JP2004303956A - Method of manufacturing printed board - Google Patents

Method of manufacturing printed board Download PDF

Info

Publication number
JP2004303956A
JP2004303956A JP2003095093A JP2003095093A JP2004303956A JP 2004303956 A JP2004303956 A JP 2004303956A JP 2003095093 A JP2003095093 A JP 2003095093A JP 2003095093 A JP2003095093 A JP 2003095093A JP 2004303956 A JP2004303956 A JP 2004303956A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
hole
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095093A
Other languages
Japanese (ja)
Inventor
Tsutomu Toyoshima
勉 豊嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003095093A priority Critical patent/JP2004303956A/en
Publication of JP2004303956A publication Critical patent/JP2004303956A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a printed board wherein a conductivity path with a high connection reliability can be achieved. <P>SOLUTION: In the method of manufacturing a printed board, a conductivity path is achieved through conductive fine particles 3 in a through-hole. The through-hole 2 of the printed board is filled with many of the conductive fine particles 3, each of which is such that a metal layer is formed on the surface of a resin-made substrate fine particle and has a grain diameter of 0.01 μm-300 μm. By conducting preliminary heating for 30-90 sec. at 150°C±10°C and then formally heating for 5-10 sec. at a temperature not lower than 200°C nor higher than 350°C, the metal layer is melted to combine the conductive fine particles all together, resulting in improvements in thermal conductivity and electrical conductivity of the through hole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スルーホールを介して、プリント基板を容易にかつ高い接続信頼性をもって導電接続することができる、プリント基板の製造方法に関する。
【0002】
【従来の技術】
従来、ICやLSI等の電気回路を製造する際、プリント基板や回路素子等の電極同士の電気的接続には、微細な電極同士を対向させて金属バンプ等を用いハンダや導電ペーストで接合したり、金属バンプ等を直接圧着する方法が採られていた。しかし、ハンダ付けや金属バンプ等による方法では生産効率が低く、また導電接続の安定性の面でも更に改善が求められるものであった。
そこで、対向する電極間に、プラスチック微粒子の表面に金属メッキ層が形成された電性微粒子を配設することが報告されている(例えば、特許文献1参照)。しかし、電極面と導電性微粒子との接触面積が不充分となり、やはり導電接続が不安定であるという問題点があった。
【0003】
一方、近年、電気回路は一層高密度化や多層化等によって高性能化の一途をたどり、これに対応して、電気回路のプリント基板にスルーホールと呼ばれる貫通孔を設け、このスルーホールを介して導電接続を行う方法が提案され実用化されつつある。
【0004】
しかし、スルーホール部の内部は空気の存在により当然熱伝導性が低く、また、スルーホール部でインピーダンスが大幅に変化し反射が発生して電気信号に変動が生じるという問題点があった。
また、フォトレジスト等が上下からスルーホール部を覆って空気を密閉した状態となり、昇温時にこの部分が破裂したり、その結果スルーホール部周辺に亀裂が発生したり、更には、高温・冷却等の外環境変化に伴うスルーホール部の伸縮により応力が発生しスルーホール部の接続安定性が維持されないという問題点があった。
【特許文献1】
特開平1−225776号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記従来のプリント基板の製造方法等の問題点に鑑み、高い接続信頼性で導電接続し得る導電接続構造のプリント基板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、導電性微粒子を用いて、スルーホールを介して導電接続するプリント基板の製造方法であって、樹脂製基材微粒子の表面に金属層が形成されてなる粒径0.01μm〜300μmの導電性微粒子を、プリント基板のスルーホール内に多数充填し、150℃±10℃にて30〜90秒の予備加熱後、200℃以上350℃以下にて5〜10秒の本加熱により、前記金属層を溶融させて導電性微粒子同士を結合することによりスルーホール部の熱伝導性及び導電性を改善する導電接続構造のプリント基板の製造方法を提供する。
【0007】
本発明において用いられる導電性微粒子は、樹脂製基材微粒子の表面に金属層が形成されてなるものである。
樹脂製基材微粒子は樹脂の有する応力緩和効果により、接続部、即ちスルーホール部に或る程度の応力がかかっても断線するのを防ぐことができる。
【0008】
上記樹脂製基材微粒子を構成する樹脂としては、例えば、スチレン、α−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;アクリロニトリル等の不飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体等を重合した物等が挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用しても良い。
【0009】
また、上記樹脂製基材微粒子を構成する樹脂を合成する際には、例えばジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジアリルフタレート及びその異性体、トリアリルイソシアヌレート及びその誘導体等の架橋性単量体を加えても良い。これら架橋性単量体は単独で用いてもよく、2種以上を併用しても良い。
【0010】
上記樹脂製基材微粒子の形状は特に限定されず、通常、球形、楕円形のもの等が用いられ、導電性微粒子の形状も、一般に、球形、楕円形のもの等が用いられる。
【0011】
上記金属層は、導電性の高い金属もしくは合金から構成されることが好ましい。その例としては、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等、及び、ハンダ等のこれらの合金等が挙げられる。
【0012】
上記金属層は、2層以上の多層構造からなるものであってもよい。各層を構成する金属は、同じ金属であってもよいし、層ごとに異なる金属であってもよいが、最外層は低融点の金属から構成されているのが好ましい。上記低融点金属としては、例えば、鉛、スズ、ビスマス等の低融点金属、ハンダ、スズ−銀合金、スズ−ビスマス合金等の低融点合金が挙げられ、金属層の最外層は、通常、主に鉛と錫との合金からなるハンダ層であるのが好ましい。
上記金属層の厚さは特に限定されないが、好ましくは樹脂製基材微粒子の粒径の2〜3%程度とされる。
【0013】
上記金属層を形成する方法としては特に限定されず、例えば、上記樹脂製基材微粒子表面に無電解メッキ等により形成する方法等が挙げられる。
【0014】
本発明におけるスルーホールとは、プリント基板を貫通して設けられた孔であって、プリント基板の両面に形成された回路を接続したり、プリント基板の両面に取り付けた他の電子部品との接続を行ったりするものであり、一般に、スルーホール部分には適宜の材質のメッキが施されており、スルーホールメッキと称される。
本発明における導電性微粒子は、特に高密度実装を実現するために、微細なスルーホールに好適に用いられる。
【0015】
本発明においては、粒径が0.01μm〜300μmの導電性微粒子を用いるが、実際の使用に際し、この範囲内でスルーホールの径によって適宜の径のものを選択する。粒径は好ましくは、0.01μm〜100μmであり、より好ましくは、0.05μm〜50μmであり、更に好ましくは、0.1μm〜10μmである。
【0016】
また、導電性微粒子に形成された金属層を溶融させて導電性微粒子同士を結合する際は、150℃±10℃にて30〜90秒の予備加熱、及びその後、200℃以上350℃以下にて5〜10秒の本加熱を必要とする。
これらの予備加熱条件及び本加熱条件を満たさなければ、溶融不良が発生するおそれがあるからである。即ち、予備加熱の場合に、30秒未満では金属によっては溶融不良が起こり、逆に90秒を越えるとプリント基板が変形する可能性がある。本加熱の場合に、5秒未満では溶融不良が起こる可能性があり、逆に10秒を越えるとプリント基板が変色する可能性がある。
【0017】
【発明の実施の形態】
本発明を以下に図面を参照しながら説明する。
図1は、本発明の導電接続構造のプリント基板の製造方法を説明するための、スルーホールを明示した模式的断面図であり、図2は、本発明に用いられる導電性微粒子の模式的断面図である。
本発明においては、まずプリント基板(1)に形成されたスルーホール(2)(図1a参照)に、導電性微粒子(3)を多数充填する。尚、(21)はスルーホールに形成されているメッキ層である。また、図2における(31)は樹脂製基材微粒子であり、(32)はその表面に形成されている金属層である。
この際、金属層(32)の最外層がハンダ層であれば、多数の導電性微粒子(3)をそのまま充填するが、ハンダ層でない場合は金属層の溶融による導電性微粒子同士の結合を容易確実にするためにハンダペーストと共に充填するのが好ましい。ハンダペーストは、一般に、ハンダ粉を活性ペーストや溶剤と混練して得られるペースト状を呈したものである。
【0018】
また導電性微粒子(3)は、スルーホール(2)の両出口から盛り上がる程度にまで充填することが好ましい(図1b)。これにより、接続信頼性を向上させることができる。また、充填する際には、できる限り導電性微粒子間に隙間ができないようにすることが好ましい。
その後、金属層が溶融するまで加熱して、導電性微粒子同士を融着させ、充填した導電性微粒子全体を、図1cに結合した導電性微粒子(4)として示すようにあたかも一つの焼結金属の如くなし、これにより、スルーホール(2)部の熱伝導性及び導電性を改善するのである。尚、(5)は電子部品である。
【0019】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
平均粒径が0.088μmのジビニルベンゼンからなる樹脂製基材微粒子に、金属層としてハンダめっき層を形成して、平均直径0.1μmの導電性微粒子を得た。
【0020】
一方、両面に形成された回路間を接続できるようにした直径50μm、深さ200μmのスルーホールを有するプリント基板を用意し、約3億個の前記導電性微粒子をソルダーペーストと混合したものを、このスルーホールに充填した。
【0021】
その後、150℃±10℃にて60秒の予備加熱後、230℃にて8秒の本加熱を行って、導電性微粒子の金属層を溶融(リフロー)させて、導電性微粒子同士を融着させるとともにスルーホール内部にハンダ付けして、目的とする導電接続構造のプリント基板を得た。
得られたプリント基板のスルーホール部の熱伝導性及び導電性を以下の方法で評価したところ、導電性微粒子の充填前の熱伝導率が10W/mkであったのに対し、充填接続後は60W/mkであり、また導電性微粒子の充填前のインピーダンスが81.2Ωであったのに対し、充填接続後は61Ωであり、明らかに改善されていた。
【0022】
また、スルーホール部の温度サイクルテストによる耐久性を確認したところ、導電性微粒子の充填前が6000時間であったのに対し、充填接続後は10000時間であり、明らかに向上していた。
【0023】
(評価方法)
〔熱伝導率〕
スルーホールの一方に熱源を当て、ある熱流束qを与える。熱伝対にてスルーホール両端の温度差ΔTを測定し、フーリエの法則に従って熱伝導率λを算出した。
〔インピーダンス〕
スルーホールに10mAの電流を流し、スルーホール両端の電圧を測定し、オームの法則に従って抵抗値を算出した。
〔耐久性〕
低温:−45℃×30分、高温:125℃×30分を1サイクルとして、スルーホール部の両端の電流、電圧を測定してインピーダンスを算出し、インピーダンスの変化を観察した。
【0024】
【発明の効果】
本発明の導電接続構造のプリント基板の製造方法は、バインダーを用いずに樹脂製基材微粒子の表面に金属層が形成されてなる導電性微粒子をプリント基板両面の電子部品等を接続するものであるので、バインダーによる導通不良やバインダー成分による導電部の酸化等の問題もなく、温度変化等により接続部に応力がかかっても、樹脂製基材微粒子により応力が緩和されるので断線が起こることもない。
また、スルーホールに充填させた粒径0.01μm〜300μmの導電性微粒子を、特定の温度・時間条件の予備加熱及び本加熱によって金属層を溶融させることにより結合した導電性微粒子は、あたかも一つの焼結された金属のようになって、スルーホール部の熱伝導性及び導電性を改善するとともに、スルーホール部は耐久性が向上するので、本発明によれば、スルーホールを介してプリント基板の両面等における電子部品を容易にかつ高い接続信頼性をもって導電接続することができる。
即ち、耐久性が高く接続信頼性の高いプリント基板を提供できる。
【図面の簡単な説明】
【図1】本発明のプリント基板の製造方法を説明するための、スルーホールを明示した模式的断面図である。
【図2】本発明に用いられる導電性微粒子の模式的断面図である。
【符号の説明】
(1) プリント基板
(2) スルーホール
(21) メッキ層(スルーホールメッキ)
(3) 導電性微粒子
(31) 樹脂製基材微粒子
(32) 金属層
(4) 結合した導電性微粒子
(5) 電子部品
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a printed circuit board, which can easily and conductively connect a printed circuit board with high connection reliability via a through hole.
[0002]
[Prior art]
Conventionally, when manufacturing an electric circuit such as an IC or an LSI, for electrical connection between electrodes such as a printed circuit board and a circuit element, fine electrodes are opposed to each other, and are joined by solder or conductive paste using metal bumps or the like. Or a method of directly pressing metal bumps or the like. However, the method using soldering or metal bumps has a low production efficiency, and further improvement is required in terms of stability of conductive connection.
In view of this, it has been reported to dispose conductive fine particles having a metal plating layer formed on the surface of plastic fine particles between opposing electrodes (for example, see Patent Document 1). However, there is a problem that the contact area between the electrode surface and the conductive fine particles becomes insufficient, and the conductive connection is also unstable.
[0003]
On the other hand, in recent years, the performance of electric circuits has been steadily increasing due to higher densities and multilayers. In response to this, a through-hole called a through-hole is provided on a printed circuit board of the electric circuit, and through this through-hole. A method for conducting conductive connection has been proposed and put into practical use.
[0004]
However, there is a problem that the thermal conductivity is naturally low inside the through-hole portion due to the presence of air, and the impedance greatly changes at the through-hole portion to cause reflection to cause a change in an electric signal.
In addition, a photoresist or the like covers the through hole from above and below to seal the air, and this part bursts when the temperature rises, resulting in cracks around the through hole part, and furthermore, high temperature and cooling There is a problem that stress is generated due to expansion and contraction of the through-hole portion due to an external environment change such as the above, and connection stability of the through-hole portion is not maintained.
[Patent Document 1]
JP-A-1-225776
[Problems to be solved by the invention]
An object of the present invention is to provide a method of manufacturing a printed circuit board having a conductive connection structure capable of performing conductive connection with high connection reliability in view of the problems of the above-described conventional method of manufacturing a printed circuit board.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of manufacturing a printed circuit board that uses a conductive fine particle to conduct conductive connection through a through hole, wherein a metal layer is formed on a surface of the resin base fine particle. A large number of conductive fine particles having a particle size of 0.01 μm to 300 μm are filled in through holes of a printed circuit board and preheated at 150 ° C. ± 10 ° C. for 30 to 90 seconds. The present invention provides a method for manufacturing a printed circuit board having a conductive connection structure that improves the thermal conductivity and conductivity of a through-hole portion by melting the metal layer and bonding the conductive fine particles by main heating for 10 to 10 seconds.
[0007]
The conductive fine particles used in the present invention are obtained by forming a metal layer on the surface of resin base fine particles.
Due to the stress relaxation effect of the resin, the resin base particles can prevent disconnection even when a certain amount of stress is applied to the connection portion, that is, the through-hole portion.
[0008]
Examples of the resin constituting the resin base fine particles include styrene derivatives such as styrene, α-methylstyrene, p-chlorostyrene, and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; Unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) Examples thereof include products obtained by polymerizing (meth) acrylate derivatives such as acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate. These resins may be used alone or in combination of two or more.
[0009]
When synthesizing the resin constituting the resin base particles, for example, divinylbenzene, divinylbiphenyl, divinylnaphthalene, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Pentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and its isomers, triallyl isocyanurate and its derivatives, etc. May be added. These crosslinkable monomers may be used alone or in combination of two or more.
[0010]
The shape of the resin substrate fine particles is not particularly limited, and a spherical or elliptical shape is generally used. The conductive fine particles also generally have a spherical or elliptical shape.
[0011]
The metal layer is preferably made of a highly conductive metal or alloy. Examples thereof include, for example, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like, and solder. And the like of these alloys.
[0012]
The metal layer may have a multilayer structure of two or more layers. The metal constituting each layer may be the same metal or a different metal for each layer, but the outermost layer is preferably made of a metal having a low melting point. Examples of the low-melting metal include low-melting metals such as lead, tin and bismuth, and low-melting alloys such as solder, tin-silver alloy, and tin-bismuth alloy. Preferably, the solder layer is made of an alloy of lead and tin.
The thickness of the metal layer is not particularly limited, but is preferably about 2 to 3% of the particle diameter of the resin base particles.
[0013]
The method for forming the metal layer is not particularly limited, and includes, for example, a method of forming the surface of the resin base material fine particles by electroless plating or the like.
[0014]
The through hole according to the present invention is a hole provided through a printed circuit board to connect circuits formed on both sides of the printed circuit board or to connect to other electronic components attached to both sides of the printed circuit board. In general, plating of an appropriate material is applied to the through-hole portion, which is referred to as “through-hole plating”.
The conductive fine particles according to the present invention are suitably used for fine through-holes, in particular, for realizing high-density mounting.
[0015]
In the present invention, conductive fine particles having a particle diameter of 0.01 μm to 300 μm are used. In actual use, particles having an appropriate diameter are selected according to the diameter of the through hole within this range. The particle size is preferably 0.01 μm to 100 μm, more preferably 0.05 μm to 50 μm, and still more preferably 0.1 μm to 10 μm.
[0016]
Further, when melting the metal layer formed on the conductive fine particles to bond the conductive fine particles to each other, pre-heating at 150 ° C. ± 10 ° C. for 30 to 90 seconds, and then reducing the temperature to 200 ° C. or more and 350 ° C. or less Requires 5 to 10 seconds of main heating.
If these preheating conditions and main heating conditions are not satisfied, poor melting may occur. That is, in the case of preheating, if the time is less than 30 seconds, poor melting may occur depending on the metal, and if it exceeds 90 seconds, the printed circuit board may be deformed. In the case of main heating, if it is less than 5 seconds, poor melting may occur, and if it exceeds 10 seconds, the printed circuit board may be discolored.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view illustrating a method of manufacturing a printed circuit board having a conductive connection structure according to the present invention, in which through holes are clearly shown. FIG. 2 is a schematic cross-sectional view of conductive fine particles used in the present invention. FIG.
In the present invention, first, a large number of conductive fine particles (3) are filled in through holes (2) (see FIG. 1A) formed in a printed circuit board (1). Incidentally, (21) is a plating layer formed in the through hole. In addition, (31) in FIG. 2 is resin base particles, and (32) is a metal layer formed on the surface thereof.
At this time, if the outermost layer of the metal layer (32) is a solder layer, a large number of conductive fine particles (3) are filled as it is. If the outer layer is not a solder layer, bonding of the conductive fine particles by melting of the metal layer is easy. It is preferred to fill with solder paste for assurance. The solder paste generally has a paste shape obtained by kneading solder powder with an active paste or a solvent.
[0018]
Further, it is preferable that the conductive fine particles (3) are filled to the extent that they rise from both outlets of the through hole (2) (FIG. 1b). Thereby, connection reliability can be improved. In addition, when filling, it is preferable that a gap is not formed between the conductive fine particles as much as possible.
Thereafter, heating is performed until the metal layer is melted, the conductive fine particles are fused together, and the entire filled conductive fine particles are formed as if they were one sintered metal as shown in FIG. As a result, the thermal conductivity and conductivity of the through hole (2) are improved. (5) is an electronic component.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(Example 1)
A solder plating layer was formed as a metal layer on resin base particles made of divinylbenzene having an average particle size of 0.088 μm to obtain conductive particles having an average diameter of 0.1 μm.
[0020]
On the other hand, a printed circuit board having a through hole with a diameter of 50 μm and a depth of 200 μm, which allows connection between circuits formed on both surfaces, is prepared, and a mixture of about 300 million conductive particles with a solder paste is prepared. This through hole was filled.
[0021]
Thereafter, after preliminary heating at 150 ° C. ± 10 ° C. for 60 seconds, main heating is performed at 230 ° C. for 8 seconds to melt (reflow) the metal layer of the conductive fine particles and fuse the conductive fine particles to each other. At the same time, soldering was performed inside the through hole to obtain a printed circuit board having a desired conductive connection structure.
When the thermal conductivity and conductivity of the through-hole portion of the obtained printed circuit board were evaluated by the following method, the thermal conductivity before filling with the conductive fine particles was 10 W / mk, whereas after the filling connection, It was 60 W / mk, and the impedance before filling with the conductive fine particles was 81.2 Ω, whereas after the filling connection, it was 61 Ω, which was clearly improved.
[0022]
Further, when the durability of the through-hole portion was confirmed by a temperature cycle test, it was 6,000 hours before filling with the conductive fine particles, but 10,000 hours after filling connection, which was clearly improved.
[0023]
(Evaluation method)
〔Thermal conductivity〕
A heat source is applied to one of the through holes to give a certain heat flux q. The temperature difference ΔT between both ends of the through hole was measured with a thermocouple, and the thermal conductivity λ was calculated according to Fourier's law.
[Impedance]
A current of 10 mA was passed through the through hole, the voltage across the through hole was measured, and the resistance was calculated according to Ohm's law.
〔durability〕
The current and voltage at both ends of the through-hole portion were measured and the impedance was calculated with one cycle of low temperature: -45 ° C for 30 minutes and high temperature: 125 ° C for 30 minutes, and the change in impedance was observed.
[0024]
【The invention's effect】
The method for producing a printed circuit board having a conductive connection structure according to the present invention is a method of connecting conductive particles formed by forming a metal layer on the surface of resin base particles without using a binder to electronic components on both sides of the printed circuit board. Therefore, there is no problem such as conduction failure due to the binder and oxidation of the conductive part due to the binder component. Even if stress is applied to the connection part due to temperature change etc., the stress is relaxed by the resin base material fine particles, so disconnection may occur Nor.
Further, the conductive fine particles, which are formed by bonding the conductive fine particles having a particle diameter of 0.01 μm to 300 μm filled in the through holes by melting the metal layer by preheating and main heating under specific temperature and time conditions, are as if According to the present invention, it is possible to print through the through-holes because the through-holes improve the thermal conductivity and conductivity of the through-holes as well as the durability of the through-holes. Electronic components on both sides of the substrate can be easily and conductively connected with high connection reliability.
That is, a printed board having high durability and high connection reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a printed circuit board manufacturing method of the present invention, in which through holes are clearly shown.
FIG. 2 is a schematic cross-sectional view of conductive fine particles used in the present invention.
[Explanation of symbols]
(1) Printed circuit board (2) Through hole (21) Plating layer (through hole plating)
(3) Conductive fine particles (31) Resin base fine particles (32) Metal layer (4) Bonded conductive fine particles (5) Electronic components

Claims (1)

導電性微粒子を用いて、スルーホールを介して導電接続するプリント基板の製造方法であって、樹脂製基材微粒子の表面に金属層が形成されてなる粒径0.01μm〜300μmの導電性微粒子を、プリント基板のスルーホール内に多数充填し、150℃±10℃にて30〜90秒の予備加熱後、200℃以上350℃以下にて5〜10秒の本加熱により、前記金属層を溶融させて導電性微粒子同士を結合することによりスルーホール部の熱伝導性及び導電性を改善することを特徴とするプリント基板の製造方法。What is claimed is: 1. A method for manufacturing a printed circuit board, wherein conductive particles are electrically connected through through holes using conductive fine particles, the conductive fine particles having a particle diameter of 0.01 μm to 300 μm, wherein a metal layer is formed on a surface of resin base fine particles. Is filled in a large number of through holes of a printed circuit board, and after preheating at 150 ° C. ± 10 ° C. for 30 to 90 seconds, main heating is performed at 200 ° C. or more and 350 ° C. or less for 5 to 10 seconds, whereby the metal layer is formed. A method of manufacturing a printed circuit board, comprising: improving the thermal conductivity and conductivity of a through-hole portion by melting and bonding conductive fine particles to each other.
JP2003095093A 2003-03-31 2003-03-31 Method of manufacturing printed board Pending JP2004303956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095093A JP2004303956A (en) 2003-03-31 2003-03-31 Method of manufacturing printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095093A JP2004303956A (en) 2003-03-31 2003-03-31 Method of manufacturing printed board

Publications (1)

Publication Number Publication Date
JP2004303956A true JP2004303956A (en) 2004-10-28

Family

ID=33407499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095093A Pending JP2004303956A (en) 2003-03-31 2003-03-31 Method of manufacturing printed board

Country Status (1)

Country Link
JP (1) JP2004303956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084684A (en) * 2010-10-12 2012-04-26 Sekisui Chem Co Ltd Printed wiring board
US11121123B2 (en) 2017-12-27 2021-09-14 Murata Manufacturing Co., Ltd. Semiconductor composite device and package board used therein

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225776A (en) * 1988-03-07 1989-09-08 Mitsubishi Metal Corp Silver-coated spherical phenolic resin powder
JPH01230285A (en) * 1987-11-26 1989-09-13 Asahi Chem Ind Co Ltd Through hole circuit board
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH09198916A (en) * 1995-11-16 1997-07-31 Sekisui Finechem Co Ltd Conductive fine grain
JPH11179585A (en) * 1997-12-22 1999-07-06 Matsushita Electric Ind Co Ltd Cream solder
JPH11307930A (en) * 1998-04-24 1999-11-05 Namics Corp Board and manufacturing method
JP2000068619A (en) * 1998-08-26 2000-03-03 Shin Kobe Electric Mach Co Ltd Conductive material for connection of wirings interposing insulating layer between them and manufacture of wiring board
JP2000349406A (en) * 1999-06-08 2000-12-15 Denso Corp Conductive paste for printed wiring board, printed wiring board using the same, and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230285A (en) * 1987-11-26 1989-09-13 Asahi Chem Ind Co Ltd Through hole circuit board
JPH01225776A (en) * 1988-03-07 1989-09-08 Mitsubishi Metal Corp Silver-coated spherical phenolic resin powder
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH09198916A (en) * 1995-11-16 1997-07-31 Sekisui Finechem Co Ltd Conductive fine grain
JPH11179585A (en) * 1997-12-22 1999-07-06 Matsushita Electric Ind Co Ltd Cream solder
JPH11307930A (en) * 1998-04-24 1999-11-05 Namics Corp Board and manufacturing method
JP2000068619A (en) * 1998-08-26 2000-03-03 Shin Kobe Electric Mach Co Ltd Conductive material for connection of wirings interposing insulating layer between them and manufacture of wiring board
JP2000349406A (en) * 1999-06-08 2000-12-15 Denso Corp Conductive paste for printed wiring board, printed wiring board using the same, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084684A (en) * 2010-10-12 2012-04-26 Sekisui Chem Co Ltd Printed wiring board
US11121123B2 (en) 2017-12-27 2021-09-14 Murata Manufacturing Co., Ltd. Semiconductor composite device and package board used therein
US11552020B2 (en) 2017-12-27 2023-01-10 Murata Manufacturing Co., Ltd. Semiconductor composite device and package board used therein

Similar Documents

Publication Publication Date Title
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
CN1322524C (en) Fuse, battery pack using the fuse, and method of manufacturing the fuse
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
CN107004538A (en) Manufacture method, the installation method of temperature fuse device and the temperature fuse device of fixing body
KR20050022303A (en) Circuit device
JPH10335531A (en) Ball grid array type semiconductor device, its manufacture, and electronic apparatus
JP5469089B2 (en) Method of forming a heat sink
JP4228926B2 (en) Semiconductor device
CN109618506A (en) The method of laminated substrate and manufacture laminated substrate
CN108321062A (en) A kind of circuit brake and manufacturing method
JP2004303956A (en) Method of manufacturing printed board
WO2019138752A1 (en) Fuse element
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP2005026364A (en) Hybrid integrated circuit
JP3438583B2 (en) Anisotropic conductive film connection method
JP2003068145A (en) Conductive fine particle and conductive connection structure
JP4010717B2 (en) Electrical contact joining method
JP2004158212A (en) Conductive particulate for mounting
JP3682156B2 (en) Conductive fine particles and conductive connection structure
JP2008270846A (en) Method for manufacturing semiconductor device
JP4130499B2 (en) Substrate type temperature fuse manufacturing method
JP2002124755A (en) Method and structure for bonding conductive adhesive and electrode
JP2010129827A (en) Electronic device and method of manufacturing the same
JP2006310415A (en) Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402