JP3677700B2 - Ground seismic isolation method - Google Patents

Ground seismic isolation method Download PDF

Info

Publication number
JP3677700B2
JP3677700B2 JP09940297A JP9940297A JP3677700B2 JP 3677700 B2 JP3677700 B2 JP 3677700B2 JP 09940297 A JP09940297 A JP 09940297A JP 9940297 A JP9940297 A JP 9940297A JP 3677700 B2 JP3677700 B2 JP 3677700B2
Authority
JP
Japan
Prior art keywords
ground
chemical solution
seismic isolation
range
isolation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09940297A
Other languages
Japanese (ja)
Other versions
JPH10292391A (en
Inventor
茂 後藤
康広 社本
武司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP09940297A priority Critical patent/JP3677700B2/en
Publication of JPH10292391A publication Critical patent/JPH10292391A/en
Application granted granted Critical
Publication of JP3677700B2 publication Critical patent/JP3677700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばビル等の各種構造物を軟弱な地盤上に構築する場合に用いて好適な地盤免震工法に関するものである。
【0002】
【従来の技術】
周知のように、ビル等の各種構造物が地震時に被害を受けるのは、地盤から入力される地震波によって構造物に大きな応力が発生し、構造物が破壊に至るためである。
【0003】
従来、このような地震時の被害を避けるため、せん断変形に対する剛性が低い積層ゴム等の免震装置を構造物の基礎部等に設置し、この免震装置によって地盤からの地震波を吸収してこれが構造物に伝わるのを抑制する免震工法が用いられている。
【0004】
ところで、平成7年(1995年)の兵庫県南部地震では、埋立地等の地盤が液状化した地域では、液状化が発生しなかった地域に比較して、ビル等の構造的な被害が少なかったと言われている。これは、地震により地盤が液状化すると地盤の剛性が顕著に低下し、この液状化した地盤が前記免震装置と同様に機能して、地盤から構造物に入力される地震波が低減されるためである。
【0005】
しかし、地震により地盤が液状化すると、地盤による構造物の支持力が失われるため、構造物全体の傾斜や転倒に至ることもあり、また液状化に伴って地盤の側方流動が生じれば基礎杭等も被災する可能性がある。したがって、現状では、図6に示すように、地震時に液状化の発生が予測される地盤Gにおいては、液状化を防ぐために、構造物1の下方の範囲Sに、地盤改良等の対策工法を施している。
【0006】
【発明が解決しようとする課題】
しかしながら、上述したような従来の技術では、地盤改良した範囲Sの地盤Gはせん断剛性が高くなるために構造物1に地震波が伝わりやすく、構造物1に入力される地震力が強くなってしまう。このため、構造物1の被災を避けるには、地盤Gを地盤改良するだけでなく、前記したような免震装置等を設置しなければならないのが現状である。ところが、積層ゴム等の免震装置は極めて高価であり、有効な免震効果を得るには、結局膨大なコストと施工の手間がかかってしまうという問題がある。
【0007】
本発明は、以上のような点を考慮してなされたもので、低コストでかつ容易に有効な免震効果を得ることのできる地盤免震工法を提供することを課題とする。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、構造物を支持する地盤が地震時に液状化の発生が予測される液状化地盤であるときの地盤免震工法であって、前記構造物の下方の前記液状化地盤を地盤改良手段によって地盤改良する構成とし、前記構造物の下面からその下方の定められた深さまでの範囲については、常時は剛性を保持し、地震時には剛性が低下するように、希薄な薬液を注入して地盤改良し、前記定められた深さよりも下方の範囲については、せん断剛性が高められるように、地盤改良することを特徴としている。
【0009】
請求項2に係る発明は、請求項1記載の地盤免震工法において、前記希薄な薬液には、薬液100リットル中のシリカ濃度にして8〜10キログラムの通常薬液を、3〜5倍に薄めたものを用いることを特徴としている。
請求項に係る発明は、請求項1または2記載の地盤免震工法において、構造物の基礎として、前記液状化地盤中に基礎杭が構築されていることを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明に係る地盤免震工法の実施の形態の一例を、図1ないし図4を参照して説明する。
【0011】
図1に示すように、構造物10は、地震時に液状化の発生が予測される地盤(液状化地盤)G上に構築されており、その基礎11が基礎杭12,12,…を備えている。そして、構造物10の下方の範囲Sの地盤Gは、以下のようにして地盤改良が施されている。
【0012】
すなわち、構造物10の下方の範囲Sの地盤Gのうち、構造物10の下面10aから所定の深さよりも下方の範囲S1には、通常と同様の地盤改良工法、例えばサンドコンパクション工法,グラベルドレーン工法,セメント固化工法,薬液注入工法等を用いて充分な地盤改良を施す。
【0013】
そして、構造物10の下面10aから所定の深さまでの範囲S2には、希薄な薬液Lを注入して地盤改良を施す。
この希薄な薬液Lとしては、例えば従来より薬液注入工法等で用いられていたのと同様の薬液を用いるが、その濃度を、従来の通常の濃度(例えば薬液100リットル中のシリカ(Si−O2)濃度にして8〜10kg)に対して、例えば3〜5倍程度薄めた希薄なものを用いる。
【0014】
ここで、希薄な薬液Lを注入した砂(地盤Gの範囲S2に相当)の室内液状化試験の結果を示す。ここでは、希薄な薬液Lとして、通常の薬液濃度に対して1/4程度の濃度のものを用いた。
【0015】
図2は、地震波に対応する繰り返し載荷を加えた場合のひずみの発生の変化を示すものであり、図2(a)は薬液を含まない砂(地盤改良を施さない状態)の場合、図2(b)は希薄な薬液Lを混入させた砂の場合である。この図からも明らかなように、図2(a)に示した薬液を含まない砂においては、地震による繰り返し載荷によりひずみが急激に増大し、これによって地盤Gの液状化が生じることとなる。これに対し、図2(b)に示した希薄な薬液Lを混入させた砂(範囲S2)では、地震による繰り返し載荷が作用してもひずみが膨大なものとはならず、液状化が防止され、側方流動や膨大な沈下が生じないことがわかる。
【0016】
また、これまでの研究で液状化による地盤の沈下(体積ひずみ)は地震時に生じたせん断ひずみの大きさで決まることが明らかになっており、図3は、この、液状化時のせん断ひずみと液状化後の体積ひずみの関係を示している。そして、図2(b)に示した実験結果では、希薄な薬液Lを混入させた砂(範囲S2)では、せん断ひずみが2%程度であるので、図3に示した関係から、構造物10の下方の地盤G(図1参照)の実際の沈下量は、希薄な薬液Lで改良した範囲S2の厚さの0.8%程度に留められることがわかる。
【0017】
さらに、図4は、前記室内液状化試験時の応力−ひずみ曲線を示すものであり、この図4(a)に示すように、薬液を含まない砂(地盤改良を施さない状態)では繰り返し載荷を受けると剛性が低下し、これに伴ってひずみもどんどん大きくなっている。これに対して、図4(b)に示すように、希薄な薬液Lを混入させた砂(範囲S2)では、繰り返し載荷を受けると剛性が低下し始めるが、ある程度まで行けばそれ以上ひずみが大きくならない。これは、希薄な薬液Lを混入させることにより、この範囲S2の地盤Gが、常時は剛性を保持しているが、地震力を受けると剛性が低下して地震波を伝えにくくなり、かつ膨大な変位も生じないという性質を有することである。また、応力−ひずみのヒステリシスループも液状化した砂(図4(a)参照)に比較して厚みを持っており、希薄な薬液Lを混入した砂(範囲S2)の減衰が大きく、地震のエネルギーの吸収効果が高いことを示している。
【0018】
このようにして、図1に示した、地盤改良が施された地盤Gは、通常の地盤改良工法が施された範囲S1については、せん断剛性が高められ、液状化が防止されて地盤Gの側方流動も防止されるようになっている。そして希薄な薬液Lが注入された範囲S2においては、常時は剛性を保持し、地震力を受けたときには、剛性が低下して地震波が構造物10に伝わるのを防ぐダンパー機能を発揮し、しかも膨大な変位も発生させずに液状化を防止するようになっている。
【0019】
上述した地盤免震工法では、構造物10を支持する地盤Gが、構造物10の下面10aから所定の深さまでの範囲S2が希薄な薬液Lによって地盤改良され、その下方の範囲S1が通常の地盤改良工法によって地盤改良された構成となっている。これにより、通常の地盤改良が施された範囲S1,希薄な薬液Lによる地盤改良が施されたS2のいずれにおいても、地盤Gの液状化、およびそれによる側方流動を防止することができ、構造物10の傾斜や転倒,基礎杭12の破損等の被害を避けることができる。しかも、構造物10の直下の、希薄な薬液Lによる地盤改良を施した範囲S2においては、地震力を受けると剛性が低下し、地震波が構造物10に伝わるのを防ぐダンパー機能を発揮することができ、これによりこの地盤Gを免震効果を有したものとして、構造物10に破損等の構造的な被害が及ぶのを防止することができる。
【0020】
そして、希薄な薬液Lは、従来用いていた薬液に比較して粘性が低くなるため、一つの注入穴から広範囲に注入することができ、注入作業を容易かつ効率よく行うことが可能である。
【0021】
しかも、通常の地盤改良を施す範囲S1にも薬液注入工法を適用すれば、この範囲S1と、希薄な薬液Lによる地盤改良を施す範囲S2とで、薬液濃度を変えるのみで施工を行うことができ、この点からも一層の施工の容易化を図ることができる。
【0022】
このようにして、上記地盤免震工法によれば、地盤改良を施すのみで、高価な免震装置等を用いる必要もなく、有効な免震効果を備えた地盤Gを、低コストでかつ容易に形成することができる。
【0023】
なお、上記実施の形態において、構造物10の基礎11に基礎杭12,12,…を構築する構成としたが、基礎形式をこれに限定するものではない。前記図2および図3に示したように、希薄な薬液Lによる地盤改良を施した砂(範囲S2)ではせん断ひずみがたかだか2%程度であり、沈下量も希薄な薬液Lで改良した範囲S2の厚さの0.8%程度に留められるので、例えば図5に示すように、構造物10’が中低層である場合には、基礎杭12(図1参照)を構築しないベタ基礎13等としても良い。もちろん、これ以外にも他の基礎形式にも適用することが可能である。
【0024】
また、希薄な薬液Lを注入する範囲S2の平面積や厚さ、希薄な薬液Lの濃度等については、地盤Gの地質、構造物10による荷重、基礎11の形式等に応じて適宜設定すればよいのであって、上記実施の形態に挙げた数値等に何ら限定するものではない。
【0025】
これ以外にも、本発明に係る地盤免震工法の主旨に逸脱しない範囲内であればいかなる構成を採用しても良い。
【0026】
【発明の効果】
以上説明したように、請求項1に係る地盤免震工法によれば、構造物の下方の液状化地盤を地盤改良手段によって地盤改良する構成とし、構造物の下面からその下方の定められた深さまでの範囲については、常時は剛性を保持し、地震時には剛性が低下するように、希薄な薬液を注入して地盤改良し、定められた深さよりも下方の範囲については、せん断剛性が高められるように、地盤改良する構成となっている。そして、請求項2に係る地盤免震工法によれば、薬液100リットル中のシリカ濃度にして8〜10キログラムの通常薬液を、3〜5倍に薄めた希薄な薬液を用いる構成となっている。そして、請求項に係る地盤免震工法によれば、構造物の基礎として基礎杭が構築された構成となっている。このようにして構造物の下方の地盤を地盤改良することにより、地盤の液状化、およびそれによる側方流動を防止することができ、構造物の傾斜や転倒,基礎杭の破損等の被害を避けることができる。しかも、希薄な薬液による地盤改良を施した範囲においては、地震力を受けると剛性が低下し、地震波が構造物に伝わるのを防ぐダンパー機能を発揮することができ、これによりこの地盤を免震効果を有したものとし、構造物の破損等の被害が及ぶのを防止することができる。また、希薄な薬液は、従来用いていた薬液に比較して粘性が低くなるため、注入作業を容易かつ効率よく行うことが可能である。さらに、定められた深さよりも下方の範囲(希薄な薬液を注入する範囲よりも下方の部分)の地盤改良にも薬液注入工法を適用すれば、希薄な薬液による地盤改良を施す範囲と、その下方の範囲とで薬液濃度を変えるのみで施工を行うことができ、この点からも一層の施工の容易化を図ることができる。このようにして、上記地盤免震工法によれば、地盤改良を施すのみで、高価な免震装置等を用いる必要もなく、有効な免震効果を備えた地盤を低コストでかつ容易に形成することができる。
【図面の簡単な説明】
【図1】 本発明に係る地盤免震工法を適用して構築した構造物の一例を示す立断面図である。
【図2】 前記地盤免震工法において、希薄な薬液による地盤改良効果を確認するために行った試験結果であって、繰り返し載荷をしたときの液状化特性の変化を示し、(a)薬液を注入していない地盤における結果、(b)希薄な薬液を注入した地盤における結果を示す図である。
【図3】 同、液状化時のせん断ひずみと液状化の体積ひずみとの関係を示す図である。
【図4】 同、繰り返し載荷をしたときの応力−ひずみの関係を変化を示し、(a)薬液を注入していない地盤における結果、(b)希薄な薬液を注入した地盤における結果を示す図である。
【図5】 本発明に係る地盤免震工法を適用した構造物の他の一例を示す立断面図である。
【図6】 従来の地盤改良を適用した構造物の一例を示す立断面図である。
【符号の説明】
10,10’ 構造物
10a 下面
11 基礎
12 基礎杭
G 地盤
L 希薄な薬液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground seismic isolation method suitable for use in building various structures such as buildings on soft ground.
[0002]
[Prior art]
As is well known, various structures such as buildings are damaged during an earthquake because a large stress is generated in the structure due to seismic waves input from the ground and the structure is destroyed.
[0003]
Conventionally, in order to avoid such damage during earthquakes, seismic isolation devices such as laminated rubber with low rigidity against shear deformation have been installed on the foundations of structures, etc., and this seismic isolation device absorbs seismic waves from the ground. Seismic isolation methods are used to prevent this from reaching the structure.
[0004]
By the way, in the 1995 Hyogoken-Nanbu Earthquake, in areas where land such as landfills was liquefied, there was less structural damage to buildings compared to areas where liquefaction did not occur. It is said that This is because when the ground liquefies due to an earthquake, the rigidity of the ground significantly decreases, and this liquefied ground functions in the same way as the seismic isolation device, reducing the seismic waves input from the ground to the structure. It is.
[0005]
However, if the ground becomes liquefied due to an earthquake, the support capacity of the structure by the ground is lost, so the entire structure may be tilted or toppled, and if lateral flow of the ground occurs due to liquefaction, Foundation piles may also be damaged. Therefore, at present, as shown in FIG. 6, in the ground G where the occurrence of liquefaction is predicted at the time of an earthquake, in order to prevent liquefaction, a countermeasure method such as ground improvement is provided in the area S below the structure 1. Has been given.
[0006]
[Problems to be solved by the invention]
However, in the conventional technology as described above, since the ground G in the improved range S has high shear rigidity, seismic waves are easily transmitted to the structure 1 and the seismic force input to the structure 1 is increased. . For this reason, in order to avoid damage to the structure 1, not only the ground G is improved, but also the seismic isolation device as described above must be installed. However, seismic isolation devices such as laminated rubber are extremely expensive, and in order to obtain an effective seismic isolation effect, there is a problem that enormous costs and construction work are required.
[0007]
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a ground seismic isolation method capable of easily obtaining an effective seismic isolation effect at low cost.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a ground seismic isolation method when the ground supporting the structure is a liquefied ground where liquefaction is expected to occur during an earthquake, and the liquefied ground below the structure In the range from the lower surface of the structure to a defined depth below the structure , a dilute chemical solution is used so that the rigidity is always maintained and the rigidity is reduced during an earthquake. The ground is improved by pouring, and the ground is improved so that the shear rigidity is increased in a range below the predetermined depth .
[0009]
The invention according to claim 2 is the ground seismic isolation method according to claim 1, wherein the dilute chemical solution is diluted 3 to 5 times with a normal chemical solution of 8 to 10 kilograms in silica concentration in 100 liters of the chemical solution. It is characterized by using the thing.
The invention according to claim 3 is the ground seismic isolation method according to claim 1 or 2 , wherein a foundation pile is constructed in the liquefied ground as a foundation of a structure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the ground seismic isolation method according to the present invention will be described with reference to FIGS. 1 to 4.
[0011]
As shown in FIG. 1, the structure 10 is constructed | assembled on the ground (liquefaction ground) G by which generation | occurrence | production of liquefaction is estimated at the time of an earthquake, The foundation 11 is provided with the foundation piles 12, 12, ... Yes. And the ground G of the range S below the structure 10 is ground-improved as follows.
[0012]
That is, among the ground G in the range S below the structure 10, the same ground improvement method, for example, a sand compaction method, a gravel drain, is used in a range S 1 below the predetermined depth from the lower surface 10 a of the structure 10. Use the construction method, cement solidification method, chemical solution injection method, etc. to sufficiently improve the ground.
[0013]
And in the range S2 from the lower surface 10a of the structure 10 to the predetermined depth, the diluted chemical solution L is injected to improve the ground.
As this dilute chemical solution L, for example, a chemical solution similar to that conventionally used in the chemical solution injection method or the like is used, but its concentration is changed to a conventional normal concentration (for example, silica (Si-O in 100 liters of chemical solution). 2 ) For example, a dilute one diluted 3 to 5 times with respect to 8 to 10 kg) is used.
[0014]
Here, the result of the indoor liquefaction test of the sand (corresponding to the range S2 of the ground G) into which the diluted chemical liquid L is injected is shown. Here, as the diluted chemical solution L, one having a concentration of about 1/4 with respect to the normal chemical solution concentration was used.
[0015]
FIG. 2 shows changes in the generation of strain when repeated loading corresponding to seismic waves is applied. FIG. 2 (a) shows the case of sand not containing a chemical solution (state without ground improvement), FIG. (B) is a case of sand mixed with a dilute chemical L. As is clear from this figure, in the sand not containing the chemical solution shown in FIG. 2 (a), the strain rapidly increases due to repeated loading due to the earthquake, thereby causing the ground G to liquefy. On the other hand, the sand (range S2) mixed with the dilute chemical liquid L shown in FIG. 2 (b) does not have a huge strain even when repeated loading due to an earthquake is applied, and liquefaction is prevented. It can be seen that there is no lateral flow or enormous settlement.
[0016]
In addition, it has been clarified in the previous studies that the ground subsidence (volume strain) due to liquefaction is determined by the magnitude of the shear strain generated during the earthquake. The relationship of the volume strain after liquefaction is shown. In the experimental result shown in FIG. 2 (b), since the shear strain is about 2% in the sand (range S2) mixed with the diluted chemical liquid L, the structure 10 is obtained from the relationship shown in FIG. It can be seen that the actual subsidence amount of the ground G below (see FIG. 1) is limited to about 0.8% of the thickness of the range S2 improved by the diluted chemical L.
[0017]
Further, FIG. 4 shows a stress-strain curve at the time of the indoor liquefaction test. As shown in FIG. 4 (a), it is repeatedly loaded in sand not containing chemicals (in a state where the ground is not improved). When it receives, the rigidity decreases, and the strain increases with this. On the other hand, as shown in FIG. 4B, in the sand (range S2) mixed with the diluted chemical liquid L, the rigidity starts to decrease when it is repeatedly loaded. Does not grow. This is because the soil G in this range S2 always maintains rigidity by mixing the dilute chemical L, but if it receives seismic force, the rigidity decreases and it becomes difficult to transmit the seismic wave, and it is enormous. It has the property that no displacement occurs. In addition, the stress-strain hysteresis loop is thicker than liquefied sand (see FIG. 4 (a)), and the attenuation of sand (range S2) mixed with dilute chemical liquid L is large. It shows that the energy absorption effect is high.
[0018]
In this way, the ground G to which the ground improvement shown in FIG. 1 is applied is improved in the shear rigidity and the liquefaction is prevented in the range S1 where the normal ground improvement construction method is applied. Lateral flow is also prevented. In the range S2 into which the dilute chemical solution L is injected, the rigidity is always maintained, and when subjected to seismic force, the rigidity is lowered and the damper function is prevented to prevent the seismic wave from being transmitted to the structure 10, and Liquefaction is prevented without causing enormous displacement.
[0019]
In the ground seismic isolation method described above, the ground G that supports the structure 10 is ground improved by the thin chemical L in the range S2 from the lower surface 10a of the structure 10 to the predetermined depth, and the range S1 below the range S1 is normal. The ground is improved by the ground improvement method. Thereby, in any of the range S1 in which the normal ground improvement has been performed and the S2 in which the ground improvement by the dilute chemical liquid L has been performed, the liquefaction of the ground G and the lateral flow caused thereby can be prevented. It is possible to avoid damages such as tilting or overturning of the structure 10 and damage to the foundation pile 12. In addition, in the range S <b> 2 in which the ground improvement by the dilute chemical solution L is performed immediately below the structure 10, the rigidity is reduced when the seismic force is applied, and a damper function that prevents the seismic wave from being transmitted to the structure 10 is exhibited. As a result, it is possible to prevent the ground structure G from being damaged due to the seismic isolation effect of the ground G.
[0020]
And since the chemical | medical solution L with a low viscosity becomes low compared with the chemical | medical solution used conventionally, it can inject | pour in a wide range from one injection hole, and can perform injection | pouring operation | work easily and efficiently.
[0021]
Moreover, if the chemical solution injection method is applied also to the range S1 where the normal ground improvement is performed, the construction can be performed by changing the concentration of the chemical solution in this range S1 and the range S2 where the ground improvement by the diluted chemical solution L is performed. This also makes it possible to further facilitate the construction.
[0022]
In this way, according to the above-mentioned ground seismic isolation method, the ground G having an effective seismic isolation effect can be easily obtained at low cost by simply performing ground improvement and without using an expensive seismic isolation device. Can be formed.
[0023]
In addition, in the said embodiment, although it was set as the structure which constructs the foundation piles 12, 12, ... in the foundation 11 of the structure 10, a foundation form is not limited to this. As shown in FIG. 2 and FIG. 3, the sand (range S2) subjected to ground improvement with the dilute chemical solution L has a shear strain of about 2% at most, and the subsidence amount is also the range S2 improved with the dilute chemical solution L. Since, for example, as shown in FIG. 5, when the structure 10 ′ is a middle-low layer, a solid foundation 13 that does not construct the foundation pile 12 (see FIG. 1), etc. It is also good. Of course, other basic forms can be applied.
[0024]
In addition, the flat area and thickness of the range S2 into which the dilute chemical solution L is injected, the concentration of the dilute chemical solution L, and the like are appropriately set according to the geology of the ground G, the load by the structure 10, the type of the foundation 11, and the like. However, the present invention is not limited to the numerical values given in the above embodiment.
[0025]
In addition to this, any configuration may be adopted as long as it does not depart from the gist of the ground seismic isolation method according to the present invention.
[0026]
【The invention's effect】
As described above, according to the ground seismic isolation method according to claim 1, the liquefied ground below the structure is improved by the ground improvement means, and the depth defined below from the lower surface of the structure is determined. About the range up to this point, the rigidity is always maintained and the ground is improved by injecting a thin chemical solution so that the rigidity decreases in the event of an earthquake , and the shear rigidity is increased in the range below the specified depth. In this way, the ground is improved . And according to the ground seismic isolation method according to claim 2, it is configured to use a dilute chemical solution obtained by diluting a normal chemical solution of 8 to 10 kilograms 3 to 5 times in terms of silica concentration in 100 liters of chemical solution. . And according to the ground seismic isolation method which concerns on Claim 3 , it has the structure by which the foundation pile was constructed | assembled as a foundation of a structure. By improving the ground below the structure in this way, liquefaction of the ground and lateral flow caused by it can be prevented, and damage such as tilting and overturning of the structure and damage to the foundation pile can be prevented. Can be avoided. In addition, in areas where the ground has been improved with dilute chemicals, the rigidity decreases when subjected to seismic forces, and a damper function that prevents the seismic waves from being transmitted to the structure can be demonstrated. It has an effect and can prevent damage such as damage to the structure. In addition, since a diluted chemical solution has a lower viscosity than a conventionally used chemical solution, the injection operation can be performed easily and efficiently. Furthermore, if the chemical solution injection method is applied to the ground improvement in the range below the specified depth (the portion below the range where the diluted chemical solution is injected) , the range where the ground improvement by the diluted chemical solution is applied, Construction can be carried out only by changing the chemical concentration in the lower range, and further construction can be facilitated from this point. In this way, according to the above-mentioned ground seismic isolation method, it is possible to easily form a ground with an effective seismic isolation effect at low cost by simply performing ground improvement without the need for expensive seismic isolation devices. can do.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an example of a structure constructed by applying a ground seismic isolation method according to the present invention.
FIG. 2 shows test results for confirming the ground improvement effect by a dilute chemical solution in the ground seismic isolation method, showing changes in liquefaction characteristics when repeatedly loaded; (a) It is a figure which shows the result in the ground which inject | poured the result in the ground which has not inject | poured, (b) the thin chemical | medical solution.
FIG. 3 is a graph showing the relationship between the shear strain during liquefaction and the volume strain during liquefaction.
FIG. 4 shows changes in the stress-strain relationship when repeatedly loaded, (a) results in the ground not injected with chemicals, and (b) results in the ground injected with dilute chemicals. It is.
FIG. 5 is an elevational sectional view showing another example of a structure to which the ground seismic isolation method according to the present invention is applied.
FIG. 6 is an elevational sectional view showing an example of a structure to which a conventional ground improvement is applied.
[Explanation of symbols]
10, 10 'structure 10a lower surface 11 foundation 12 foundation pile G ground L dilute chemical

Claims (3)

構造物を支持する地盤が地震時に液状化の発生が予測される液状化地盤であるときの地盤免震工法であって、前記構造物の下方の前記液状化地盤を地盤改良手段によって地盤改良する構成とし、前記構造物の下面からその下方の定められた深さまでの範囲については、常時は剛性を保持し、地震時には剛性が低下するように、希薄な薬液を注入して地盤改良し、前記定められた深さよりも下方の範囲については、せん断剛性が高められるように、地盤改良することを特徴とする地盤免震工法。A ground isolation method when the ground supporting the structure is a liquefied ground where liquefaction is expected to occur during an earthquake, wherein the liquefied ground below the structure is improved by ground improvement means. In the range from the lower surface of the structure to a predetermined depth below the structure, the rigidity is constantly maintained, and the ground is improved by injecting a diluted chemical solution so that the rigidity decreases during an earthquake , A ground-isolated construction method characterized by improving the ground so that the shear rigidity is enhanced in the range below the specified depth . 請求項1記載の地盤免震工法において、前記希薄な薬液には、薬液100リットル中のシリカ濃度にして8〜10キログラムの通常薬液を、3〜5倍に薄めたものを用いることを特徴とする地盤免震工法。 2. The ground seismic isolation method according to claim 1, wherein the dilute chemical solution is obtained by diluting 8 to 10 kilograms of a normal chemical solution 3 to 5 times in a silica concentration of 100 liters of the chemical solution. The ground seismic isolation method. 請求項1または2記載の地盤免震工法において、前記構造物の基礎として、前記液状化地盤中に基礎杭が構築されていることを特徴とする地盤免震工法。The ground seismic isolation method according to claim 1 or 2 , wherein a foundation pile is constructed in the liquefied ground as a foundation of the structure.
JP09940297A 1997-04-16 1997-04-16 Ground seismic isolation method Expired - Fee Related JP3677700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09940297A JP3677700B2 (en) 1997-04-16 1997-04-16 Ground seismic isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09940297A JP3677700B2 (en) 1997-04-16 1997-04-16 Ground seismic isolation method

Publications (2)

Publication Number Publication Date
JPH10292391A JPH10292391A (en) 1998-11-04
JP3677700B2 true JP3677700B2 (en) 2005-08-03

Family

ID=14246508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09940297A Expired - Fee Related JP3677700B2 (en) 1997-04-16 1997-04-16 Ground seismic isolation method

Country Status (1)

Country Link
JP (1) JP3677700B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760695B2 (en) * 1999-10-15 2006-03-29 鹿島建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JPH10292391A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
Bhattacharya et al. A simplified method for unified buckling and free vibration analysis of pile-supported structures in seismically liquefiable soils
JPH09158212A (en) Foundation reinforcing structure for structure group
JP2000154550A (en) Vibration control footing structure in building and construction method therefor
US5746544A (en) Process and structure for reducing roadway construction period
JP3677700B2 (en) Ground seismic isolation method
JP2002129584A (en) Foundation structure
JPH05132923A (en) Improving method for soft ground
Nishanthan et al. Deep cement mixed walls with steel inclusions for excavation support
JPH11148143A (en) Aseismatic reinforcing structure of structure
JP3648646B2 (en) Structure liquefaction countermeasure structure
JP3677705B2 (en) Base isolation structure on soft ground
JPH11315544A (en) Vibration isolation method for structure and construction of vibration isolation of structure
JPH11323960A (en) Aseismatic underground structure for structural body
JP2000230232A (en) Tenacity improving method for prestressed reinforced concrete pile
JPH0617414A (en) Drainage reinforcement pile
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame
Shigeno et al. Numerical study on seismic behavior of a piled raft foundation with grid-form DMWs considering post-peak softening of stabilized soil
JP2000297441A (en) Construction method of underground structure in liquefied ground and footing construction
Loftus Some comments about United States practice of design of axially loaded piles
JPH0726569A (en) Pile foundation construction method for structure exposed to partial earth pressure
JPH0220716A (en) Reinforcing construction execution for soft ground
JP2000291024A (en) Footing structure of construction and construction method thereof
JP2798322B2 (en) Soil liquefaction control method
Fujii et al. Numerical analysis of damaged piles due to soil liquefaction during Hyogoken-Nanbu earthquake
JPS60223530A (en) Enclosed foundation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees