信号のエコーを取り除く必要がないので必要がない。そのようなTCM−ISDNシステムはそのTCM−ISDNシステムでのクロストークを低減するため効果的である一方、同じケーブル束で動作するADSLシステムはまたISDN回線からのクロストークの下で実行しなければならない。
【0032】
図2bは、同期して送信している幾つかのISDN回線からの中央局におけるクロストーク干渉の一例図を示す。通常の銅伝送線で一緒に束ねられている種々のワイヤ対間のクロストーク干渉は、チャネル悪化に対する主要な要因である。一般的に、クロストーク干渉は、2つのグループ、即ち近端クロストーク(NEXT)及び遠端クロストーク(FEXT)のうちの1つに属する。NEXTは、伝送回線の同じ端から送信される隣接回線における信号により引き起こされるクロストークであり、一方FEXTは、伝送回線の遠端から送信される隣接回線により引き起こされるクロストークである。NEXTは通常FEXTよりはるかに強い。FEXT雑音下でのADSLシンボルはFEXTシンボルと呼ばれ、一方他のシンボルはNEXTシンボルと呼ばれる。
【0033】
FEXTビットマップ・モード付録Cトランシーバは、送信及び受信をTCM−ISDNタイミング基準(TTR)に対して同期化し、それにより受信器は、信号対雑音比がより高いFEXT時間に信号を受信し、一方その受信器は、信号対雑音比が低いNEXT時間において、信号を受信しない(例えば、FEXTビットマップ・モード(これはまた単一のビットマップ・モードと呼ばれる。)において)か、又はより低いデータ転送速度で(例えば、デュアル・ビットマップ・モードにおいて)信号を受信する。そこで、ADSLトランシーバは、周期的に変わるレベルを有するTCM−ISDNクロストーク雑音環境下で機能する。
【0034】
一般的に、中央局のトランシーバは、NEXT雑音をISDNからTTR期間の一方の半分(例えば、時間期間22)において受信し、そしてFEXT雑音をISDNからTTR期間の他方の半分(例えば、時間期間28)において受信する。他方、顧客構内の遠隔トランシーバは、FEXT雑音をISDNからTTR期間の第1の半分に受信し、そしてNEXT雑音をISDNからTTR期間の第2の半分に受信する。図2a及び図2bに示されるように、データのバーストは、中央局から遠隔サイトへ時間期間22の間に送られる。NEXTは、中央局のトランシーバが全て送信しているので、送信期間22の間に中央局側で特に強い。時間期間28の間に、中央局のこれらのトランシーバは送信してなく、中央局での干渉は主にFEXTである。なお、そのFEXTは、それが伝送回線の長さにより減衰されるので、NEXT雑音より弱い。
【0035】
付録Cは、デュアル・ビット・レートを有するデータ・ストリームを与えるためTTRに対して同期されるハイパーフレーム・パターンと同期して切り替えられるデュアル・ビットマップを与えるデュアル・ビットマップ・モード(DBM)符号化方法を規定する。この方法は、短いローカル・ループ(例えば、約2キロメートルより短い)に対して、チャネルの信号対雑音比(SNR)が、NEXT干渉の間に、データを低いビット・レートで送信するに十分なほど高くできるという観察に基づいている。従って、ある一定の条件下で、DBMは、それぞれNEXT及びFEXT干渉の下で異なるビット・レートを採用することにより、TCM−ISDNトランシーバの全二重動作を可能にする。この意味において、TCM−ISDN環境におけるDBMの下で動作する通信チャネルは、実効的に2つの通信チャネルであり、即ち一方はFEXTチャネルであり、他方はNEXTチャネルである。
【0036】
しかしながら、より長いローカル・ループに対しては、NEXT時間の間のSNRは、通常、トランシーバがいずれのデータを送るには低すぎる。従って、そのケースにおいては、データ送信はFEXT時間においてのみ生じる。これは、符号化のFEXTビットマップ・モード(FBM)と呼ばれ、また単一ビットマップ・モード(SBM)と呼ばれる。FBM符号化を用いて、中央局及び遠隔トランシーバは、データをFEXT時間においてのみ送信しており、そしてデータを同時に送信しない(半二重モード)。
【0037】
DBM符号化において、送信されるべきシンボルを符号化するため用いられるビットマップを変えることによりビット・レートを変えることができる。当業者により理解されるように、「ビットマップ」は、シンボルの中の各サブチャネルの中に符号化されることができるビット数を決定する。「シンボル」は、トランシーバにより送信される情報の基本単位である。シンボルの中の各サブチャネルの中に符号化されるビット数は、通信チャネルの品質により制限される。通信チャネルの品質は、そのSNRにより表すことができる。従って、DBMを採用するシステムは、異なるデータ速度を与えるため2つのビットマップ、即ちNEXT時間に対する1ビットマップ及びFEXT時間に対する1ビットマップを含む。他方、FBMを採用するシステムは、いずれのデータ信号もNEXT時間に送信されないので、1ビットマップ(例えば、FEXTビットマップ)のみを必要とする。
【0038】
図3は、全二重通信チャネルに対するFEXT及びNEXTビットマップを図示する。この通信チャネルは、例えば、TCM−ISDN雑音環境の下でDBM符号化を採用する1対のADSL付録Cトランシーバにより実行され得る。一般的に、そのようなADSL付録Cトランシーバ対は、2つの異なるチャネルについて実効的に訓練し動作する。詳細には、2つの異なるチャネルは、実際に、クロストーク雑音の2つの異なるタイプの下で動作する同じチャネルである。第1のチャネル(チャネルA)はNEXT時間の間に存在し、一方第2のチャネル(チャネルB)はFEXT時間の間に存在する。他のマルチキャリア通信システムはただ1つの実効的チャネルを持ち得ることに注目されたい。
【0039】
図3に示されるように、これらの実効的チャネルの各々は、特定のSNR曲線と関連している。このSNR曲線又はパターンは、1つのトランシーバの受信器がビットローディング訓練シークエンスの間に、一方のトランシーバ(そのトランシーバ対に含まれる。)の送信器から訓練信号を受信するとき(例えば、付録Cのメドレイ(Medley)送信信号期間)、他方のトランシーバの受信器により特徴付けられることができる。次いで、各サブチャネルが担持することができる最大ビット数は、そのサブチャネルに対応するSNRに基づいて受信器により決定されることができる。そのようなSNRギャップ及び所望の性能マージンのような他の要因をまた用いて、各サブチャネルが担持することができる最大ビット数を決定し得る。サブチャネル・ビット容量の結果として生じるパターンは、通信チャネルのあり得る最大ビットローディング割り当て(一般的に本明細書において初期ビットローディング割り当てと呼ばれる。)である。次いで、この初期ビットローディング割り当ては、本発明に従って目標サービス要件(btarget)に適合するため低減されることができる。その結果生じるビットローディング割り当ては、非定常雑音及び干渉の存在においてより良い性能を与える。
【0040】
ビットローディング訓練シークエンスを各実効的チャネルに対して実行することができることに注目されたい。同様に、上り方向及び下り方向の両方に対してビットローディング訓練シークエンスを実行することができる。従って、チャネルA−上りに対して1ビットマップ(例えば、NEXTビットマップ)が形成され、チャネルB−上りに対して第2の1ビットマップ(例えば、FEXTビットマップ)が形成される。同様に、チャネルA−下りに対して1ビットマップ(例えばNEXTビットマップ)が形成され、チャネルB−下りに対して第2の1ビットマップ(例えばFEXTビットマップ)が形成される。
【0041】
各実効的チャネルはそれ自身の独特のビットマップを有するので、各実効的チャネルは独特の全体容量を有し、そこにおいて関連のサブチャネル(ビン)は各々ある一定の数のビットを担持することができる。従って、各チャネルは、その関連のビンの容量に応じて独特の最大ビットローディング割り当てを有する。本発明の一実施形態は、サブチャネル当たりのビン数を等化するように、チャネルAとBとの間に送信されるべきビットを割り当てる。そのような実施形態において、各独特のビットローディング割り当ては、全体ビットローディング割り当ての部分を作る。例えば、チャネルAのビットローディング割り当て2、2、4、3、2は、チャネルBのビットローディング割り当て4、4、6、5、4と組み合わされて、2、2、4、3、2、4、4、6、5、4の全体ビットローディング割り当てを作ることができる。従って、チャネルA及びチャネルBの独特の最大の容量割り当ては、1つの大きなビットローディング割り当プロセスとして一緒に処理されることができる。一旦全体ビットローディング割り当てが達成されると、それが2つのビットローディング割り当てに、即ちチャネルAに対する1つとチャネルBに対する1つとに分離することができる。代替として、ビットがチャネルAとBとの間に割り当てられることができ、次いでビットがチャネルA内とチャネルB内とに割り当てられることができる。チャネル(又は各実効的チャネル)のビンのローディングがビット・ベクトルで表され、本発明に従ってビットローディング割り当て増強プロセスを容易にすることができる。
【0042】
ただ1つの実効的チャネルを有する代替実施形態において、ビットローディング割り当てプロセスは、送信されるべきビットを2つ以上のチャネルの間に割り当てる必要がない点で単純化される。むしろ、その1チャネルのビットと関連するビットは、別の実効的チャネルのビットローディングを考慮することなしに単純に等化されることができる。
【0043】
完全な等化(正確な同じビット・ローディングを有する全てのビン)は、制限された全体チャネル容量及び高いbtarget(例えば、目標ローディングとも呼ばれるシンボル当たりのビット数)のようなあり得る所与の要因でないかも知れない。しかしながら、本発明に従ったビットの部分的等化はまた、改善されたビットローディング・スキームを与える。従って、完全な等化は、必ずしも本発明の目的ではない。むしろ、そして一般的意味において、本発明は、非定常雑音から生じる誤りの確率を低減することにより改善されたビットローディング・スキームを達成するための手段を与える。そのような改善されたビットローディングは、個々のサブチャネルの間のビットローディング等化の変化する程度で達成されることができる。
【0044】
サブチャネル当たりのビット数を(部分的にせよ又は完全にせよ)等化することにより、マルチキャリア通信システムは、非定常雑音(例えば、インパルス雑音)まで感度を実効的に低下されることができる。例として、チャネルが6つのサブチャネル(ビン)から成ると仮定する。更に、チャネルの全体容量(bmax)が18ビットであり、そこにおいて1から6までのビンのそれぞれのビット容量は、次のとおり、即ち、(2、4、5、3、2、2)の初期割り当てに対して、ビン1は2ビットを有し、ビン2は4ビットを有し、ビン3は5ビットを有し、ビン4は3ビットを有し、ビン5は2ビットを有し、ビン6は2ビットを有することを仮定する。更に、所望のbtargetは15ビット/シンボルであると仮定する。従って、チャネルは3ビットの処分可能なビット容量を有する。
【0045】
本発明の一実施形態に従って、ロードされた最大数のビットを有するビンが識別され、そしてそのローディングは、そのローディングを、そのチャネルの他のビンにロードされたビット数と一致させるため低減される。本例において、ビン3は、5ビットで最大のローディングを有する。このローディングは本発明に従って低減されることにより、次の修正された割り当て(2、4、4、3、2、2)を生じる。このチャネルに対して割り当てられた合計ビットはここでは17であり、それは15の目標より大きく、そこでプロセスは継続する。ここでビン2及びビン3の両方が4ビットを各々有するので、いずれも1ビットだけ低減されることができる。低減のためビン2を選定することにより、その結果生じる割り当ては(2、3、4、3、2、2)である。合計ビット割り当てはここで16である。ビン3はここで最大の4ビットを有し、そして3まで低減され、15の合計を有する(2、3、3、3、2、2)の割り当てをもたらす。この合計は、ここで目標と整合し、そこでプロセスは停止し、そしてこれが最終ビットローディング割り当てである。この低減は一時に1ビットなされることができ、低減のための次のビンを識別することができるように各減分された反復後に全てのビン・ローディングを解析する。代替として、低減をいっせいに1回の反復で行うことができる。実行される低減の粒度(例えば、ビット毎又はその他)は、通信チャネルと関連したビン数、通信チャネルと関連した最大容量パターン又はビットマップ、及び関連の訓練トランシーバの処理能力(power)のような要因に依存する。
【0046】
ADSL付録C応用に対して、前述のようにそれらチャネル間で切り替えられる2つの実効的チャネルAとBがある。一方のチャネルは、G.992.1及びG.992.2付録C仕様による他方より長い持続時間のため用いられる。この応用においては、チャネルA及びBの両方に対する合計ビット割り当ての重み付けされた平均は、btargetと整合する必要がある。従って、式
【0047】
【数1】
target≦btarget(A)*x+btarget(B)*(1−x)
は、近似式(例えば式の両辺の間で1ビット差より小さい)で満足されなければならない。また、btarget(A)はbmax(A)以下でなければならず、btarget(B)はbmax(B)以下でなければならない。btarget、btarget(A)及びbtarget(B)が整数であり、且つ物理的制約がbtarget(A)及びbtarget(B)に置かれているので、完全な等号が常に達成されることができるとは限らない。この問題が起きたとき、btarget(A)及びbtarget(B)は、重み付けされた平均がbtargetより僅かに大きい(例えば、btargetより1ビット大きいとは言えない)ように選定される。この処分可能なビット容量(時にダミー・ビットと呼ばれる。)は、受信器で廃棄されることができる。
【0048】
時間チャネルAの小数部(fraction)を表すため0と1との間の小数部の数xを用いることを仮定し、そして時間チャネルBの量を表す1−xを用いるとする。当業者は、xが基本的にハイパーフレームにおけるFEXTフレームのハイパーフレームにおける合計フレームに対する比(例えば128/345)であることを理解するであろう。更に、btotalはいずれの一時にチャネルに対して割り当てられた合計ビットであり、ここでbtotal(A)はAチャネルに対して割り当てられた合計ビットであり、そしてbtotal(B)はBチャネルに対して割り当てられた合計ビットである。また、btotal(A)はbmax(A)に初期化され、btotal(B)はbmax(B)に初期化される。
【0049】
このシナリオにおいて、ビットローディング割り当て問題は2つの問題に分解することができる。第1に、何ビットをチャネルA及びBに対して割り当てるべきかを決定し、次いでそれらのビットをチャネルA及びB内のサブチャネルに対して割り当てる。目標合計割り当てbtargetを用いて上記の式から、チャネルA及びBの容量、bmax(A)及びbmax(B)、チャネルA及びBに対するbtarget(btarget(A)及びbtarget(B))を決定することができる。一旦btarget(A)及びbtarget(B)が決定されると、チャネルA及びB内のビットローディングは、本発明に従って2つの個々のビット割り当て問題として独立に進めることができる。
【0050】
target(A)及びbtarget(B)の計算は、本明細書で説明される技術を用いて達成される。btotal(A)及びbtotal(B)の値は、bmax(A)及びbmax(B)で初期化される。btotal(A)又はbtotal(B)の最も大きなものは、x*btotal(A)+(1−x)*btotal(B)がbtargetに等しいか又はそれよりほんの少し大きくなる(例えば、btargetより1ビット大きいとは言えない)まで、減分される。チャネルAがFEXTチャネルであり、チャネルBがFEXTチャネルであると仮定する。通常では、(FEXTチャネルAがより良いSNRを有すると仮定すると)FEXTチャネルAはNEXTチャネルBより大きく、そこでFEXTチャネルAは、プロセスが停止するまで、又はFEXTチャネルAがNEXTチャネルBに等しくなるまで、減分されるであろう。従って、その減分は、btargetが適合されるまで、チャネルAとBとの間でピンポンのように前後に移動するであろう。どのチャネル(例えばFEXTチャネル又はNEXTチャネル)が減分されるべきかの選定は、1ビット以下のbtotal(A)とbtotal(B)との差を維持するため、又はダミー・ビットの数を最小にするために行われる。その結果生じるbtotal(A)及びbtotal(B)はその解btarget(A)及びbtarget(B)である。
【0051】
FEXTチャネルAを減分することはbtotalをほぼx(例えば0.37ビット)だけ減分し、NEXTチャネルBを減分することはbtotalをほぼ(1−x)(例えば、0.63ビット)だけ減分することに注目されたい。例えば、btotalとbtargetとの差が、0.63より小さいが、0.37より大きい場合、FEXTチャネルAのみが更にbtargetを達成するため減分されることができる。btotalとbtargetとの差が0.37より小さい場合、FEXTチャネルAもNEXTチャネルBも更には減分されない。btotalとbtargetとの差が0.63より大きい場合、より大きいbtotalを有するチャネル(それがbtotal(A)であれ又はbtotal(B)であれ)は減分される。一旦btargetが達成される(btotal(A)及びbtotal(B)が等しくされる。)と、チャネルA及びB内のビットローディング割り当てプロセスは、本発明に従って2つの個々のビットローディング割り当て問題として独立に進められる。
【0052】
本発明に従ったマルチキャリア・チャネルの個々のビンのビットローディングを等化することは、程度に応じて実行されることができる。チャネルのビンにまたがるビット等化の程度は、所望のbtarget(例えばシンボル当たりの所望のビット数)が与えられた場合の処分可能なビット数、チャネルを介して送信されることができる最大ビット数(bmax)及び所望のBERのような要因に依存する。本発明の一実施形態において、等化は、ロードされた合計ビット(btotal)がbtargetに等しくなるまで実行される。代替実施形態において、等化は、使い果たした処分可能ビット容量のような制約が与えられた場合、通信チャネルと関連したビンが最適に改善されたビットローディング割り当てを有するまで、実行される。そのような実施形態において、全てのビンが同じビットローディングを有するわけではないが、最大容量ビンがそれらビットロードを低減させたことにより、それらのビンと他のより低い容量ビンとの間のビットローディング差を低減する。
【0053】
図4は、本発明の一実施形態に従ったマルチキャリア通信システムのための改善されたビットローディング割り当てを識別する方法を図示するフローチャートである。この方法は、例えば、DMTベースのシステムのような、非定常雑音の影響を受け易いマルチキャリア通信システムにより採用されることができる。より一般的な意味において、この方法は、多数のサブチャネル、最大容量パターン又はビットマップ、及び1ビット以上の処分可能なビット容量を有するいずれのマルチキャリア通信システムに適用されることができる。従って、この方法は、いずれの1つの特定のマルチキャリア通信システム又はトランシーバタイプに限定されることを意図するものではない。
【0054】
本方法は、各サブチャネルを介して送信されることができるビット数を計算するステップ(405)を含む。なお、そのビット数をb(i)と表す。一実施形態において、b(i)は次式により計算される。
【0055】
【数2】
Figure 0003679722
ここで、bはサブチャネルiに対するビット数であり、SNRは(例えば、前述したように訓練信号に基づく)サブチャネルiのSNR推定値であり、Γ(ガンマ)はサブチャネルiに対する選定されたシステム・パラメータのSNRギャップ(例えば10-7のビット誤り率)であり、γmarginは指定されたシステム性能マージンである。
【0056】
本方法は更に、b(i)を最も近い整数ビットに丸めるステップ(410)を含み得る。例えば、0.5以下の小数部ビットは、切り捨てに丸められ(例えば4.3ビットは4ビットにする。)、一方0.5より大きい小数部ビットは切り上げに丸められる(例えば4.6ビットは5ビットにする。)。本方法は更に、チャネルを介して送信されることができる最大ビット数(bmax)を、各サブチャネルにより送信されることができる丸められた最大ビット数に基づいて計算するステップ(415)を含み、それは次式により計算される。
【0057】
【数3】
Figure 0003679722
従って、特定のチャネルの各サブチャネルにより担持されることができる合計ビットの和は、その特定のチャネルの全体容量を表す。
【0058】
本方法は更に、シンボル当たりのビット数又は目標ローディング(btarget)を決定するステップ(420)を含み、それは、例えば、システム形態オプション又は指定されたシステム性能ゴールの同類のものに基づいて決定されることができる。btargetの決定の仕方に拘わらず、本方法は更に、bmaxとbtargetとの差を計算するステップ(425)を含む。なお、その差をΔ(デルタ)と表す。bmaxがbtargetより大きいと仮定し、それは、使用可能な全体容量が所望のbtargetを超えることにより処分可能なビット容量のクッションを与えることを指示する。bmaxがbtargetより小さい事象においては、btargetは低減されねばならない。
【0059】
本方法は、最大ローディングを有するビン(b(i)により定義される。)を識別し、次いでそのローディングを1ビット又はそれより多いビットだけ減分するステップ(430)を続ける。1ビットより多いビットが同じ高いローディングを有する事象においては、それらの特定のビンからの選定は、どのビンが減分されるかを決定するため行われることができる。例えば、最大b(i)を有すると識別された第1のビンは、減分のため選択されることができるであろう。代替として、最も小さい丸め誤差(例えばステップ405のb(i)とステップ410の丸められたb(i)との差)を有するビンは、減分のため選択されることができるであろう。代替として、特定の周波数範囲(例えば、最高又は最低)と関連するビンは、減分のため選択されることができるであろう。従って、そのようなケースにおけるビン選定は、その選定が任意であるにせよ又はビンと関連するある品質又は特性に基づくにせよ、事前定義された選定に基づくことができる。
【0060】
より大きいビットロードを有するビンを減分する要点は、改善されたビットローディング割り当てを達成するようにそれらのビンのローディングと他のビンのローディングとの差を低減することであるに注目されたい。従って、減分することが1ビット増分、2ビット増分、Nビット増分のうちのいずれで実行されるかは、通信チャネルと関連するビン数、通信チャネルの目標負荷、通信チャネルと関連する最大容量パターン又はビットマップ、及び関連の送信しているトランシーバの処理能力のような要因に依存する。例えば、ビットマップは、15個のサブチャネルのグループがいずれの他のサブチャネルのローディングより2ビット以上大きいローディングを有するようにであり、そして処分可能なビット容量は、それらの高ビットロード・サブチャネルが各々、切断して目標ビットロードにすることなしに2ビットだけ減分されることができるようにである場合、それらの高ビットロード・サブチャネルは、合計15回の繰り返しのため1繰り返し当たり2ビットだけ低減されることができるであろう。
【0061】
代替として、それらの高ビットロード・サブチャネルは、各々1回の繰り返しで2ビットだけ低減されることができるであろう。従って、改善されたビットローディング割り当てを形成するための処理時間は、1繰り返し当たり1ビットより大きい低減スキームを用いることにより低減されることができる。しかしながら、所与のビットマップは、改善されたビットローディング割り当てを保証するため1ビット繰り返しを実行することを必要にし得る。例えば、全てのサブチャネルが相互の1ビット内にあるか、又は処分可能なビット容量のクッションが相対的に小さく(例えば5ビットより下)且つ大きな数(例えば96)のサブチャネルが存在する場合、1ビット繰り返しを実行することが必要であるかも知れない。
【0062】
本方法は更に、Δ値(デルタ値)を減分するステップ(435)を含む。この調整は、Δ値がステップ430において特定のビンのローディングを減分することから生じる減分された全体チャネル・ローディングを反映するのを可能にする。本方法はまた、Δがゼロより大きいかどうかに関して決定するステップ(440)を含み得る。Δがゼロである場合、処分可能なビット容量のクッションが利用され、そしてその特定のチャネルに対する最適に改善されたビットローディング・スキームは、所与のパラメータ(例えばbmax及びbtarget)を考慮して達成される。しかしながら、Δがゼロより大きい場合、ステップ430、435及び440は、Δがゼロに等しくなるまで反復されることができ、それにより改善されたビットローディングが本発明の一実施形態に従って達成されたことを指示する。
【0063】
代替として、ステッ430、435及び440は、サブチャネル・ローディング同士間の所望の程度の等化が達成されるまで、反復されることができる。そのような実施形態においては、Δがゼロより下に行くべきでないが、改善されたビットローディングが達成されたことを指示するためΔは実際にゼロに到達する必要がない。例えば、6つのサブチャネルを有する通信チャネルに対する改善されたビットローディング割り当てが3ビット、3ビット、3ビット、3ビット、3ビット、3ビット及び3ビットであると仮定する。更に、チャネルに対する目標負荷(btarget)が15ビットであると仮定する。従って、3ビットの処分可能なビット容量(Δ)がある。しかしながら、ビットローディング割り当ては、全てのサブチャネルが同じビットローディングを有するので、完全に等化されてしまう。そのようなケースにおいては、サービスは、18ビットのbtargetまでグレードアップされることができるであろう。代替として、本方法は、単純に、例えば2ビット、2ビット、2ビット、2ビット、3ビット、3ビット、及び3ビットのビットローディング割り当てをもたらす完全な等化にも拘わらず減分するのを継続し得る。別の例においては、6つのサブチャネルを有する通信チャネルに対する改善されたビットローディング割り当てが2ビット、2ビット、2ビット、4ビット、3ビット及び2ビットであると仮定する。更に、チャネルに対する目標負荷(btarget)が15ビットであると仮定する。同様にして、0ビットのΔが存在する。更に、ビン4が8ビットから4ビットに低減された一方、他のビン・ローディングのどれも減分されなかったと仮定する。従って、最適に改善されたビットローディング割り当て(使い果たした処分可能なビット容量のような制約が与えられた場合)が本発明に従って達成されてしまう。
【0064】
この方法は、例えば、ハードウエア、ソフトウエア、ファームウエア、又はこれらのいずれの組み合わせにより実行することができる。一実施形態において、本方法は、DSPプロセッサにより実行されるコード又は1組の命令により実行される。例えば、本方法は、シンボル決定/シンボル対ビット復号器モジュール114及びビットローディング割り当てモジュール116(受信側に関して)及びビット対シンボル符号器102(送信側に関して)の機能の一部として実行されることができるであろう。詳細には、受信しているトランシーバのシンボル決定/シンボル対ビット復号器モジュール114は、(例えばビットローディング訓練セッション中に、)対応するチャネルの最大容量割り当て(本明細書では初期ビットローディング割り当てと呼ばれる)を定義することができる。従って、初期ビットローディング割り当ては、本方法に従ってビットローディング割り当てモジュール116により改善又は増強されることができる。従って、その結果生じるビットローディング割り当てが、送信しているトランシーバに与えられることができるであろう。従って、送信しているトランシーバのビット対シンボル符号器102は、ビットローディングを実行するためビットローディング割り当てを用いることができるであろう。初期ビットローディング割り当て及びその結果生じるビットローディング割り当ては、同じモジュールで形成されることができる(例えば、シンボル決定/シンボル対ビット復号器モジュール114はビットローディング割り当てモジュール116の機能を含む。)ことに注目されたい。
【0065】
初期ビットローディング割り当てが決定されるかどうかに拘わらず、本方法は、初期ビットローディング割り当てについて動作することができ、それによりチャネルに対して改善されたビットローディング割り当てを生成する。次いで、この改善されたビットローディング割り当ては、ビット対シンボル符号器102の同類のものにより、そのビットローディング機能を実行するとき(例えばデータ・モードの間に)用いられることができる。
【0066】
本発明の実施形態の前述の記載は、図示及び説明の目的のため提供されたものである。それは、包括的であることを意図してなく、また本発明を開示された正確な形式に限定する意図ではない。多くの修正及び変形が上記の教示に照らして可能である。例えば、本発明は、ADSL付録Cトランシーバに限定される必要はなく、むしろマルチキャリア変調されたチャネルを介して通信するいずれのトランシーバに適用されることができる。一旦マルチキャリア・チャネルのチャネル特性(例えばSNR曲線)が既知となると、そのチャネルを作る個々のビンのローディングは、本発明に従って調整されることができる。本発明の範囲はこの詳細な説明により限定されないで、むしろ特許請求の範囲により限定されることを意図するものである。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態に従ってビットローディングを実行することができるADSLトランシーバのブロック図である。
【図2】図2aはTCM−ISDN伝送回線のためのタイミング図であり、図2bは同期して送信している幾つかのISDN回線からの中央局における干渉の図を示す。
【図3】図3は、マルチキャリア通信システムにおけるサブチャネル容量と信号対雑音比との関係を図示する。
【図4】図4は、本発明の一実施形態に従ってマルチキャリア通信システムに対する改善されたビットローディングを識別する方法を図示するフローチャートである。

Claims (28)

  1. 複数のサブチャネル、最大容量割り当て、及び1ビット以上の処分可能なビット容量を有するマルチキャリア通信チャネルのためのビットローディング割り当てを識別する方法において、
    他のサブチャネルのビットローディングに関して最大のビットローディングを有するサブチャネルを識別するステップと、
    前記の識別されたサブチャネルのビットローディングを少なくとも1ビットだけ減分することにより前記の識別されたサブチャネルと他のサブチャネルとの間のビットローディング差を低減するステップと、
    処分可能なビット容量を、前記の識別されたサブチャネルのローディングが減分されたビット数だけ減分するステップと、
    サブチャネルのビットローディング同士間の所望の程度の等化が達成されるまで、前記の識別するステップ及び前記減分するステップを反復することによりマルチキャリア通信チャネルのためのビットローディング割り当てを生成するステップと
    を備える方法。
  2. 前記ステップは、マルチキャリア通信システムのトランシーバに含まれるプロセッサにより実行される1組のコード又は命令により実行される、請求項1記載の方法。
  3. 同じ最大のビットローディングを有する複数のサブチャネルに応じて、前記の識別するステップは更に、
    同じ最大のビットローディングを有するサブチャネルの1つを事前定義された選択手法に基づいて選択するステップを含む
    請求項1記載の方法。
  4. 前記の識別されたサブチャネルのローディングが減分されるビット数は、マルチキャリア通信チャネルのサブチャネル数、マルチキャリア通信チャネルの処分可能なビット容量及びマルチキャリア通信チャネルと関連するビットマップのうちの少なくとも1つに依存する、請求項1記載の方法。
  5. マルチキャリア通信チャネルに動作的に結合された遠隔トランシーバへビットローディング割り当てを送信することにより前記遠隔トランシーバがビットローディングを実行する際にビットローディング割り当てを用いることを可能にするステップを更に備える、請求項1記載の方法。
  6. サブチャネルのビットローディング同士間の所望の程度の等化は、処分可能なビット容量がゼロであるとき達成される、請求項1記載の方法。
  7. 前記方法により生成されたビットローディング割り当てが、前記マルチキャリア通信チャネルの感度を非定常雑音まで下げる、請求項1記載の方法。
  8. 前記マルチキャリア通信チャネルは、伝送回線を介して相互に結合されたADSL付録Cトランシーバ対を用いて実現される、請求項1記載の方法。
  9. マルチキャリア通信チャネルが実効的に2つの異なるチャネルであり、一方のチャネルがFEXT時間チャネルであり、他方のチャネルがNEXT時間チャネルであり、
    各実効的チャネルは、それに関して前記方法が動作する独特の最大容量割り当てを有することによりFEXT時間チャネルに対する第1のビットローディング割り当てを且つNEXT時間チャネルに対する第2のビットローディング割り当てを生成する
    請求項1記載の方法。
  10. マルチキャリア通信チャネルの最大容量割り当ては、ビットローディング訓練セッションの間に準備されたビットマップから導出される、請求項1記載の方法。
  11. マルチキャリア通信チャネルの最大容量割り当ては、それに関して前記方法が動作するビット・ベクトルの形式である、請求項1記載の方法。
  12. 複数のサブチャネルを有するマルチキャリア通信チャネルに対するビットローディング割り当てを識別する方法において、
    各サブチャネルにより送信されることができる最大ビット数を計算するステップと、
    各サブチャネルにより送信されることができる最大ビット数を最も近い完全なビットに丸めるステップと、
    マルチキャリア通信チャネルにより送信されることができる最大ビット数を、各サブチャネルにより送信されることができる丸められた最大ビット数に基づいて計算するステップと、
    マルチキャリア通信チャネルの目標負荷を決定することにより、マルチキャリア通信チャネルにより送信されることができる最大ビット数とマルチキャリア通信チャネルの目標負荷との間のデルタ値を表す処分可能な容量を規定するステップと、
    最大の負荷されたサブチャネルを識別するステップと、
    最大の負荷されたサブチャネルを少なくとも1ビットだけ減分するステップと、
    デルタ値を減分するステップと、
    デルタ値がゼロになるまで前記識別するステップ及び前記減分するステップを反復することにより、マルチキャリア通信チャネルの感度を非定常雑音まで下げるステップと、
    を備える方法。
  13. 各サブチャネルにより送信されることができる最大ビット数、及びマルチキャリア通信チャネルにより送信されることができる最大ビット数が、ビットローディング訓練シークエンスから結果として生じたビットマップから導出され、
    前記ビットマップは、マルチキャリア通信チャネルの信号対雑音比を特徴付ける、
    請求項12記載の方法。
  14. マルチキャリア通信チャネルの目標負荷は、システム構成の選択に基づく、請求項12記載の方法。
  15. マルチキャリア通信チャネルが、ディジタル・マルチトーン変調を用いて実現される請求項12記載の方法。
  16. 2つ以上の最大の負荷されたサブチャネルを識別することによりなされるべき選択を要求することに応じて、前記方法は更に、
    各サブチャネルに対する丸めの誤差を計算するステップと、
    最大の丸めの誤差を有する最大の負荷されたサブチャネルを選択するステップとを含む、
    請求項12記載の方法。
  17. 2つ以上の最大の負荷されたサブチャネルを識別することによりなされるべき選択を要求することに応じて、前記方法は更に、事前定義された選択手法に基づいて最大の負荷されたサブチャネルを選択するステップを含む、請求項12記載の方法。
  18. 複数のサブチャネル及び1ビット以上の処分可能な容量を有するマルチキャリア通信チャネルに対するビットローディング割り当てを識別するトランシーバにおいて、
    処分可能なビット容量がゼロになるまで最大のビットローデイングを有するサブチャネルを選択的に減分することによりサブチャネルのビットローディングを等化することにより、マルチキャリア通信チャネルに対するビットローディング割り当てを生成するビットローディング割り当てモジュールを備えるトランシーバ。
  19. 前記ビットローディング割り当てモジュールに動作的に結合され、且つマルチキャリア通信チャネルを特徴付けるビットマップから最大容量割り当てを導出するシンボル決定及びシンボル対ビット復号器モジュールを更に備える、請求項18記載のトランシーバ。
  20. 最大のビットローデイングを有するサブチャネルは、マルチキャリア通信チャネルのサブチャネル数、マルチキャリア通信チャネルの処分可能なビット容量、及びマルチキャリア通信チャネルと関連したビットマップのうちの少なくとも1つに応じて複数のビットだけ減分される、請求項18記載のトランシーバ。
  21. 最大のビットローデイングを有するサブチャネルは一時に1ビット減分される、請求項18記載のトランシーバ。
  22. 処分可能なビット容量は、最大のビットローデイングを有するサブチャネルの減分の結果としてはゼロより下になることができない、請求項18記載のトランシーバ。
  23. ビットローディング割り当ては、トランシーバがマルチキャリア通信チャネルの感度を非定常雑音まで下げる点で増強される、請求項18記載のトランシーバ。
  24. マルチキャリア通信チャネルは実効的に2つの異なるチャネルであり、一方のチャネルはFEXT時間チャネルであり、他方のチャネルはNEXT時間チャネルであり、
    各実効的チャネルは、それに関して前記ビットローディング割り当てモジュールが動作する独特の最大容量割り当てを有することによりFEXTチャネルに対して第1のビットローディング割り当てを且つNEXTチャネルに対して第2のビットローディング割り当てを生成する
    請求項18記載のトランシーバ。
  25. ビットローディング割り当ては、それに関してビットローディング割り当てモジュールが動作するビット・ベクトルの形式である、請求項18記載のトランシーバ。
  26. 前記ビットローディング割り当てモジュールは、事前定義された選択手法に基づいて減分するための高いビットロード・サブチャネルを選択する、請求項18記載のトランシーバ。
  27. 複数のサブチャネル、最大容量割り当て、及び1ビット以上の処分可能なビット容量を有するADSL付録Cマルチキャリア通信チャネルに対するビットローディング割り当てを識別する方法において、
    他のサブチャネルのビットローディングに対して最大のビットローディングを有するサブチャネルを識別するステップと、
    前記の識別されたサブチャネルのビットローディングを少なくとも1ビットだけ減分することにより前記の識別されたサブチャネルと前記他のサブチャネルとの間のビットローディング差を低減するステップと、
    処分可能なビット容量を、前記の識別されたサブチャネルのローディングが減分されたビット数だけ減分するステップと、
    処分可能なビット容量がゼロになるまで前記識別するステップ及び前記減分するステップを反復することにより、ADSL付録Cマルチキャリア通信チャネルの感度を非定常雑音まで下げるビットローディング割り当てを生成するステップと、
    を備える方法。
  28. FEXTチャネル、NEXTチャネル及び全体目標ビット容量を有するADSL付録Cマルチキャリア通信チャネルに対するビットローディング割り当てを識別する方法において、
    全体目標ビット容量が達成されるまでFEXTチャネル及びNEXTチャネル対して割り当てられたビットを等化することにより、FEXTチャネルに対する目標ビット容量、及びNEXTチャネルに対する目標ビット容量を識別するステップと、
    FEXTチャネルの他のサブチャネルのビットローディングに対する最大ビットローディングを有するサブチャネルを識別し、
    前記の識別されたサブチャネルのビットローディングを少なくとも1ビットだけ減分することにより、前記の識別されたサブチャネルと前記他のサブチャネルとの間のビットローディング差を低減し、且つ
    FEXTチャネルに対する目標ビット容量が達成されるまで前記の識別するステップ及び前記の減分するステップを反復することにより、FEXTチャネルの感度を非定常雑音まで下げるビットローディング割り当てを生成する
    ことにより、FEXTチャネルに含まれるサブチャネルに対して割り当てられたビットを等化するステップと、
    NEXTチャネルの他のサブチャネルのビットローディングに対する最大ビットローディングを有するサブチャネルを識別し、
    前記の識別されたサブチャネルのビットローディングを少なくとも1ビットだけ減分することにより、前記の識別されたサブチャネルと前記他のサブチャネルとの間のビットローディング差を低減し、且つ
    NEXTチャネルに対する目標ビット容量が達成されるまで前記の識別するステップ及び前記の減分するステップを反復することにより、NEXTチャネルの感度を非定常雑音まで下げるビットローディング割り当てを生成する
    ことにより、NEXTチャネルに含まれるサブチャネルに対して割り当てられたビットを等化するステップと
    を備える方法。
JP2001072480A 2000-03-14 2001-03-14 マルチキャリア通信チャネルのための増強されたビットローディング Expired - Fee Related JP3679722B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18920900P 2000-03-14 2000-03-14
US60/189209 2001-03-12
US09/804,676 US20010031016A1 (en) 2000-03-14 2001-03-12 Enhanced bitloading for multicarrier communication channel
US09/804676 2001-03-12

Publications (2)

Publication Number Publication Date
JP2001292127A JP2001292127A (ja) 2001-10-19
JP3679722B2 true JP3679722B2 (ja) 2005-08-03

Family

ID=26884899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001072480A Expired - Fee Related JP3679722B2 (ja) 2000-03-14 2001-03-14 マルチキャリア通信チャネルのための増強されたビットローディング

Country Status (2)

Country Link
US (1) US20010031016A1 (ja)
JP (1) JP3679722B2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9915103D0 (en) * 1999-06-28 1999-09-01 Northern Telecom Ltd A method of and apparatus for determining the capacity of a telecommunications system
US20020048333A1 (en) * 2000-05-25 2002-04-25 Nadeem Ahmed Joint detection in OFDM systems
CA2314405A1 (en) * 2000-07-24 2002-01-24 Catena Networks Canada Inc. An improved 8 bits/symbol messaging scheme for g.lite.bis and g.dmt.bis
US6704367B1 (en) * 2000-07-26 2004-03-09 Proscend Communications Inc. Optimal discrete loading algorithm for DMT modulation
US20060203927A1 (en) * 2001-03-27 2006-09-14 Aware, Inc. Systems and methods for implementing receiver transparent Q-mode
CA2399265C (en) * 2001-08-29 2007-02-06 At&T Corp. Multi-frequency data transmission channel power allocation
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7269209B2 (en) 2002-02-08 2007-09-11 Broadcom Corporation Discrete multitone transmission and reception
US7640485B1 (en) 2002-02-15 2009-12-29 Network Equipment Technologies, Inc. Non-relay initialization for modems
US7545819B1 (en) * 2002-02-15 2009-06-09 Network Equipment Technologies, Inc. Techniques for asynchronous compensation for secure communications
KR100456693B1 (ko) 2002-03-28 2004-11-10 삼성전자주식회사 다중채널 통신 시스템의 비트 할당을 최적화하여 셋업시간을 최소화하는 방법
US7406028B2 (en) * 2002-06-05 2008-07-29 Texas Instruments Incorporated Memory-efficient ADSL transmission in the presence of TCM-ISDN interferers
US7522515B2 (en) 2002-06-07 2009-04-21 Tokyo Electron Limited Method and system for providing window shaping for multiline transmission in a communications system
US7349480B2 (en) * 2002-06-07 2008-03-25 Tokyo Electron Limited Multiline transmission in communication systems
US7145956B2 (en) * 2002-06-27 2006-12-05 Smart Link Ltd. Method for achieving a target bit rate in a multi-carrier data communication system
US20040071165A1 (en) * 2002-07-08 2004-04-15 Redfern Arthur J. Multitone hybrid FDD/TDD duplex
JP4075759B2 (ja) * 2002-11-29 2008-04-16 株式会社村田製作所 送受信フィルタ装置および通信装置
US7212595B2 (en) * 2003-04-08 2007-05-01 Conexant, Inc. Reduced complexity time-frequency trained equalizer for discrete multi-tone based DSL systems
EP1492261B1 (en) * 2003-06-25 2007-09-26 Alcatel Lucent Power control method for remotely deployed communication service
WO2005018157A1 (en) * 2003-08-15 2005-02-24 Research In Motion Uk Limited Apparatus, and an associated method, for preserving service quality levels during hand-off in a radio communication system
WO2005027386A1 (ja) * 2003-09-10 2005-03-24 Japan Industrial Technology Association デジタルデータ伝送装置
US7440510B2 (en) * 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
US7649833B2 (en) * 2003-12-29 2010-01-19 Intel Corporation Multichannel orthogonal frequency division multiplexed receivers with antenna selection and maximum-ratio combining and associated methods
US7570953B2 (en) * 2004-01-12 2009-08-04 Intel Corporation Multicarrier communication system and methods for link adaptation using uniform bit loading and subcarrier puncturing
US7209510B2 (en) * 2004-07-20 2007-04-24 Skyworks Solution, Inc. Channel estimation system for a wideband code division multiple access (WCDMA) communication system
US20060083321A1 (en) * 2004-10-15 2006-04-20 Hossein Sedarat Multi-carrier communication bit-loading in presence of radio-frequency interferers
US7570698B2 (en) * 2004-11-16 2009-08-04 Intel Corporation Multiple output multicarrier transmitter and methods for spatial interleaving a plurality of spatial streams
JP4405518B2 (ja) * 2004-12-13 2010-01-27 シャープ株式会社 Ofdm送信装置、ofdm通信システム及びofdm通信方法
US7644345B2 (en) * 2005-01-12 2010-01-05 Intel Corporation Bit distributor for multicarrier communication systems employing adaptive bit loading for multiple spatial streams and methods
US7529307B2 (en) * 2005-03-30 2009-05-05 Intel Corporation Interleaver
US8213489B2 (en) * 2005-06-23 2012-07-03 Agere Systems Inc. Serial protocol for agile sample rate switching
US7940921B2 (en) * 2005-06-23 2011-05-10 Agere Systems Inc. Continuous power transfer scheme for two-wire serial link
US7773733B2 (en) * 2005-06-23 2010-08-10 Agere Systems Inc. Single-transformer digital isolation barrier
US8750353B2 (en) * 2006-08-07 2014-06-10 Lantiq Deutschland Gmbh Performance stabilization for multi-carrier DSL
WO2009001401A1 (ja) * 2007-06-25 2008-12-31 Fujitsu Limited 送受信装置
US8547833B2 (en) 2011-05-13 2013-10-01 Cisco Technology, Inc. Systems and methods for determining bitloading
US9660759B2 (en) 2014-11-13 2017-05-23 Nxp Usa, Inc. Adaptive cyclic channel coding for orthogonal frequency division multiplexed (OFDM) systems
CN105897753A (zh) * 2016-06-02 2016-08-24 山东中烟工业有限责任公司 面向多维应用的卷烟工厂现场级数据跨网融合系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679227A (en) * 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
US4964166A (en) * 1988-05-26 1990-10-16 Pacific Communication Science, Inc. Adaptive transform coder having minimal bit allocation processing
US5479447A (en) * 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5596604A (en) * 1993-08-17 1997-01-21 Amati Communications Corporation Multicarrier modulation transmission system with variable delay
US5400322A (en) * 1993-08-20 1995-03-21 Amati Communications Corp. Updating of bit allocations in a multicarrier modulation transmission system
ATE227911T1 (de) * 1996-09-02 2002-11-15 St Microelectronics Nv Verbesserungen bei, oder in bezug auf mehrträgerübertragungssysteme
EP0922342B1 (en) * 1996-09-02 2003-01-29 STMicroelectronics N.V. Improvements in, or relating to, multi-carrier transmission systems
US6084906A (en) * 1997-12-17 2000-07-04 Integrated Telecom Express ADSL transceiver implemented with associated bit and energy loading integrated circuit
US6628704B1 (en) * 2000-02-29 2003-09-30 Centillium Communications, Inc. Equalizer training for ADSL transceivers under TCM-ISDN crosstalk environment

Also Published As

Publication number Publication date
JP2001292127A (ja) 2001-10-19
US20010031016A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
JP3679722B2 (ja) マルチキャリア通信チャネルのための増強されたビットローディング
US6128349A (en) Method and apparatus for superframe bit allocation
US7512186B2 (en) Rate adaptation and parameter optimization for multi-band single carrier transmission
US6480475B1 (en) Method and system for accomodating a wide range of user data rates in a multicarrier data transmission system
US6549512B2 (en) MDSL DMT architecture
US6408033B1 (en) Method and apparatus for superframe bit allocation
US7496144B2 (en) Allocating data between tones in a VDSL system
US6064692A (en) Protocol for transceiver initialization
US6628704B1 (en) Equalizer training for ADSL transceivers under TCM-ISDN crosstalk environment
US6307889B1 (en) Method for fast initialization of multicarrier system and point-to-multipoint transfer of multicarrier signal in digital subscriber line
EP1583308A1 (en) Semi-distributed power spectrum control for DSL communications
KR20020068374A (ko) 반송파 시스템에서의 비트 할당 방법
US20020080867A1 (en) Robust signaling techniques in multicarrier systems
US7352820B2 (en) DMT system with variable subchannel spacing in TCM ISDN noise
US7733763B2 (en) Memory-efficient ADSL transmission in the presence of TCM-ISDN interferers
EP1037426A1 (en) Data allocation in multicarrier commumication systems
JP4032055B2 (ja) 通信方法及び通信システム
EP1087586A2 (en) Bit loading process for multicarrier communications
US20050163154A1 (en) Communication method and communication system
JP2001036494A (ja) 通信システムおよび通信装置および通信方法
Zhang et al. Bandwidth efficient RS coding in asymmetric digital subscriber lines
Zhang et al. Multilevel Reed-Solomon coding in asymmetric digital subscriber lines
CA2353739A1 (en) An improved scheme for the initialization of adsl modems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041004

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees