JP3679718B2 - Electrode body manufacturing method - Google Patents

Electrode body manufacturing method Download PDF

Info

Publication number
JP3679718B2
JP3679718B2 JP2001031990A JP2001031990A JP3679718B2 JP 3679718 B2 JP3679718 B2 JP 3679718B2 JP 2001031990 A JP2001031990 A JP 2001031990A JP 2001031990 A JP2001031990 A JP 2001031990A JP 3679718 B2 JP3679718 B2 JP 3679718B2
Authority
JP
Japan
Prior art keywords
electrode
binder
laser
electrode body
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031990A
Other languages
Japanese (ja)
Other versions
JP2002237434A (en
Inventor
幸次 大森
隆 望月
Original Assignee
株式会社サンシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンシン filed Critical 株式会社サンシン
Priority to JP2001031990A priority Critical patent/JP3679718B2/en
Publication of JP2002237434A publication Critical patent/JP2002237434A/en
Application granted granted Critical
Publication of JP3679718B2 publication Critical patent/JP3679718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタやリチウムイオン2次電池に用いられる電極体の製造方法に関するものである。さらに詳しくは、電気二重層キャパシタやリチウムイオン2次電池に用いられる電極体に対する表面改質技術に関するものである。
【0002】
【従来の技術】
電気二重層キャパシタは一般に、活性炭などの炭素電極と電解液との界面に形成される電気二重層を利用したキャパシタであり、ファラッドオーダーの大きな静電容量を有している。このため、集積回路のメモリバックアップ用、電気自動車、ハイブリッド車の回生エネルギー装置用として注目を浴びている。
【0003】
また、リチウムイオン2次電池は、携帯電話やモバイルパソコン用電池として広く普及し、電気自動車、ハイブリッド車などへの適応についても検討されている。
【0004】
電気二重層キャパシタ、リチウムイオン2次電池共に、電極体としてはアルミ箔や銅箔に、集電活物質粉末を導電性粉体およびバインダーとともに混練したものを塗布、乾燥、プレスして製造されている。
【0005】
すなわち、電気二重層キャパシタは、正極および負極共、活性炭粉末にアセチレンブラックなどの導電性粉体、およびポリビニリデンフルオライト(以下PVDFと記す)などのバインダー、および溶媒を混練してアルミニウム箔に塗布、乾燥、プレスして構成されている。
【0006】
また、リチウムイオン2次電池の正極は、コバルト酸リチウムなどの正極活物質、アセチレンブラックなどの導電性粉体、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして構成されている。
【0007】
一方、リチウムイオン2次電池の負極は、カーボンブラックまたはコークス、黒鉛などの負極活物質に、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして構成されている。
【0008】
このように、両者共、電極の構成及び作製方法は非常に似通ったものである。
【0009】
【発明が解決しようとする課題】
このような電子部品に用いられる電極体を製造するにあたって、PVDFなどのバインダーを用いると、電気二重層キャパシターでは、活性炭表面にバインダーが層状に付着し、活性炭表面の微細な孔を塞いで静電容量の低下を招いたり、電解液から活性炭の表面までに至る経路において抵抗体として作用して、内部抵抗を増大させてしまうという問題点がある。
【0010】
また、リチウムイオン2次電池においては、コバルト酸リチウムやカーボンブラックなどの表面にPVDFなどのバインダーが表面に層状に付着して電池抵抗(等価直列抵抗)を増大させ、出力特性の大幅低下を招くという問題点がある。
【0011】
以上の問題点に鑑みて、本発明の課題は、電気二重層キャパシタの陽極や陰極電極に用いられている活性炭、あるいはリチウム2次電池の電極に用いられている陽極活物質や陰極活物質が有効に機能しない原因となっているバインダーを効率よく除去することにより、電気二重層キャパシタやリチウムイオン電池の低損失化や高電気量化を図ることのできる電極体の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するため、本発明者は各種検討を行い、鋭意工夫を繰り返し実験を行った結果、電気二重層キャパシタおよびリチウムイオン電池の電極体を製造するにあたって、それぞれの電極の陽極、陰極に活物質を塗布、乾燥した後、レーザー照射を行い、各粒子のバインダー機能を保持しながらも、活物質表面に層状に付着したバインダーを除去することにより、前述の課題を解決し得ることを見い出した。
【0013】
すなわち、本発明の電極体の製造方法では、少なくとも、粉末状電極材料、バインダー、および溶媒を混練してなる電極機能材を金属箔表面に塗布し、乾燥した後、レーザー照射を行うことを特徴とする。
【0014】
本発明において、電気二重層キャパシタの電極を製造する場合、前記電極機能材には、前記粉末状電極材料として、活性炭およびカーボンが混練される。この場合には、活性炭、カーボン、バインダー、および溶媒を混練してなる電極機能材を金属箔表面に塗布し、乾燥した後、炭酸ガスレーザー、YAGレーザー、エキシマレーザー、半導体レーザーなどのレーザーを照射して表面改質を行う。
【0015】
本発明において、リチウムイオン2次電池の正極を製造する場合、前記電極機能材には、前記粉末状電極材料として、リチウム系化合物および導電性粉体が混練される。この場合には、アセチレンカーボンなどの導電性粉体、リチウム系化合物、バインダー、および溶媒を混練してしてなる電極機能材を金属箔表面に塗布し、乾燥した後、炭酸ガスレーザー、YAGレーザー、エキシマレーザー、半導体レーザーなどのレーザーを照射して表面改質を行う。
【0016】
金属箔表面に塗布、乾燥された電極機能材中の活物質は、バインダーによりそれぞれの粒子が結合され、アルミニウム箔や銅箔などの電極基板材から剥がれ落ちないように保持されている。この状態で、各粒子の表面は、バインダーが薄くコーティングされた状態にあり、それが抵抗体となり電極抵抗の増大に繋がったり、活物質の機能を低下させ電気量の低減にも繋がっている。しかるに本発明では、レーザーを照射することにより、各粒子上にコーティングされたバインダーを除去する。すなわち、本発明では、電気二重層キャパシタの陽極や陰極電極に用いられている活性炭、あるいはリチウム2次電池の電極に用いられている陽極活物質や陰極活物質が有効に機能していない原因となっているバインダーをレーザー照射により除去する。従って、電気二重層キャパシタやリチウムイオン電池の低損失化や高電気量化を図ることができる。また、レーザ照射を所定の条件に設定すれば、粒子同士を結合するというバインダー本来の機能を損なうことがない。ここで、レーザー照射の条件は、使用されるバインダー、活性炭、コバルト酸リチウムなどの活物質の種類、活物質の塗布厚み、塗布条件などにより適切な条件は異なる。それぞれの適切なレーザー照射条件はレーザー出力、照射時間によりコントロールすることができる。
【0017】
また、活物質塗布後にプレス処理を行って、塗布密度を上げた場合でも、本発明の作用、効果が失われることはない。
【0018】
【発明の実施の形態】
本発明の具体的実施の形態について、電気二重層キャパシタ用の電極体の製造方法を説明する。
【0019】
まず、純度99%、20μm厚みのアルミニウム箔を6%塩酸溶液にて60Hz交流電解により電解エッチング処理を施し、充分洗浄し、乾燥させたものを電極ベース箔(金属箔)とした。一方、粉末状電極材料として活性炭(武田薬品製KP211)を70重量%、粉末状電極材料としてアセチレンブラック10重量%、バインダーとしてPVDF20重量%、溶媒としてのトルエンをミキサーを用いて充分に混練し、電極機能材を調製した。
【0020】
次に、混練した電極機能材を電極ベース箔の表面にロールコーターなどを用いて150μm厚みに塗布した後、乾燥させ、しかる後に、ロールプレス装置にてプレスし100μm厚みに圧縮させた。
【0021】
次に、本形態では、このようにして得た電極体に対して、以下の条件でレーザー照射を行った。
【0022】
実施例1:炭酸ガスレーザーを用い、6W出力にて10mm/秒にてスキャンしながら全面照射を行った。
【0023】
実施例2:半導体レーザーを用い、4W出力にて10mm/秒にてスキャンしながら全面照射を行った。
【0024】
このようにして製造した電極体を用いて、定格2.5V10Fの巻回型の電気二重層キャパシタを作製し、特性評価を行った。なお、比較としては、レーザー処理を行わなかったものを用いて従来例とした。
【0025】
測定はキャパシタとして1.0Aの電流をかけたときの静電容量値、等価直列抵抗値(ESR)を採用した。その結果、

Figure 0003679718
という結果が得られた。この結果から明らかなように、本発明によれば、電極面へのレーザー照射により、電気二重層キャパシタの静電容量の増大、等価直列抵抗の大幅な減少を図ることができる。
【0026】
(その他の実施例)
また、コバルト酸リチウムなどの正極活物質(粉末状電極材料)、アセチレンブラックなどの導電性粉体(粉末状電極材料)、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして得た電極体に対してレーザーを照射したものを正極とし、カーボンブラックまたはコークス、黒鉛などの負極活物質に、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして得た電極体を負極としてリチウムイオン2次電池を製造したところ、大容量化、低損失化を図ることができた。
【0027】
また、コバルト酸リチウムなどの正極活物質(粉末状電極材料)、アセチレンブラックなどの導電性粉体(粉末状電極材料)、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして得た電極体に対してレーザーを照射したものを正極とし、カーボンブラックまたはコークス、黒鉛などの負極活物質(粉末状電極材料)に、PVDFなどのバインダー、および溶媒を混練してアルミニウム箔などの金属箔に塗布、乾燥、プレスして得た電極体にレーザーを照射したものを負極としてリチウムイオン2次電池を製造したところ、やはり、大容量化、低損失化を図ることができた。
【0028】
なお、上記形態では、炭酸ガスレーザーおよび半導体レーザーを用いた例を説明したが、YAGレーザーやエキシマレーザーを用いてもよい。
【0029】
【発明の効果】
以上説明したように、本発明によれば、電極面へのレーザー照射により、電気二重層キャパシタの静電容量の増大、等価直列抵抗の大幅な減少を図ることができる。また、リチウムイオン電池では、電気量の増大、内部抵抗の低減を図ることができる。これは、電気二重層キャパシタおよびリチウムイオン2次電池の小型大容量化、低損失に伴う出力特性の大幅改善を実現させることができ、本発明の工業的かつ実用的価値大なるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode body used for an electric double layer capacitor or a lithium ion secondary battery. More specifically, the present invention relates to a surface modification technique for electrode bodies used in electric double layer capacitors and lithium ion secondary batteries.
[0002]
[Prior art]
Generally, an electric double layer capacitor is a capacitor using an electric double layer formed at the interface between a carbon electrode such as activated carbon and an electrolytic solution, and has a large capacitance in the Farad order. For this reason, it has attracted attention as a memory backup for integrated circuits, and a regenerative energy device for electric vehicles and hybrid vehicles.
[0003]
In addition, lithium ion secondary batteries are widely used as batteries for mobile phones and mobile personal computers, and their application to electric vehicles, hybrid vehicles, and the like are also being studied.
[0004]
Both the electric double layer capacitor and the lithium ion secondary battery are manufactured by coating, drying and pressing an aluminum foil or copper foil obtained by kneading a current collector active material powder together with a conductive powder and a binder. Yes.
[0005]
That is, the electric double layer capacitor is applied to an aluminum foil by kneading a conductive powder such as acetylene black with activated carbon powder, a binder such as polyvinylidene fluoride (hereinafter referred to as PVDF), and a solvent. It consists of drying, pressing.
[0006]
The positive electrode of the lithium ion secondary battery is applied to a metal foil such as an aluminum foil by kneading a positive electrode active material such as lithium cobaltate, a conductive powder such as acetylene black, a binder such as PVDF, and a solvent, and drying. It is configured by pressing.
[0007]
On the other hand, the negative electrode of a lithium ion secondary battery is configured by kneading a negative electrode active material such as carbon black or coke, graphite, a binder such as PVDF, and a solvent, and applying, drying and pressing to a metal foil such as an aluminum foil. Has been.
[0008]
As described above, the configuration and manufacturing method of the electrodes are very similar in both cases.
[0009]
[Problems to be solved by the invention]
When a binder such as PVDF is used in manufacturing an electrode body used for such an electronic component, in an electric double layer capacitor, the binder adheres to the activated carbon surface in a layered manner and blocks fine pores on the activated carbon surface, thereby electrostatically There is a problem in that the capacity is lowered or the internal resistance is increased by acting as a resistor in the path from the electrolytic solution to the surface of the activated carbon.
[0010]
In addition, in a lithium ion secondary battery, a binder such as PVDF adheres to the surface of lithium cobalt oxide or carbon black in a layered manner to increase battery resistance (equivalent series resistance), leading to a significant decrease in output characteristics. There is a problem.
[0011]
In view of the above problems, an object of the present invention is to provide activated carbon used for an anode and a cathode electrode of an electric double layer capacitor, or an anode active material and a cathode active material used for an electrode of a lithium secondary battery. It is to provide an electrode body manufacturing method capable of reducing the loss and increasing the electric quantity of an electric double layer capacitor and a lithium ion battery by efficiently removing the binder which is not effectively functioning. .
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor conducted various studies and repeated experiments, and as a result, in manufacturing the electrode body of the electric double layer capacitor and the lithium ion battery, the anode and cathode of each electrode were used. After applying and drying the active material, laser irradiation is performed to find that the above problems can be solved by removing the binder adhering to the active material surface in layers while maintaining the binder function of each particle. It was.
[0013]
That is, in the method for producing an electrode body of the present invention, at least an electrode functional material obtained by kneading a powdered electrode material, a binder, and a solvent is applied to the surface of the metal foil, dried, and then subjected to laser irradiation. And
[0014]
In the present invention, when manufacturing an electrode of an electric double layer capacitor, activated carbon and carbon are kneaded in the electrode functional material as the powdered electrode material. In this case, an electrode functional material obtained by kneading activated carbon, carbon, binder, and solvent is applied to the surface of the metal foil, dried, and then irradiated with a laser such as a carbon dioxide laser, YAG laser, excimer laser, or semiconductor laser. Then, surface modification is performed.
[0015]
In this invention, when manufacturing the positive electrode of a lithium ion secondary battery, the lithium type compound and electroconductive powder are kneaded by the said electrode functional material as said powdery electrode material. In this case, an electrode functional material obtained by kneading conductive powder such as acetylene carbon, a lithium compound, a binder, and a solvent is applied to the surface of the metal foil, dried, and then carbon dioxide gas laser, YAG laser. Surface modification is performed by irradiating a laser such as an excimer laser or a semiconductor laser.
[0016]
The active material in the electrode functional material coated and dried on the surface of the metal foil is held so that the particles are bonded by the binder and are not peeled off from the electrode substrate material such as aluminum foil or copper foil. In this state, the surface of each particle is in a state where the binder is thinly coated, which becomes a resistor and increases the electrode resistance, or reduces the function of the active material and also reduces the amount of electricity. However, in the present invention, the binder coated on each particle is removed by irradiating a laser. That is, in the present invention, the active carbon used for the anode and cathode electrode of the electric double layer capacitor or the anode active material and cathode active material used for the electrode of the lithium secondary battery are not functioning effectively. The formed binder is removed by laser irradiation. Therefore, it is possible to reduce the loss and increase the amount of electricity of the electric double layer capacitor and the lithium ion battery. Further, if the laser irradiation is set to a predetermined condition, the original function of binding the particles is not impaired. Here, the conditions for laser irradiation vary depending on the type of active material such as the binder, activated carbon, and lithium cobaltate used, the coating thickness of the active material, the coating conditions, and the like. Each appropriate laser irradiation condition can be controlled by laser output and irradiation time.
[0017]
Further, even when the press treatment is performed after the application of the active material to increase the coating density, the function and effect of the present invention are not lost.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
As a specific embodiment of the present invention, a method for manufacturing an electrode body for an electric double layer capacitor will be described.
[0019]
First, an aluminum foil having a purity of 99% and a thickness of 20 μm was subjected to electrolytic etching treatment by 60 Hz alternating current electrolysis with a 6% hydrochloric acid solution, sufficiently washed, and dried to obtain an electrode base foil (metal foil). Meanwhile, 70% by weight of activated carbon (KP211 manufactured by Takeda Pharmaceutical Co., Ltd.) as a powdered electrode material, 10% by weight of acetylene black as a powdered electrode material, 20% by weight of PVDF as a binder, and toluene as a solvent were sufficiently kneaded using a mixer. An electrode functional material was prepared.
[0020]
Next, the kneaded electrode functional material was applied to the surface of the electrode base foil to a thickness of 150 μm using a roll coater or the like, then dried, and then pressed by a roll press apparatus to be compressed to a thickness of 100 μm.
[0021]
Next, in this embodiment, laser irradiation was performed on the electrode body thus obtained under the following conditions.
[0022]
Example 1 A carbon dioxide laser was used to irradiate the entire surface while scanning at 10 mm / second at 6 W output.
[0023]
Example 2: A semiconductor laser was used to irradiate the entire surface while scanning at 4 mm output at 10 mm / second.
[0024]
Using the electrode body thus manufactured, a wound type electric double layer capacitor having a rating of 2.5V10F was produced and evaluated. In addition, as a comparison, a conventional example was used that was not subjected to laser treatment.
[0025]
For the measurement, a capacitance value and an equivalent series resistance value (ESR) when a current of 1.0 A was applied as a capacitor were adopted. as a result,
Figure 0003679718
The result was obtained. As is apparent from the results, according to the present invention, the electrostatic irradiation of the electric double layer capacitor can be increased and the equivalent series resistance can be significantly decreased by irradiating the electrode surface with the laser.
[0026]
(Other examples)
Moreover, a positive electrode active material (powder electrode material) such as lithium cobaltate, conductive powder (powder electrode material) such as acetylene black, a binder such as PVDF, and a solvent are kneaded into a metal foil such as an aluminum foil. An electrode body obtained by applying, drying, and pressing is irradiated with a laser as a positive electrode, and a negative electrode active material such as carbon black or coke or graphite is kneaded with a binder such as PVDF and a solvent, and an aluminum foil or the like When a lithium ion secondary battery was manufactured using an electrode body obtained by coating, drying and pressing the metal foil as a negative electrode, it was possible to increase the capacity and reduce the loss.
[0027]
Moreover, a positive electrode active material (powder electrode material) such as lithium cobaltate, conductive powder (powder electrode material) such as acetylene black, a binder such as PVDF, and a solvent are kneaded into a metal foil such as an aluminum foil. The electrode body obtained by applying, drying, and pressing is irradiated with a laser as a positive electrode, and a negative electrode active material (powder electrode material) such as carbon black or coke or graphite is mixed with a binder such as PVDF and a solvent. When a lithium ion secondary battery was manufactured using a negative electrode that was obtained by irradiating a laser on an electrode body obtained by kneading and applying to a metal foil such as an aluminum foil, drying, and pressing, a large capacity and low loss were achieved. I was able to plan.
[0028]
In the above embodiment, an example using a carbon dioxide laser and a semiconductor laser has been described. However, a YAG laser or an excimer laser may be used.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to increase the capacitance of the electric double layer capacitor and significantly reduce the equivalent series resistance by irradiating the electrode surface with laser. Further, in the lithium ion battery, it is possible to increase the amount of electricity and reduce the internal resistance. As a result, the electric double layer capacitor and the lithium ion secondary battery can be reduced in size and capacity, and the output characteristics accompanying the low loss can be greatly improved, which increases the industrial and practical value of the present invention.

Claims (3)

少なくとも、粉末状電極材料、バインダー、および溶媒を混練してなる電極機能材を金属箔表面に塗布し、乾燥した後、レーザー照射を行うことを特徴とする電極体の製造方法。A method for producing an electrode body, comprising: applying an electrode functional material obtained by kneading at least a powdered electrode material, a binder, and a solvent to a surface of a metal foil, drying, and then performing laser irradiation. 請求項1において、前記電極機能材には、前記粉末状電極材料として、活性炭およびカーボンが混練されていることを特徴とする電極体の製造方法。2. The method of manufacturing an electrode body according to claim 1, wherein activated carbon and carbon are kneaded as the powdered electrode material in the electrode functional material. 請求項1において、前記電極機能材には、前記粉末状電極材料として、リチウム系化合物および導電性粉体が混練されていることを特徴とする電極体の製造方法。The method for producing an electrode body according to claim 1, wherein the electrode functional material is kneaded with a lithium-based compound and conductive powder as the powdered electrode material.
JP2001031990A 2001-02-08 2001-02-08 Electrode body manufacturing method Expired - Fee Related JP3679718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031990A JP3679718B2 (en) 2001-02-08 2001-02-08 Electrode body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031990A JP3679718B2 (en) 2001-02-08 2001-02-08 Electrode body manufacturing method

Publications (2)

Publication Number Publication Date
JP2002237434A JP2002237434A (en) 2002-08-23
JP3679718B2 true JP3679718B2 (en) 2005-08-03

Family

ID=18895991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031990A Expired - Fee Related JP3679718B2 (en) 2001-02-08 2001-02-08 Electrode body manufacturing method

Country Status (1)

Country Link
JP (1) JP3679718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114651A1 (en) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Method for manufacturing cathode for lithium-sulfur battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064166A (en) * 2003-08-11 2005-03-10 Sony Corp Diode element, semiconductor device equipped therewith, and method of manufacturing semiconductor device
CN105074856B (en) * 2013-02-26 2018-06-26 日本华尔卡工业株式会社 The manufacturing method of activated carbon sheet material and improve method of the electrolyte to the impregnation of activated carbon sheet material
KR101447680B1 (en) * 2013-03-08 2014-10-08 한국과학기술연구원 Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode
CN104485233A (en) * 2014-12-04 2015-04-01 武汉锂能科技有限公司 Super lithium capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114651A1 (en) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Method for manufacturing cathode for lithium-sulfur battery

Also Published As

Publication number Publication date
JP2002237434A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP5742905B2 (en) Positive electrode active material layer
EA038167B1 (en) Porous interconnected corrugated carbon-based network (iccn) composite
EP3576208B1 (en) All-solid-state battery and production method of the same
CN110581316B (en) Laminated battery
JP5246538B2 (en) All-solid battery, method for producing all-solid battery, and method for imparting electronic conductivity
JP2009104818A (en) All-solid battery and its manufacturing method
JP2018142431A (en) Negative electrode for sulfide all-solid battery, and sulfide all-solid battery and manufacturing method of the same
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP2002118036A (en) Electricity storage electronic component and composite electrode body
JP6841249B2 (en) Manufacturing method of all-solid-state battery
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JP2011187343A (en) Method for manufacturing electrode for battery
JP3679718B2 (en) Electrode body manufacturing method
JP2000269095A (en) Electrode for electric double-layer capacitor
WO2008123577A1 (en) Carbon particle film production method, multilayer electrode production method and electric double layer capacitor manufacturing method
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
KR101220036B1 (en) Electrode for electrochemical device, method for fabricating the same and electrochemical device
JP2006203126A (en) Electrode and electrochemical device using the same
CN111886742B (en) Solid-state battery
JP2005086113A (en) Electric double layer capacitor
JP2004080019A (en) Energy storage device and its manufacturing method
CN111742432A (en) Active material and all-solid-state secondary battery
JP2015103432A (en) Method for manufacturing all solid state battery
KR102422011B1 (en) Graphene cell and manufacturing method
JP6992710B2 (en) A composite solid electrolyte layer, a method for manufacturing the same, and a method for manufacturing an all-solid-state battery.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees