JP3678015B2 - Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board - Google Patents
Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board Download PDFInfo
- Publication number
- JP3678015B2 JP3678015B2 JP24042798A JP24042798A JP3678015B2 JP 3678015 B2 JP3678015 B2 JP 3678015B2 JP 24042798 A JP24042798 A JP 24042798A JP 24042798 A JP24042798 A JP 24042798A JP 3678015 B2 JP3678015 B2 JP 3678015B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive material
- insulating layer
- metal foil
- connection
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 title claims description 113
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 15
- 239000002245 particle Substances 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 34
- 239000011347 resin Substances 0.000 claims description 34
- 229920001187 thermosetting polymer Polymers 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000011888 foil Substances 0.000 claims description 17
- 229920001971 elastomer Polymers 0.000 claims description 15
- 239000011146 organic particle Substances 0.000 claims description 15
- 239000000835 fiber Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000007790 solid phase Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910001338 liquidmetal Inorganic materials 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- -1 2-ethyl Chemical group 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- JIYNFFGKZCOPKN-UHFFFAOYSA-N sbb061129 Chemical compound O=C1OC(=O)C2C1C1C=C(C)C2C1 JIYNFFGKZCOPKN-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、プリント配線板の絶縁層を介して配置された配線間を、絶縁層に開けた穴において接続したり、CSP(Chip Size Package)のインタポーザにおける絶縁層上下の電極間を絶縁層に開けた穴において接続するための導電材料に関する。また、このような導電材料を使用して、絶縁層を介して配置された配線間や絶縁層上下の電極間を、絶縁層に開けた穴において接続するプリント配線板やCSPの製造法に関する。
【0002】
【従来の技術】
近年、電子機器の軽薄短小化が強く求められるに伴って、電子機器を構成する電子部品及びプリント配線板に対する軽薄短小化の要求が益々強く、この要求に応えるために、高密度実装技術の開発が急がれている。
実装部品の高密度化の代表としては、シリコンチップをフェイスダウン実装するCSPがあり、次世代技術として精力的に開発されている。一方、高密度実装を実現する上で、プリント配線板の高密度化も重要なポイントである。現在、高密度プリント配線板として、ビルドアップ基板が広く知られている。これは、一般的なガラスエポキシ基板(又は多層基板)を用い、次のようにして製造される。まず、前記基板上に絶縁層となる樹脂層を重ね、当該樹脂層にレーザ光もしくは紫外線により微小な電気接続用穴を開ける。そして、この電気接続用穴に銅メッキを施して、樹脂層を介してその上下に位置する配線間の接続を行なうものである。
【0003】
近年、上記ビルドアップの技術を発展させて、アラミド繊維不織布プリプレグを絶縁層に用いる技術が注目されている。この技術は、前記プリプレグの所定箇所にレーザ光により電気接続用穴を開け、銅粒子と液状樹脂を主体としたペースト状導電材料を充填しておく。そうすると、アラミド繊維不織布プリプレグが硬化して形成された絶縁層の所定位置にはペースト状導電材料が固化してできた導体が配置されることになり、この導体によって、絶縁層を介してその上下に位置する配線間の接続をする(特開平5−175650号公報、特開平7−176846号公報等)。
この技術によれば、絶縁層を介してその上下に位置する配線間の接続を、完全なIVH(Interstitial Via Hole)によって実現した多層プリント配線板を製造でき、ガラスエポキシ基板上に樹脂層を重ねて絶縁層を形成し、銅メッキを施すビルドアップ基板より一層高密度化が可能である。なぜなら、ペースト状導電材料が固化してできた導体の直上にさらにIVHを形成できるからである。しかし、銅粒子と液状樹脂を主体としたペースト状導電材料が硬化した導体は、銅粒子同士の表面接触によって導電性を維持しているため、IVHの小径化を図る(導体を細くする)ことと、当該導体の導電性を確保する(低電気抵抗にする)こととは、目的が互に矛盾し双方を同時に実現することは非常に難しい。銅粒子の含有率を上げて導体の導電性を高めようとすると、ペースト状導電材料の粘度が上がり電気接続用穴への充填が難しくなるばかりでなく、その導体とプリント配線との接着力が低下するため、部品実装時にプリント配線(ランド)の剥離が発生しやすくなる。
【0004】
この問題点を解決するため、特開平10−144139号公報に開示された技術では、銅粒子などの導電性粒子の全部又は一部を液体金属に置き換えている。これにより、ペースト状導電材料の粘度を上げることなく、ペースト状導電材料が固化した導体の導電性を上げることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、液体金属を含有した上記導体は、銅箔などからなるプリント配線との接着が弱く、部品実装時の層間剥離を防止することができない。さらに、液状の樹脂と液体金属を混練して導電性ペーストを調製するため、液体金属が十分に導電性粒子表面に付着せず、十分な導通信頼性を得ることができなかった。
本発明が解決しようとする課題は、絶縁層を介する配線間の接続を、当該絶縁層に開けた穴に充填した導電材料で行なう構成において、この導電材料を用いたプリント配線板の接続信頼性を高めることである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る接続用導電材料は、熱溶融可能な導電性粒子と熱硬化性樹脂とゴム弾性有機質粒子を含有する。この熱溶融可能な導電性粒子が、当該導電材料を用いる配線板の製造工程で加えられる温度以下で且つ100℃以上の固相溶融温度を有することを特徴とする。
【0007】
このような接続用導電材料を用いて、次のような工程でプリント配線板を製造する。
まず、シート状繊維基材に熱硬化性樹脂を含浸乾燥して得たプリプレグの所定位置に貫通穴を開け、当該穴に上記の接続用導電材料を充填する。このプリプレグの両側に金属箔を載置し加熱加圧成形により両面金属箔張り積層板を製造する。このとき、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を溶融させ圧縮すると共に熱硬化性樹脂を硬化させ導体とする。この導体は、前記プリプレグが硬化してなる絶縁層を貫通する導体となる。
図1(a)は参考例であり、積層板成形前のプリプレグ1に開けた穴2に接続用導電材料を充填した状態を示している。導電性粒子3は、互いの表面が単に接触した状態にある。また、図示していないが、導電性粒子間には硬化前の熱硬化性樹脂が存在している。4はプリプレグの両側に載置した金属箔である。図1(b)は、積層板成形後の状態を示している。導電性粒子は積層板成形時の熱で溶融し圧力で圧縮され互いが結合して良好な導電性の導体5を形成している。この導体5は、プリプレグが硬化して形成された絶縁層6を貫通しており、両面の金属箔4に接着している。接着は、接続用導電材料に含まれる熱硬化性樹脂の硬化により達成される。この熱硬化性樹脂は、導体5中で海島構造(熱硬化性樹脂が島)の状態で存在している。そして、図2は、接続用導電材料としてゴム弾性有機質粒子を含有するものを用いた本発明を示している。図から明らかなように、ゴム弾性有機質粒子7は絶縁層6と導体5の間や導体5中に存在し、温度変化に伴う導体5の熱応力を緩和する機能を果たしている。
そして、前記成形した両面金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成し、絶縁層を介して配置された配線間が前記導体により接続されたプリント配線板とする。
【0008】
上記のプリント配線板の製造では、接続用導電材料に含まれる導電性粒子の固相溶融温度を積層板成形時の加熱温度以下に設定して、導電性粒子が積層板成形時の加熱により溶融し導体を形成するようにしている。しかし、接続用導電材料中の導電性粒子は、プリント配線板に部品実装をして完成品となるまでに溶融すればよいので、導電性粒子の固相溶融温度を、部品実装のための半田付け温度など積層板成形時の温度より高い温度に設定することは差し支えない。本発明に係る接続用導電材料においては、導電性粒子の固相溶融温度を、配線板の製造工程で加えられる最も高い温度以下に設定すればよいわけである。尚、導電性粒子の固相溶融温度を低く設定しすぎると、プリント配線板使用時に加わる熱ストレスによって、導体5を構成する金属の結晶粒界粗大化が著しく、接続信頼性が低下することになる。従って、導電性粒子5の固相溶融温度を100℃以上に設定する。
【0009】
【発明の実施の形態】
本発明に係る接続用導電材料は、導電性粒子と熱硬化性樹脂を混練してペースト状に調製する。
導電性粒子は、固層溶融温度が310℃以下の金属単独もしくは固層溶融温度が310℃以下になるよう、2種類以上の金属を組み合せた合金が望ましい。固層溶融温度が310℃を越えると、導電材料を溶融する際、熱硬化性樹脂が劣化する場合がある。固相溶融温度100℃以上で、且つ、配線板製造工程において加えられる熱により溶融する導電性の材料であれば特に限定するものではないが、溶融したときに、配線を構成する金属に対して濡れが良好で、導体を形成した後には靱性を有する材料を選択するのがよい。
導電性粒子と共に配合する熱硬化性樹脂は、特に限定するものではないが、無溶剤でペースト状の接続用導電材料を調製でき、且つ、硬化時に水やアンモニアなどの揮発成分が発生しないものが望ましい。常温で液状の熱硬化性樹脂は好ましいものである。この熱硬化性樹脂には、一般的に知られている硬化剤や硬化促進剤を配合する場合が多い。
本発明に係る接続用導電材料は、スクリーン印刷等により穴に充填する。分散剤を添加することにより、印刷等の条件に併せて導電材料の粘度挙動を制御することができる。導電材料には、シリカ等の無機充填材、着色剤などを必要に応じて添加することを妨げない。
【0010】
導電性粒子は、平均粒径が好ましくは100μm以下である。これによって、導電材料をスクリーン印刷等により径300μm以下の穴に支障なく充填することができる。
また、導電材料には、ゴム弾性有機質粒子を配合する。ゴム弾性有機質粒子は、導電材料で構成された導体が熱ストレスを受けたときに金属の結晶粒界粗大化により脆弱化するのを抑制する。脆弱化の抑制は、接続信頼性の向上につながる。脆弱化抑制の効果を十分に発揮させるためには、熱硬化性樹脂100重量部に対してゴム弾性有機質粒子の含有量を2重量部以上にするのが望ましい。導体の導電性を十分に確保する上では、ゴム弾性有機質粒子の平均粒径を50μm以下にするのが望ましい。
ゴム弾性有機質粒子は、アクリル系ゴム微粒子、ニトリル系ゴム微粒子、シリコーン系ゴム粒子、コア−シェル系ゴム粒子などである。
【0011】
プリント配線板の製造は、上記の接続用導電材料を用いて、次のような工程で実施する。
まず、シート状繊維基材に熱硬化性樹脂を含浸乾燥して得たプリプレグの所定位置にドリルもしくはレーザ光の照射により貫通穴を開け、当該穴に上記の接続用導電材料を充填する。シート状繊維基材は、ガラス繊維織布、ガラス繊維不織布、有機繊維不織布などである。
このプリプレグの両側に金属箔(銅箔やニッケル箔)を載置し加熱加圧成形により両面金属箔張り積層板を製造する。このとき、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を溶融し圧縮すると共に熱硬化性樹脂を硬化させる。この導体は、前記プリプレグが硬化してなる絶縁層を貫通する導体となる。
上記成形した両面金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成し、絶縁層を介して配置された配線間が前記導体により接続されたプリント配線板とする。
【0012】
上記の接続用導電材料を用いるプリント配線板の別の製造方法は、まず、シート状繊維基材に熱硬化性樹脂を含浸乾燥して得たプリプレグの所定位置に貫通穴を開け、当該穴に接続用導電材料を充填する。別途準備した配線板の両側又は片側に、前記プリプレグを介して金属箔を載置し加熱加圧成形により金属箔張り積層板を製造し、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を溶融し圧縮すると共に熱硬化性樹脂を硬化させて、前記プリプレグが硬化してなる絶縁層を貫通する導体を形成する。次に、金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成する工程を経て、絶縁層を介して配置された配線間を前記導体により接続したプリント配線板とする。
このように作製されたプリント配線板上に、部品を搭載し半田付けをするためにフロー半田付け装置やリフロー半田付け装置でプリント配線板を加熱し、部品を実装すると同時に接続用導電材料を再度溶融して接続を確実にする。
尚、導電性粒子の溶融を上記の金属箔張り積層板の製造工程では行なわず(導電性粒子の圧縮だけをする)、前記半田付け工程において初めて導電性粒子の溶融を行なうようにしてもよい。
この発明の実施の形態では、別途準備した配線板上に形成する絶縁層を、プリプレグで構成しているが、シリコーンゴムフィルム、ポリイミドフィルムなどの有機フィルムで構成することもできる。この場合、有機フィルムの所定箇所に穴を開けて接続用導電材料を充填する。
【0013】
【実施例】
以下に具体的な実施例を用いて本発明を詳しく説明する。
実施例1〜4と参考例1〜6と比較例1
表1に示した合金の成分組成と固相溶融温度と平均粒径を有する各種導電性粒子を準備した。また、常温で液状のエポキシ樹脂(エポキシ当量190,油化シェル製「Ep−828」)55重量部と硬化剤として無水メチルナジック酸(日立化成製)44重量部と硬化促進剤として2−エチル−4−メチルイミダゾール1重量部を配合したエポキシ樹脂組成物を準備した。さらに、平均粒径が3μm,10μm,12μmの各シリコーン系ゴム粒子(東レ・ダウコーニング・シリコーン製)を準備した。
上記各導電性粒子とエポキシ樹脂組成物と必要に応じてシリコーン系ゴム粒子を、表2に示す各配合割合で3本ロールミルにより混練し、揮発性の溶剤を含まないペースト状導電材料を調製した。
次に、アラミド繊維不織布にエポキシ樹脂を含浸乾燥して製造した140μm厚のプリプレグの所定箇所にレーザ光を照射して200μm径の電気接続用穴を形成し、この電気接続用穴に表2に示した各配合組成のペースト状導電材料を充填した。そして、このプリプレグの両側に銅箔を重ね、表2に示した各積層温度と40kg/cm2の圧力で加熱加圧成形して両面銅張り積層板を製造した。両面の銅箔を所定の配線回路にエッチング加工し、前記加熱加圧成形の工程でペースト状導電材料が固化した導体により両面の配線が接続されているプリント配線板を製造した。このプリント配線板をリフロー半田付け装置に通し加熱した。
実施例4では、リフロー半田付け装置に通したときに初めて導電性粒子が溶融する。他の実施例と比較例1では、両面銅張り積層板の製造工程で導電性粒子が溶融し、リフロー半田付け装置に通したときに再度溶融する。
【0014】
従来例1
導電性粒子として銅粒子(平均粒径20μm)を用い、これと上記実施例で用いたエポキシ樹脂組成物を表2に示す配合割合で3本ロールミルにより混練し、揮発性の溶剤を含まないペースト状導電材料を調製した。
このペースト状導電材料を用いて、以下、上記の実施例と同様にプリント配線板を製造した。尚、銅張り積層板成形の積層温度を170℃、圧力を40kg/cm2とした。
【0015】
従来例2
導電性粒子として銅粒子(平均粒子径20μm)を用い、これと上記実施例で用いたエポキシ樹脂組成物と液体金属(Ga−Sn合金)を表2に示す配合割合で3本ロールミルにより混練し、揮発性の溶剤を含まないペースト状導電材料を調製した。
このペースト状導電材料を用いて、以下、上記の実施例と同様にプリント配線板を製造した。尚、銅張り積層板成形の積層温度を170℃、圧力を40kg/cm2とした。
【0016】
上記各例のプリント配線板において、ペースト状導電材料が固化してなる導体によって接続された配線の接続信頼性を評価した結果を表2示す。この評価試験は熱衝撃試験であり、ペースト状導電材料が固化してなる導体によって両面の配線を順次直列接続した配線パターン(導体10000個による直列接続)を形成し、−50℃と80℃の冷熱サイクルを5000サイクル行なった後に、試験前の抵抗値と試験後の抵抗値に基づいて、抵抗変化量を次の(式1)で計算した。
【0017】
【数1】
【0018】
【表1】
【0019】
【表2】
【0020】
【発明の効果】
以上の結果より、配線板の製造工程で加えられる温度以下で熱溶融可能な導電性粒子の固相溶融温度を100℃以上にすることにより、熱衝撃に強い接続信頼性の高い導体を形成できる(参考例1〜4と比較例1の対照)。
熱溶融可能な導電性粒子の平均粒子径を100μm以下にすれば、接続信頼性をさらに高めることができる(参考例3,5と参考例6の対照)。
上記の前提の下に、本発明に係る導電材料は、ゴム弾性有機質粒子を含有させると、接続信頼性を高めることができる(実施例1〜5と参考例3の対照)。そして、ゴム弾性有機質粒子の配合量が2重量部以上のときに接続信頼性の効果が顕著になる(実施例2,3と実施例1の対照)。さらに、ゴム弾性有機質粒子の平均粒子径が50μm以下のときに接続信頼性の効果が顕著になる(実施例3,4と実施例5の対照)。
【図面の簡単な説明】
【図1】 本発明の参考例に係る接続用導電材料を用いてプリント配線板を製造するときに、当該接続用導電材料がどのように変化するかを示す断面説明図である。
【図2】 本発明に係る別の接続用導電材料を用いてプリント配線板を製造するときに、当該接続用導電材料がどのように変化するかを示す断面説明図である。
【符号の説明】
1はプリプレグ
2は穴
3は導電性粒子
4は金属箔
5は導体
6は絶縁層
7はゴム弾性有機質粒子[0001]
BACKGROUND OF THE INVENTION
In the present invention, wirings arranged via an insulating layer of a printed wiring board are connected to each other through a hole formed in the insulating layer, or an electrode between upper and lower electrodes of a CSP (Chip Size Package) interposer is used as an insulating layer. The present invention relates to a conductive material for connection in an opened hole. The present invention also relates to a method of manufacturing a printed wiring board or CSP that uses such a conductive material to connect between wirings arranged via an insulating layer and between electrodes above and below the insulating layer through holes formed in the insulating layer.
[0002]
[Prior art]
In recent years, with the strong demand for light and thin electronic devices, there is an increasing demand for light and thin electronic components and printed wiring boards that make up electronic devices. Is in a hurry.
A representative example of increasing the density of mounted components is a CSP that mounts a silicon chip face down, and has been vigorously developed as a next generation technology. On the other hand, increasing the density of the printed wiring board is also an important point in realizing high-density mounting. At present, build-up substrates are widely known as high-density printed wiring boards. This is manufactured as follows using a general glass epoxy substrate (or multilayer substrate). First, a resin layer serving as an insulating layer is overlaid on the substrate, and minute holes for electrical connection are formed in the resin layer with laser light or ultraviolet rays. Then, copper plating is applied to the electrical connection holes to connect the wirings located above and below the resin layer.
[0003]
In recent years, attention has been paid to a technique in which an aramid fiber nonwoven fabric prepreg is used for an insulating layer by developing the build-up technique. In this technique, a hole for electrical connection is opened by a laser beam at a predetermined location of the prepreg, and a paste-like conductive material mainly composed of copper particles and a liquid resin is filled. Then, a conductor made by solidifying the paste-like conductive material is disposed at a predetermined position of the insulating layer formed by curing the aramid fiber nonwoven fabric prepreg, and this conductor causes the upper and lower sides thereof to pass through the insulating layer. Are connected to each other (JP-A-5-175650, JP-A-7-176846, etc.).
According to this technology, it is possible to manufacture a multilayer printed wiring board in which the wiring between the wirings located above and below the insulating layer is realized by a complete IVH (Interstitial Via Hole), and the resin layer is laminated on the glass epoxy substrate. Thus, a higher density can be achieved than a build-up substrate on which an insulating layer is formed and copper plating is performed. This is because IVH can be further formed immediately above the conductor formed by solidifying the paste-like conductive material. However, conductors made of a hardened paste-like conductive material mainly composed of copper particles and liquid resin maintain conductivity by surface contact between copper particles, so that the diameter of IVH is reduced (the conductor is made thinner). In addition, ensuring the conductivity of the conductor (making it low electrical resistance) has mutually contradictory purposes and it is very difficult to realize both at the same time. Increasing the copper particle content to increase the conductivity of the conductor not only increases the viscosity of the paste-like conductive material and makes it difficult to fill the holes for electrical connection, but also increases the adhesion between the conductor and the printed wiring. Therefore, peeling of the printed wiring (land) is likely to occur during component mounting.
[0004]
In order to solve this problem, in the technique disclosed in Japanese Patent Laid-Open No. 10-144139, all or part of conductive particles such as copper particles is replaced with liquid metal. Thereby, the conductivity of the conductor solidified by the paste-like conductive material can be increased without increasing the viscosity of the paste-like conductive material.
[0005]
[Problems to be solved by the invention]
However, the conductor containing a liquid metal has weak adhesion to a printed wiring made of copper foil or the like, and cannot prevent delamination during component mounting. Furthermore, since a conductive paste is prepared by kneading a liquid resin and a liquid metal, the liquid metal does not sufficiently adhere to the surface of the conductive particles, and sufficient conduction reliability cannot be obtained.
The problem to be solved by the present invention is the connection reliability of a printed wiring board using this conductive material in a configuration in which the connection between the wirings through the insulating layer is made of a conductive material filled in a hole formed in the insulating layer. Is to increase.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the conductive material for connection according to the present invention contains conductive particles that can be thermally melted, a thermosetting resin, and rubber elastic organic particles . The heat fusible electrically conductive particles, characterized in that it has a solid melting temperature and 100 ° C. or higher temperature is added following the manufacturing process of a wiring board using the conductive material.
[0007]
Using such a conductive material for connection, a printed wiring board is manufactured by the following process.
First, a through hole is formed at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, and the hole is filled with the above-described conductive material for connection. A metal foil is placed on both sides of the prepreg, and a double-sided metal foil-clad laminate is manufactured by heat and pressure molding. At this time, the thermally fusible conductive particles in the conductive material for connection are melted and compressed by the heating and pressing, and the thermosetting resin is cured to form a conductor. This conductor is a conductor that penetrates the insulating layer formed by curing the prepreg.
Fig.1 (a) is a reference example and has shown the state which filled the conductive material for a connection in the hole 2 opened in the prepreg 1 before laminated board shaping | molding. The conductive particles 3 are simply in contact with each other. Moreover, although not shown in figure, the thermosetting resin before hardening exists between electroconductive particles. 4 is a metal foil placed on both sides of the prepreg. FIG.1 (b) has shown the state after laminated board shaping | molding. The conductive particles are melted by heat at the time of forming the laminated plate, compressed by pressure, and bonded together to form a good conductive conductor 5. The conductor 5 passes through an insulating layer 6 formed by curing the prepreg, and is adhered to the metal foils 4 on both sides. Adhesion is achieved by curing a thermosetting resin contained in the conductive material for connection. This thermosetting resin is present in the conductor 5 in a sea-island structure (thermosetting resin is an island). Then, FIG. 2 shows the present invention using those containing elastomeric organic particles as connecting conductive material. As is apparent from the figure, the rubber elastic organic particles 7 are present between the insulating layer 6 and the conductor 5 or in the conductor 5, and function to relieve the thermal stress of the conductor 5 due to temperature changes.
Then, the metal foil of the formed double-sided metal foil-clad laminate is etched to form a predetermined wiring circuit, and a printed wiring board in which wirings arranged via an insulating layer are connected by the conductor.
[0008]
In the production of the above printed wiring board, the solid phase melting temperature of the conductive particles contained in the conductive material for connection is set to be equal to or lower than the heating temperature at the time of forming the laminate, and the conductive particles are melted by the heating at the time of forming the laminate. A conductor is formed. However, since the conductive particles in the conductive material for connection only need to be melted before the component is mounted on the printed wiring board to become a finished product, the solid-phase melting temperature of the conductive particles is set to the solder for component mounting. It may be set to a temperature higher than the temperature at the time of forming the laminated sheet, such as the attaching temperature. In the conductive material for connection according to the present invention, the solid phase melting temperature of the conductive particles may be set to be equal to or lower than the highest temperature applied in the wiring board manufacturing process. If the solid phase melting temperature of the conductive particles is set too low, the crystal grain boundary coarsening of the metal constituting the conductor 5 is remarkably increased due to the thermal stress applied when using the printed wiring board, and the connection reliability is lowered. Become. Therefore, the solid phase melting temperature of the conductive particles 5 is set to 100 ° C. or higher.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The conductive material for connection according to the present invention is prepared as a paste by kneading conductive particles and a thermosetting resin.
The conductive particles are preferably a single metal having a solid layer melting temperature of 310 ° C. or lower or an alloy in which two or more metals are combined so that the solid layer melting temperature is 310 ° C. or lower. When the solid layer melting temperature exceeds 310 ° C., the thermosetting resin may deteriorate when the conductive material is melted. There is no particular limitation as long as it is a conductive material that melts by heat applied in the manufacturing process of the wiring board at a solid-phase melting temperature of 100 ° C. or higher. A material having good wetting and having toughness after the conductor is formed should be selected.
The thermosetting resin to be blended with the conductive particles is not particularly limited, but a paste-like conductive material for connection can be prepared without a solvent and volatile components such as water and ammonia are not generated during curing. desirable. Thermosetting resins that are liquid at room temperature are preferred. This thermosetting resin often contains a generally known curing agent or curing accelerator.
The conductive material for connection according to the present invention fills the holes by screen printing or the like. By adding the dispersant, the viscosity behavior of the conductive material can be controlled in accordance with the conditions such as printing. It does not prevent the conductive material from being added with an inorganic filler such as silica, a colorant or the like as necessary.
[0010]
The conductive particles preferably have an average particle size of 100 μm or less. As a result, the conductive material can be filled without difficulty in holes having a diameter of 300 μm or less by screen printing or the like.
The conductive material is blended with rubber elastic organic particles . The rubber elastic organic particles suppress the weakening due to the coarsening of the crystal grain boundary of the metal when the conductor made of the conductive material is subjected to thermal stress. Suppression of weakening leads to improved connection reliability. In order to sufficiently exhibit the effect of suppressing embrittlement, the content of the rubber elastic organic particles is desirably 2 parts by weight or more with respect to 100 parts by weight of the thermosetting resin. In order to sufficiently secure the conductivity of the conductor, it is desirable that the average particle diameter of the rubber elastic organic particles is 50 μm or less.
The rubber elastic organic particles are acrylic rubber fine particles, nitrile rubber fine particles, silicone rubber particles, core-shell rubber particles, and the like.
[0011]
The printed wiring board is manufactured using the above-described conductive material for connection in the following steps.
First, a through-hole is formed by irradiating a drill or a laser beam at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, and the hole is filled with the connecting conductive material. The sheet-like fiber base material is a glass fiber woven fabric, a glass fiber nonwoven fabric, an organic fiber nonwoven fabric or the like.
A metal foil (copper foil or nickel foil) is placed on both sides of the prepreg, and a double-sided metal foil-clad laminate is manufactured by heat and pressure molding. At this time, the heat-meltable conductive particles in the conductive material for connection are melted and compressed by the heat and pressure, and the thermosetting resin is cured. This conductor is a conductor that penetrates the insulating layer formed by curing the prepreg.
The metal foil of the molded double-sided metal foil-clad laminate is etched to form a predetermined wiring circuit, and a printed wiring board in which wirings arranged via an insulating layer are connected by the conductor is used.
[0012]
Another method for producing a printed wiring board using the above-mentioned conductive material for connection is to first open a through hole at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, Fill with conductive material for connection. A metal foil is placed on both sides or one side of a separately prepared wiring board via the prepreg, and a metal foil-clad laminate is produced by heat and pressure molding, and heat melting in the conductive material for connection is possible by the heat and pressure. The conductive particles are melted and compressed, and the thermosetting resin is cured to form a conductor penetrating the insulating layer formed by curing the prepreg. Next, through a process of forming a predetermined wiring circuit by etching the metal foil of the metal foil-clad laminate, a printed wiring board in which wirings arranged via an insulating layer are connected by the conductor is obtained.
The printed wiring board is heated with a flow soldering device or a reflow soldering device in order to mount and solder the component on the printed wiring board thus manufactured, and at the same time the component is mounted, the conductive material for connection is again applied. Melt to ensure connection.
The conductive particles may not be melted in the manufacturing process of the metal foil-clad laminate (only the conductive particles are compressed), and the conductive particles may be melted for the first time in the soldering process. .
In the embodiment of the present invention, the insulating layer formed on the separately prepared wiring board is composed of a prepreg, but may be composed of an organic film such as a silicone rubber film or a polyimide film. In this case, a hole is made in a predetermined portion of the organic film and filled with a conductive material for connection.
[0013]
【Example】
Hereinafter, the present invention will be described in detail using specific examples.
Examples 1-4, Reference Examples 1-6 and Comparative Example 1
Various conductive particles having the component composition, solid-phase melting temperature, and average particle size of the alloys shown in Table 1 were prepared. Further, 55 parts by weight of an epoxy resin (epoxy equivalent 190, “Ep-828” manufactured by Yuka Shell) at room temperature and 44 parts by weight of methyl nadic acid anhydride (manufactured by Hitachi Chemical) as a curing agent and 2-ethyl as a curing accelerator An epoxy resin composition containing 1 part by weight of -4-methylimidazole was prepared. Furthermore, silicone rubber particles (manufactured by Toray / Dow Corning / Silicone) having an average particle size of 3 μm, 10 μm, and 12 μm were prepared.
The conductive particles, the epoxy resin composition and, if necessary, silicone rubber particles were kneaded by a three-roll mill at each blending ratio shown in Table 2 to prepare a paste-like conductive material containing no volatile solvent. .
Next, a 200 μm-diameter electrical connection hole is formed by irradiating a predetermined portion of a 140 μm-thick prepreg produced by impregnating and drying an epoxy resin into an aramid fiber nonwoven fabric. The paste-like conductive material having each composition shown was filled. And copper foil was piled up on both sides of this prepreg, and it heat-press-molded with each lamination temperature shown in Table 2, and the pressure of 40 kg / cm < 2 >, and manufactured the double-sided copper clad laminated board. The copper foil on both sides was etched into a predetermined wiring circuit, and a printed wiring board in which the wirings on both sides were connected by a conductor obtained by solidifying the paste-like conductive material in the heating and pressing process was manufactured. The printed wiring board was heated through a reflow soldering apparatus.
In Example 4, the conductive particles melt only when passed through the reflow soldering apparatus. In other examples and Comparative Example 1, the conductive particles melt in the manufacturing process of the double-sided copper-clad laminate and melt again when passed through the reflow soldering apparatus.
[0014]
Conventional Example 1
Copper particles (average particle size 20 μm) are used as conductive particles, and this and the epoxy resin composition used in the above examples are kneaded by a three-roll mill at a blending ratio shown in Table 2, and do not contain a volatile solvent. A conductive material was prepared.
Using this paste-like conductive material, a printed wiring board was manufactured in the same manner as in the above examples. The lamination temperature for forming the copper-clad laminate was 170 ° C. and the pressure was 40 kg / cm 2 .
[0015]
Conventional example 2
Copper particles (average particle size 20 μm) were used as the conductive particles, and the epoxy resin composition and liquid metal (Ga—Sn alloy) used in the above examples were kneaded by a three-roll mill at a blending ratio shown in Table 2. A pasty conductive material containing no volatile solvent was prepared.
Using this paste-like conductive material, a printed wiring board was manufactured in the same manner as in the above examples. The lamination temperature for forming the copper-clad laminate was 170 ° C. and the pressure was 40 kg / cm 2 .
[0016]
Table 2 shows the results of evaluating the connection reliability of the wiring connected by the conductor formed by solidifying the paste-like conductive material in the printed wiring boards of the above examples. This evaluation test is a thermal shock test, and a wiring pattern (serial connection by 10000 conductors) in which wirings on both sides are sequentially connected by a conductor formed by solidifying a paste-like conductive material is formed, and the temperature is -50 ° C and 80 ° C. After 5000 cycles of cooling and heating, the resistance change amount was calculated by the following (Equation 1) based on the resistance value before the test and the resistance value after the test.
[0017]
[Expression 1]
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
【The invention's effect】
From the above results , it is possible to form a conductor with high connection reliability that is resistant to thermal shock by setting the solid phase melting temperature of conductive particles that can be thermally melted at a temperature lower than the temperature applied in the manufacturing process of the wiring board to 100 ° C. or higher. (Control of Reference Examples 1 to 4 and Comparative Example 1).
If the average particle diameter of the electrically meltable conductive particles is 100 μm or less, the connection reliability can be further improved (control of Reference Examples 3 and 5 and Reference Example 6 ).
Under the above premise, when the conductive material according to the present invention contains rubber elastic organic particles, the connection reliability can be improved (contrast of Examples 1 to 5 and Reference Example 3). And the effect of connection reliability becomes remarkable when the compounding quantity of a rubber elastic organic particle is 2 weight part or more (contrast of Example 2 , 3 and Example 1 ). Further, when the average particle diameter of the rubber elastic organic particles is 50 μm or less, the effect of connection reliability becomes remarkable (contrast with Examples 3 and 4 and Example 5 ).
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing how a connecting conductive material changes when a printed wiring board is manufactured using the connecting conductive material according to a reference example of the present invention.
FIG. 2 is an explanatory cross-sectional view showing how the connection conductive material changes when a printed wiring board is manufactured using another connection conductive material according to the present invention.
[Explanation of symbols]
1 is prepreg 2 is hole 3 is conductive particle 4 is metal foil 5 is conductor 6 is insulating layer 7 is rubber elastic organic particle
Claims (8)
前記導電性粒子が、当該導電材料を用いる配線板の製造工程で加えられる温度以下で且つ100℃以上の固相溶融温度を有することを特徴とする絶縁層を介する配線間の接続用導電材料。A conductive material for connecting between the wirings arranged via the insulating layer in a hole opened in the insulating layer, containing heat-meltable conductive particles, a thermosetting resin, and rubber elastic organic particles ,
A conductive material for connection between wirings through an insulating layer, wherein the conductive particles have a solid-phase melting temperature of 100 ° C. or higher and lower than a temperature applied in a manufacturing process of a wiring board using the conductive material.
前記プリプレグの両側に金属箔を載置し加熱加圧成形により両面金属箔張り積層板を製造し、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を溶融させ圧縮すると共に熱硬化性樹脂を硬化させて、前記プリプレグが硬化してなる絶縁層を貫通する導体を形成する工程、 A metal foil is placed on both sides of the prepreg, and a double-sided metal foil-clad laminate is manufactured by heating and pressing, and the heat-meltable conductive particles in the conductive material for connection are melted and compressed by the heating and pressing. A step of curing a thermosetting resin and forming a conductor penetrating an insulating layer formed by curing the prepreg;
両面金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成する工程を経て、 Through the process of forming a predetermined wiring circuit by etching the metal foil of the double-sided metal foil-clad laminate,
絶縁層を介して配置された配線間を前記導体により接続したことを特徴とするプリント配線板の製造法。 A method for manufacturing a printed wiring board, wherein wirings arranged via an insulating layer are connected by the conductor.
前記プリプレグの両側に金属箔を載置し加熱加圧成形により両面金属箔張り積層板を製造し、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を圧縮すると共に熱硬化性樹脂を硬化させて、前記プリプレグが硬化してなる絶縁層を貫通する導体を形成する工程、
両面金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成する工程及び熱溶融可能な導電性粒子を溶融させる工程を経て、
絶縁層を介して配置された配線間を前記導体により接続したことを特徴とするプリント配線板の製造法。A step of opening a through hole at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, and filling the hole with the conductive material for connection according to any one of claims 1 to 4 ,
A metal foil is placed on both sides of the prepreg to produce a double-sided metal foil-clad laminate by heat and pressure molding, and heat-meltable conductive particles in the conductive material for connection are compressed and heat-cured by the heat and pressure. A step of curing a conductive resin and forming a conductor penetrating an insulating layer formed by curing the prepreg;
Through the process of etching the metal foil of the double-sided metal foil-clad laminate to form a predetermined wiring circuit and the process of melting the heat-meltable conductive particles ,
A method for producing a printed wiring board, wherein wirings arranged via an insulating layer are connected by the conductor.
別途準備した配線板の両側又は片側に、前記プリプレグを介して金属箔を載置し加熱加圧成形により金属箔張り積層板を製造し、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を溶融させ圧縮すると共に熱硬化性樹脂を硬化させて、前記プリプレグが硬化してなる絶縁層を貫通する導体を形成する工程、
金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成する工程を経て、
絶縁層を介して配置された配線間を前記導体により接続したことを特徴とするプリント配線板の製造法。A step of opening a through hole at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, and filling the hole with the conductive material for connection according to any one of claims 1 to 4 ,
A metal foil is placed on both sides or one side of a separately prepared wiring board via the prepreg, and a metal foil-clad laminate is produced by heat and pressure molding, and heat melting in the conductive material for connection is possible by the heat and pressure. A step of melting and compressing the conductive particles and curing the thermosetting resin to form a conductor penetrating the insulating layer formed by curing the prepreg,
Through the process of etching the metal foil of the metal foil-clad laminate to form a predetermined wiring circuit,
A method for producing a printed wiring board, wherein wirings arranged via an insulating layer are connected by the conductor.
別途準備した配線板の両側又は片側に、前記プリプレグを介して金属箔を載置し加熱加圧成形により金属箔張り積層板を製造し、前記加熱加圧により接続用導電材料中の熱溶融可能な導電性粒子を圧縮すると共に熱硬化性樹脂を硬化させて、前記プリプレグが硬化してなる絶縁層を貫通する導体を形成する工程、
金属箔張り積層板の金属箔をエッチング加工して所定の配線回路を形成する工程及び熱溶融可能な導電性粒子を溶融させる工程を経て、
絶縁層を介して配置された配線間を前記導体により接続したことを特徴とするプリント配線板の製造法。A step of opening a through hole at a predetermined position of a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like fiber base material, and filling the hole with the conductive material for connection according to any one of claims 1 to 4 ,
A metal foil is placed on both sides or one side of a separately prepared wiring board via the prepreg, and a metal foil-clad laminate is produced by heat and pressure molding, and heat melting in the conductive material for connection is possible by the heat and pressure. A step of compressing the conductive particles and curing the thermosetting resin to form a conductor penetrating the insulating layer formed by curing the prepreg,
Through the process of etching the metal foil of the metal foil-clad laminate to form a predetermined wiring circuit and the step of melting the thermally meltable conductive particles ,
A method for producing a printed wiring board, wherein wirings arranged via an insulating layer are connected by the conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24042798A JP3678015B2 (en) | 1998-08-26 | 1998-08-26 | Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24042798A JP3678015B2 (en) | 1998-08-26 | 1998-08-26 | Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000068619A JP2000068619A (en) | 2000-03-03 |
JP3678015B2 true JP3678015B2 (en) | 2005-08-03 |
Family
ID=17059333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24042798A Expired - Fee Related JP3678015B2 (en) | 1998-08-26 | 1998-08-26 | Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3678015B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004303956A (en) * | 2003-03-31 | 2004-10-28 | Sekisui Chem Co Ltd | Method of manufacturing printed board |
-
1998
- 1998-08-26 JP JP24042798A patent/JP3678015B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000068619A (en) | 2000-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3051700B2 (en) | Method of manufacturing multilayer wiring board with built-in element | |
JP2587596B2 (en) | Circuit board connecting material and method for manufacturing multilayer circuit board using the same | |
US6555762B2 (en) | Electronic package having substrate with electrically conductive through holes filled with polymer and conductive composition | |
JPH10256687A (en) | Conductor paste composition for filling it into via hole, and printed circuit board using the same | |
JP2001237512A (en) | Double-sided circuit board, maltilayer interconnection board using it, and manufacturing method of double-sided circuit board | |
JPH07176846A (en) | Composition of conductor paste for filling via hole, both-sided and multilayered printed board using it, and its manufacture | |
WO2002087296A1 (en) | Circuit board, circuit board mounting method, and electronic device using the circuit board | |
US20090294160A1 (en) | Method of making printed wiring board and electrically-conductive binder | |
US20090294056A1 (en) | Method of making printed wiring board and method of making printed circuit board unit | |
US8597459B2 (en) | Conductive paste and method for manufacturing multilayer printed wiring board using the same | |
JP2011258838A (en) | Laminated circuit board, method of manufacturing the same, adhesive sheet, and method of manufacturing the same | |
JP2012104557A (en) | Wiring board with electronic component and manufacturing method of the same | |
JP3461172B2 (en) | Method for manufacturing multilayer wiring circuit board | |
JP4606685B2 (en) | Module with built-in circuit components | |
JP3678015B2 (en) | Conductive material for connection between wirings through insulating layer and method for manufacturing wiring board | |
JP3501366B2 (en) | Conductive adhesive for via filling and method of manufacturing electronic device using the same | |
JP4582938B2 (en) | Insulating sheet manufacturing method and wiring board manufacturing method | |
KR100758188B1 (en) | Layered board and manufacturing method of the same, electronic apparatus having the layered board | |
JP3440174B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
JP4422555B2 (en) | Conductive paste composition for multilayer wiring board | |
JP3721660B2 (en) | Conductive material and conductive paste | |
JP4591181B2 (en) | Printed wiring board | |
JP4481734B2 (en) | Conductive paste composition for multilayer wiring board | |
JP2004327744A (en) | Multilayer wiring board and manufacturing method therefor | |
JP3034238B2 (en) | Conductive paste composition for via-hole conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |